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analysis of the implicit euler time-discretization of
passive linear descriptor complementarity systems

Bernard Brogliato∗ Alexandre Rocca†

Abstract This article is largely concerned with the time-discretization of descriptor-variable

systems coupled with complementarity constraints. They are named linear descriptor complemen-

tarity systems (LDCS). More specifically passive LDCS with minimal state space representation are

studied. The Euler implicit discretization of LDCS is analysed: the one-step non-smooth problem

(OSNSP), that is a generalized equation, is shown to be well-posed under some conditions. Then

the convergence of the discretized solutions is studied. Several examples illustrate the applicability

and the limitations of the developments.

1 introduction

The analysis of non-smooth dynamical systems with set-valued right-hand sides satisfying maximal

monotone properties has been the object of many contributions, see [26] for a survey. Linear and

nonlinear complementarity dynamical systems, various kinds of projected dynamical systems, of

differential variational inequalities, differential inclusions with maximal monotone right-hand sides,

Moreau’s sweeping processes, and some switching dynamics can be recast in this class of set-valued

dynamical systems. In this article we focus on singular, or linear descriptor complementarity systems

(LDCS). They may be viewed either as an extension of “classical” descriptor-variable systems which

are widely used in Automatic Control and Circuit Theory, or of “classical” linear complementarity

systems. They can also be seen as differential-algebraic equations (DAEs) coupledwith complementarity

constraints. Motivations for studying LDCS are in circuits with set-valued components [2, Chapters 3

and 5] [32], and in a more abstract framework in state-dependent switching DAEs [71, 70], after a kind

of convexification (or filling-in the graph) procedure has been made. They are also closely related to

DAEs whose equality constraints are nonsmooth, as they occur in chemistry or thermo-dynamical

systems [78, 79, 77].

It has to be noted that the study of LDCS has not received a lot of attention yet, and is still at

an embryonic stage of analysis. In particular the analysis of the implicit Euler method, which has

received a lot of attention in several fields [10, 14, 57, 55, 2, 3, 67, 69], is an open issue for LDCS. Our

goal is to analyze the well-posedness of the one-step nonsmooth problem (OSNSP) obtained after an

implicit (backward) Euler discretization, and the convergence of the discrete-time solutions towards a

continuous-time limit which is a solution to the continuous-time system. The second step is useful

not only for proving the existence of solutions to the continuous-time system, but also, perhaps most

importantly, to show that the proposed time-discretization makes sense for numerical simulations.
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Passivity properties (passive systems, positive real transfer functions, Lur’e equations) are pivotal

throughout the article. In Section 2, a class of passive LDCS (which extends descriptor variable systems

with a positive real transfer function) is introduced. A specific Weierstrass form associated with

these systems, when the state-space realization is minimal, is used. The well-posedness of the OSNSP

associated with the implicit Euler discretization, is analysed in Section 3. Convergence of the discrete-

time solutions is studied in Sections 4 and 5. Examples that illustrate the theoretical developments, are

given in Section 6. Conclusions are drawn in Section 7. The appendix is dedicated to recall various

mathematical tools.

Notation and definitions: For any vector 𝑥 ∈ ℝ𝑛 and any matrix 𝑀 ∈ ℝ𝑚×𝑛
, ∥𝑥 ∥ is the Euclidean

norm and ∥𝑀 ∥ is the Frobenius norm, which are compatible norms [16, Proposition 9.3.5], i.e., ∥𝑀𝑥 ∥ ≤
∥𝑀 ∥ ∥𝑥 ∥. Let 𝑀 ∈ ℝ𝑛×𝑚 , then Im(𝑀) is its range, Ker(𝑀) is its null space. We use ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦 , so
⟨𝑥, 𝑥⟩ = ∥𝑥 ∥2

. Positive definite matrix:𝑀 ≻ 0 if 𝑥⊤𝑀𝑥 > 0 for all 𝑥 ≠ 0, positive semidefinite matrix:

𝑀 ≽ 0 if 𝑥⊤𝑀𝑥 ≥ 0 for all 𝑥 (such 𝑀 is not necessarily symmetric). The maximum singular value

is denoted as 𝜎max(𝑀), and the minimum and maximum eigenvalues as 𝜆min(𝑀) and 𝜆max(𝑀). 𝑀•𝑖
denotes the 𝑖-th column of𝑀 . More mathematical results and definitions are given in Appendices a

to g.

2 the class of passive ldcs

Let us consider the following singular dynamical system, that we may name a linear descriptor com-

plementarity system (LDCS):

(2.1)

{
𝑃 ¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝜆(𝑡) + 𝐸 (𝑡), a.e. 𝑡 ≥ 0

0 ≤ 𝜆(𝑡) ⊥ 𝑤 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝜆(𝑡) + 𝐹 (𝑡) ≥ 0, for all 𝑡 ≥ 0

with 𝑥 (𝑡) ∈ ℝ𝑛 , 𝜆(𝑡) ∈ ℝ𝑚 ,𝐴, 𝐵,𝐶 , 𝐷 constant matrices of appropriate dimensions, 𝑃 ∈ ℝ𝑛×𝑛 has rank
𝑝 < 𝑛. Dissipativity is a fundamental property in Systems and Control [25, 87, 88]. The material in

this article relies on a result in [28, 32, 51] on a special Weierstrass form for passive descriptor variable

systems [25, Section 3.1.7] which possess a minimal state-space realization [28, Theorem 3.1]. The

passivity of the quintuple (𝑃,𝐴, 𝐵,𝐶, 𝐷) means the passivity of the operator 𝜆 ↦→ 𝑤 , see Appendix d.

Assuming that 𝐸 (𝑡) = 0 and 𝐹 (𝑡) = 0, passivity and minimality, this special form writes as (see [51]

[32, Equation (16)] [28, Proposition A.3]):

(2.2)


(𝑎) ¤𝑥1(𝑡) = 𝐴1𝑥1(𝑡) + 𝐵1𝜆(𝑡)
(𝑏) ¤𝑥2(𝑡) = 𝑧 (𝑡) + 𝐵2𝜆(𝑡)
(𝑐) 0 = 𝑥2(𝑡) + 𝐵3𝜆(𝑡)
(𝑑) 0 ≤ 𝜆(𝑡) ⊥ 𝑤 (𝑡) = 𝐶1𝑥1(𝑡) +𝐶2𝑥2(𝑡) +𝐶3𝑧 (𝑡) + 𝐷𝜆(𝑡) ≥ 0,

where the quadruple (𝐴1, 𝐵1,𝐶1, �̂�) is itself passive, �̂�
Δ
= 𝐷 − 𝐶3𝐵2 − 𝐶2𝐵3, 𝑥1(𝑡) ∈ ℝ𝑛1

, 𝑥2(𝑡) ∈ ℝ𝑛2
,

𝑧 (𝑡) ∈ ℝ𝑛2
, 𝑛 = 𝑛1 + 2𝑛2, 𝜆(𝑡) ∈ ℝ𝑚 , and there exists 𝑋3 = 𝑋

⊤
3
≽ 0 such that 𝐵⊤

3
𝑋3 = −𝐶3. The matrix

𝑋3 is unique when the state-space realization is minimal [28, Theorem 5.4]. The LMI in (d.2) holds.

Due to the passivity and the complementarity conditions which imply 𝜆(𝑡)⊤𝑤 (𝑡) = 0 for all times, it

follows that for all 𝑡 ≥ 0 one obtains 𝑉 (𝑥1(𝑡), 𝑥2(𝑡))
Δ
= 1

2
(𝑥⊤

1
𝑋1𝑥1 + 𝑥⊤2 𝑋3𝑥2) (𝑡) ≤ 𝑉 (𝑥1(0), 𝑥2(0)), [32]

and [28, Proof of Theorem 5.1], with 𝑋1 ≻ 0 if the system is strongly SPR and minimal [28, Theorem

5.4], see Appendix d. In the latter case 𝑥1(·) is bounded, 𝐴1 is Hurwitz
1
, �̂� ≻ 0 and 𝐵3 is full row rank

(⇒ 𝑛2 ≤ 𝑚) [28, Proposition A.4].

1
That is, all its eigenvalues have a negative real part.
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Remark 2.1. Notice that the differentiation index (shortly the index in the following) of the DAE part of

the system (2.2) is equal to 2, since one needs to differentiate the third line twice (assuming 𝜆(𝑡) = 0)

to recover the variable ¤𝑧 (𝑡). It is clear from (2.2) that the LDCS (2.1) may be seen as a DAE coupled

with nonsmooth constraints that take the form of complementarity conditions. It is noteworthy that

singular zero order sweeping processes (named in ZOSwP [26]) have been studied [85, 6, 9], but they

form another class of singular systems than (2.1) or (2.2).

Remark 2.2. The system in (2.1) can be rewritten equivalently as:

(2.3) 𝑃 ¤𝑥 (𝑡) −𝐴𝑥 (𝑡) − 𝐸 (𝑡) ∈ 𝐵(N𝐾★ + 𝐷)−1(−𝐶𝑥 (𝑡) − 𝐹 (𝑡))

with 𝐾 = 𝐾★ = ℝ𝑚+ , which is, as pointed out in [26, section 3.16], a class of singular systems that has

not yet received much attention. The same applies to (2.2) which is rewritten as:

(2.4)
©­«
𝐼𝑛1

0 0

0 𝐼𝑛2
0

0 0 0

ª®¬ ©­«
¤𝑥1(𝑡)
¤𝑥2(𝑡)
¤𝑧 (𝑡)

ª®¬ − ©­«
𝐴1 0 0

0 0 𝐼𝑛2

0 𝐼𝑛2
0

ª®¬ ©­«
𝑥1(𝑡)
𝑥2(𝑡)
𝑧 (𝑡)

ª®¬ ∈ ©­«
𝐵1

𝐵2

𝐵3

ª®¬ (N𝐾★ + 𝐷)−1(−𝑤 (𝑡)) .

Exogenous terms can also be considered in (2.2) and (2.4), though the analyses in Sections 3 and 4

are made without such terms. Also, an alternative way of analysing (2.2) is presented in Section 5,

incorporating exogenous signals. An example is treated in Section 6.1 where exogenous terms are

taken into account in the special form (2.2), see (6.3) and (6.4). In the case 𝐷 = 0, both (2.4) and (2.3)

can be rewritten, under some assumptions, as a singular first-order sweeping process (FOSwP [26]).

The optimal control of FOSwP as treated in [42, 41, 36], relies on the analysis of the time-discretization

and the convergence of solutions. Such an important issue could be tackled for singular FOSwP, where

the results in this article may serve as a starting point.

3 the euler implicit scheme and the osnsp

In the sequel of the article, we let 𝑡 ∈ [0,𝑇 ], 0 < 𝑇 < +∞,ℎ = 𝑇
𝑁
,𝑁 ∈ ℕ\ {0}, 𝑡𝑘 = 𝑘ℎ, 𝑘 ∈ {0, 1, . . . , 𝑁 },

and 𝑓𝑘 = 𝑓 (𝑡𝑘 ). The studied implicit Euler time-discretization of (2.2) is as follows:

(3.1)


𝑥1,𝑘+1 = 𝑥1,𝑘 + ℎ𝐴1𝑥1,𝑘 + ℎ𝐵1𝜆𝑘+1

𝑥2,𝑘+1 = 𝑥2,𝑘 + ℎ𝑧𝑘+1 + ℎ𝐵2𝜆𝑘+1

0 = 𝑥2,𝑘+1 + 𝐵3𝜆𝑘+1

0 ≤ 𝜆𝑘+1 ⊥ 𝑤𝑘+1 = 𝐶1𝑥1,𝑘+1 +𝐶2𝑥2,𝑘+1 +𝐶3𝑧𝑘+1 + 𝐷𝜆𝑘+1 ≥ 0,

for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, where𝐴1𝑥1,𝑘 could be replaced by𝐴1𝑥1,𝑘+1 without modifying much the next

developments. Nevertheless we choose to call the method in (3.1) an implicit method despite of the fact

that the linear term is explicitly calculated, because our objective is to focus solely on the set-valued

part of the system (i.e., the complementarity conditions). The set of equations in (3.1) makes a mixed

linear complementarity problem (MLCP). After few calculations from (3.1) the following OSNSP is

obtained (where the variable ℎ𝑤𝑘+1 is used instead of𝑤𝑘+1) as an LCP:

(3.2) 0 ≤ 𝜆𝑘+1 ⊥ ¯𝐷ℎ𝜆𝑘+1 + ℎ𝛽𝑘 ≥ 0 ⇔ ¯𝐷ℎ𝜆𝑘+1 + ℎ𝛽𝑘 ∈ −Nℝ𝑚
+ (𝜆𝑘+1)

⇔ 𝜆𝑘+1 ∈ ( ¯𝐷ℎ + Nℝ𝑚
+ )

−1(−ℎ𝛽𝑘 ),

with
¯𝐷ℎ

Δ
= ℎ ˆ𝐷 + ℎ2𝐶1𝐵1 + 𝐵⊤3 𝑋3𝐵3, 𝛽𝑘

Δ
= 𝐶1(𝐼𝑛1

+ ℎ𝐴1)𝑥1,𝑘 − 1

ℎ
𝐶3𝑥2,𝑘 . It is noteworthy that 𝑧𝑘+1 is

eliminated and does not appear in 𝛽𝑘 . The inclusion (3.2) is a VI as (b.2) with 𝜑 (·) = Ψℝ𝑚
+ (·). Obviously

the well-posedness of the OSNSP depends on the properties of
¯𝐷ℎ . From the passivity we know that

�̂� ≽ 0 and 𝐵⊤
3
𝑋3𝐵3 ≽ 0. Using Theorem a.1 and Corollary a.2 it is possible to characterize the set of

admissible ℎ𝐶1𝐵1 that do not destroy the positive definiteness of
¯𝐷ℎ in case

ˆ𝐷 ≻ 0.
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Remark 3.1.We do not investigate here whether or not the discrete time system (3.1) is dissipative.

Such a study is made in [55] for the case of LCS discretized with a 𝜃 -method.

As alluded to in Remark 2.2, the cone ℝ𝑚+ can be replaced in (2.1), (2.2) and (3.1) by any closed non

empty convex cone 𝐾 ⊂ ℝ𝑚 and its dual cone 𝐾★
. Then the complementarity conditions become

𝐾★ ∋ 𝜆(𝑡) ⊥ 𝑤 (𝑡) = 𝐶1𝑥1(𝑡) +𝐶2𝑥2(𝑡) +𝐶3𝑧 (𝑡) + 𝐷𝜆(𝑡) ∈ 𝐾 , yielding the inclusion

(3.3)
¯𝐷ℎ𝜆𝑘+1 + ℎ𝛽𝑘 ∈ −N𝐾★ (𝜆𝑘+1)

⇔ 𝜆𝑘+1 ∈ ( ¯𝐷ℎ + N𝐾★)−1(−ℎ𝛽𝑘 ),

which is a linear cone complementarity problem (LCCP), instead of (3.2). One can also consider

time-varying terms in (2.2), in both the dynamics and the complementarity conditions, and adapt 𝛽𝑘
accordingly. Thus in the next proposition a more general complementarity framework is considered

where the positive orthant is replaced by a closed convex cone.

Proposition 3.2. Let ℎ > 0 and 𝑘 ≥ 0 be given. Assume that ¯𝐷ℎ ≽ 0, not necessarily symmetric, and let
𝐾 ⊂ ℝ𝑚 be a non empty closed convex cone (where the complementarity conditions in (2.2) are extended
to 𝐾★ ∋ 𝜆(𝑡) ⊥ 𝑤 (𝑡) = 𝐶1𝑥1(𝑡) +𝐶2𝑥2(𝑡) +𝐶3𝑧 (𝑡) + 𝐷𝜆(𝑡) ∈ 𝐾). Let S = 𝐾★ ∩ Ker( ¯𝐷ℎ + ¯𝐷⊤

ℎ
) ∩ {𝑤 ∈

ℝ𝑚 | ¯𝐷ℎ𝑤 ∈ 𝐾}. Then:
1. If S = {0}, for each ℎ𝛽𝑘 the LCCP in (3.3) has at least a solution.

2. If S ≠ {0}, and there exists 𝜉0 ∈ ℝ𝑚 such that ⟨ℎ𝛽𝑘 − ¯𝐷⊤
ℎ
𝜉0, 𝑣⟩ + Ψ𝐾★ (𝑣) > 0 for all 𝑣 ≠ 0, 𝑣 ∈ S,

then the LCCP in (3.3) has at least a solution.

3. If 𝜆1

𝑘+1
and 𝜆2

𝑘+1
are two solutions of the LCCP, then 𝜆1

𝑘+1
− 𝜆2

𝑘+1
∈ Ker( ¯𝐷ℎ + ¯𝐷⊤

ℎ
).

Proof. Let us consider Proposition b.2. Comparing (3.3) and (b.2) one has 𝜑 (·) = Ψ𝐾★ (·), M = ¯𝐷ℎ ,

q = ℎ𝛽𝑘 . Using Proposition b.1 c) d), it follows that (dom(𝜑))∞ = 𝐾★
. The second set in S is obvious.

The third set necessitates the calculation of (dom(𝜑∞))★, see (b.3). Again the result of the calculation

follows from Proposition b.1 c) and d). Then the proof follows from Proposition b.2 a), b) and c). □

Once the existence of 𝜆𝑘+1 is established for any 𝑘 ≥ 0, then the existence of 𝑥1,𝑘+1, 𝑥2,𝑘+1 and 𝑧𝑘+1

can be inferred from (3.1) for any ℎ > 0.

Remark 3.3. If 𝐾 = ℝ𝑚+ then other results like [43, Theorem 3.8.6] may be used to study the LCP (3.2),

using for instance the copositivity of
¯𝐷ℎ .

Let us state a consequence of Proposition 3.2. The definition of a strongly SPR (SSPR) system is

recalled in Appendix d.

Corollary 3.4. Let the quintuple (𝑃,𝐴, 𝐵,𝐶, 𝐷) be SSPR. Then, the LCCP in (3.3) has a unique solution for
any ℎ𝛽𝑘 , for ℎ > 0 small enough.

Proof. This follows from [28, Theorem 5.4] (⇒ �̂� ≻ 0), the fact that 𝐵⊤
3
𝑋3𝐵3 ≽ 0, Corollary a.2

(⇒ ¯𝐷ℎ ≻ 0 for 0 < ℎ < ℎ∗
Δ
= 1

∥𝐶1𝐵1 ∥2 ∥ (
ˆ𝐷+ ˆ𝐷⊤

2
)−1 ∥2

⇒ S = {0}), and items 1 and 3 in Proposition 3.2. □

It is noteworthy that the SSPRness is only sufficient to guarantee that
ˆ𝐷 ≻ 0, which is itself a

sufficient condition for the existence of solutions to the LCCP (3.3).

4 boundedness and convergence analysis

From now on, we assume that the complementarity conditions are given as in (2.2) and (3.1), i.e.,
𝐾 = 𝐾★ = ℝ𝑚+ , see Remark 4.2. The next result characterizes least-norm solutions of the LCP.

Brogliato, Rocca Analysis of the implicit Euler time-discretization of passive . . .
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Corollary 4.1. Assume that the conditions for existence of a solution in Proposition 3.2 are satisfied. Then
the set of solutions to the LCP in (3.2) is nonempty convex polyhedral and contains a unique least-norm
element 𝜆min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 ) such that ∥𝜆min

𝑘+1
∥ ≤ ∥𝜆𝑘+1∥ for any other solution 𝜆𝑘+1. Moreover there exists a

constant 𝜂 > 0 depending only on ¯𝐷ℎ (= ℎ ˆ𝐷 + ℎ2𝐶1𝐵1 + 𝐵⊤3 𝑋3𝐵3) such that ∥𝜆min

𝑘+1
∥ ≤ 𝜂ℎ∥𝛽𝑘 ∥.

Proof. Follows from [43, Theorem 3.1.7] and [57, Lemma 1]. □

The constant 𝜂 generally depends on ℎ since it depends on �̄�ℎ , and we may denote it as 𝜂 (ℎ) (as the
examples in Section 6 show, it may also be constant in some cases). This result certainly is important

because it will subsequently allow us to get upper bounds on the iterates of the implicit scheme (3.1).

Notice that if
¯𝐷ℎ = 0 then 𝛽𝑘,𝑖 > 0 ⇒ 𝜆𝑘+1,𝑖 = 0, and 𝛽𝑘,𝑖 = 0 ⇒ 𝜆𝑘+1,𝑖 ∈ ℝ+, hence 𝜆min

𝑘+1
= 0 so

that 𝜂 = 0. If ℎ = 0 then
¯𝐷0 = 𝐵⊤

3
𝑋3𝐵3, 𝛽0 = −𝐶3𝑥2,𝑘 , and 𝜂 = 𝜂0 such that ∥𝜆min

𝑘+1
∥ ≤ 𝜂0∥𝐶3𝑥2,𝑘 ∥ is

independent of ℎ. If the LCP(�̄�ℎ, ℎ𝛽𝑘 ) enjoys the stability of solutions property [43, Theorem 7.3.12],

then a small perturbation of
¯𝐷ℎ implies a small variation of the solution, hence of 𝜆min

𝑘+1
, and consequently

of the constant 𝜂. Assume that𝐶3 = 0 (this is Assumption 2 below). Then solutions of the LCP( ¯𝐷ℎ, ℎ𝛽𝑘 )
are also solutions of LCP( ˆ𝐷 + ℎ𝐶1𝐵1,𝐶1(𝐼𝑛1

+ ℎ𝐴1)𝑥1,𝑘 ). If ˆ𝐷 + ℎ𝐶1𝐵1 is a P-matrix (which occurs if
ˆ𝐷 is

a P-matrix and ℎ > 0 is small enough, see Corollary a.2), then it follows from [3, Theorem B.3] [34]

that the unique solution of LCP(�̂� + ℎ𝐶1𝐵1,𝐶1(𝐼𝑛1
+ ℎ𝐴1)𝑥1,𝑘 ) (which is also the least-norm solution)

satisfies ∥𝜆min

𝑘+1
∥ ≤ 𝜂 ∥𝐶1(𝐼𝑛1

+ ℎ𝐴1)𝑥1,𝑘 ∥ for some constant 𝜂 > 0.

Remark 4.2. As long as a minimal norm element exists and satisfies the property stated in the corollary,

one may consider an LCCP as in (3.3) instead of an LCP (3.2).

4.1 convergence analysis

From (3.2) and under the conditions of Corollary 4.1, the mapping 𝛽𝑘 ↦→ 𝜆𝑘+1(−ℎ𝛽𝑘 ) = 𝜆min

𝑘+1
with 𝜆min

𝑘+1

the least-norm element of the convex polyhedral set ( ¯𝐷ℎ +Nℝ𝑚
+ )−1(−ℎ𝛽𝑘 ), is a single-valued mapping.

The implicit scheme (3.1) may be modified as follows (which may be named the “minimal norm” implicit

scheme):

(4.1)



𝑥1,𝑘+1 = (𝐼𝑛1
+ ℎ𝐴1)𝑥1,𝑘 + ℎ𝐵1𝜆

min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 )

𝑥2,𝑘+1 = 𝑥2,𝑘 + ℎ𝑧𝑘+1 + ℎ𝐵2𝜆
min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 )

0 = 𝑥2,𝑘+1 + 𝐵3𝜆
min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 )

0 ≤ 𝜆min

𝑘+1
⊥ 𝑤𝑘+1 = 𝐶1𝑥1,𝑘+1 +𝐶2𝑥2,𝑘+1 +𝐶3𝑧𝑘+1 + 𝐷𝜆min

𝑘+1
≥ 0

∥𝜆min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 )∥ ≤ 𝜂∥ℎ𝛽𝑘 ∥, ℎ𝛽𝑘 = ℎ𝐶1(𝑥1,𝑘 + ℎ𝐴1𝑥1,𝑘 ) −𝐶3𝑥2,𝑘 , 𝜂 > 0,

for all 𝑘 ∈ {0, . . . , 𝑁 − 1}. The above results explore the well-posedness of the OSNSP, for fixed ℎ > 0.

Our goal is now to analyse the boundedness of the iterates on the integration interval [0,𝑇 ], 𝑇 > 0.

For all 𝑘 ≥ 1 we have 𝑥2,𝑘 = −𝐵3𝜆
min

𝑘
, and ℎ𝑧𝑘+1 = −𝐵3𝜆

min

𝑘+1
− 𝑥2,𝑘 − ℎ𝐵2𝜆

min

𝑘+1
, thus it is inferred that

𝑥2,𝑘+1 = −𝐵3(𝜆min

𝑘+1
+ 𝜆min

𝑘
) − 𝑥2,𝑘 . Consequently (4.1) is rewritten equivalently as:

(4.2)



𝑥1,𝑘+1 = (𝐼𝑛1
+ ℎ𝐴1)𝑥1,𝑘 + ℎ𝐵1𝜆

min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 )

𝑥2,𝑘+1 = −𝑥2,𝑘 − 𝐵3(𝜆min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 ) + 𝜆min

𝑘
(𝑥1,𝑘−1, 𝑥2,𝑘−1))

0 ≤ 𝜆min

𝑘+1
⊥ 𝑤𝑘+1 = 𝐶1(𝐼𝑛1

+ ℎ𝐴1)𝑥1,𝑘 − (𝐶2 +
1

ℎ
𝐶3)𝑥2,𝑘 +

1

ℎ
�̄�ℎ𝜆

min

𝑘+1
−𝐶2𝐵3𝜆

min

𝑘
≥ 0

0 = 𝑥2,𝑘+1 + 𝐵3𝜆
min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 ),

ℎ𝑧𝑘+1 = −𝐵3𝜆
min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 ) − 𝑥2,𝑘 − ℎ𝐵2𝜆

min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 )

∥𝜆min

𝑘+1
(𝑥1,𝑘 , 𝑥2,𝑘 )∥ ≤ 𝜂∥ℎ𝛽𝑘 ∥, ℎ𝛽𝑘 = ℎ𝐶1(𝐼𝑛1

+ ℎ𝐴1)𝑥1,𝑘 −𝐶3𝑥2,𝑘 , 𝜂 > 0,

for all 𝑘 ∈ {1, 𝑁 − 1}, given initial data 𝑥1,0 and 𝑥2,0. Starting from (4.2) the next result is obtained:
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Lemma 4.3. Let 𝛼1,𝑘
Δ
= ∥𝑥1,𝑘 ∥, 𝛼2,𝑘

Δ
= ∥𝑥2,𝑘 ∥, 𝛼𝑘 = (𝛼1,𝑘 𝛼2,𝑘 )⊤, then:

(4.3)

{
𝛼𝑘+1 ≤ (𝑀𝑖𝑀 +𝑀𝑖−1𝑈 )𝛼𝑘−𝑖 +𝑀𝑖𝑈𝛼𝑘−𝑖−1

𝑀𝑖+1 = 𝑀𝑖𝑀 +𝑀𝑖−1𝑈 , 𝑀0 = 𝐼2, 𝑀−1 = 0, 0 ≤ 𝑖 ≤ 𝑘 − 1, 𝑘 ≥ 1,

where 𝑀 =

(
𝑎 𝑏

𝑐 𝑑

)
, 𝑈 =

(
0 0

𝑒 𝑓

)
, 𝑎 = ∥𝐼𝑛1

+ ℎ𝐴1∥ (1 + ℎ2𝜂 ∥𝐵1∥ ∥𝐶1∥), 𝑏 = ℎ𝜂 ∥𝐵1∥ ∥𝐶3∥, 𝑐 =

ℎ𝜂 ∥𝐵3∥ ∥𝐶1∥ ∥𝐼𝑛1
+ ℎ𝐴1∥, 𝑑 = (1 + 𝜂∥𝐵3∥ ∥𝐶3∥), 𝑒 = 𝑐 , 𝑓 = 𝜂 ∥𝐵3∥ ∥𝐶3∥. In particular

(4.4) 𝛼𝑘+1 ≤ (𝑀𝑘−1𝑀 +𝑀𝑘−2𝑈 )𝛼1 +𝑀𝑘−1𝑈𝛼0

for all 𝑘 ≥ 1.

Proof. The proof starts from (4.2). The following upper bounds can be derived:

∥𝜆min

𝑘+1
∥ ≤ 𝜂ℎ∥𝐶1∥ ∥𝐼𝑛1

+ ℎ𝐴1∥ ∥𝑥1,𝑘 ∥ + 𝜂∥𝐶3∥ ∥𝑥2,𝑘 ∥(4.5a)

∥𝑥1,𝑘+1∥ = ∥𝐼𝑛1
+ ℎ𝐴1∥ (1 + ℎ2𝜂 ∥𝐵1∥ ∥𝐶1∥) ∥𝑥1,𝑘 ∥ + ℎ𝜂∥𝐵1∥ ∥𝐶3∥ ∥𝑥2,𝑘 ∥

= 𝑎∥𝑥1,𝑘 ∥ + 𝑏∥𝑥2,𝑘 ∥
(4.5b)

∥𝑥2,𝑘+1∥ ≤ (1 + 𝜂 ∥𝐵3∥ ∥𝐶3∥) ∥𝑥2,𝑘 ∥ + 𝜂 ∥𝐵3∥ ∥𝐶3∥ ∥𝑥2,𝑘−1∥
+ ℎ𝜂∥𝐵3∥ ∥𝐶1∥ ∥𝐼𝑛1

+ ℎ𝐴1∥ (∥𝑥1,𝑘 ∥ + ∥𝑥1,𝑘−1∥)
= 𝑑 ∥𝑥2,𝑘 ∥ + 𝑓 ∥𝑥2,𝑘−1∥ + 𝑐 (∥𝑥1,𝑘 ∥ + ∥𝑥1,𝑘−1∥) .

(4.5c)

One infers that:

(4.6) 𝛼𝑘+1 ≤ 𝑀𝛼𝑘 +𝑈𝛼𝑘−1

The upper bound in (4.3) therefore holds for 𝑖 = 0. Let us prove by induction that it holds for all

0 ≤ 𝑖 ≤ 𝑘 − 1. Let it hold for 𝑖 > 0, we have 𝛼𝑘−𝑖 ≤ 𝑀𝛼𝑘−𝑖−1 + 𝑈𝛼𝑘−𝑖−2. Thus 𝛼𝑘+1 ≤ (𝑀𝑖𝑀 +
𝑀𝑖−1𝑈 )𝑀𝛼𝑘−𝑖−1 + (𝑀𝑖𝑀 +𝑀𝑖−1𝑈 )𝑈𝛼𝑘−𝑖−2 +𝑀𝑖𝑈𝛼𝑘−𝑖−1 = (𝑀𝑖+1𝑀 +𝑀𝑖𝑈 )𝛼𝑘−𝑖−1 +𝑀𝑖+1𝑈𝛼𝑘−𝑖−2. The

result is proved. □

Our goal is now to examine (4.4). Let us come back to the matrices𝑀 and𝑈 in Lemma 4.3. It is clear

from (4.4) that the boundedness of the sequence {𝛼𝑘 }𝑘≥2 depends on the boundedness of𝑀𝑘 , 𝑘 ≥ 1.

Apart from 𝑑 and 𝑓 , all the other terms in 𝑀 and 𝑈 are proportional to ℎ, 𝜂ℎ or to ℎ1

Δ
= ∥𝐼𝑛1

+ ℎ𝐴1∥.
Moreover 𝑑 > 1 whenever 𝐵3 ≠ 0 and𝐶3 ≠ 0. The term in position (2, 2) of𝑀𝑛

is equal to 𝑑𝑛 +O(ℎ1ℎ
2).

Before stating the next result, let us introduce the following assumptions:

Assumption 1. The matrix 𝐴1 is such that ℎ1 ≤ 1 for ℎ > 0 small enough.

Let us notice that the induced norm ∥ · ∥2,2 = 𝜎max(·) [16, Proposition 9.4.9] is compatible with the

vector norm ∥ · ∥2 = ∥ · ∥ [16, pp.607-609], and can be used instead of the Frobenius norm to compute

ℎ1. The next assumption is crucial in the body of this section.

Assumption 2. One has 𝐵3,•𝑖 ∈ Ker(𝑋3) for all 1 ≤ 𝑖 ≤ 𝑚 (=⇒ 𝐶3 = 0).

Let us remind that 𝑋3 is uniquely defined under minimality and positive-realness [28, Theorem 5.4].

If Assumption 2 holds then 𝑑 = 1 and 𝑏 = 𝑓 = 0. This assumption means that the variable 𝑧 does not

enter the complementarity conditions, see (2.2). Hence in a sense the complementarity part of the

LDCS and the algebraic part are decoupled, and 𝛽𝑘 no longer depends on
1

ℎ
𝐶3𝑥2,𝑘 . The terms in (4.5)

involve products with 𝜂 (ℎ), and it is important to guarantee that they are bounded, when Assumption 2

holds.
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Assumption 3. The constant 𝜂 = 𝜂 (ℎ) is such that the products 𝜂 (ℎ)ℎ can be made arbitrarily small for

small enough ℎ ≥ 0.

Notice that this assumption is verified in the examples of Section 6, where 𝜂 is a constant (but these

examples do not verify Assumption 2, however). The matrices𝑀𝑘 then involve only products of powers

of the terms 𝑎, 𝑏, 𝑐 , 𝑑 = 1, 𝑒 . These products are bounded for bounded 𝑘 , and provided that both ℎ and

ℎ1 are small enough so that 𝑎 ≤ 1, 𝑏 ≤ 1, 𝑐 ≤ 1, 𝑑 = 1, 𝑒 ≤ 1, they remain bounded as 𝑘 → +∞. If the

inequalities are strict (apart form 𝑑 = 1), the first rows in both𝑀𝑘−1𝑀 +𝑀𝑘−2𝑈 and𝑀𝑘−1𝑈 converge

to zero, while the second rows converge to (0, 1) (the 1 being the consequence of a term 𝑑𝑛 in matrices

𝑀𝑛
). The next proposition is therefore proved:

Proposition 4.4. Assume that: a) the conditions of existence of solutions in Proposition 3.2 are verified, b)
Assumptions 1 and 3 hold true, and c) both ℎ and ℎ1 are small enough, so that 𝑎 ≤ 1, 𝑏 ≤ 1, 𝑐 ≤ 1, 𝑑 = 1,
𝑒 ≤ 1. Then the sequences {𝛼1,𝑘 }𝑘 and {𝛼2,𝑘 }𝑘 are uniformly bounded in 𝑘 . If 𝐴1 ≺ 0, and ℎ > 0 is small
enough such that 𝑎 < 1, 𝑐 < 1, 𝑒 < 1, then 𝛼1,𝑘 → 0 as 𝑘 → +∞.

Recall that 𝛼1,𝑘 = ∥𝑥1,𝑘 ∥ and 𝛼2,𝑘 = ∥𝑥2,𝑘 ∥. The last assertion of the proposition follows from the

material in Appendix a. Then we have the next corollary.

Corollary 4.5. Let the conditions a), b), c) of Proposition 4.4 hold. Then ∥𝜆min

𝑘+1
∥ is uniformly bounded

in 𝑘 and ℎ > 0, and it converges to zero as 𝑘 → +∞ if 𝛼1,𝑘 → 0 as 𝑘 → +∞. Therefore the sequence{𝑥1,𝑘+1−𝑥1,𝑘

ℎ

}
𝑘
is uniformly bounded also in 𝑘 and ℎ > 0.

Proof. The boundedness of ∥𝜆min

𝑘+1
∥ and its convergence follow from (4.5) (a), the boundedness of ∥𝑥1,𝑘 ∥

and Assumption 2. From the first line in (4.2), one has
𝑥1,𝑘+1−𝑥1,𝑘

ℎ
= 𝐴1𝑥1,𝑘 + 𝐵1𝜆

min

𝑘+1
, hence the result is

proved. □

Let us now study the convergence of the piecewise-linear and step-function approximations defined

as:

(4.7)


𝑥ℎ

1
(𝑡) = 𝑥1,𝑘+1 +

𝑡𝑘+1 − 𝑡
ℎ

(𝑥1,𝑘 − 𝑥1,𝑘+1)

¤𝑥ℎ
1
(𝑡) =

𝑥1,𝑘+1 − 𝑥1,𝑘

ℎ

𝑥★
1,ℎ
(𝑡) = 𝑥1,𝑘+1 for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1)

and similarly for the other variables.

Corollary 4.6. There exists subsequences denoted as {𝑥ℎ
1
(·)}ℎ≥0 which converge uniformly to a limit

𝑥1(·) in C0( [0,𝑇 ];ℝ𝑛1), such that almost everywhere one has ¤𝑥1(𝑡) = 𝐴1𝑥1(𝑡) + 𝜆1(𝑡), for some function
𝜆1(·). The sequence {𝑥ℎ★1

(·)}ℎ≥0 converges to 𝑥1(·) strongly in L2( [0,𝑇 ];ℝ𝑛1). Moreover the sequences
{𝑥★

2,ℎ
(·)}ℎ≥0 and {𝜆min,★

ℎ
(·)}ℎ≥0 converge weakly★ in L∞( [0,𝑇 ];ℝ𝑙 ), 𝑙 = 𝑛2 and 𝑙 =𝑚, respectively, to

limits 𝑥2(·) and 𝜆(·) which satisfy the continuous-time constraints.

Proof. Both {𝑥ℎ
1
(·)}ℎ and { ¤𝑥ℎ

1
(·)}ℎ are uniformly bounded on [0,𝑇 ]. The sequence of C0( [0,𝑇 ];ℝ𝑛1)

functions {𝑥ℎ
1
(·)}ℎ is thus equicontinuous. By the Arzela-Ascoli Theorem this sequence stays in a

compact subset of C0( [0,𝑇 ];ℝ𝑛1) and converges uniformly towards a continuous limit 𝑥1(·) : [0,𝑇 ] →
ℝ𝑛1

as ℎ → 0, ℎ > 0. Let us notice that 𝑥1(𝑡) → 0 as 𝑡 → +∞. Indeed from the above results which

are stated for 𝑘 ∈ {0, . . . , 𝑁 } and ℎ > 0, 𝑘 → +∞ only if 𝑇 = 𝑁ℎ → +∞. Let us now define the step

functions 𝑥ℎ★
1

(𝑡) = 𝑥1,𝑘+1 if 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), 𝜆min

ℎ★
(𝑡) = 𝜆min

𝑘+1
if 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), and

(4.8) ¤𝑥ℎ
1
(𝑡) = 𝐴1𝑥

ℎ★
1

(𝑡) + 𝐵1𝜆
min

ℎ★
(𝑡), almost everywhere.
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In addition one has:

(4.9) ∥𝑥ℎ
1
(𝑡) − 𝑥ℎ★

1
(𝑡)∥2

L2 ( [0,𝑇 ];ℝ𝑛1 ) =
𝑁−1∑︁
𝑘=0

∫ 𝑡𝑘+1

𝑡𝑘

(𝑡𝑘+1 − 𝑡)2 ∥ ¤𝑥1,𝑘 ∥2𝑑𝑡 ≤ 𝐶2

𝑁−1∑︁
𝑘=0

∫ 𝑡𝑘+1

𝑡𝑘

(𝑡𝑘+1 − 𝑡)2𝑑𝑡

≤ 𝐶2

𝑁−1∑︁
𝑘=0

1

3

(𝑡𝑘+1 − 𝑡𝑘 )3 =
𝐶2𝑁ℎ3

3

=
𝐶2𝑇ℎ2

3

,

where ¤𝑥1,𝑘 =
𝑥1,𝑘+1−𝑥1,𝑘

ℎ
, and ∥ ¤𝑥1,𝑘 ∥ ≤ 𝐶 for all 𝑘 ≥ 0 for some 𝐶 > 0 from Corollary 4.5. It follows that

𝑥ℎ★
1

(·) → 𝑥1(·) strongly in L2( [0,𝑇 ];ℝ𝑛1) as ℎ → 0. On the other hand since ¤𝑥ℎ
1
(·) ∈ L∞( [0,𝑇 ];ℝ𝑛1)

it follows from the Banach-Alaoglu-Bourbaki Theorem [18, Theorem III.15] that ¤𝑥ℎ
1
(·) → ¤𝑥1,lim(·) in the

weak★ topology as ℎ → 0. Since the considered domain [0,𝑇 ] is bounded, one has L1( [0,𝑇 ];ℝ𝑛1) ⊆
L2( [0,𝑇 ];ℝ𝑛1), thus ¤𝑥ℎ

1
(·) converges weakly in L2( [0,𝑇 ];ℝ𝑛1). Moreover since 𝑥ℎ

1
(𝑡) = 𝑥ℎ

1
(0) +∫ 𝑡

0
¤𝑥ℎ
1
(𝑡)𝑑𝑡 , one has ¤𝑥1,lim(·) = ¤𝑥1(·) almost everywhere. Thereforewe deduce using (4.8) that (𝐵1𝜆

min

ℎ★
) (·)

converges weakly in L2( [0,𝑇 ];ℝ𝑛1) as ℎ → 0 towards some limit 𝜆1(·), and we have ¤𝑥1(𝑡) = 𝐴1𝑥1(𝑡) +
𝜆1(𝑡) almost everywhere on [0,𝑇 ].
Let us consider now the step-functions 𝑥★

2,ℎ
(·) and 𝜆min,★

ℎ
(·) defined as 𝑥★

2,ℎ
(𝑡) = 𝑥2,𝑘+1 for all 𝑡 ∈

[𝑡𝑘 , 𝑡𝑘+1), and similarly for the multiplier. It follows from Proposition 4.4 and from Corollary 4.5

that both sequences {𝑥★
2,ℎ

(·)}ℎ≥0 and {𝜆min,★

ℎ
(·)}ℎ≥0 are uniformly bounded. Hence from the Banach-

Alaoglu-Bourbaki Theorem, there exist subsequences of both which converge weakly★ to limits

𝑥2 ∈ L∞( [0,𝑇 ];ℝ𝑛2) and 𝜆 ∈ L∞( [0,𝑇 ];ℝ𝑚 , respectively. We infer that 0 = 𝑥★
2,ℎ

(𝑡) + 𝐵3𝜆
★
ℎ
(𝑡) →

𝑥2(𝑡) + 𝐵3𝜆(𝑡) for almost all 𝑡 ≥ 0 in the weak★ sense. Next, using the second line in (4.1) it follows

that the sequence {ℎ𝑧𝑘 }ℎ≥0 is also uniformly bounded. Denoting 𝜎𝑘 = ℎ𝑧𝑘 , it follows that the sequence

{𝜎★
ℎ
}ℎ≥0 converges weakly★ to a limit denoted as 𝜎 (𝑡) ∈ L∞( [0,𝑇 ];ℝ𝑛2). Moreover one has 𝜎 (𝑡) = 0

almost everywhere since 𝑥★
2,ℎ

(𝑡) − 𝑥★
2,ℎ

(𝑡 − 𝑡𝑘 ) − ℎ𝐵2𝜆
min,★

ℎ
(𝑡) = 𝜎★

ℎ
(𝑡) almost everywhere in [0,𝑇 ].

Finally, the complementarity conditions in (4.1) are equivalently rewritten as 0 ≤ 𝜆★
ℎ
(𝑡) ⊥ 𝐶1𝑥

★
1,ℎ
(𝑡) +

𝐶2𝑥
★
2,ℎ

(𝑡) + 𝐷𝜆★
ℎ
(𝑡) ≥ 0 for all 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), since 𝐶3 = 0 by Assumption 2. It is deduced that in the

limit as ℎ → 0 one obtains 0 ≤ 𝜆(𝑡) ⊥ 𝐶1𝑥1(𝑡) +𝐶2𝑥2(𝑡) + 𝐷𝜆(𝑡) ≥ 0. □

4.2 stability analysis via a lyapunov function

To complete the foregoing section, it is natural to analyze how the Lyapunov function𝑉 (𝑥1, 𝑥2) for the
continuous-time system in (2.2) (see also Appendix d), could be used in the discrete-time context for (4.2).

Indeed implicit Euler methods are known to be able to mimic the continuous-time passivity and stability

properties, in some cases [55]. It is noteworthy that Assumption 2 implies that 𝑋3𝑥2,𝑘 = −𝑋3𝐵3𝜆𝑘 = 0

and 𝑋3𝑥2(𝑡) = −𝑋3𝐵3𝜆(𝑡) = 0 for all 𝑘 and 𝑡 . Therefore 𝑉 (𝑥1, 𝑥2) = 1

2
𝑥⊤

1
𝑋1𝑥1, so that this Lyapunov

function is not a positive definite function of the whole state. For the sake of completeness let us

nevertheless make the calculations in the general setting. We set𝑉𝑘
Δ
= 1

2
𝑥⊤

1,𝑘
𝑋1𝑥1,𝑘 +𝑥⊤

2,𝑘
𝑋3𝑥2,𝑘 . It follows

that:

(4.10) 𝑉𝑘+1 −𝑉𝑘 =
1

2

(𝑥1,𝑘+1 − 𝑥1,𝑘 )⊤𝑋1(𝑥1,𝑘+1 + 𝑥1,𝑘 ) + (𝑥2,𝑘+1 − 𝑥2,𝑘 )⊤𝑋3(𝑥2,𝑘+1 + 𝑥2,𝑘 )

=
1

2

(ℎ𝐴1𝑥1,𝑘 + ℎ𝐵1𝜆𝑘+1)⊤𝑋1(2𝑥1,𝑘 + ℎ𝐴1𝑥1,𝑘 + ℎ𝐵1𝜆𝑘+1)

+ (ℎ𝑧𝑘+1 + ℎ𝐵2𝜆𝑘+1)⊤𝑋3(2𝑥2,𝑘 + ℎ𝑧𝑘+1 + ℎ𝐵2𝜆𝑘+1)

= ℎ(𝑥⊤
1,𝑘
𝐴⊤

1
𝑋1𝑥1,𝑘 + 𝜆⊤𝑘+1

𝐵⊤
1
𝑋1𝑥1,𝑘 ) + ℎ2( 1

2

𝑥⊤
1,𝑘
𝐴⊤

1
𝑋1𝐴1𝑥1,𝑘 +

1

2

𝜆⊤
𝑘+1
𝐵⊤

1
𝑋1𝐵1𝜆𝑘+1)

+ ℎ2𝑥⊤
1,𝑘
𝐴⊤

1
𝑋1𝐵1𝜆𝑘+1 + ℎ𝑧⊤𝑘+1

𝐶3𝜆𝑘+1 + ℎ𝜆⊤𝑘+1
𝐶3𝐵2𝜆𝑘+1 + ℎ𝑧⊤𝑘+1

𝑋3𝑥2,𝑘

+ ℎ𝜆⊤
𝑘+1
𝐵⊤

2
𝑋3𝑥2,𝑘 + ℎ𝜆⊤𝑘+1

𝑤𝑘+1 − ℎ𝜆⊤𝑘+1
𝑤𝑘+1
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=
ℎ

2

𝑥⊤
1,𝑘
(𝐴⊤

1
𝑋1 + 𝑋1𝐴1 + ℎ𝐴⊤

1
𝑋1𝐴1)𝑥1,𝑘 − ℎ𝜆⊤𝑘+1

( ˆ𝐷 + ℎ(𝐶1𝐵1 − 𝐵⊤2 𝑋3𝐵2 −
1

2

𝐵⊤
1
𝑋1𝐵1))𝜆𝑘+1

+ ℎ𝑥⊤
1,𝑘
(𝐵⊤

1
𝑋1 −𝐶1 − ℎ𝐴⊤

1
𝐶⊤

1
+ ℎ𝐴⊤

1
𝑋1𝐵1)𝜆𝑘+1 +

ℎ

2

𝑥⊤
2,𝑘
𝑋3𝐵2𝜆𝑘+1

+ ℎ
2

𝑧⊤
𝑘+1
𝑋3𝑥2,𝑘 + ℎ𝜆⊤𝑘+1

𝑤𝑘+1

=
ℎ

2

(𝑥⊤
1,𝑘
, 𝜆⊤
𝑘+1

)

Δ
=𝑄1︷                                  ︸︸                                  ︷(

𝐴⊤
1
𝑋1 + 𝑋1𝐴1 (𝐵⊤

1
𝑋1 −𝐶1)⊤

𝐵⊤
1
𝑋1 −𝐶1 −( ˆ𝐷 + ˆ𝐷⊤)

) (
𝑥1,𝑘

𝜆𝑘+1

)
+ ℎ

2

2

𝑥⊤
1,𝑘
𝐴⊤

1
𝑋1𝐴1𝑥1,𝑘 − ℎ2𝜆⊤

𝑘+1
(𝐶1𝐵1 − 𝐵⊤2 𝑋3𝐵2 −

1

2

𝐵⊤
1
𝑋1𝐵1)𝜆𝑘+1

+ ℎ2𝑥⊤
1,𝑘
(−𝐴⊤

1
𝐶⊤

1
+𝐴⊤

1
𝑋1𝐵1)𝜆𝑘+1 +

ℎ

2

𝑥⊤
2,𝑘
𝑋3𝐵2𝜆𝑘+1 +

ℎ

2

𝑧⊤
𝑘+1
𝑋3𝑥2,𝑘 + ℎ𝜆⊤𝑘+1

𝑤𝑘+1

=
ℎ

2

(𝑥⊤
1,𝑘
, 𝜆⊤
𝑘+1

)𝑄1

(
𝑥1,𝑘

𝜆𝑘+1

)
+ ℎ𝜆⊤

𝑘+1
𝑤𝑘+1

+ ℎ2

{
1

2

𝑥⊤
1,𝑘
𝐴⊤

1
𝑋1𝐴1𝑥1,𝑘 − 𝜆⊤𝑘+1

(𝐶1𝐵1 − 𝐵⊤2 𝑋3𝐵2 −
1

2

𝐵⊤
1
𝑋1𝐵1)𝜆𝑘+1

+𝑥⊤
1,𝑘
(−𝐴⊤

1
𝐶⊤

1
+𝐴⊤

1
𝑋1𝐵1)𝜆𝑘+1

}
+ ℎ

2

𝑥⊤
2,𝑘
𝑋3𝐵2𝜆𝑘+1 +

ℎ

2

𝑧⊤
𝑘+1
𝑋3𝑥2,𝑘

=
ℎ

2

(𝑥⊤
1,𝑘
, 𝜆⊤
𝑘+1

)𝑄1

(
𝑥1,𝑘

𝜆𝑘+1

)
+ ℎ𝜆⊤

𝑘+1
𝑤𝑘+1

+ ℎ2

{
1

2

𝑥⊤
1,𝑘
𝐴⊤

1
𝑋1𝐴1𝑥1,𝑘 − 𝜆⊤𝑘+1

(𝐶1𝐵1 − 𝐵⊤2 𝑋3𝐵2 −
1

2

𝐵⊤
1
𝑋1𝐵1)𝜆𝑘+1

+𝑥⊤
1,𝑘
(−𝐴⊤

1
𝐶⊤

1
+𝐴⊤

1
𝑋1𝐵1)𝜆𝑘+1

}
− 1

2

𝑥⊤
2,𝑘
𝑋3𝑥2,𝑘 + 𝜆⊤𝑘+1

𝐵⊤
3
𝑋3𝐵3𝜆𝑘︸                               ︷︷                               ︸

=0 if Assumption 2 holds.

,

where the last two terms are obtained using the second equality in (3.1). Remind that 𝜆⊤
𝑘+1
𝑤𝑘+1 = 0.

Assume that 𝑄1 ≺ 0, then let Assumption 2 hold. Let us rewrite (4.10) as 𝑉𝑘+1 −𝑉𝑘 = ℎ
2
(𝑥⊤

1,𝑘
, 𝜆⊤
𝑘+1

) [𝑄1 +

ℎ𝑄2]
(
𝑥1,𝑘

𝜆𝑘+1

)
, where the indefinite matrix

(4.11) 𝑄2 =

(
𝐴⊤

1
𝑋1𝐴1 − 1

2
𝐴⊤

1
𝐶⊤

1
+ 1

2
𝐴⊤

1
𝑋1𝐵1

(− 1

2
𝐴⊤

1
𝐶⊤

1
+ 1

2
𝐴⊤

1
𝑋1𝐵1)⊤ −𝐶1𝐵1 + 𝐵⊤2 𝑋3𝐵2 − 1

2
𝐵⊤

1
𝑋1𝐵1

)
,

and we remind that Assumption 2 implies that 𝑉𝑘 = 1

2
𝑥⊤

1,𝑘
𝑋1𝑥1,𝑘 . The matrix 𝑄2 is treated as a per-

turbation to 𝑄1. Using Corollary a.2, there exists ℎmax > 0 such that for all ℎ ∈ [0, ℎmax) one has

𝑄3

Δ
= 𝑄1 + ℎ𝑄2 ≺ 0. Using classical bounds on quadratic forms and vector/matrices products (𝑥⊤𝑦 ≤

∥𝑥 ∥ ∥𝑦 ∥ ≤ 1

2
∥𝑥 ∥2+ 1

2
∥𝑦 ∥2

[16,Corollary 9.1.7], if𝑄 = 𝑄⊤
then 𝜆min(𝑄)∥𝑥 ∥2 ≤ 𝑥⊤𝑄𝑥 ≤ 𝜆max(𝑄)∥𝑥 ∥2

[16,

Corollary 8.4.2], ∥𝑄𝑥 ∥ ≤ ∥𝑄 ∥ ∥𝑥 ∥ for compatible norms [16, section 9.3]), and noting that we can

replace 𝑄3 by its negative definite symmetric part in the quadratic form, it follows that:

(4.12) 𝑉𝑘+1 ≤ 𝑉𝑘 +
ℎ

2

𝜆max(𝑄3) ∥(𝑥1,𝑘 , 𝜆𝑘+1)∥2

≤ 𝑉𝑘 +
ℎ

2

𝜆max(𝑄3) ∥𝑥1,𝑘 ∥2

≤ 𝑉𝑘 +
ℎ

2

𝜆max(𝑄3)
𝜆max(𝑋1)

𝑉𝑘 =

(
1 + ℎ

2

𝜆max(𝑄3)
𝜆max(𝑋1)

)
𝑉𝑘 , for all 𝑘 ≥ 0.
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Since 𝜆max(𝑄3) < 0 (which is the reason why the second inequality in (4.12) holds), one has 1 +
ℎ
2

𝜆max (𝑄3 )
𝜆max (𝑋1 ) < 1 for all ℎ > 0. Therefore all𝑉𝑘 are uniformly bounded for any bounded𝑉0, and𝑉𝑘 → 0 as

𝑘 → +∞ for any ℎ ∈ (0, ℎmax). Let us set 𝜆𝑘+1 = 𝜆
min

𝑘+1
. Since the dependence of 𝜆min

𝑘+1
in 𝑥2,𝑘 through 𝛽𝑘

is 𝐶3𝑥2,𝑘 (see (4.2)), it follows from Assumptions 2 and 3 that 𝜆min

𝑘+1
= 𝜆min

𝑘+1
(𝑥1,𝑘 ), and 𝜆min

𝑘+1
(𝑥1,𝑘 ) → 0 as

𝑘 → +∞. Using the third line in (4.2), we infer that the iterates 𝑥2,𝑘 (which are are uniformly bounded

from Proposition 4.4) converge to zero asymptotically also. From the results in Section 4.1 and the

above Lyapunov analysis, we have therefore proved the following:

Lemma 4.7. Let Assumptions 2 and 3 hold, and the quintuple (𝑃,𝐴, 𝐵,𝐶, 𝐷) be strongly SPR and minimal.
Then there exists ℎmax > 0 depending on 𝐴1, 𝐶1, 𝑋1, 𝑋3, 𝐵1, 𝐵2, such that for all ℎ ∈ (0, ℎmax), and for
all bounded initial condition 𝑥1,0, the sequences {𝑥1,𝑘 }𝑘 , {𝑥2,𝑘 }𝑘 , {𝜆min

𝑘
}𝑘 are uniformly bounded and

𝑥1,𝑘 , 𝑥2,𝑘 , 𝜆
min

𝑘+1
→ 0 as 𝑘 → +∞.

Remark 4.8. Concerning Assumption 1, let us examine the constants 𝑎, 𝑏, 𝑐 , 𝑑 , 𝑓 in Lemma 4.3, and the

inequalities in (4.5), as well as the above Lyapunov analysis. The term ℎ1 is present in both 𝑎 and 𝑐 .

The inequality 𝑎 ≤ 1 implies ℎ1 < 1, but 𝑐 ≤ 1 does not imply that ℎ1 < 1. The constant 𝑎 is present in

(4.5) (b), however the Lyapunov analysis guarantees the boundedness of 𝑥1,𝑘 without this assumption

(the analysis relies on the passivity of (𝐴1, 𝐵1,𝐶1, �̂�) and ℎ ≥ 0 small enough). But, Lemma 4.7 relies on

𝑄1 ≺ 0, which is a strong passivity condition and may be restrictive in applications. There exists some

cases where SSPRness can be relaxed, as shown next.

Let (𝐴1, 𝐵1,𝐶1, ˆ𝐷) be strictly state passive (⇒ 𝑋1𝐴1 +𝐴⊤
1
𝑋1 = −𝜇𝑋1, 𝜇 > 0, 𝑋1 = 𝑋

⊤
1
≻ 0, 𝜇 is called

the dissipation constant) and
ˆ𝐷 + ˆ𝐷⊤ = 0 ⇒ 𝑋1𝐵1 = 𝐶

⊤
1
, then 𝑄2 in (4.11) and 𝑄1 can be rewritten as:

(4.13) 𝑄2 =

(
𝐴⊤

1
𝑋1𝐴1 0

0 𝐵⊤
2
𝑋3𝐵2 − 3

2
𝐵⊤

1
𝑋1𝐵1

)
, 𝑄1 =

(
−𝜇𝑋1 0

0 0

)
Thus 𝑄1 + ℎ𝑄2 ≺ 0 if and only if 𝜇𝑋1 − ℎ𝐴⊤

1
𝑋1𝐴1 ≻ 0 and 𝐵⊤

2
𝑋3𝐵2 − 3

2
𝐵⊤

1
𝑋1𝐵1 ≺ 0. Let us recall that if

(𝐴1, 𝐵1,𝐶1, ˆ𝐷) is minimal, then strict state passivity and SPRness are equivalent, see Appendix d.

Lemma 4.9. Assume that: 1) the quadruple (𝐴1, 𝐵1,𝐶1, ˆ𝐷) is strictly state passive with ˆ𝐷 + ˆ𝐷⊤ = 0 and
dissipation constant 𝜇 > 0, 2) 𝐵⊤

2
𝑋3𝐵2 − 3

2
𝐵⊤

1
𝑋1𝐵1 ≺ 0. Let Assumptions 2 and 3 hold. Then there exists

ℎmax > 0 such that for allℎ ∈ [0, ℎmax), the sequences {𝑥1,𝑘 }𝑘 , {𝑥2,𝑘 }𝑘 and {𝜆min

𝑘
}𝑘 are uniformly bounded.

Proof. Denote �̃�1 = 𝜇𝑋1 − ℎ𝐴⊤
1
𝑋1𝐴1, then �̃�1 ≻ 0 for ℎ ≥ 0 small enough, using Corollary a.2. Using 2)

and Assumption 2, and after few calculations, there exists ℎmax > 0 such that:

(4.14) 𝑉𝑘+1 ≤
(
1 − ℎ

2

𝜆min( ˜𝑋1)
𝜆max(𝑋1)

)
𝑉𝑘 .

for all ℎ ∈ [0, ℎmax). Thus 𝑉𝑘 → 0 as 𝑘 → +∞, and 𝑥1,𝑘 → 0 as 𝑘 → +∞. It can be inferred that

∥𝑥1,𝑘 ∥ ≤
√︃
𝜆max (𝑋1 )
𝜆min (𝑋1 ) ∥𝑥1,0∥𝛼

𝑘
2 with 𝛼 < 1. Fom (4.5) (a) and Assumption 3 it follows that ∥𝜆min

𝑘+1
∥ → 0 as

𝑘 → +∞, and {𝜆min

𝑘
}𝑘 is uniformly bounded. From (4.1) it is inferred that 𝑥2,𝑘 → 0 as 𝑘 → +∞ and

{𝑥2,𝑘 }𝑘 is uniformly bounded. □

Similar convergence results as in Corollary 4.6 can then be deduced, and are not developed here

for the sake of briefness. One sees from the above and Corollary a.2 that the degree of strict SPRness

(represented by the constant 𝜇) is related to the value of ℎmax: the greater 𝜇, the greater ℎmax. Finally it

is noteworthy that the strict state passivity in item 1) of Lemma 4.9 can again be relaxed, provided

that the matrix 𝐴⊤
1
𝑋1 + 𝑋1𝐴1 + ℎ𝐴⊤

1
𝑋1𝐴1 ≺ 0. Consider as an example 𝐴1 =

(
−1 0

0 0

)
, 𝑋1 = 𝐼2, then

𝐴⊤
1
𝑋1 + 𝑋1𝐴1 + ℎ𝐴⊤

1
𝑋1𝐴1 =

(
−2 + ℎ 0

0 0

)
≺ 0 for all 0 ≤ ℎ < 2.
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5 another approach for passive systems

The LDCS in (2.2) are suitably transformed in [32] to enable their analysis. The transformation may be

seen as a kind of relative degree reduction, involving the multiplier derivative. As will become clear

later, this new dynamics allows us to somewhat relax the stringent Assumption 2 (see Assumption 4 c)

below). More accurately, a close relationship is shown in [32, Lemma 3, Theorem 3] between (2.2) and

the following system:

(5.1)


(𝑎)

(
𝐼𝑛1

0

0 𝐵⊤
3
𝑋3𝐵3

) (
¤𝑥1(𝑡)
¤𝜆(𝑡)

)
=

(
𝐴1 𝐵1

−𝐶1 − ˆ𝐷

) (
𝑥1(𝑡)
𝜆(𝑡)

)
+

(
0

𝐼𝑚

)
𝑤 (𝑡)

(𝑏) 0 ≤ 𝜆(𝑡) ⊥ 𝑤 (𝑡) = 𝐶1𝑥1(𝑡) +𝐶2𝑥2(𝑡) +𝐶3𝑧 (𝑡) + 𝐷𝜆(𝑡) ≥ 0

(𝑐) 𝑥2(𝑡) = −𝐵3𝜆(𝑡), 𝑧 (𝑡) = −𝐵2𝜆(𝑡) − 𝐵3
¤𝜆(𝑡).

It is noteworthy that this dynamics is obtained from the original one by treating the multiplier 𝜆

as a state variable. The “equivalence” between both systems is to be understood first as follows [32,

Lemma 3]:

{(𝑥1, 𝜆,𝑤) | (𝑥1, 𝑥2, 𝜆,𝑤) is a solution of (2.2) (𝑎, 𝑏, 𝑐)} =
{(𝑥1, 𝜆,𝑤) | (𝑥1, 𝜆,𝑤) is a solution of (5.1) (𝑎) and 𝐵3𝜆 is absolutely continuous} .

By solution of (2.2) it is meant that (𝑥1, 𝑥2) is absolutely continuous and the dynamics holds Lebesgue

almost everywhere [32, Definition 3]. The initial conditions are chosen compatible with the constraints.

It is noteworthy that the variables 𝑧 and 𝜆 are not shown to be absolutely continuous, and examples in

Sections 6.1 and 6.3 will illustrate this fact. One has 𝑤 (𝑡) ∈ −Nℝ𝑚
+ (𝜆(𝑡)), therefore one obtains the

differential inclusion (DI):

(5.2)

(
𝐼𝑛1

0

0 𝐵⊤
3
𝑋3𝐵3

) (
¤𝑥1(𝑡)
¤𝜆(𝑡)

)
−

(
𝐴1 𝐵1

−𝐶1 − ˆ𝐷

) (
𝑥1(𝑡)
𝜆(𝑡)

)
∈ −

(
0

𝐼𝑚

)
Nℝ𝑚

+ (𝜆(𝑡))

= −
(

0

𝐼𝑚

)
Nℝ𝑚

+

(
(0 𝐼𝑚)

(
𝑥1(𝑡)
𝜆(𝑡)

))
= −NΦ

((
𝑥1(𝑡)
𝜆(𝑡)

))
with Φ

Δ
= {(𝑥1, 𝜆) ∈ ℝ𝑛1 ×ℝ𝑚 | 𝜆 ≥ 0}. If this DI has a solution (𝑥1(·), 𝜆(·)), then 𝑥2(·), 𝑧 (·), and𝑤 (·)

can be obtained (provided indeed that 𝐵3𝜆(·) is absolutely continuous). Multiplying the first line in

(5.2) by 𝑋1 and adding an exogenous excitation 𝐺 (𝑡) to the left-hand side, one obtains

(5.3)

(
𝑋1 0

0 𝐵⊤
3
𝑋3𝐵3

)
︸            ︷︷            ︸

Δ
=P

(
¤𝑥1(𝑡)
¤𝜆(𝑡)

)
−

(
𝑋1𝐴1 𝑋1𝐵1

−𝐶1 −�̂�

)
︸           ︷︷           ︸

Δ
=A

(
𝑥1(𝑡)
𝜆(𝑡)

)
+𝐺 (𝑡) ∈ −NΦ

((
𝑥1(𝑡)
𝜆(𝑡)

))

which is similar to the form obtained in [32, Theorem 3]. Let us assume that an exogenous input

𝑉 (𝑡) =
(
𝑣 (𝑎) (𝑡), 𝑣 (𝑏 ) (𝑡), 𝑣 (𝑐 ) (𝑡), 𝑣 (𝑑 ) (𝑡)

)⊤
is added to (2.2), then:

(5.4) 𝐺 (𝑡) =
(

𝑣 (𝑎) (𝑡)
𝐶3

(
𝑣 (𝑏 ) (𝑡) + ¤𝑣 (𝑐 ) (𝑡)

)
+𝐶2𝑣 (𝑐 ) (𝑡) − 𝑣 (𝑑 ) (𝑡)

)
.

Notice that 𝐵⊤
3
𝑋3𝐵3 ≽ 0, therefore P = P⊤ ≽ 0. However P has a specific block-diagonal structure.

Under strong SPRness and minimality, A ≺ 0, since A +A⊤ ≺ 0 from the KYP Lemma [25] (then 𝐴1

Brogliato, Rocca Analysis of the implicit Euler time-discretization of passive . . .
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is a Hurwitz matrix, 𝑋1 = 𝑋
⊤
1
≻ 0 and �̂� ≻ 0). The exogeneous term𝐺 (𝑡) stems from the exogeneous

terms 𝐸 (𝑡) and 𝐹 (𝑡) in (2.1) and their time-derivatives (see (5.4) and (6.4) for an example).

In a second step the “equivalence” between both systems is to be understood as follows [32, Theo-

rem 3]:

{(𝑥1, 𝜆) | (𝑥1, 𝑥2, 𝜆,𝑤) is a solution of (2.2) (a,b,c,d)}
= {(𝑥1, 𝜆) | (𝑥1, 𝜆) is a solution of (5.3) and 𝐵3𝜆 (= −𝑥2) is absolutely continuous}.

As will become clear later, the results that are obtained using this approach, and the approach in the

foregoing section, are not the same (especially concerning the convergence of the piecewise-linear

discrete solutions).

5.1 the time-discretization and the osnsp

As alluded to in (5.3), we can enlarge the analysis by considering time-varying terms, so as to embed

(5.3) into the DI: P ¤𝜉 (𝑡) − A𝜉 (𝑡) +𝐺 (𝑡) ∈ −NΦ(𝜉 (𝑡)). The Euler implicit scheme associated with (5.3)

is:

(5.5) P𝜉𝑘+1 − (P + ℎA)︸      ︷︷      ︸
Δ
=Pℎ

𝜉𝑘 + ℎ𝐺𝑘 ∈ −NΦ(𝜉𝑘+1),

It is noteworthy that this scheme is not equal to the implicit scheme in (3.1), as can be shown after few

manipulations, see Appendix h. Though the difference between both approaches is not analysed further

in this paper, it will be tackled numerically through an example in Section 6.3. In addition, a slightly

more general convex set than in (5.5) is considered, for the sake of generality. It corresponds to changing

the complementarity conditions in (5.1) (b) to cone complementarity conditions 𝐾★ ∋ 𝜆(𝑡) ⊥ 𝑤 (𝑡) ∈ 𝐾 ,
𝐾 ⊆ ℝ𝑚 a nonempty closed convex cone, similarly to what is done in Proposition 3.2. ThusΦ = ℝ𝑛1×𝐾★

.

Proposition 5.1. Let ℎ > 0 and 𝑘 ≥ 0 be given. Let us consider the DI in (5.3) and its discretization in
(5.5), with Φ = ℝ𝑛1 × 𝐾★, with 𝐾 a nonempty closed convex cone. Let us denote 𝑞𝑘

Δ
= −Pℎ𝜉𝑘 + ℎ𝐺𝑘 . Let us

consider the set:

(5.6) S Δ
= {(𝑥1, 𝜆) ∈ ℝ𝑛1 ×ℝ𝑚 | 𝑥1 ∈ Ker(𝑋1), 𝜆 ∈ Ker(𝐵⊤

3
𝑋3𝐵3) ∩ (𝐵⊤

3
𝑋3𝐵3)−1(𝐾) ∩ 𝐾★}.

Then:

1. If S = {0}, for each 𝑞𝑘 ∈ ℝ𝑛1×𝑚 the problem VI(P, 𝑞𝑘 ,ΨΦ) has at least one solution.

2. Assume that S ≠ {0}. If there exists 𝜉0 ∈ dom(Φ) such that ⟨𝑞𝑘 −P⊤𝜉0, 𝑣⟩ > 0 for all 𝑣 ∈ S, 𝑣 ≠ 0,
then the problem VI(P, 𝑞𝑘 ,ΨΦ) has at least one solution. In case 𝑋1 = 𝑋

⊤
1
, one can take 𝜉0 = 0.

3. If 𝜉 1

𝑘+1
and 𝜉2

𝑘+1
are two solutions of VI(P, 𝑞𝑘 ,𝜓Φ), then 𝜉 1

𝑘+1
− 𝜉2

𝑘+1
∈ Ker(P), hence 𝑥1,𝑘+1 is unique.

Moreover ⟨𝑞𝑘 ,
(

0

𝜆1

𝑘+1
− 𝜆2

𝑘+1

)
⟩ = 0.

4. If 𝑋1 ≻ 0 and 𝐵⊤
3
𝑋3𝐵3 ≻ 0, then the problem VI(P, 𝑞𝑘 ,ΨΦ) always has a unique solution.

5. Assume that the quintuple (𝑃,𝐴, 𝐵,𝐶, 𝐷) is minimal and strongly SPR, so that the quadruple
(𝐴1, 𝐵1,𝐶1, �̂�) is minimal and strongly SPR. If 𝐵⊤

3
𝑋3𝐵3 ≻ 0, then the problem VI(P, 𝑞𝑘 ,ΨΦ) always

has a unique solution.

6. Let 𝐾 = 𝐾★ = ℝ𝑚+ . Then S = {(𝑥1, 𝜆) | 𝑥1 ∈ Ker(𝑋1), 𝜆 ∈ ℝ𝑚+ ∩ Ker(𝐵⊤
3
𝑋3𝐵3)}.
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Proof. From Proposition b.1 d) one has (𝐾★)∞ = 𝐾★
and Φ∞ = Φ. Also 𝜑 = ΨΦ hence from Proposi-

tion b.1 c) and d),𝜑∞ = Ψℝ𝑛
1×𝐾★ and (dom(𝜑∞))★ = Φ★ = ℝ𝑛1 ×𝐾 . Then one hasS Δ

= Φ∩Ker(P)∩{𝜉 ∈

ℝ𝑛1+𝑚 | P
(
𝑥1

𝜆

)
=

(
0

𝛼

)
, 𝛼 ∈ 𝐾} = Φ ∩ Ker(P) ∩ {𝜉 ∈ ℝ𝑛1+𝑚 | 𝑥1 ∈ Ker(𝑋1), 𝐵⊤3 𝑋3𝐵3𝜆 ∈ 𝐾}, where we

used the block diagonal structure of P. Therefore S = {(𝑥1, 𝜆) ∈ ℝ𝑛1 ×ℝ𝑚 | 𝑥1 ∈ Ker(𝑋1), 𝐵⊤3 𝑋3𝐵3𝜆 ∈
𝐾, 𝜆 ∈ Ker(𝐵⊤

3
𝑋3𝐵3), 𝜆 ∈ 𝐾★}. In item 2) one uses that ΨΦ(𝑣) = 0 when 𝑣 ∈ S, and item b’) in

Proposition b.2. Let us now deal with item 4. In this case P = P⊤ ≻ 0 and the result follows from

items 1 and 3. Let us define R = R⊤ ≻ 0, R2 = P, and 𝜁𝑘 = R𝜉𝑘 . Then the VI in (5.5) is equivalently

rewritten as:

(5.7) 𝜁𝑘+1 − R−1PℎR−1𝜁𝑘 + R−1𝐺𝑘 ∈ −R−1NΦ(R−1𝜁𝑘+1) = −NΦ̃(𝜁𝑘+1),

where the last equality stems from the chain rule, with Φ̃ = {𝑧 ∈ ℝ𝑛1+𝑚 | R−1𝑧 ∈ Φ}. One infers from
(5.7) that 𝜁𝑘+1 = proj[Φ̃;R−1PℎR−1𝜁𝑘 − R−1𝐺𝑘 ] ⇒ 𝜉𝑘+1 = R−1

proj[Φ̃;R−1Pℎ𝜉𝑘 − R−1𝐺𝑘 ]. The first
assertion in item 5 about strong SPRness follows from [28, Theorem 5.4 (A’)], which guarantees that

𝑋1 ≻ 0 (see Appendix d). The last assertion of item 5 is a consequence of item 4. Consider finally item

6. One has (𝐵⊤
3
𝑋3𝐵3)−1(𝐾) = {𝜆 ∈ ℝ𝑚 | 𝐵⊤

3
𝑋3𝐵3𝜆 = 𝛼, 𝛼𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑚}, see e.g., [53, Example 15].

Hence Ker(𝐵⊤
3
𝑋3𝐵3) ∩ (𝐵⊤

3
𝑋3𝐵3)−1(𝐾) = Ker(𝐵⊤

3
𝑋3𝐵3). □

In item 2, the sufficient condition ⟨𝑞𝑘 , 𝑣⟩ > 0 for all 𝑣 ∈ S is equivalent to 𝑞𝑘 ∈ S★ \S⊥
. One notices

that under the conditions of item 4 in Proposition 5.1, the DI in (5.3) is equivalent to a DI with maximal

monotone set-valued term:

(5.8)
¤𝜁 (𝑡) − R−1AR−1𝜁 (𝑡) + R−1𝐺 (𝑡) ∈ −NΦ̃(𝜁 (𝑡))

with 𝜁 = R𝜉 . This fits within the class of DIs analysed for instance in [14]. Under basic assumption on

the regularity of 𝐺 (·), (5.8) has Lipschitz continuous solutions with uniqueness.

Proposition 5.2. Assume that 𝑋1 ≻ 0, and𝐺 (·) is bounded. The problem VI(P, 𝑞𝑘 ,ΨΦ) always has at least
one solution for bounded 𝜉𝑘 .

Proof. Consider item 2 in Proposition 5.1, with 𝜉0 =

(
𝑥0

𝜆0

)
, 𝑣 =

(
𝑣𝑥
𝑣𝜆

)
. Then:

(5.9) ⟨𝑞𝑘 − P⊤𝜉0, 𝑣⟩ = ⟨−Pℎ
(
𝑥1,𝑘

𝜆𝑘

)
+ ℎ𝐺𝑘 , 𝑣⟩ − ⟨𝐵⊤

3
𝑋3𝐵3𝜆

0, 𝑣𝜆⟩

− ⟨𝑋1𝑥
0, 𝑣𝑥 ⟩

= ⟨−
(
𝑋1 + ℎ𝑋1𝐴1 ℎ𝑋1𝐵1

−ℎ𝐶1 𝐵⊤
3
𝑋3𝐵3 − ℎ�̂�

) (
𝑥1,𝑘

𝜆𝑘

)
+ ℎ𝐺𝑘 , 𝑣⟩

− ⟨𝐵⊤
3
𝑋3𝐵3𝜆

0, 𝑣𝜆⟩ − ⟨𝑋1𝑥
0, 𝑣𝑥 ⟩.

Since 𝜉0 ∈ Φ it follows that 𝑥0 ∈ ℝ𝑛1
while 𝜆0 ∈ ℝ𝑚+ , and similarly 𝑣𝑥 ∈ ℝ𝑛1

, 𝑣𝜆 ∈ ℝ𝑚+ . Since 𝑣 ≠ 0 let

us take 𝑥0 = −𝛼𝑋 −1

1

𝑣𝑥
∥𝑣𝑥 ∥ − 𝛽𝑋

−1

1

𝑣𝑥
∥𝑣𝑥 ∥2

∥𝑣𝜆 ∥ for some 𝛼 ≥, 𝛽 ≥ 0, and 𝜆0 = 0. It follows that:

(5.10) ⟨𝑞𝑘 − P⊤𝜉0, 𝑣⟩ = −⟨
(
𝑋1 + ℎ𝑋1𝐴1 ℎ𝑋1𝐵1

−ℎ𝐶1 𝐵⊤
3
𝑋3𝐵3 − ℎ ˆ𝐷

) (
𝑥1,𝑘

𝜆𝑘

)
, 𝑣⟩ + ⟨ℎ𝐺𝑘 , 𝑣⟩

≥ −∥
(
𝑋1 + ℎ𝑋1𝐴1 ℎ𝑋1𝐵1

−ℎ𝐶1 𝐵⊤
3
𝑋3𝐵3 − ℎ ˆ𝐷

) (
𝑥1,𝑘

𝜆𝑘

)
∥∥𝑣 ∥ − ∥ℎ𝐺𝑘 ∥∥𝑣 ∥

+ 𝛼 ∥𝑣𝑥 ∥ + 𝛽 ∥𝑣𝜆 ∥

≥ −∥
(
𝑋1 + ℎ𝑋1𝐴1 ℎ𝑋1𝐵1

−ℎ𝐶1 𝐵⊤
3
𝑋3𝐵3 − ℎ ˆ𝐷

) (
𝑥1,𝑘

𝜆𝑘

)
∥(∥𝑣𝑥 ∥ + ∥𝑣𝜆 ∥)

− ∥ℎ𝐺𝑘 ∥(∥𝑣𝑥 ∥ + ∥𝑣𝜆 ∥) + 𝛼 ∥𝑣𝑥 ∥ + 𝛽 ∥𝑣𝜆 ∥ .
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Since 𝐺 (·) is bounded, for large enough 𝛼 and 𝛽 it follows that ⟨𝑞𝑘 − P⊤𝜉0, 𝑣⟩ > 0 and this holds for

any 𝑣 ≠ 0 inside S. □

5.2 boundedness and convergence analysis

In the next analysis we assume that 𝐵⊤
3
𝑋3𝐵3 is singular, which is the most general case (see the example

in Section 6.2, see also Section 5.3 for the invertible case), and that 𝐾 = ℝ𝑚+ and that 𝑋1 ≻ 0. From the

structure of P and of the set-valued right-hand side, it follows from (5.5) that 𝑥1,𝑘+1 is calculable from

𝑥1,𝑘 and 𝜆𝑘 :

(5.11) 𝑋1𝑥1,𝑘+1 = (𝑋1 + ℎ𝑋1𝐴1)𝑥1,𝑘 + ℎ𝑋1𝐵1𝜆𝑘 − ℎ𝐺𝑥𝑘
⇔ 𝑥1,𝑘+1 = (𝐼𝑛1

+ ℎ𝐴1)𝑥1,𝑘 + ℎ𝐵1𝜆𝑘 − ℎ𝑋 −1

1
𝐺𝑥
𝑘
, for all 𝑘 ≥ 0.

where 𝐺𝑘 =

(
𝐺𝑥
𝑘

𝐺𝜆
𝑘

)
.

Lemma 5.3. From (5.11), for all 𝑘 ≥ 0 one has:

(5.12) 𝑥1,𝑘+1 = (𝐼𝑛1
+ ℎ𝐴1)𝑘+1𝑥1,0 + ℎ

𝑘∑︁
𝑖=0

(𝐼𝑛1
+ ℎ𝐴1)𝑘−𝑖𝐵1𝜆𝑖 − ℎ

𝑘∑︁
𝑖=0

(𝐼𝑛1
+ ℎ𝐴1)𝑘−𝑖𝑋 −1

1
𝐺𝑥𝑖 .

Proof. The relation is true for 𝑘 = 0. Let it be true for 𝑘 ≥ 1. Then using (5.11) it follows that:

(5.13) 𝑥1,𝑘+2 = (𝐼𝑛1
+ ℎ𝐴1)𝑥1,𝑘+1 + ℎ𝐵1𝜆𝑘+1 − ℎ𝑋 −1

1
𝐺𝑥
𝑘+1

= (𝐼𝑛1
+ ℎ𝐴1){(𝐼𝑛1

+ ℎ𝐴1)𝑘+1𝑥1,0 + ℎ
𝑘∑︁
𝑖=0

(𝐼𝑛1
+ ℎ𝐴1)𝑘−𝑖𝐵1𝜆𝑖

− ℎ
𝑘∑︁
𝑖=0

(𝐼𝑛1
+ ℎ𝐴1)𝑘−𝑖𝑋 −1

1
𝐺𝑥𝑖 } + ℎ𝐵1𝜆𝑘+1 − ℎ𝑋 −1

1
𝐺𝑥
𝑘+1

= (𝐼𝑛1
+ ℎ𝐴1)𝑘+2𝑥1,0 + ℎ

𝑘+1∑︁
𝑖=0

(𝐼𝑛1
+ ℎ𝐴1)𝑘+1−𝑖𝐵1𝜆𝑖

− ℎ
𝑘+1∑︁
𝑖=0

(𝐼𝑛1
+ ℎ𝐴1)𝑘+1−𝑖𝑋 −1

1
𝐺𝑥𝑖 .

By induction the relation in (5.12) is true for all 𝑘 ≥ 0. □

Using (5.5) we can also express 𝜆𝑘+1 as the solution of a generalised equation (GE):

(5.14) 𝐵⊤
3
𝑋3𝐵3 𝜆𝑘+1 + (ℎ ˆ𝐷 − 𝐵⊤

3
𝑋3𝐵3)𝜆𝑘 + ℎ𝐶1𝑥1,𝑘 + ℎ𝐺𝜆𝑘︸                                       ︷︷                                       ︸
Δ
=𝑞𝜆

𝑘
(𝜆𝑘 ,𝑥1,𝑘 ,𝐺

𝜆
𝑘
)

∈ −Nℝ𝑚
+ (𝜆𝑘+1)

⇕

𝜆𝑘+1 ∈ (𝐵⊤
3
𝑋3𝐵3 + Nℝ𝑚

+ )−1

(
(𝐵⊤

3
𝑋3𝐵3 − ℎ�̂�)𝜆𝑘 − ℎ𝐶1𝑥1𝑘 − ℎ𝐺𝜆𝑘

)
for all 𝑘 ≥ 0. The second formulation shows the iterative feature of this GE for 𝜆𝑘 , which makes it

quite different from the LCCP (3.3). It is equivalent to the LCP(𝐵⊤
3
𝑋3𝐵3, 𝑞

𝜆
𝑘
(𝜆𝑘 , 𝑥1,𝑘 ,𝐺

𝜆
𝑘
)). Under the

conditions stated in Proposition 5.1 and Corollary 4.1, the set of solutions to this LCP is non empty, and it

contains a least-norm element 𝜆min

𝑘+1
, 𝑘 ≥ 0, satisfiying ∥𝜆min

𝑘+1
(𝜆𝑘 , 𝑥1,𝑘 ,𝐺

𝜆
𝑘
)∥ ≤ 𝜂 ∥𝑞𝜆

𝑘
(𝜆𝑘 , 𝑥1,𝑘 ,𝐺

𝜆
𝑘
)∥, 𝑘 ≥ 0,

where 𝜂 > 0 depends only on 𝐵⊤
3
𝑋3𝐵3. Therefore ∥𝜆min

𝑘+1
(𝜆𝑘 , 𝑥1,𝑘 ,𝐺

𝜆
𝑘
)∥ ≤ 𝜂∥ℎ ˆ𝐷 − 𝐵⊤

3
𝑋3𝐵3∥ ∥𝜆min

𝑘
∥ +

ℎ𝜂∥𝐶1𝑥1,𝑘 ∥ + ℎ𝜂∥𝐺𝜆𝑘 ∥. Let us denote ℎ3

Δ
= ∥ℎ ˆ𝐷 − 𝐵⊤

3
𝑋3𝐵3∥.
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Lemma 5.4. One has for all 𝑘 ≥ 0:

(5.15) ∥𝜆min

𝑘+2
(𝜆𝑘+1, 𝑥1,𝑘+1,𝐺

𝜆
𝑘+1

)∥ ≤ (𝜂ℎ3)𝑘+1∥𝜆min

1
(𝜆0, 𝑥1,0,𝐺

𝜆
0
)∥

+ ℎ𝜂
𝑘∑︁
𝑖=0

(𝜂ℎ3)𝑘−𝑖 (∥𝐶1𝑥1,𝑖+1∥ + ∥𝐺𝜆𝑖+1
∥)

Proof. The inequality is satisfied for 𝑘 = 0. Assume that it is true for some 𝑘 ≥ 1. Then

(5.16) ∥𝜆min

𝑘+3
(𝜆𝑘+2, 𝑥1,𝑘+2,𝐺

𝜆
𝑘+2

)∥ ≤ 𝜂∥ℎ ˆ𝐷 − 𝐵⊤
3
𝑋3𝐵3∥ ∥𝜆min

𝑘+2
∥ + ℎ𝜂∥𝐶1𝑥1,𝑘+2∥ + ℎ𝜂∥𝐺𝜆𝑘+2

∥

≤ 𝜂∥ℎ ˆ𝐷 − 𝐵⊤
3
𝑋3𝐵3∥

{
𝜂𝑘+1∥ℎ ˆ𝐷 − 𝐵⊤

3
𝑋3𝐵3∥𝑘+1∥𝜆min

1
(𝜆0, 𝑥1,0,𝐺

𝜆
0
)∥

+ ℎ𝜂
𝑘∑︁
𝑖=0

𝜂𝑘−𝑖 ∥ℎ ˆ𝐷 − 𝐵⊤
3
𝑋3𝐵3∥𝑘−𝑖 (∥𝐶1𝑥1,𝑖+1∥ + ∥𝐺𝜆𝑖+1

∥)
}

+ ℎ𝜂∥𝐶1𝑥1,𝑘+2∥ + ℎ𝜂∥𝐺𝜆𝑘+2
∥

= 𝜂𝑘+2∥ℎ ˆ𝐷 − 𝐵⊤
3
𝑋3𝐵3∥𝑘+2∥𝜆min

1
(𝜆0, 𝑥1,0,𝐺

𝜆
0
)∥

+ ℎ𝜂
𝑘∑︁
𝑖=0

𝜂𝑘+1−𝑖 ∥ℎ�̂� − 𝐵⊤
3
𝑋3𝐵3∥𝑘+1−𝑖 (∥𝐶1𝑥1,𝑖+1∥ + ∥𝐺𝜆𝑖+1

∥)

+ ℎ𝜂∥𝐶1𝑥1,𝑘+2∥ + ℎ𝜂∥𝐺𝜆𝑘+2
∥

= 𝜂𝑘+2∥ℎ�̂� −⊤
3
𝑋3𝐵3∥𝑘+2∥𝜆min

1
(𝜆0, 𝑥1,0,𝐺

𝜆
0
)∥

+ ℎ𝜂
𝑘+1∑︁
𝑖=0

𝜂𝑘+1−𝑖 ∥ℎ ˆ𝐷 − 𝐵⊤
3
𝑋3𝐵3∥𝑘+1−𝑖 (∥𝐶1𝑥1,𝑖+1∥ + ∥𝐺𝜆𝑖+1

∥) .

The result follows by induction. □

The next step is to use Lemmas 5.3 and 5.4 to get a new upper bound. Let us denote ℎ1

Δ
= ∥𝐼𝑛1

+ℎ𝐴1∥.
Then using (5.12) and (5.15) one has:

(5.17)


∥𝑥1,𝑘+1∥ ≤ ℎ𝑘+1

1
∥𝑥1,0∥ + ℎ

𝑘∑︁
𝑖=0

ℎ𝑘−𝑖
1

∥𝐵1∥ ∥𝜆min

𝑖+1
∥ + ℎ

𝑘∑︁
𝑖=0

ℎ𝑘−𝑖
1

∥𝑋 −1

1
∥ ∥𝐺𝑥𝑖 ∥

∥𝜆min

𝑘+2
∥ ≤ 𝜂𝑘+1ℎ𝑘+1

3
∥𝜆min

1
∥ + ℎ𝜂

𝑘∑︁
𝑖=0

𝜂𝑘−𝑖ℎ𝑘−𝑖
3

(∥𝐶1𝑥1,𝑖+1∥ + ∥𝐺𝜆𝑖+1
∥)

Therefore we obtain:

(5.18) ∥𝑥,1,𝑘+1∥ ≤ ℎ𝑘+1

1
∥𝑥1,0∥ + ℎ

𝑘∑︁
𝑖=0

ℎ𝑘−𝑖
1

∥𝑋 −1

1
∥ ∥𝐺𝑥𝑖 ∥

+ ℎ
𝑘∑︁
𝑖=0

ℎ𝑘−𝑖
1

∥𝐵1∥𝜂𝑖ℎ𝑖3∥𝜆min

1
∥ + ℎℎ𝑘

1
∥𝐵1∥ ∥𝜆min

1
∥

+ ℎ
𝑘∑︁
𝑖=1

ℎ𝑘−𝑖
1

∥𝐵1∥ ℎ𝜂
𝑖−1∑︁
𝑗=0

𝜂𝑖−1− 𝑗ℎ𝑖−1− 𝑗
3

∥𝐶1∥∥𝐺𝜆𝑗+1
∥

+ ℎ
𝑘∑︁
𝑖=1

ℎ𝑘−𝑖
1

∥𝐵1∥ℎ𝜂
𝑖−1∑︁
𝑗=0

𝜂𝑖−1− 𝑗ℎ𝑖−1− 𝑗
3

∥𝐶1∥ ∥𝑥1, 𝑗+1∥,
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which we rewrite as:

(5.19) ∥𝑥1,𝑘+1∥ ≤ ℎ𝑘+1

1
∥𝑥1,0∥ + ℎ 𝑓𝑘 + ℎ2𝜂∥𝐶1∥ ∥𝐵1∥

𝑘∑︁
𝑖=1

ℎ𝑘−𝑖
1

𝑖−1∑︁
𝑗=0

(𝜂ℎ3)𝑖−1− 𝑗 ∥𝑥1, 𝑗+1∥

with

(5.20) 𝑓𝑘 =

𝑘∑︁
𝑖=0

ℎ𝑘−𝑖
1

∥𝑋 −1

1
∥ ∥𝐺𝑥𝑖 ∥ + ∥𝐵1∥ ∥𝜆min

1
∥

𝑘∑︁
𝑖=0

ℎ𝑘−𝑖
1

(𝜂ℎ3)𝑖 + ℎ𝑘1 ∥𝐵1∥ ∥𝜆min

1
∥

+ ℎ𝜂∥𝐵1∥ ∥𝐶1∥
𝑘∑︁
𝑖=1

ℎ𝑘−𝑖
1

𝑖−1∑︁
𝑗=0

(𝜂ℎ3)𝑖−1− 𝑗 ∥𝐺𝜆𝑗+1
∥.

The third term in the right-hand side of (5.19) involves terms from ∥𝑥1,1∥ to ∥𝑥1,𝑘 ∥. The inequality (5.19)
can be rewritten as:

(5.21) ∥𝑥1,𝑘+1∥ ≤ ℎ𝑘+1

1
∥𝑥1,0∥ + ℎ 𝑓𝑘 + ℎ2

𝑘∑︁
𝑖=1

𝛽𝑖 ∥𝑥1,𝑖 ∥,

for some positive sequence of real numbers {𝛽𝑖}, each 𝛽𝑖 being calculated from the expression in

(5.19) 𝜂∥𝐶1∥ ∥𝐵1∥
∑𝑘
𝑖=1
ℎ𝑘−𝑖

1

∑𝑖−1

𝑗=0
(𝜂ℎ3)𝑖−1− 𝑗 ∥𝑥1, 𝑗+1∥, and thus being made of powers of ℎ1 and of ℎ3𝜂.

Calculations show that (see Appendix f)

(5.22) 𝛽𝑖 = 𝜂∥𝐶1∥ ∥𝐵1∥
𝑘∑︁
𝑗=𝑖

ℎ
𝑘− 𝑗
1

(𝜂ℎ3) 𝑗−𝑖 , 𝑖 ≥ 1.

Let us now apply a version of the discrete-time Gronwall inequality, due to Bachpatte [13] [47, Lemma

100], see Appendix e. It is deduced that for all 𝑘 ≥ 0:

(5.23) ∥𝑥1,𝑘+1∥ ≤ ℎ𝑘+1

1
∥𝑥1,0∥ + ℎ 𝑓𝑘 + ℎ2

𝑘∑︁
𝑖=0

(ℎ𝑖+1

1
𝛽𝑖 ∥𝑥1,0∥ + ℎ𝛽𝑖 𝑓𝑖) Π𝑘+1

𝑗=𝑖+1
(1 + ℎ2𝛽 𝑗 ) .

Let us state the next assumption (recall that ℎ3 = ∥ℎ ˆ𝐷 − 𝐵⊤
3
𝑋3𝐵3∥ and ℎ1 = ∥𝐼𝑛1

+ ℎ𝐴1∥).
Assumption 4. One has a)ℎ1 ≤ 1 forℎ > 0 small enough, b) ∥𝐺 (𝑡)∥ is uniformly bounded by𝐺max < +∞
on [0,𝑇 ] for any 𝑇 > 0, and 𝐺 (·) is Lipschitz continuous with Lipschitz constant 𝑘𝐺 ≥ 0, c) 𝜂ℎ3 ≤ 1

for ℎ > 0 small enough.

Inequality a) is similar to Assumption 1. As illustrated through examples in Section 6, it may hold in

practice for reasonable values of the time step. See also the developments in Appendix a for conditions

on its validity, and Remark 5.7 for its relaxation. Assumption 4 b) is a standard property of exogenous

time-dependent terms. The inequality c) is the central assumption of Assumption 4, which quantifies

the couplings between the DAE part and the complementarity part of the LDCS . Some examples of

circuits in Section 6 will prove that it can be satisfied in practice. Notice from (5.14) that if 𝐵⊤
3
𝑋3𝐵3 = 0

(Assumption 2), then the minimal-norm element of the set of solutions to the LCP is always 𝜆min

𝑘
= 0,

hence 𝜂 = 0 in that case. Using (5.20) the next upper bound can be found:

(5.24) 𝑓𝑘 ≤ (𝑘 + 1) (𝐺max∥𝑋 −1

1
∥ + ∥𝐵1∥ ∥𝜆min

1
∥) + ∥𝐵1∥ ∥𝜆min

1
∥ + ℎ𝜂∥𝐵1∥ ∥𝐶1∥ 𝐺max

𝑘∑︁
𝑖=1

𝑖−1∑︁
𝑗=0

𝑗,

Since ℎ = 𝑇
𝑁
and 𝑘 ∈ {0, 𝑁 − 1}:

(5.25) ℎ𝑓𝑘 ≤ 𝑇 (𝑘 + 1)
𝑁

(𝐺max∥𝑋 −1

1
∥ + ∥𝐵1∥ ∥𝜆min

1
∥) + 𝑇

𝑁
∥𝐵1∥ ∥𝜆min

1
∥ + 𝑇

2

𝑛2
𝜂∥𝐵1∥ ∥𝐶1∥ 𝐺max

𝑘∑︁
𝑖=1

𝑖−1∑︁
𝑗=0

𝑗 .
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Now we have that

∑𝑘
𝑖=1

∑𝑖−1

𝑗=0
𝑗 = (𝑘 − 1) + 2(𝑘 − 1) + 3(𝑘 − 3) + . . . + (𝑘 − 3)3 + (𝑘 − 2)2 + (𝑘 − 1), where

the sum consists of 𝑘 − 1 terms. Hence

∑𝑘
𝑖=1

∑𝑖−1

𝑗=0
𝑗 = O(𝑘2), and 𝑇 2

𝑁 2
𝜂∥𝐵1∥ ∥𝐶1∥ 𝐺max

∑𝑘
𝑖=1

∑𝑖−1

𝑗=0
𝑗 =

𝑇 2𝜂∥𝐵1∥ ∥𝐶1∥ 𝐺max

O(𝑘2 )
𝑁 2

. Since 𝑘 ≤ 𝑁 we infer that this term is uniformly bounded in 𝑘 , for each

fixed bounded 𝑇 . The same holds for 𝑇
(𝑘+1)
𝑁

(𝐺max∥𝑋 −1

1
∥ + ∥𝐵1∥ ∥𝜆min

1
∥). Thus ℎ𝑓𝑘 ≤ 𝛼1 max(𝑇,𝑇 2) for

some 𝛼1 which depends on 𝜂, ∥𝐵1∥, ∥𝐶1∥, 𝐺max, ∥𝜆min

1
∥.

The next step consists of computing an upper bound from (5.23) as:

(5.26) ∥𝑥1,𝑘+1∥ ≤
(
∥𝑥1,0∥ + 𝛼1 max(𝑇,𝑇 2)) (1 + 𝑇

2

𝑁 2

𝑘∑︁
𝑖=0

𝛽𝑖 Π
𝑘+1

𝑗=𝑖+1
(1 + 𝑇

2

𝑁 2
𝛽 𝑗 )

)
.

In view of Assumption 4 and (5.22), one has 𝛽𝑖 ≤ 𝜂∥𝐶1∥ ∥𝐵1∥
∑𝑘
𝑗=𝑖 1 = 𝜂∥𝐶1∥ ∥𝐵1∥(𝑘 − 𝑖) ≤

𝜂∥𝐶1∥ ∥𝐵1∥𝑁 , 𝑖 ≥ 1, 𝑘 ≤ 𝑁 .

Consequently:

(5.27) ∥𝑥1,𝑘+1∥ ≤ (∥𝑥1,0∥ + 𝛼1 max(𝑇,𝑇 2)) (1 + 𝑇
2

𝑁

𝑘∑︁
𝑖=0

𝜂∥𝐶1∥ ∥𝐵1∥ Π𝑘+1

𝑗=𝑖+1
(1 + 𝑇

2

𝑁
𝜂∥𝐶1∥ ∥𝐵1∥))

≤ (∥𝑥1,0∥ + 𝛼1 max(𝑇,𝑇 2)) (1 + 𝜂∥𝐶1∥ ∥𝐵1∥
𝑇 2

𝑁

𝑘∑︁
𝑖=0

Π𝑘+1

𝑗=𝑖+1
(1 + 𝑇

2

𝑁
𝜂∥𝐶1∥ ∥𝐵1∥))

≤ (∥𝑥1,0∥ + 𝛼1 max(𝑇,𝑇 2)) (1 + 𝜂∥𝐶1∥ ∥𝐵1∥
𝑇 2

𝑁

𝑘∑︁
𝑖=0

(1 + 𝑇
2

𝑁
𝜂∥𝐶1∥ ∥𝐵1∥)𝑘−𝑖)

≤ (∥𝑥1,0∥ + 𝛼1 max(𝑇,𝑇 2)) (1 + 𝜂∥𝐶1∥ ∥𝐵1∥
𝑇 2

𝑁

𝑘∑︁
𝑖=0

(1 + 𝛼2

𝑁
)𝑘−𝑖)

≤ (∥𝑥1,0∥ + 𝛼1 max(𝑇,𝑇 2)) (1 + 𝜂∥𝐶1∥ ∥𝐵1∥
𝑇 2

𝑁

𝑁∑︁
𝑖=0

(1 + 𝛼2

𝑁
)𝑁 )

≤ (∥𝑥1,0∥ + 𝛼1 max(𝑇,𝑇 2)) (1 + 𝜂∥𝐶1∥ ∥𝐵1∥
𝑇 2

𝑁
(𝑁 + 1) (1 + 𝛼2

𝑁
)𝑁 )

≤ (∥𝑥1,0∥ + 𝛼1 max(𝑇,𝑇 2)) (1 +𝑇 2𝜂∥𝐶1∥ ∥𝐵1∥
𝑁 + 1

𝑁
(1 + 𝛼2

𝑁
)𝑁 ),

where 𝛼2 = 𝑇 2𝜂∥𝐶1∥ ∥𝐵1∥. One has (1 + 𝛼2

𝑁
)𝑁 → 𝑒𝛼2

as 𝑁 → +∞ [73, p.196]. Therefore the sequence

{𝑥1,𝑘 }𝑘 is uniformly bounded over 𝑘 ∈ {0, 𝑁 − 1}. It directly follows from Lemma 5.4 that the sequence

{𝜆min

𝑘
}𝑘 is uniformly bounded as well. It follows from (4.1) that the sequence

{𝑥1,𝑘+1−𝑥1,𝑘

ℎ

}
𝑘
is uniformly

bounded also. Therefore we are ready to prove the following result. The piece-wise linear approxima-

tions are defined in (4.7), and the step approximations 𝑥ℎ★
1

(𝑡) = 𝑥1,𝑘+1 if 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), 𝜆min

ℎ★
(𝑡) = 𝜆min

𝑘
if

𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1).
Proposition 5.5. Let Assumption 4 hold true, as well as the conditions for the well-posedness of the
OSNSP. Then the sequence {𝑥ℎ

1
(·)}ℎ≥0 converges uniformly towards a continuous limit 𝑥1(·). Moreover

𝑥ℎ★
1

(·) converges strongly in L2( [0,𝑇 ];ℝ𝑛1) towards 𝑥1(·), and ¤𝑥ℎ
1
(·) converges weakly in L2( [0,𝑇 ];ℝ𝑛1)

towards ¤𝑥1(·). Therefore {(𝐵1𝜆
min

ℎ★
) (·)}ℎ≥0 converges weakly in L2( [0,𝑇 ];ℝ𝑛1) towards a limit 𝜆1(·), and

¤𝑥1(𝑡) = 𝐴1𝑥1(𝑡) +𝐺𝑥 (𝑡) + 𝜆1(𝑡) almost everywhere on [0,𝑇 ].

Proof. Both sequences {𝑥ℎ
1
(·)} and { ¤𝑥ℎ

1
(·)} are uniformly bounded on [0,𝑇 ], the sequence {𝑥ℎ

1
(·)} of

C0( [0,𝑇 ];ℝ𝑛1) functions is thus equicontinuous. From the Ascoli-Arzela Theorem, {𝑥ℎ
1
(·)} stays in

a compact subset of C0( [0,𝑇 ];ℝ𝑛1) and indeed it converges uniformly towards a continuous limit

𝑥1(·). Let us now examine the sequences of piecewise-linear functions {𝐺ℎ (·)}ℎ≥0 and { ¤𝐺ℎ (·)}ℎ≥0,
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designed similarly as (4.7). From Assumption 4 b) one infers that 𝐺ℎ (𝑡) is uniformly bounded on

[0,𝑇 ], ∥𝐺𝑘+1−𝐺𝑘 ∥
ℎ

≤ 𝑘𝐸 implies that ¤𝐺ℎ (𝑡) is also uniformly bounded in ℎ on [0,𝑇 ], thus {𝐺ℎ (·)}ℎ≥0 is

a sequence of Lipschitz continuous, uniformly bounded, equicontinuous functions. From the Ascoli-

Arzela Theorem, {𝐺ℎ (·)} stays in a compact subset of C0( [0,𝑇 ];ℝ𝑛1) and it converges uniformly

towards the continuous limit 𝐺 (·) as ℎ → 0. The remaining part of the proof is similar to the proof of

Corollary 4.6 (adding 𝐺𝑥,ℎ (·) with the required properties) and it is omitted. □

Remark 5.6. Assumption 4 c) is clearly less restrictive than Assumption 2. It still imposes some constraint

on the matrix 𝐶3𝐵3. Examples are treated next which show that it is satisfied in some practical cases.

Let us now prove the uniform boundedness of the sequences {𝜆min

𝑘
}𝑘 and {𝑥2,𝑘 }𝑘 . To this aim we shall

use first the second line in (5.17) and (5.27). Let us denote the right-hand side of (5.27) as 𝑥1,max(𝑇, 𝜂, 𝑥1,0).
Then from (5.17) and Assumption 4 we obtain:

(5.28) ∥𝜆min

𝑘+1
∥ ≤ ∥𝜆min

0
∥ + ℎ𝜂

𝑘∑︁
𝑖=0

(∥𝐶1∥𝑥1,max(𝑇, 𝜂, 𝑥1,0) + ∥𝐺𝜆𝑖+1
∥)

≤ ∥𝜆min

0
∥ + ℎ𝜂∥𝐶1∥𝑥1,max(𝑇, 𝜂, 𝑥1,0) (𝑘 + 1) + ℎ𝜂

𝑘∑︁
𝑖=0

∥𝐺𝜆𝑖+1
∥

≤ ∥𝜆min

0
∥ + 𝑇 (𝑘 + 1)

𝑁
𝜂∥𝐶1∥𝑥1,max(𝑇, 𝜂, 𝑥1,0) + 𝜂

𝑇 (𝑘 + 1)
𝑁

𝐺max

≤ ∥𝜆min

0
∥ + 𝑇 (𝑁 + 1)

𝑁
𝜂∥𝐶1∥𝑥1,max(𝑇, 𝜂, 𝑥1,0) + 𝜂

𝑇 (𝑁 + 1)
𝑁

𝐺max.

Therefore ∥𝜆min

𝑘+1
∥ is uniformly bounded for any bounded 𝑇 and initial data. The boundedness of 𝑥2,𝑘

follows from the equality constraint in (4.1). A result similar to Corollary 4.6 holds, but this time

verifying the complementarity conditions is less easy due to the presence of 𝑧 in the complementarity

variable𝑤 .

Remark 5.7 (relaxation of assumptions). Assumption 4 a) is convenient to simplify the upper bounds

calculations, however it is somewhat restrictive. One path to relax it, is to study the terms ℎ𝑘
1
another

way, since for any 𝑎1 > 0 one has (1 + 𝑇
𝑁
𝑎1)𝑁 → 𝑒𝑎1𝑇

as 𝑁 → +∞, while this sequence is increasing.

Consider first (5.20). Taking into account Assumption 4 b) and c), one sees that the first two terms in

ℎ𝑓𝑘 are upper bounded by constants times

(5.29) ℎ

𝑘∑︁
𝑖=0

ℎ𝑘−𝑖
1

= ℎ

𝑘∑︁
𝑖=0

ℎ𝑖
1
≤ ℎ𝑘 (1 + ℎ𝑎1)𝑘 ,

where ℎ1 ≤ ∥𝐼𝑛1
∥ + ℎ∥𝐴1∥ = 1 + ℎ𝑎1 for some 𝑎1 ≥ 0. We have ℎ𝑘 (1 + ℎ𝑎1)𝑘 ≤ 𝑇

𝑁
𝑘 (1 + 𝑇𝑎1

𝑁
)𝑁 → 𝑇𝑒𝑎1𝑇

as 𝑁 → +∞. The third term of ℎ𝑓𝑘 is upper bounded by a constant times ℎℎ𝑘
1
≤ 𝑇

𝑁
(1 + ℎ𝑎1)𝑁 → 0 as

𝑁 → +∞. The last term of ℎ𝑓𝑘 is upper bounded by a constant multiplied by

(5.30) ℎ2

𝑘∑︁
𝑖=1

ℎ𝑘−𝑖
1
𝑘 ≤ 𝑇 2

𝑁 2
𝑘2(1 + ℎ𝑎1)𝑘 ≤ 𝑇 2

𝑁 2
𝑁 2(1 + ℎ𝑎1)𝑁 → 𝑇 2𝑒𝑇𝑎1

as 𝑁 → +∞. These first calculations allow us to upper bound the term ℎ𝑓𝑘 in (5.23). The first term

ℎ𝑘+1

1
∥𝑥1,0∥ = (1 + ℎ𝑎1)𝑘+1∥𝑥1,0∥ ≤ (1 + ℎ𝑎1)𝑁 ∥𝑥1,0∥ → ∥𝑥1,0∥𝑒𝑎1𝑇

as 𝑁 → +∞.

The third term in (5.23) is more complex: ℎ2
∑𝑘
𝑖=0

(ℎ𝑖+1

1
𝛽𝑖 ∥𝑥1,0∥ + ℎ𝛽𝑖 𝑓𝑖) Π𝑘+1

𝑗=𝑖+1
(1 + ℎ2𝛽 𝑗 ). Since from

Assumption 4 c) 𝜂ℎ3 ≤ 1, it follows that

(5.31) 𝛽𝑖 ≤ 𝜂∥𝐶1∥ ∥𝐵1∥
𝑘∑︁
𝑗=1

ℎ
𝑘− 𝑗
1

≤ 𝜂∥𝐶1∥ ∥𝐵1∥
𝑘∑︁
𝑗=1

(1 + ℎ𝑎1)𝑘− 𝑗
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for some 𝑎1 > 0. Thus

(5.32) ℎ2𝛽 𝑗 ≤ 𝜂∥𝐶1∥ ∥𝐵1∥ℎ2𝑘 (1+ℎ𝑎1)𝑘−1 ≤ 𝜂∥𝐶1∥ ∥𝐵1∥
𝑇 2

𝑁 2
𝑁 (1+ 𝑇

𝑁
𝑎1)𝑁 = 𝜂∥𝐶1∥ ∥𝐵1∥

𝑇 2

𝑁
(1+ 𝑇

𝑁
𝑎1)𝑁 .

Hence

(5.33) Π𝑘+1

𝑗=𝑖+1
(1 + ℎ2𝛽 𝑗 ) ≤ (1 + 𝜂∥𝐶1∥ ∥𝐵1∥

𝑇 2

𝑁
(1 + 𝑇

𝑁
𝑎1)𝑁 )𝑁 → 𝑒𝜂 ∥𝐶1 ∥ ∥𝐵1 ∥𝑇 2𝑒𝑎1

𝑇

.

We have

(5.34) ℎ2

𝑘∑︁
𝑖=0

𝛽𝑖ℎ𝑓𝑖 =

𝑘∑︁
𝑖=0

(ℎ2𝛽𝑖) (ℎ𝑓𝑖) ≤ 𝑁𝜂∥𝐶1∥ ∥𝐵1∥
𝑇 2

𝑁
(𝛼1𝑇 + 𝛼2

𝑇

𝑁
+ 𝛼3𝑇

2) (1 + 𝑇
𝑁
𝑎1)2𝑁

→ 𝜂∥𝐶1∥ ∥𝐵1∥𝑇 2(𝛼1𝑇 + 𝛼3𝑇
2)𝑒2𝑎1𝑇 ,

hence is bounded for any bounded 𝑇 . We have also

(5.35) ℎ2

𝑘∑︁
𝑖=0

ℎ𝑖+1

1
𝛽𝑖 ∥𝑥1,0∥ = ∥𝑥1,0∥

𝑘∑︁
𝑖=0

ℎ𝑖+1

1
ℎ2𝛽𝑖 ≤ 𝜂∥𝐶1∥ ∥𝐵1∥ ∥𝑥1,0∥

𝑘∑︁
𝑖=0

(1 + ℎ𝑎1)𝑘ℎ2𝑘 (1 + ℎ𝑎1)𝑘−1

≤ 𝜂∥𝐶1∥ ∥𝐵1∥ ∥𝑥1,0∥
𝑁∑︁
𝑖=0

(1 + ℎ𝑎1)2𝑁 𝑇
2

𝑁 2
𝑁

≤ 𝜂∥𝐶1∥ ∥𝐵1∥ ∥𝑥1,0∥ 𝑇 2𝑒2𝑎1𝑇 .

Consequently from (5.23) it is inferred that if Assumption 4 b) and c) holds, then ∥𝑥1,𝑘+1∥ is bounded
by a term that depends only on 𝑇 , initial conditions and constants.

Let us examine now Assumption 4 c) and the terms which which involve ℎ𝑘
3
. We have ℎ3 = ∥ℎ�̂� −

𝐵⊤
3
𝑋3𝐵3∥. Let us assume that

ˆ𝐷 is invertible. Then

(5.36)

∥ℎ ˆ𝐷 − 𝐵⊤
3
𝑋3𝐵3∥ = ∥ ˆ𝐷 (ℎ − ˆ𝐷−1𝐵⊤

3
𝑋3𝐵3)∥ ≤ ∥ ˆ𝐷 ∥ ∥(ℎ𝐼𝑚 − ˆ𝐷−1𝐵⊤

3
𝑋3𝐵3)∥ ≤ ∥ ˆ𝐷 ∥ (ℎ + ∥ ˆ𝐷−1𝐵⊤

3
𝑋3𝐵3)∥)

≤ ∥ ˆ𝐷 ∥ (ℎ + ∥ ˆ𝐷−1∥ ∥𝐵⊤
3
𝑋3𝐵3)∥)

= ∥ ˆ𝐷 ∥ ∥ ˆ𝐷−1∥ ∥𝐵⊤
3
𝑋3𝐵3)∥

(
1 + 1

∥ ˆ𝐷−1∥ ∥𝐵⊤
3
𝑋3𝐵3)∥

ℎ

)
.

Therefore it follows that ℎ𝑘
3
≤ (∥ ˆ𝐷 ∥ ∥ ˆ𝐷−1∥ ∥𝐵⊤

3
𝑋3𝐵3)∥)𝑘

(
1 + 𝑇

∥�̂�−1 ∥ ∥𝐵⊤
3
𝑋3𝐵3 ) ∥

1

𝑁

)𝑘
. Consequently

(𝜂ℎ3)𝑘 ≤ (𝜂∥�̂� ∥ ∥�̂�−1∥ ∥𝐵⊤
3
𝑋3𝐵3)∥)𝑘

(
1 + 𝑇

∥�̂�−1 ∥ ∥𝐵⊤
3
𝑋3𝐵3 ) ∥

1

𝑁

)𝑘
which converges as 𝑁 → +∞ to

(𝜂∥ ˆ𝐷 ∥ ∥ ˆ𝐷−1∥ ∥𝐵⊤
3
𝑋3𝐵3)∥)𝑁 𝑒

𝑇

∥�̂�−1 ∥ ∥𝐵⊤
3
𝑋

3
𝐵

3
) ∥
. A necessary condition for the limit to be bounded is

𝜂∥ ˆ𝐷 ∥ ∥ ˆ𝐷−1∥ ∥𝐵⊤
3
𝑋3𝐵3)∥ ≤ 1: it is unclear whether or not this inequality is less conservative that the

one in Assumption 4 c).

We conclude that while the relaxation of Assumption 4 a) is reasonable, the relaxation of Assump-

tion 4 c) is not obvious.

5.3 case 𝑋1≻0 and 𝐵⊤
3
𝑋3𝐵3≻0

This is the case studied in item 4 of Proposition 5.1 and may be verified in practice, see the example in

Section 6.1. Then the DI in (5.3) is equivalently rewritten as in (5.8). Consequently one can apply the

implicit Euler scheme and all the existence, convergence and order results presented in [14] (see that
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article for details on the discretization method and theoretical results), to (5.8). It is inferred that in

this case (5.8) possesses unique solutions in C0( [0,𝑇 ];ℝ𝑛1+𝑚) with essentially bounded derivatives [14,

Proposition 2.6]. It is deduced that 𝑥2(·) is also unique in C0( [0,𝑇 ];ℝ𝑛1+𝑚) with essentially bounded

derivative, while the algebraic variable 𝑧 (·) (which depends on
¤𝜆(·), see (5.1)) is essentially bounded

(hence a priori it may be discontinuous).

6 examples and numerical simulations

Two examples of circuits with ideal diodes, and one academic example, are developed in this section.

Let us comment that the analysis of circuits applies to hydraulics, due to the strong analogy between

hydraulic and electrical circuits [68, 56] [52, Chapter 1], where check valves play the role of diodes.

6.1 first example

i3

i2

i1

uD

u2 u1

C

R3

R1 R2

L

Figure 1: An 𝑅𝐿𝐶𝐷 passive circuit.

Let us consider the circuit in Figure 1. Let us assume first that 𝑅1 = 𝑅3 = 0 Ω. Let 𝜉1 = 𝑖2, 𝜉2 =∫ 𝑡
0
𝑖3(𝑡)𝑑𝑡 , 𝜉3 = 𝑖1. The dynamics is given by:

(6.1)



¤𝜉1(𝑡) = −𝑅2

𝐿
𝜉1(𝑡) +

1

𝐿
𝑢𝐷 + 1

𝐿
𝑢1(𝑡)

¤𝜉2(𝑡) = 𝜉1(𝑡) − 𝜉3(𝑡)

0 =
1

C
𝜉2(𝑡) + 𝑢𝐷 (𝑡) + 𝑢2(𝑡)

0 ≤ 𝑢𝐷 ⊥ 𝜉3(𝑡) ≥ 0.

It is noteworthy that this circuit dynamics agrees with [2, Theorem 3.6] [48] about the index (indeed it

cannot be of index 1 due to the loop with a capacitive element). In our notations we have 𝑥 = (𝜉1, 𝜉2)⊤,
𝑧 = 𝜉3,𝐶 = (0 0 1), 𝐵 = ( 1

𝐿
0 1)⊤. The transfer function 𝐻 (𝑠) = 𝑧 (𝑠 )

𝑢𝐷 (𝑠 ) =
C𝑠2+C𝑅

𝐿
𝑠+ 1

𝐿

𝑠+𝑅
𝐿

= C𝑠 + 1

𝐿𝑠+𝑅 . It has a

relative degree 𝑟 = −1. It can be checked that 𝐻 (𝑠) is positive real (PR) as long as 𝑅2 > 0 [25, Theorem

2.45], but it is not strictly positive real (SPR) (the first condition in item 3.b in [25, Theorem 2.61] does

not hold, despite of the fact that the second condition in the same item holds), and hence it is not

strongly SPR. Let us verify the minimality of (6.1):

1. rank((𝐴 𝐵) − 𝑠𝑃 𝐵) = rank
©­«
−𝑅
𝐿

− 𝑠 0 0
1

𝐿

1 −𝑠 −1 0

0
1

C 0 1

ª®¬ = 3 for all 𝑠 ∈ ℂ.

2. rank(𝑃 𝐵) = rank
©­«

1 0 0
1

𝐿

0 1 0 0

0 0 0 1

ª®¬ = 3.
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3. rank(𝐴⊤ − 𝑠𝑃⊤ 𝐶⊤) = rank
©­«
−𝑅
𝐿

− 𝑠 1 0 0

0 −𝑠 1

C 0

0 −1 0 1

ª®¬ = 3 for all 𝑠 ∈ ℂ.

4. rank(𝑃⊤ 𝐶⊤) = rank
©­«

1 0 0 0

0 1 0 0

0 0 0 1

ª®¬ = 3.

5. (𝐴 𝐵) Ker(𝑃) =
©­«
−𝑅
𝐿

0 0

1 0 −1

0
1

C 0

ª®¬ Ker(𝑃) = {𝜉 ∈ ℝ3 | 𝜉1 = 𝜉3 = 0, 𝜉2 ∈ ℝ} ⊂ Im(𝑃) = {𝜉 ∈

ℝ3 | 𝜉3 = 0, 𝜉2 ∈ ℝ, 𝜉1 ∈ ℝ},

Therefore we infer that (6.1) admits a special Weiertrass form as (2.2). Let us choose 𝐿 = 4.7 10
−4

H, 𝑅 = 1Ω, 𝐶 = 10
−1

F. Let us define 𝑆 =
©­«
−1.414 0 0

0 1 0

0 0 10
−4

ª®¬, 𝑇 =
©­«
−0.707 0 0

0 0 1

−0.707 −1 0

ª®¬. Then 𝑆𝐴𝑇 =

©­«
−2.12 10

3
0 0

0 1 0

0 0 1

ª®¬, 𝑆𝐵 =
©­«
−3 10

−3

0

10
−4

ª®¬,𝐶𝑇 = (−0.707 − 1 0), 𝑆 ©­«
1

𝐿
0

0 0

0 1

ª®¬ =
©­«
0.301 10

4
0

0 0

0 10
−4

ª®¬. Let us make

the state variable change 𝜁 = 𝑇 −1𝜉 , then we obtain the transformed dynamics:

(6.2)


¤𝜁1(𝑡) = −2.12 10

3𝜁1(𝑡) − 3 10
−3𝜆(𝑡) + 0.301 10

4𝑢1(𝑡)
¤𝜁3(𝑡) = 𝜁2(𝑡)

0 = 𝜁3(𝑡) + 10
−4𝜆(𝑡) + 10

−4𝑢2(𝑡)
0 ≤ 𝜆(𝑡) ⊥ 𝑤 (𝑡) = −0.707𝜁1(𝑡) − 𝜁2(𝑡) ≥ 0.

Let us now define 𝑥1 = 𝜁1, 𝑥2 = 𝜁3, 𝑥3 = 𝜁2, then we obtain

(6.3)


¤𝑥1(𝑡) = −2.12 10

3𝑥1(𝑡) − 3 10
−3𝜆(𝑡) + 0.301 10

4𝑢1(𝑡)
¤𝑥2(𝑡) = 𝑥3(𝑡)

0 = 𝑥2(𝑡) + 10
−4𝜆(𝑡) + 10

−4𝑢2(𝑡)
0 ≤ 𝜆(𝑡) ⊥ 𝑤 (𝑡) = −0.707𝑥1(𝑡) − 𝑥3(𝑡) ≥ 0,

which is the canonical form in (2.2) with 𝑧 = 𝑥3, 𝐵1 = −3.10−3
, 𝐵2 = 0, 𝐵3 = 10

−4
, 𝐶1 = −0.707,

𝐶2 = 0, 𝐶3 = −1, 𝐷 = 0. We have 𝑋3 = 10
4
, 𝐴1 = −2.12 10

3
, 𝑋1 =

𝐶1

𝐵1

> 0,
ˆ𝐷 = 𝐷 − 𝐶3𝐵2 − 𝐶2𝐵3 = 0,

¯𝐷ℎ = ℎ2𝐶1𝐵1 + 𝐵⊤3 𝑋3𝐵3 = 2.121 10
−3ℎ2 + 10

−4
, ℎ3 = 𝐵⊤

3
𝑋3𝐵3 = 10

−4
, ℎ1 = |1 + ℎ𝐴1 | = |1 − 2.12 10

3 ℎ |
which verifies Assumption 4 for ℎ > 0 small enough. Notice that the set S in Propositions 5.1 and 3.2

verifies S = {0}, hence the OSNSP is well-posed with unique solution. Provided that Assumption 4 is

satisfied, the material in Section 5 applies. In a similar way to (5.1), the system (6.3) is transformed into:

(6.4)


¤𝑥1(𝑡) = −2.12 10

3𝑥1(𝑡) − 3 10
−3𝜆(𝑡) + 0.301 10

4𝑢1(𝑡)
10

−4 ¤𝜆(𝑡) = 0.707𝑥1(𝑡) − 10
−4 ¤𝑢2(𝑡) +𝑤 (𝑡)

𝑥2(𝑡) = −10
−4𝜆(𝑡) − 10

−4𝑢2(𝑡)
𝑧 (𝑡) = −10

−4 ¤𝜆(𝑡) − 10
−4 ¤𝑢2(𝑡) .

From (5.14), the following LCP is obtained:

(6.5)

{
0 ≤ 10

−4𝜆𝑘+1 + 𝑞𝑘 ⊥ 𝜆𝑘+1 ≥ 0

𝑞𝑘 = −10
−4𝜆𝑘 − 0.707ℎ𝑥1,𝑘 − 10

−4ℎ𝑢2,𝑘 ,
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and 𝑥1,𝑘+1, 𝑥2,𝑘+1, 𝑧𝑘+1 as in (h.1). Let us check Assumptions 1 and 4 c). Since �̂� = 0 it is easy to show that

𝜂 = 10
4
while ℎ3 = 10

−4
, using the LCP in (5.14) that can be solved explicitly. Thus 𝜂ℎ3 ≤ 1 for all ℎ ≥ 0.

However, ℎ1 = ∥1 − 2.12 10
3ℎ∥ ≤ 1 if and only if ℎ < 4.7 10

−4
. It is also noteworthy that this system

verifies the conditions of Section 5.3, and item 4 of Proposition 5.1, since𝑋1 > 0 and 𝐵⊤
3
𝑋3𝐵3 = 10

−4 > 0.

Hence the state space form (5.8), that is equivalent to (5.3) since P ≻ 0, can be calculated. Also the

generalized equation (5.14) always has a unique solution 𝜆𝑘+1. As we shall see through numerical

simulations, the variable 𝑧 (·) = 𝑥3(·) may be discontinuous. Actually this is in agreement with the

theoretical conclusions from Section 5.3, which do not state that this variable is continuous. It also

shows that a complete convergence analysis, including 𝑧, should rely on other tools than those used in

this paper.

In Figure 2, the results of the numerical simulation of (6.3) with an implicit Euler scheme are depicted
2
.

Numerical simulations are performed with the INRIA software package Siconos [1]. At each time step,

the Lemke solver [65, 64] is applied to solve the LCP (3.1) resulting from the discretization scheme. The

initial conditions are set to x(0) = (0.01,−10
−4,−7.07 · 10

−3)T, and the time step is ℎ = 5 · 10
−6
s. The

input functions 𝑢1(𝑡) and 𝑢2(𝑡) are taken as sinusoidal functions: 𝑢1(𝑡) = sin(𝑡) and 𝑢2(𝑡) = cos(10𝑡).
Let us observe that the variable 𝑧 (𝑡) = 𝑥3(𝑡) appears to be discontinuous at 𝑡 ≈ 5.9s. The multiplier

𝜆(𝑡) remains continuous, see Figure 3. Finally, an order of convergence equal to one is deduced from

the data in Figure 4. The error formula used is:

(6.6) error = ∥x(𝑡) − xℎ (𝑡)∥∞ .

Remark 6.1 (modelling). One can obtain a relative degree one LCS by eliminating the variable 𝑢𝐷 (𝑡)
in (6.1). However, for the sake of generality, and since in practice equality constraints are not always

eliminated, we consider here a poorly formulated version of the circuit’s dynamics, where the variables

are badly matched to the constraints. Such bad matching could be avoided using structural analysis.

Figure 2: Implicit Euler numerical simulation of (6.3) with ℎ = 5 · 10
−6
s. The numerical simulations of

the variables 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) = 𝑧 (𝑡) are depicted.

2
Source code of the examples can be found at https://github.com/siconos/siconos-tutorials/tree/master/.sandbox/mlcspaper
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Figure 3: Implicit Euler numerical simulation of (6.3) with ℎ = 5 · 10
−6
s. The numerical simulations of

the variables 𝜆(𝑡) and𝑤 (𝑡) are depicted.

Figure 4: Numerical convergence of the implicit Euler scheme applied to (6.3). The reference curve is

taken for ℎ = 5.10−6
s. The error formula used is given in (6.6).

Brogliato, Rocca Analysis of the implicit Euler time-discretization of passive . . .



J. Nonsmooth Anal. Optim. 3 (2022), 7269 page 24 of 39

6.2 second example

L

C

R

i1

i5 i2

i3

i4

e(t)

uD
u(t)

u1(t)

Figure 5: An 𝑅𝐿𝐶𝐷 passive circuit.

This circuit example depicted in Figure 5 is inspired from [32]. The so-called modified nodal anal-

ysis is used to derive the dynamics [2, chapter 3]. It is assumed that the voltage source delivers a

constant voltage 𝑢 (𝑡) = 𝑢𝑐 , while the other voltage source 𝑢1(𝑡) is time-varying Lipschitz contin-

uous and bounded. Notice that the current/voltage characteristic of this device can be written as

𝑖5(𝑡) ∈ −𝜕𝜓{𝑢𝑐 } (𝑢 (𝑡)), or equivalently as ℝ ∋ 𝑖5(𝑡) ⊥ 𝑢 (𝑡) − 𝑢𝑐 ∈ {0}. The dynamics is given by:

(6.7)



C ¤𝑒 (𝑡) = −𝑅−1𝑒 (𝑡) + 𝑖4(𝑡) − 𝑖1(𝑡) − 𝑖5(𝑡)

𝐿
𝑑𝑖1

𝑑𝑡
(𝑡) = 𝑒 (𝑡) + 𝑢1(𝑡)

0 = 𝑒 (𝑡) + 𝑢 (𝑡)
0 ≤ 𝑢𝐷 (𝑡) ⊥ 𝑖4(𝑡) ≥ 0

ℝ ∋ 𝑖5(𝑡) ⊥ 𝑢 (𝑡) − 𝑢𝑐 ∈ {0}.

The state vector is 𝜉 = (𝜉1, 𝜉2, 𝜉3)⊤ = (𝑒, 𝑖1, 𝑖5)⊤, and 𝑢𝐷 (𝑡) = 𝑒 (𝑡). The complementarity conditions can

be written as 𝐾 = ℝ+ × ℝ ∋ (𝑢𝐷 (𝑡), 𝑖5(𝑡)) ⊥ (𝑖4(𝑡), 𝑢 (𝑡) − 𝑢𝑐) ∈ ℝ+ × {0} = 𝐾★
. Setting 𝜆1 = 𝑖4 and

𝜆2 = 𝑢 (𝑡) − 𝑢𝑐 , we obtain 𝑃 =
©­«
C 0 0

0 𝐿 0

0 0 0

ª®¬, 𝐴 =
©­«
−𝑅−1 −1 −1

1 0 0

1 0 0

ª®¬, 𝐵 =
©­«

1 0

0 0

0 1

ª®¬, 𝐶 =

(
1 0 0

0 0 1

)
, 𝐷 = 0,

and the LDCS form in (2.1) is equal to:

(6.8)



¤𝜉1(𝑡) = − 1

𝑅C
𝜉1(𝑡) −

1

C
𝜉2(𝑡) −

1

C
𝜉3(𝑡) +

1

C
𝜆1(𝑡)

¤𝜉2(𝑡) =
1

𝐿
𝜉1(𝑡) +

𝑢1(𝑡)
𝐿

0 = 𝜉1(𝑡) + 𝜆2(𝑡) + 𝑢𝑐
0 ≤ 𝜉1(𝑡) ⊥ 𝜆1(𝑡) ≥ 0

ℝ ∋ 𝜉3(𝑡) ⊥ 𝜆2(𝑡) ∈ {0}.

Let𝑆 =
©­«

0
1

𝐿
− 1

𝐿

−1 0 − 1

𝑅

0 0 −C

ª®¬,𝑇 =
©­«

0 0 − 1

C
1 0 0

−1 1 0

ª®¬, then 𝑆𝐴𝑇 =
©­«
0 0 0

0 1 0

0 0 1

ª®¬,𝑆𝑃𝑇 =
©­«

1

𝐿
0 0

0 0
1

C
0 0 0

ª®¬,𝐶𝑇 =

(
0 0 − 1

C
−1 1 0

)
,
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𝑆𝐵 =
©­«
0 − 1

𝐿

1 − 1

𝑅

0 −C

ª®¬. Using the state variable change 𝜁 = 𝑇 −1𝜉 with 𝑇 −1 =
©­«

0 1 0

0 1 1

−C 0 0

ª®¬, one obtains:

(6.9)



¤𝜁1(𝑡) = −(𝜆2(𝑡) + 𝑢𝑐 (𝑡)) +
𝑢1(𝑡)
𝐿

1

C
¤𝜁3(𝑡) = 𝜁2(𝑡) + 𝜆1(𝑡) −

1

𝑅
(𝜆2(𝑡) + 𝑢𝑐 (𝑡))

0 = −C(𝜆2(𝑡) + 𝑢𝑐 (𝑡)) + 𝜁3(𝑡)

𝐾★ ∋ 𝜆(𝑡) ⊥ 𝑤 (𝑡) =
(

0

−1

)
𝜁1(𝑡) +

(
0

1

)
𝜁2(𝑡) +

(
− 1

C
0

)
𝜁3(𝑡) ∈ 𝐾.

Let 𝑥1 = 𝜁1, 𝑥2 = 1

C𝜁3, 𝑧 = 𝜁2, 𝐵1 = (0 − 1), 𝐵2 = (1 − 1

𝑅
), 𝐵3 = (0 − 1),𝐶1 =

(
0

−1

)
,𝐶3 =

(
0

1

)
,𝐶2 =

(
−1

0

)
,

𝐷 = 0. This dynamics is rewritten in the canonical form as:

(6.10)



¤𝑥1(𝑡) = −𝜆2(𝑡) − 𝑢𝑐 (𝑡) +
𝑢1(𝑡)
𝐿

¤𝑥2(𝑡) = 𝑧 (𝑡) + 𝜆1(𝑡) −
1

𝑅
(𝜆2(𝑡) + 𝑢𝑐 (𝑡))

0 = −𝜆2(𝑡) − 𝑢𝑐 (𝑡) + 𝑥2(𝑡)

𝐾★ ∋ 𝜆(𝑡) ⊥ 𝑤 (𝑡) =
(

0

−1

)
𝑥1(𝑡) +

(
−1

0

)
𝑥2(𝑡) +

(
0

1

)
𝑧 (𝑡) ∈ 𝐾.

In the simulations depicted in Figures 6a and 6b, it has been chosen 𝑢𝑐 (𝑡) = sin(10𝑡) − 1 ≤ 0, which

complies with the system’s intrinsic constraints. Then (when 𝑢1(𝑡) = 0) one recovers the standard

form in (2.2), with a different class of sets 𝐾 , however. One has 𝐴1 = 0, 𝐵⊤
3
𝑋3 = −𝐶3 with 𝑋3 = 1, and

𝑋1𝐵1 = 𝐶
⊤
1
(this follows necessarily from (d.2) and 𝑄1 ≼ 0 and using [25, Lemma A.69]), with 𝑋1 = 1

(hence the quadruple (𝐴1, 𝐵1,𝐶1, ˆ𝐷) is passive but it is not strictly passive and its associated transfer

function is not strongly SPR). Also �̂� = −𝐶3𝐵2 −𝐶2𝐵3 =

(
0 1

−1
1

𝑅

)
≽ 0. Also 𝐵⊤

3
𝑋3𝐵3 =

(
0 0

0 1

)
≽ 0.

It is computed that
¯𝐷ℎ =

(
0 ℎ

−ℎ ℎ
𝑅
+ ℎ2 + 1

)
. The various sets for the set S in Proposition 3.2 are

calculated as:𝐾∗ = ℝ+×{0}, Ker( ¯𝐷ℎ+ ¯𝐷T

ℎ
) =

(
0 0

0 2( ℎ
𝑅
+ ℎ2 + 1)

)
= ℝ×{0}, {𝑤 | ¯𝐷ℎ𝑤 ∈ 𝐾 = ℝ+×ℝ} =

ℝ × ℝ+
. So 𝑆 = ℝ+ × {0} ≠ 0 and item 2 of Proposition 3.2 has to be applied. It is calculated that

⟨ℎ𝛽𝑘 − ¯𝐷ℎ𝜉0, 𝑣⟩ = ⟨
(

−ℎ𝜉 1

0

−ℎ𝑥1,𝑘 − 𝑥2,𝑘 + ℎ𝜉 1

0
− (ℎ

2
+ ℎ2 + 1)𝜉2

0

)
. Also 𝑣 ∈ 𝐾★

implies that 𝑣1 ≥ 0 and 𝑣2 = 0,

so it follows that ⟨ℎ𝛽𝑘 − ¯𝐷ℎ𝜉0, 𝑣⟩ +𝜓𝐾★ (𝑣) > 0 is guaranteed, if 𝑣1 > 0, by taking 𝜉 1

0
< 0. It is inferred

that item 2 in Proposition 3.2 is verified and the OSNSP has at least one solution.

Any two solutions 𝜆1

𝑘+1
and 𝜆2

𝑘+1
satisfy 𝜆1

2,𝑘+1
= 𝜆2

2,𝑘+1
for all ℎ ≥ 0, in view of the form of

¯𝐷ℎ . Then

both 𝑥1,𝑘+1 and 𝑥2,𝑘+1 are unique due to the form of 𝐵1 and 𝐵3. For the convergence analysis, let us note

that this system does not satisfy Assumption 2, therefore let us use the material in Section 5. Using the

Frobenius norm one finds that ℎ3 =

√︂
2ℎ2 +

(
ℎ
𝑅
− 1

)
2

, using the Hölder induced norm ∥ · ∥2,2 = 𝜎max(·)

one finds a smallerℎ3 =

√︂
ℎ2 +

(
ℎ
𝑅
− 1

)
2

, and 0 ≤ ℎ3 ≤ 1 for allℎ ∈ [0, 2𝑅
1+𝑅2

]. The material in Section 5 is

based on the LCP in (5.14), for which the existence of a minimal norm solution satisfying the inequalities

stated below (5.14) is guaranteed. However in this example 𝐾 = ℝ+ ×ℝ ≠ ℝ2

+. The following problem
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has to be studied instead (it is noteworthy that the rest of the analysis remains unchanged as long as

the minimal norm solution can be characterised):

(6.11) 𝐾 ∋ 𝐵⊤
3
𝑋3𝐵3𝜆𝑘+1 + 𝑞𝜆𝑘 ⊥ 𝜆𝑘+1 ∈ 𝐾★,

(where 𝑞𝜆
𝑘
is defined in (5.14)), i.e.,

(6.12) ℝ+ × {0} ∋
(
𝜆1,𝑘+1

𝜆2,𝑘+1

)
⊥

(
0

𝜆2,𝑘+1

)
+ 𝑞𝜆

𝑘
∈ ℝ+ ×ℝ.

Therefore 𝜆2,𝑘+1 = 0, and 𝜆1,𝑘+1 = 0 is always a solution (notice that the external excitation is constrained

to be non negative to comply with the system’s constraints). This result agrees with the numerical

simulations in Figure 6b.

(a) Variables 𝑥2 (𝑡) and 𝑥3 (𝑡) = 𝑧 (𝑡). (b) Variables 𝜆1 (𝑡) and𝑤1 (𝑡).

Figure 6: Implicit Euler numerical simulation of (6.9) with ℎ = 5 · 10
−6
s. The solutions 𝑥1(𝑡) are not

displayed as they are independent of 𝑧 (𝑡), 𝜆1(𝑡). The variable 𝜆2(𝑡) trivially equals 0.

6.3 third example

Let us consider now an academic toy-example directly in the form of (2.2), whose dynamics are given

as:

(6.13)



¤𝑥1(𝑡) = −2𝑥1(𝑡) + 2𝜆1(𝑡) − 𝜆2(𝑡)
¤𝑥2(𝑡) = 𝑧 (𝑡)

0 = 𝑥2(𝑡) + 𝜆1(𝑡) − 2𝜆2(𝑡)

0 ≤
(
𝜆1(𝑡)
𝜆2(𝑡)

)
⊥

(
2

−1

)
𝑥1(𝑡) +

(
1

3

)
𝑥2(𝑡) +

(
−1

2

)
𝑧 (𝑡) +

(
2 −1

0 1

) (
𝜆1(𝑡)
𝜆2(𝑡)

)
≥ 0

It can be verified that the transfer matrix 𝐻 (𝑠) = 𝐷 + 𝐶 (𝑠𝑃 − 𝐴)−1𝐵 is positive real [25, Definition

2.34], and the state-space realization is minimal (see Appendix g). In fact 𝐻 (𝑠) is even strongly (or

extended) positive real [25, Definition 2.78]. Thus [28, Theorem 5.4 (A’) (B’)] applies. It is noteworthy
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that since 𝐷 =

(
2 −1

0 1

)
≻ 0, it follows that the multipliers 𝜆 are Lipschitz continuous functions of

the state (𝑥1, 𝑥2, 𝑧). Thus the LDCS is a DAE with Lipschitz continuous nonlinear and nonsmooth

right-hand side. From (6.13) it follows that: 𝐴1 = −2 < 0,𝐶1 = 𝑋1𝐵
T

1
= (2,−1)T with 𝑋1 = 1 > 0, 𝑋3 = 𝐼2,

𝐵3 = (1 − 2) = −𝐶⊤
3
, and

ˆ𝐷 =

(
1 1

−3 7

)
≻ 0 with ( ˆ𝐷 + ˆ𝐷T) ≻ 0. It follows from [28, Theorem 5.4 (A’),

Theorem 4.6] that the quadruple (𝐴1, 𝐵1,𝐶1, ˆ𝐷) is strictly passive.

It can be checked that the set S = {0} in Proposition 3.2 for any ℎ > 0, thus there exists a unique

solution 𝜆𝑘+1 to the implicit Euler discretization of (6.13). However 𝐶3 ≠ 0 and Assumption 2 does not

hold, preventing the convergence analysis in Section 4 and the stability analysis in Section 4.1 to apply.

Consequently, the “equivalent” system (5.1) from Section 5 is analysed:

(6.14)


©­«

1 0 0

0 1 −2

0 −2 4

ª®¬ ©­«
¤𝑥1(𝑡)
¤𝜆1(𝑡)
¤𝜆2(𝑡)

ª®¬ =
©­«
−2 2 −1

−2 −1 −1

1 3 −7

ª®¬ ©­«
𝑥1(𝑡)
𝜆1(𝑡)
𝜆2(𝑡)

ª®¬ + ©­«
0

𝑤1(𝑡)
𝑤2(𝑡)

ª®¬
𝑤 (𝑡) ∈ − Nℝ2

+
(𝜆(𝑡))

Let us check if Assumption 4 (c) is verified. Using the Frobenius norm, one can obtain that 0 ≤ ℎ3 =√
60ℎ2 + 25 − 66ℎ ≤ 1 if 0 < ℎ ≤ 0.7. In the context of (6.14), the LCP (5.14) becomes:

(6.15) 0 ≤
(
𝜆1,𝑘+1

𝜆2,𝑘+1

)
⊥

(
1 −2

−2 4

) (
𝜆1,𝑘+1

𝜆2,𝑘+1

)
+

(
(ℎ − 1) (ℎ + 3)
(2 − 3ℎ) (7ℎ − 4)

) (
𝜆1,𝑘

𝜆2,𝑘

)
+

(
2ℎ𝑥1,𝑘

−ℎ𝑥1,𝑘

)
≥ 0

⇐⇒

0 ≤
(
𝜆1,𝑘+1

𝜆2,𝑘+1

)
⊥

(
𝜆1,𝑘+1 − 2𝜆2,𝑘+1

4𝜆2,𝑘+1 − 2𝜆1,𝑘+1

)
+

(
𝑞1,𝑘

𝑞2,𝑘

)
≥ 0.

From Corollary 4.1, there exists a solution to (6.15). We can compute 𝜆𝑘+1 in each mode of the LCP

where 𝜆𝑘+1 ≠ 0 :

1. If 𝜆1,𝑘+1 = 0 and 𝜆2,𝑘+1 ≥ 0 then ∥𝜆2,𝑘+1∥ ≤ 1

2
∥𝑞1,𝑘 ∥.

2. If 𝜆2,𝑘+1 = 0 and 𝜆1,𝑘+1 ≥ 0 then ∥𝜆1,𝑘+1∥ ≤ 1

2
∥𝑞2,𝑘 ∥ .

3. If 𝜆1,𝑘+1 > 0 and 𝜆2,𝑘+1 > 0 there is infinitely many solutions. Indeed, we obtain :

(6.16)

{
𝜆1,𝑘+1 = 2𝜆2,𝑘+1 − 𝑞1,𝑘

0 = 2𝑞1,𝑘 + 𝑞2,𝑘

From [16, Proposition 6.1.7], there exists a minimal solution 𝜆min,𝑘+1. Then, (6.16)’s particular solution

𝜆2,𝑘+1 = −𝜆1,𝑘+1 leads to ∥𝜆min,𝑘+1∥ ≤ (1/3)∥𝑞𝑘+1∥. It follows that 𝜂 = 1

2
< 1 for all ℎ > 0, and 𝜂ℎ3 ≤ 1

for all 0 < ℎ ≤ 1.4, and finally, the results from Section 5.2 hold if small enough time steps are chosen.

Problem (6.14) is simulated using the discretization (6.15). The LCP (6.15) is solved using the numerical

solver Lemke provided in the Siconos Toolbox3 [1]. In Figures 7a and 7b the simulated variables (𝑥1, 𝑥2, 𝑧)
and (𝜆1, 𝜆2) are displayed for time stepℎ = 5 ·10−6

s. The initial conditions are (𝑥1,0 = 5, 𝜆1,0 = 5, 𝜆2,0 = 0)
and the discrete variables 𝑥2,𝑘 and 𝑧𝑘 are given by the discretization of (5.1) (c):

(6.17)


𝑥2,𝑘 = − 𝐵3𝜆𝑘

𝑧𝑘 = − 𝐵3

𝜆𝑘+1 − 𝜆𝑘
ℎ

,

3https://nonsmooth.gricad-pages.univ-grenoble-alpes.fr/siconos/index.html
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with ℎ the time step. Let us notice in Figure 7a that the variable 𝑧 possesses a discontinuity. In Figure 8a

we plot the error provided in (6.6), with respect to a reference solution taken for ℎ = 5.10−6
s. We

confirm the order one convergence rate for ℎ > 0 sufficiently small.

Finally, let us also notice that the solutions of the schemes in (3.1) and in (5.5), are not exactly the

same (recall that the continuous systems (2.2) and (5.1) are “equivalent” in the sense explained after

(5.3), see also Appendix h). This can be observed in Figure 8b where the differences between the two

schemes are shown for (𝑥1, 𝑥2).

(a) Variables 𝑥1 (𝑡), 𝑥2 (𝑡) and 𝑧 (𝑡). (b) Variables 𝜆1 (𝑡) and 𝜆2 (𝑡).

Figure 7: Implicit Euler numerical simulation of (6.13) with ℎ = 5 · 10
−6
s

(a) Convergence of scheme (5.5) applied to (6.14). (b) Convergence of scheme (3.1) applied to (6.13).

Figure 8: Numerical convergence studies, with error formulas (6.6), of schemes (3.1) and (5.5). The

reference is computed with the scheme (5.5) and ℎ = 5 · 10
−6
s.
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7 conclusion

This article deals with the time-discretization of a class of singular linear complementarity systems

(descriptor variable linear complementarity systems) which satisfy a passivity constraint. The implicit

Euler method is analysed. First the one-step nonsmooth problem is studied, and conditions which

guarantee its well-posedness are given. Then the approximate solutions convergence is analysed, and

it is shown that under some reasonable assumptions, convergence holds. Our results are however

partial in the sense that we are not able to prove the convergence of all the variables. One academic

example and two examples of electrical circuits with ideal diodes (equivalently hydraulic circuits with

check valves) illustrate the developments, with numerical simulations.

appendix a preservation of positive definiteness with perturbation

We give here an excerpt of [37, Theorem 2.11], and a corollary of it. Let us recall that for a given

𝑀 ∈ ℝ𝑛×𝑛 , ∥𝑀 ∥2,2 is the induced matricial norm such that ∥𝑀 ∥2,2 = 𝜎max(𝑀) (the largest singular
value).

Theorem a.1 ([37]). Let𝑀 ∈ ℝ𝑛×𝑛 be a positive definite matrix. Then every matrix

𝐴 ∈ {𝐴 ∈ ℝ𝑛×𝑛 |
�����
�����(𝑀 +𝑀⊤

2

)−1

�����
�����
2,2

∥𝑀 −𝐴∥2,2 < 1}

is positive definite.

Corollary a.2 ([21]). Let 𝐷 = 𝑃 + 𝑁 , where 𝐷 , 𝑃 and 𝑁 are 𝑛 × 𝑛 real matrices, and 𝑃 ≻ 0, not necessarily
symmetric. If

(a.1) ∥𝑁 ∥2,2 <
1

∥
(
𝑃+𝑃⊤

2

)−1

∥2,2

then 𝐷 ≻ 0.

Consider the term ℎ1 in Assumptions 1 and 4. If ℎ < 1

𝜎max (𝐴1 ) then 𝐼𝑛1
+ ℎ𝐴1 ≻ 0 from Corollary a.2.

If in addition 𝐴1 ≼ (≺) 0 then 0 ≺ 𝐼𝑛1
+ ℎ𝐴1 ≼ (≺) 𝐼𝑛1

. Consider now 𝐴1 = (𝐼𝑛1
+ ℎ𝐴1)⊤(𝐼𝑛1

+ ℎ𝐴1) =
𝐼𝑛1

+ℎ(𝐴1 +𝐴⊤
1
) +ℎ2𝐴⊤

1
𝐴1 = 𝐼𝑛1

+ℎ�̃�1, with
˜𝐴1 = 𝐴1 +𝐴⊤

1
+ℎ𝐴⊤

1
𝐴1 = ˜𝐴⊤

1
. If𝐴1 ≺ 0 (⇒ 𝐴1 +𝐴⊤

1
≺ 0), then

˜𝐴1 ≺ 0 for ℎ > 0 small enough, still using Corollary a.2. Thus
¯𝐴1 ≺ 𝐼𝑛1

for ℎ > 0 small enough. Morover

for ℎ > 0 small enough it follows that
¯𝐴1 ≻ 0 by Corollary a.2. It is deduced that there exists ℎmax > 0

such that 0 ≺ ¯𝐴1 ≺ 𝐼𝑛1
for all ℎ ∈ (0, ℎmax). From [16, Lemma 8.4.1], 0 < 𝜆min( ¯𝐴1) and 𝜆max( ¯𝐴1) < 1. It

is inferred that 𝜎max(𝐼𝑛1
+ ℎ𝐴1) = ∥𝐼𝑛1

+ ℎ𝐴1∥2,2 = ℎ1 < 1.

appendix b well-posedness of variational inequalities

The next results use the notions of recession functions and cones, which we briefly introduce now (see

[24, 53] for illustrating examples), [72, 53, 89]. Let 𝑓 : ℝ𝑛 → ℝ ∪ {+∞} be a proper convex and lower

semi-continuous function, we denote by dom(𝑓 ) Δ
= {𝑥 ∈ ℝ𝑛 | 𝑓 (𝑥) < +∞} the domain of the function

𝑓 (·). The Fenchel transform 𝑓 ★(·) of 𝑓 (·) is the proper, convex and lower semicontinuous function

defined by

(b.1) (for all 𝑧 ∈ ℝ𝑛) | 𝑓 ★(𝑧) = sup

𝑥∈ dom(𝑓 )
{⟨𝑥, 𝑧⟩ − 𝑓 (𝑥)}.

The subdifferential 𝜕𝑓 (𝑥) of 𝑓 (·) at 𝑥 ∈ ℝ𝑛 is defined by

𝜕𝑓 (𝑥) = {𝜔 ∈ ℝ𝑛 | 𝑓 (𝑣) − 𝑓 (𝑥) ≥ ⟨𝜔, 𝑣 − 𝑥⟩,∀𝑣 ∈ ℝ𝑛}.
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We denote by Dom(𝜕𝑓 ) Δ
= {𝑥 ∈ ℝ𝑛 |𝜕𝑓 (𝑥) ≠ ∅} the domain of the subdifferential operator 𝜕𝑓 : ℝ𝑛 →

ℝ𝑛 . Recall that (see, e.g., Theorem 2, Chapter 10, Section 3 in [11]): Dom(𝜕𝑓 ) ⊂ dom(𝑓 ).
Let 𝑥0 be any element in the domain dom(𝑓 ) of 𝑓 (·), the recession function 𝑓∞(·) of 𝑓 (·) is defined

by

(for all 𝑥 ∈ ℝ𝑛) : 𝑓∞(𝑥) = lim

𝜆→+∞

1

𝜆
𝑓 (𝑥0 + 𝜆𝑥) .

The function 𝑓∞ : ℝ𝑛 → ℝ ∪ {+∞} is a proper convex and lower semicontinuous function which

describes the asymptotic behavior of 𝑓 (·).
Let 𝐾 ⊂ ℝ𝑛 be a nonempty closed convex set. Let 𝑥0 be any element in 𝐾 . The recession cone of 𝐾

is defined by [72] [89, Definition 1.11]:

𝐾∞ =
⋂
𝜆>0

1

𝜆
(𝐾 − 𝑥0) = {𝑢 ∈ ℝ𝑛 |𝑥 + 𝜆𝑢 ∈ 𝐾,∀ 𝜆 ≥ 0,∀𝑥 ∈ 𝐾}.

The set 𝐾∞ is a nonempty closed convex cone that is described in terms of the directions which

recede from 𝐾 . The indicator function of a set 𝐾 ⊆ ℝ𝑛 is Ψ𝐾 (𝑥) = 0 if 𝑥 ∈ 𝐾 , Ψ𝐾 (𝑥) = +∞ if 𝑥 ∉ 𝐾 .

If 𝐾 is closed non empty convex, we have 𝜕Ψ𝐾 (𝑥) = N𝐾 (𝑥), the so-called normal cone to 𝐾 at 𝑥 ,

defined as N𝐾 (𝑥) = {𝑣 ∈ ℝ𝑛 | 𝑣⊤(𝑠 − 𝑥) ≤ 0 for all 𝑠 ∈ 𝐾}. When 𝐾 is finitely represented, i.e.,
𝐾 = {𝑥 ∈ ℝ𝑛 | 𝑘𝑖 (𝑥) ≥ 0, 1 ≤ 𝑖 ≤ 𝑚}, and if the functions 𝑘𝑖 (·) satisfy some constraint qualification

(like, independency, or extensions like the MFCQ), then N𝐾 (𝑥) is generated by the outwards normals

at the active constraints 𝑘𝑖 (𝑥) = 0, i.e., N𝐾 (𝑥) = {𝑣 ∈ ℝ𝑛 | 𝑣 = −𝜆𝑖∇𝑘𝑖 (𝑥), 𝑘𝑖 (𝑥) = 0, 𝜆𝑖 ≥ 0}.
Let us here recall some important properties of the recession function and recession cone (see e.g.,

[17, Proposition 1.4.8]):

Proposition b.1. The following statements hold:

a) Let 𝑓1 : ℝ𝑛 → ℝ ∪ {+∞} and 𝑓2 : ℝ𝑛 → ℝ ∪ {+∞} be two proper, convex and lower semicontinuous
functions. Suppose that 𝑓1 + 𝑓2 is proper. Then for all 𝑥 ∈ ℝ𝑛 : (𝑓1 + 𝑓2)∞(𝑥) = (𝑓1)∞(𝑥) + (𝑓2)∞(𝑥).

b) Let 𝑓 : ℝ𝑛 → ℝ ∪ {+∞} be a proper, convex and lower semicontinuous function and let 𝐾 be a
nonempty closed convex set, such that 𝑓 + Ψ𝐾 is proper (equivalently dom(𝑓 ) ∩ 𝐾 is non empty). Then
for all 𝑥 ∈ ℝ𝑛 : (𝑓 + Ψ𝐾 )∞(𝑥) = 𝑓∞(𝑥) + (Ψ𝐾 )∞(𝑥).

c) Let 𝐾 ⊂ ℝ𝑛 be a nonempty, closed and convex set. Then for all 𝑥 ∈ ℝ𝑛 : (Ψ𝐾 )∞(𝑥) = Ψ𝐾∞ (𝑥). Moreover
for all 𝑥 ∈ 𝐾 and 𝑒 ∈ 𝐾∞: 𝑥 + 𝑒 ∈ 𝐾.

d) If 𝐾 ⊆ ℝ𝑛 is a nonempty closed and convex cone, then 𝐾∞ = 𝐾 .

e) Let 𝐾 = 𝑃 (𝐴,𝑏) Δ
= {𝑥 ∈ ℝ𝑛 |𝐴𝑥 ≥ 𝑏} for 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚 . If 𝐾 ≠ ∅ then 𝐾∞ = 𝑃 (𝐴, 0) = {𝑥 ∈

ℝ𝑛 |𝐴𝑥 ≥ 0}.

f) 𝐾 ⊂ ℝ𝑛 is a non-empty closed convex bounded set if and only if 𝐾∞ = {0𝑛}.

g) Let 𝑓 : ℝ𝑛 → ℝ ∪ {+∞} be a proper, convex and lower semicontinuous function. Then epi(𝑓∞) =
(epi(𝑓 ))∞.

Sets as in item e) are called H -polyhedra, and there is an equivalence between sets 𝑃 (𝐴, 0) and
finitely generated convex cones [89, Theorem 1.3]. Let us now concatenate [5, Theorem 3, Corollaries 3

and 4]. They concern variational inequalities (VIs) of the form: Find 𝑢 ∈ ℝ𝑛 such that

(b.2) ⟨M𝑢 + q, 𝑣 − 𝑢⟩ + 𝜑 (𝑣) − 𝜑 (𝑢) ≥ 0, for all 𝑣 ∈ ℝ𝑛

Brogliato, Rocca Analysis of the implicit Euler time-discretization of passive . . .



J. Nonsmooth Anal. Optim. 3 (2022), 7269 page 31 of 39

where M ∈ ℝ𝑛×𝑛 is a real matrix, q ∈ ℝ𝑛 a vector and 𝜑 : ℝ𝑛 → ℝ ∪ {+∞} a proper convex and

lower semicontinuous function. The VI in (b.2) is equivalent to the inclusion M𝑢 + q ∈ −𝜕𝜑 (𝑢) ⇔ 𝑢 ∈
(M + 𝜕𝜑)−1(−q).
The problem in (b.2) is denoted as 𝑉 𝐼 (M, q, 𝜑) in the next proposition. We also set:

(b.3) K(M, 𝜑) = {𝑥 ∈ ℝ𝑛 |M𝑥 ∈ (dom(𝜑∞))★}.

Note that (dom(𝜑∞))★ is the dual cone of the domain of the recession function 𝜑∞ while (dom(𝜑))∞
(that we may denote also as dom(𝜑)∞) is the recession cone of dom(𝜑).
Proposition b.2 ([5]). Let 𝜑 : ℝ𝑛 → ℝ ∪ {+∞} be a proper, convex and lower semicontinuous function
with closed domain, M ∈ ℝ𝑛×𝑛 , and suppose thatM ≽ 0 (not necessarily symmetric).

a) If (dom(𝜑))∞ ∩ ker{M +M⊤} ∩ K(M, 𝜑) = {0} then for each q ∈ ℝ𝑛 , problem 𝑉 𝐼 (M, q, 𝜑) has at
least one solution.

b) Suppose that (dom(𝜑))∞ ∩ ker{M +M⊤} ∩ K(M, 𝜑) ≠ {0}. If there exists 𝑥0 ∈ dom(𝜑) such that

(b.4) ⟨q −M⊤𝑥0, 𝑣⟩ + 𝜑∞(𝑣) > 0, ∀𝑣 ∈ (dom(𝜑))∞ ∩ ker{M +M⊤} ∩ K(M, 𝜑), 𝑣 ≠ 0,

then problem 𝑉 𝐼 (M, q, 𝜑) has at least one solution.

b’) IfM = M⊤ then one can take 𝑥0 = 0 in b).

c) If 𝑢1 and 𝑢2 denote two solutions of problem 𝑉 𝐼 (M, q, 𝜑) then 𝑢1 − 𝑢2 ∈ ker{M +M⊤}.

d) IfM = M⊤ and𝑢1 and𝑢2 denote two solutions of problem𝑉 𝐼 (M, q, 𝜑), then ⟨q, 𝑢1−𝑢2⟩ = 𝜑 (𝑢2)−𝜑 (𝑢1).

e) If M = M⊤ and 𝜑 (𝑥 + 𝑧) = 𝜑 (𝑥) for all 𝑥 ∈ dom(𝜑) and 𝑧 ∈ ker{M} and ⟨q, 𝑒⟩ ≠ 0 for all
𝑒 ∈ ker{M}, 𝑒 ≠ 0, then problem 𝑉 𝐼 (M, q, 𝜑) has at most one solution.

f) IfM = M⊤, then 𝑢 is a solution of𝑉 𝐼 (M, q, 𝜑) if and only if it is a solution of the optimization problem
min𝑥∈ℝ𝑛

1

2
𝑥⊤M𝑥 + ⟨q, 𝑥⟩ + 𝜑 (𝑥).

Notice that the function 𝜑 (·) will never be strictly convex in our case (it is an indicator function) so

that the strict convexity argument of [5, Theorem 5] which applies when M is a 𝑃0-matrix never holds.

The study of VIs as in (b.2) can be traced back to [76].

appendix c some convex analysis and complementarity theory tools

If 𝐾 ⊂ ℝ𝑛 is a set, then 𝐾★ = {𝑧 ∈ ℝ𝑛 |⟨𝑧, 𝑥⟩ ≥ 0 for all 𝑥 ∈ 𝐾} is its dual cone. Its closure is denoted
¯𝐾 . Let 𝐾 be a nonempty closed convex cone, then:

(c.1) 𝐾★ ∋ 𝑥 ⊥ 𝑦 ∈ 𝐾 ⇐⇒ 𝑥 ∈ −N𝐾 (𝑦) ⇐⇒ 𝑦 ∈ −N𝐾★ (𝑥) .

Let𝑀 = 𝑀⊤ ≻ 0, 𝑥 and 𝑦 two vectors, then

(c.2) 𝑀 (𝑥 − 𝑦) ∈ −N𝐾 (𝑥) ⇔ 𝑥 = proj𝑀 [𝐾 ; 𝑦] ⇔ 𝑥 = min

𝑧∈𝐾

1

2

(𝑧 − 𝑦)⊤𝑀 (𝑧 − 𝑦).

We note that this is a particular case of (b.2), so that Proposition b.2 can be considered as the charac-

terization of a generalized projection operator 𝑉 𝐼 (M, q, 𝜑). The first equivalence is [15, Proposition
6.46].
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appendix d passive descriptor variable systems

Dissipative systems have been formalized rigorously by J.C. Willems in his two seminal articles [87, 88].

Passive systems are a particular case of dissipative systems. A quadruple (𝐴, 𝐵,𝐶, 𝐷) is said passive if

the next LMI is satisfied:

(d.1)

(
−𝑋𝐴 −𝐴⊤𝑋 −𝑋𝐵 +𝐶⊤

−𝐵⊤𝑋 +𝐶 𝐷 + 𝐷⊤

)
≽ 0, 𝑋 = 𝑋⊤ ≽ 0.

It is said strictly passive if the inequalities are satisfied with ≻ 0. This is not to be confused with the

strict state passivity [25, Definition 4.54], since strict passivity implies strict state passivity, but not the

inverse in general. In fact strict passivity is directy related to strongly SPR transfer matricess [25, p.62

and section 3.12.2], while SPR transfer matrices with minimal realisations are strictly state passive [25,

Theorem 4.73] [66], i.e., −𝑋𝐴 −𝐴⊤𝑋 + 𝜇𝑋 ≽ 0 for some 𝜇 > 0, and one may have 𝐷 + 𝐷⊤ ≽ 0 but not

≻ 0.

Positive real transfer matrices [25, Definition 2.34] with a state space realization represented by

quintuples (𝑃,𝐴, 𝐵,𝐶, 𝐷) which are minimal (see Appendix g for conditions of minimality of a state-

space realization for descriptor systems) can be rewritten as in (2.2) [28, 51], and they have the positive

semidefinite storage function 𝑉 (𝑥1, 𝑥2) = 1

2
(𝑥⊤

1
𝑋1𝑥1 + 𝑥⊤2 𝑋3𝑥2), with supply rate 𝜆⊤𝑤 . Indeed, by

differentiating 𝑉 (𝑥1(𝑡), 𝑥2(𝑡)) along the trajectories of (2.2), adding ±𝜆⊤𝑤 and completing the squares,

one can compute that:

(d.2) ¤𝑉 (𝑡) = 1

2

(𝑥⊤
1
, 𝜆⊤)

(
𝑋1𝐴1 +𝐴⊤

1
𝑋1 𝑋1𝐵1 −𝐶⊤

1

𝐵⊤
1
𝑋1 −𝐶1 −( ˆ𝐷 + ˆ𝐷⊤)

)
︸                               ︷︷                               ︸

Δ
=𝑄1

(
𝑥1

𝜆

)
+ 𝜆⊤(𝑡)𝑤 (𝑡),

where 𝑋1 = 𝑋⊤
1
≽ 0, 𝑄1 ≼ 0, and if the system is strongly SPR then 𝑋1 ≻ 0, 𝑄1 ≺ 0 [28, Theorem

5.4]. The equality in (d.2) is an infinitesimal dissipation equality, showing that the system is passive

[25, Definition 2.1, Theorem 4.53]. Such systems possess particular structural properties [30, 33] [25,

section 3.8]. In the SSPR case it follows from (d.2) and the complementarity conditions that 𝑥1(·) and
𝑥⊤

2
𝑋3𝑥2(·) are bounded for any bounded initial condition.

Let us recall some definitions, where 𝐴★
denotes the conjugate transpose of 𝐴 (see [25, Chapter 2]

for details):

Definition d.1. A transfer matrix 𝐻 (𝑠) ∈ ℂ𝑚×𝑚
, 𝑠 ∈ ℂ, is positive real (PR) if: 1) 𝐻 (𝑠) has no poles in

Re(𝐻 (𝑠)) > 0, 2) 𝐻 (𝑠) is real for positive real 𝑠 , 3) 𝐻 (𝑠) + 𝐻★(𝑠) ≽ 0 for all Re(𝑠) > 0. Let 𝐻 (𝑠) be
regular, then it is strictly positive real (SPR) if 𝐻 (𝑠 − 𝜖) is PR for some 𝜖 > 0. It is strongly SPR (SSPR)

if 1) 𝐻 (𝑠) is analytic in Re(𝑠) ≥ 0, 2) Re(𝐻 ( 𝑗𝜔)) ≥ 𝛿 > 0 for all 𝜔 ∈ [−∞, +∞] and some real 𝛿 .

appendix e gronwall-bachpatte inequality [13, 47]

Let us consider a positive real numbers sequence {𝑥𝑘 } such that 𝑥𝑘 ≤ 𝛼𝑘 +
∑𝑘−1

𝑖=0
𝛽𝑖𝑥𝑖 , where {𝛼𝑘 } and

{𝛽𝑘 } are two real numbers sequences with {𝛽𝑘 } positive. Then one has

𝑥𝑘 ≤ 𝛼𝑘 +
𝑘−1∑︁
𝑖=0

𝛽𝑖𝛼𝑖 Π
𝑘
𝑗=𝑖+1

(1 + 𝛽𝑖).

appendix f calculation of 𝛽𝑖

The starting point is the term 𝜂∥𝐶1∥ ∥𝐵1∥
∑𝑘
𝑖=1
ℎ𝑘−𝑖

1

∑𝑖−1

𝑗=0
(𝜂ℎ3)𝑖−1− 𝑗 ∥𝑥1, 𝑗+1∥ in (5.19). Let us consider

the factors of the terms ∥𝑥1, 𝑗+1∥ separately:
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• Factor of ∥𝑥1,1∥ (all terms with 𝑗 = 0): ℎ𝑘−1

1
+ℎ𝑘−2

1
(𝜂ℎ3)+ℎ𝑘−3

1
(𝜂ℎ3)2+ . . .+ℎ1(𝜂ℎ3)𝑘−2+(𝜂ℎ3)𝑘−1 =∑𝑘

𝑖=1
ℎ𝑘−𝑖

1
(𝜂ℎ3)𝑖−1

.

• Factor of ∥𝑥1,2∥ (all terms with 𝑗 = 1): ℎ𝑘−2

1
+ℎ𝑘−3

1
(𝜂ℎ3)+ℎ𝑘−4

1
(𝜂ℎ3)2+ . . .+ℎ1(𝜂ℎ3)𝑘−3+(𝜂ℎ3)𝑘−2 =∑𝑘

𝑖=2
ℎ𝑘−𝑖

1
(𝜂ℎ3)𝑖−2

.

• . . .

• Factor of ∥𝑥1,𝑘−1∥ (all terms with 𝑗 = 𝑘 − 2): ℎ1 + (𝜂ℎ3) =
∑𝑘
𝑖=𝑘−1

ℎ𝑘−𝑖
1

(𝜂ℎ3)𝑖−𝑘+1
.

• Factor of ∥𝑥1,𝑘 ∥ (all terms with 𝑗 = 𝑘): 1 =
∑𝑘
𝑖=𝑘

ℎ𝑘−𝑖
1

(𝜂ℎ3)𝑖−𝑘 .

Therefore one infers (5.22).

appendix g minimality of state space realizations

Let us report the results stated in [28, Theorem 3.1] [44, Theorems 2-2.1, 2-3.1, 2-6.3].

Theorem g.1. Let 𝐻 (𝑠) = 𝐶 (𝑠𝑃 − 𝐴)−1𝐵 + 𝐷 , 𝑠 ∈ ℂ, be a rational transfer function where 𝑃 and 𝐴 are
𝑛 × 𝑛 matrices. Then 𝑃 ¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡), 𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) is a minimal realization of 𝐻 (𝑠) if,
and only if, the following conditions are satisfied:

• rank(𝐴 − 𝑠𝑃 𝐵) = 𝑛 for all 𝑠 ∈ ℂ,

• rank(𝑃 𝐵) = 𝑛,

• rank(𝐴⊤ − 𝑠𝑃⊤ 𝐶⊤) = 𝑛,

• rank(𝑃⊤ 𝐶⊤) = 𝑛,

• 𝐴 Ker(𝑃) ⊆ Im(𝑃).

appendix h differences between (3.1) and in (5.5)

Let us consider the discrete scheme (5.5) with 𝐸 (𝑡) = 0 and 𝑋1 full rank, this is rewritten as:

𝑥1,𝑘+1 = 𝑥1,𝑘 + ℎ𝐴1𝑥1,𝑘 + ℎ𝐵1𝜆𝑘(h.1a)

𝐵⊤
3
𝑋3𝐵3𝜆𝑘+1 = 𝐵

⊤
3
𝑋3𝐵3𝜆𝑘 − ℎ𝐶1𝑥1,𝑘 − ℎ ˆ𝐷𝜆𝑘 +𝑤𝑘+1(h.1b)

0 ≤ 𝜆𝑘+1 ⊥ 𝑤𝑘+1 = 𝐶1𝑥1,𝑘+1 +𝐶2𝑥2,𝑘+1 +𝐶3𝑧𝑘+1 + 𝐷𝜆𝑘+1 ≥ 0(h.1c)

𝑥2,𝑘 = −𝐵3𝜆𝑘(h.1d)

𝑧𝑘 = −𝐵2𝜆𝑘 − 𝐵3

𝜆𝑘+1 − 𝜆𝑘
ℎ

.(h.1e)

This is the numerical scheme with which the examples have been simulated. Combining (h.1) (d) and

(e), gives:

(h.2) 𝑥2,𝑘+1 = 𝑥2,𝑘 + ℎ𝑧𝑘 + ℎ𝐵2𝜆𝑘 .

Notice that this is the choice made in (6.17). The equations in (h.1) (a) and (h.2) are not equal to their

counterparts in (3.1), because 𝜆𝑘 and 𝑧𝑘 are used in (h.1) (a) and (h.2) instead of 𝜆𝑘+1 and 𝑧𝑘+1 in (3.1).

This explains that the numerical data obtained from both schemes, differ. This also explains why the

convergence results obtained for both schemes, are not the same neither.
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