Second-order conditions for non-uniformly convex integrands: quadratic
growth in $L^1$Article
Authors: Daniel Wachsmuth ; Gerd Wachsmuth
NULL##0000-0002-3098-1503
Daniel Wachsmuth;Gerd Wachsmuth
We study no-gap second-order optimality conditions for a non-uniformly convex
and non-smooth integral functional. The integral functional is extended to the
space of measures. The obtained second-order derivatives contain integrals on
lower-dimensional manifolds. The proofs utilize the convex pre-conjugate, which
is an integral functional on the space of continuous functions. Applications to
non-smooth optimal control problems are given.
Christian Clason;Vu Huu Nhu;Arnd Rösch, 2024, Numerical analysis of a nonsmooth quasilinear elliptic control problem: I. Explicit second-order optimality conditions, Springer Link (Chiba Institute of Technology), 58, 3, pp. 993-1029, 10.1051/m2an/2024025, https://www.esaim-m2an.org/10.1051/m2an/2024025/pdf.
Vu Huu Nhu;Phan Quang Sang, 2024, Optimality conditions and Lipschitz stability for non-smooth semilinear elliptic optimal control problems with sparse controls, Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas, 118, 3, 10.1007/s13398-024-01595-y.
Fabian Hoppe;Ira Neitzel, 2022, Purely time-dependent optimal control of quasilinear parabolic PDEs with sparsity enforcing penalization, ESAIM Control Optimisation and Calculus of Variations, 28, pp. 68, 10.1051/cocv/2022058, https://doi.org/10.1051/cocv/2022058.