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minimal angle spread in the probability simplex
with respect to the uniform distribution

Heinz H. Bauschke∗ Peter A. V. DiBerardino†

Abstract We compute the minimal angle spread with respect to the uniform distribution in
the probability simplex. The resulting optimization problem is analytically solved. The formula
provided shows that the minimal angle spread approaches zero as the dimension tends to innity.
We also discuss an application in cognitive science.

1 introduction

Throughout this paper, we assume that

(1.1) 𝑋 := ℝ𝑛 with inner product 〈·, ·〉 : 𝑋 × 𝑋 → ℝ,

and induced Euclidean norm ‖ · ‖. We also dene the probability simplex by

(1.2) Δ := Δ𝑛 :=
{
(𝑥1, . . . , 𝑥𝑛) ∈ ℝ𝑛

+
�� 𝑥1 + 𝑥2 + · · · + 𝑥𝑛 = 1

}
,

whereℝ+ =
{
𝑥 ∈ ℝ

�� 𝑥 ≥ 0
}
. The probability simplex is of central importance in Statistics,Optimization,

and Information Theory; see, e.g., [4] and [11]. (We write Δ𝑛 if we wish to emphasize the dimension 𝑛.)
It will be convenient to set

(1.3) 1 := (1, 1, . . . , 1) ∈ ℝ𝑛 and 𝑢 :=
( 1
𝑛
, 1
𝑛
, . . . , 1

𝑛

)
∈ Δ𝑛 .

The problem we investigate is the following: Given 𝑝 ∈ Δr {𝑢}, there exist two unique points 𝑎 = 𝑎(𝑝)
and 𝑏 = 𝑏 (𝑝) in Δ such that {𝑢, 𝑝} ⊆ [𝑎, 𝑏] and ‖𝑎 − 𝑏‖ is maximal. (Let us note that when, e.g., 𝑛 = 3,
then the mapping Δ r {𝑢} : ℝ : 𝑝 ↦→ ‖𝑎(𝑝) − 𝑏 (𝑝)‖ is continuous; however, it is not possible to extend
it continuously — let alone in a smooth manner — at the point 𝑢.) The quantity ‖𝑎 − 𝑏‖ can be thought
of as the “width“ of Δ with respect to 𝑝 and

(1.4) cos
(
](𝑎, 𝑏)

)
=

〈𝑎, 𝑏〉
‖𝑎‖‖𝑏‖

as the cosine of the “angle spread” with respect to 𝑝 .
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The aim of this paper is to minimize the angle spread, which equivalently corresponds to maximizing
its cosine

(P) max
𝑝∈Δr{𝑢 }

〈𝑎(𝑝), 𝑏 (𝑝)〉
‖𝑎(𝑝)‖‖𝑏 (𝑝)‖ .

When 𝑛 = 2, it is clear that the maximum value of (P) is cos(𝜋/2) = 0 and that every 𝑝 ∈ Δ r {𝑢}
solves (P). Thus, we assume henceforth that

(1.5) 𝑛 ∈ {3, 4, . . .}.

Our main result can now be stated:
Theorem 1.1. The maximum value of (P) is

(1.6) 𝑛 − 2
𝑛 + 2

and a pair realizing this maximum is 𝑎∗ = 1
𝑛
(2, 1, 1, . . . , 1, 0) and 𝑏∗ = 1

𝑛
(0, 1, 1, . . . , 1, 2). Consequently,

the minimal angle spread is

(1.7) arccos
(𝑛 − 2
𝑛 + 2

)
.

See Figure 1 for an illustration of Theorem 1.1 when 𝑛 = 3. We note that as the dimension of the
space 𝑛 increases to innity, the minimal angle spread approaches arccos(1) = 0. We also note that
when 𝑛 = 1, 2, 4, then 𝜋 − arccos((𝑛 − 2)/(𝑛 + 2)) coincides with the dihedral angle of the tetrahedron,
cube, octahedron, respectively. However, dihedral angles of other classical polyhedra (see [16]) do not
seem to be related to the angles provided by (1.7).

Our strategy to prove Theorem 1.1 is to reduce the complexity of the problem in stages by exploiting
its structure. Eventually, we are led to a one-dimensional problem which we then solve by Calculus.

The remainder of this paper is organized as follows. In Section 2, we collect a technical optimization
result that will be used later. The computation of [𝑎, 𝑏] is carried out in Section 3. In Section 4, we
set up the cosine quotient (1.4) in a more tractable form. The optimization is then tackled in Section 5
where we keep 𝑝1 and 𝑝𝑛 xed. At last, the proof is completed in Section 6. In Section 7, we sketch an
application of our results — which in fact motivated this note — in cognitive science. The presented
results are a rst contribution to using the minimal angle spread as a nonsmooth discrepancy term in
this area.

Finally, we note that a reviewer pointed out that another possible departure point is to study sucient
conditions for strong convexity of integral functionals in two-stage stochastic linear programming. In
particular, recent work by Claus and Spürkel [3] features minimal angles of similar though dierent
kind. This is a promising direction to explore in future research.

The notation in this paper is fairly standard and follows largely [1].

2 an auxiliary result

It will be convenient to have the following result ready for future use.
Lemma 2.1. Let𝑚 ∈ {1, 2, . . .}, set 1 := (1, 1, . . . , 1) ∈ ℝ𝑚 , and let𝛾 ∈ ℝ. Setℎ : ℝ𝑚 → ℝ+ : 𝑥 ↦→ ‖𝑥−𝛾1‖2,
let 𝑥 ∈ ℝ𝑚 , and set

𝑦 := (𝜂, 𝜂, . . . , 𝜂) ∈ ℝ𝑚, where 𝜂 := 1
𝑚
(𝑥1 + 𝑥2 + · · · + 𝑥𝑚) .

Then
ℎ(𝑦) ≤ ℎ(𝑥) .

Bauschke, DiBerardino Minimal angle spread in the probability simplex
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Figure 1: An illustration of Theorem 1.1 when 𝑛 = 3.

Proof. Indeed, we have

ℎ(𝑦) − 𝛾2‖1‖2 = ‖𝑦 ‖2 − 2𝛾 〈𝑦, 1〉 =𝑚𝜂2 − 2𝛾𝑚𝜂

=𝑚
( 1
𝑚
(𝑥1 + 𝑥2 + · · · + 𝑥𝑚)

)2 − 2𝛾 (𝑥1 + 𝑥2 + · · · + 𝑥𝑚)
≤ 𝑚 1

𝑚

(
𝑥21 + 𝑥22 + · · · + 𝑥2𝑚

)
− 2𝛾 〈𝑥, 1〉

= ‖𝑥 ‖2 − 2𝛾 〈𝑥, 1〉
= ℎ(𝑥) − 𝛾2‖1‖2,

where the inequality follows from the convexity of the square function. �

Corollary 2.2. Let 𝑚 ∈ {1, 2, . . .}, and let 𝛾 ∈ ℝ. Set 𝐴 : ℝ𝑚 → ℝ𝑚 : 𝑥 ↦→ (𝜂, 𝜂, . . . , 𝜂), where 𝜂 =
1
𝑚
(𝑥1+𝑥2+· · ·+𝑥𝑚), and let𝐶 be a nonempty subset ofℝ𝑚 such that𝐴(𝐶) ⊆ 𝐶 . Set 1 := (1, 1, . . . , 1) ∈ ℝ𝑚 .

Then to

(2.1) minimize ‖𝑥 − 𝛾1‖2 over 𝑥 ∈ 𝐶

is the same as to

(2.2) minimize ‖𝑥 − 𝛾1‖2 over 𝑥 ∈ 𝐶 ∩ℝ 1

in the sense that the optimal values for both problems are identical and if the rst problem has a solution,
then it also has a solution that solves also the second problem.

Proof. Clear from Lemma 2.1. �

Remark 2.3. We point out in passing that the operator 𝐴 from Corollary 2.2 is the projection operator
of the set ℝ1.
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3 determining the relative boundary points 𝑎 and 𝑏

In this section, we x

(3.1) 𝑝 ∈ Δ r {𝑢}.

Then there exist indices 𝑖 and 𝑗 in 𝐼 := {1, 2, . . . , 𝑛} such that 𝑝𝑖 < 1
𝑛
< 𝑝 𝑗 . Without loss of generality,

we assume that

(3.2) 0 ≤ 𝑝1 = min
𝑖∈𝐼

𝑝𝑖 <
1
𝑛
< 𝑝𝑛 = max

𝑖∈𝐼
𝑝𝑖 ≤ 1.

Set

(3.3) (∀𝜆 ∈ ℝ) 𝑞(𝜆) := (1 − 𝜆)𝑢 + 𝜆𝑝 = 𝑢 + 𝜆(𝑝 − 𝑢).

Note that 𝑞(0) = 𝑢, 𝑞(1) = 𝑝 ,

(3.4) (∀𝜆 ∈ ℝ) (∀𝑖 ∈ 𝐼 ) 𝑞𝑖 (𝜆) = (1 − 𝜆)𝑢𝑖 + 𝜆𝑝𝑖 = 𝑢𝑖 + 𝜆(𝑝𝑖 − 𝑢𝑖),

and hence

(3.5) 𝑞1(𝜆) + 𝑞2(𝜆) + · · · + 𝑞𝑛 (𝜆) = 1.

We wish to nd the smallest and largest 𝜆 ∈ ℝ such that 𝑞(𝜆) ∈ Δ. Let 𝑖 ∈ 𝐼 . Suppose that 𝑝𝑖 > 𝑢𝑖 .
Then (∀𝜆 ∈ ℝ+) 𝑞𝑖 (𝜆) > 𝑢𝑖 . So if 𝜆 < 0, then 𝑞𝑖 (𝜆) = 0 ⇔ −𝑢𝑖 = 𝜆(𝑝𝑖 − 𝑢𝑖) ⇔ 𝜆 = −𝑢𝑖/(𝑝𝑖 − 𝑢𝑖) =
−(1/𝑛)/(𝑝𝑖 − (1/𝑛)) = −1/(𝑛𝑝𝑖 − 1) ≤ −1/(𝑛𝑝𝑛 − 1). Hence the smallest value 𝜆 still guaranteeing
𝑞(𝜆) ∈ Δ is

(3.6) 𝜆− := −1
𝑛𝑝𝑛 − 1 =

1
1 − 𝑛𝑝𝑛

< 0.

Analogously, the largest value 𝜆 still guaranteeing 𝑞(𝜆) ∈ Δ is

(3.7) 𝜆+ := 1
1 − 𝑛𝑝1

> 0.

The corresponding vectors

(3.8) 𝑎 := 𝑞(𝜆−) = 𝑢 + 𝜆−(𝑝 − 𝑢)

and

(3.9) 𝑏 := 𝑞(𝜆+) = 𝑢 + 𝜆+(𝑝 − 𝑢)

thus form the largest segment [𝑎, 𝑏] ⊆ Δ such that {𝑢, 𝑝} ⊆ [𝑎, 𝑏]. Note that 𝑎 and 𝑏 are depending on
𝑝 — when we want to stress this, then we’ll write 𝑎(𝑝) and 𝑏 (𝑝).

For 𝑖 ∈ 𝐼 , we simplify

(3.10) 𝑎𝑖 = 𝑢𝑖 + 𝜆−(𝑝𝑖 − 𝑢𝑖) = 1
𝑛
+ 1
1 − 𝑛𝑝𝑛

(
𝑝𝑖 − 1

𝑛

)
=
1 − 𝑛𝑝𝑛 + 𝑛

(
𝑝𝑖 − 1

𝑛

)
𝑛(1 − 𝑛𝑝𝑛)

=
𝑝𝑛 − 𝑝𝑖

𝑛𝑝𝑛 − 1

and similarly

(3.11) 𝑏𝑖 =
𝑝𝑖 − 𝑝1
1 − 𝑛𝑝1

.

Bauschke, DiBerardino Minimal angle spread in the probability simplex
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Thus

(3.12) 𝑎 =
1

𝑛𝑝𝑛 − 1 (𝑝𝑛1 − 𝑝) and 𝑏 =
1

1 − 𝑛𝑝1
(𝑝 − 𝑝11),

where 1 = (1, 1, . . . , 1) ∈ ℝ𝑛 . Next,

‖𝑎‖2 = 1
(𝑛𝑝𝑛 − 1)2 ‖𝑝𝑛1 − 𝑝‖2 = 1

(𝑛𝑝𝑛 − 1)2
(
𝑝2𝑛 ‖1‖2 − 2𝑝𝑛 〈1, 𝑝〉 + ‖𝑝 ‖2

)
(3.13a)

=
1

(𝑛𝑝𝑛 − 1)2
(
𝑛𝑝2𝑛 − 2𝑝𝑛 + ‖𝑝 ‖2

)
(3.13b)

=
1

(𝑛𝑝𝑛 − 1)2
(
𝑝21 +

(
𝑝22 + · · · + 𝑝2𝑛−1

)
+ (𝑛 + 1)𝑝2𝑛 − 2𝑝𝑛

)
(3.13c)

and similarly

(3.14) ‖𝑏‖2 = 1
(1 − 𝑛𝑝1)2

(
(𝑛 + 1)𝑝21 − 2𝑝1 +

(
𝑝22 + · · · + 𝑝2𝑛−1

)
+ 𝑝2𝑛

)
.

4 setting up the cosine quotient

We uphold the assumptions and notation from the previous section. It is convenient to abbreviate

(4.1) 𝑧 := (𝑝2, . . . , 𝑝𝑛−1) ∈ ℝ𝑛−2.

Note that

(4.2) (∀𝑖 ∈ {1, 2, . . . , 𝑛 − 2}) 𝑝1 ≤ 𝑧𝑖 ≤ 𝑝𝑛 and
𝑛−2∑︁
𝑖=1

𝑧𝑖 = 1 − 𝑝1 − 𝑝𝑛 ≥ 0

because of (3.1) and (3.2). This allows us to rewrite (3.13) and (3.14) more succinctly as

(4.3) ‖𝑎‖2 = 1
(𝑛𝑝𝑛 − 1)2

(
𝑝21 + ‖𝑧‖2 + (𝑛 + 1)𝑝2𝑛 − 2𝑝𝑛

)
and

(4.4) ‖𝑏‖2 = 1
(1 − 𝑛𝑝1)2

(
(𝑛 + 1)𝑝21 − 2𝑝1 + ‖𝑧‖2 + 𝑝2𝑛

)
.

Next, using (3.10) and (3.11), we have

〈𝑎, 𝑏〉 =
𝑛∑︁
𝑖=1

𝑎𝑖𝑏𝑖 =

𝑛∑︁
𝑖=1

𝑝𝑛 − 𝑝𝑖

𝑛𝑝𝑛 − 1 ·
𝑝𝑖 − 𝑝1
1 − 𝑛𝑝1

(4.5a)

=
1

(𝑛𝑝𝑛 − 1) (1 − 𝑛𝑝1)

𝑛−1∑︁
𝑖=2

(𝑝𝑛 − 𝑝𝑖) (𝑝𝑖 − 𝑝1)(4.5b)

=
1

(𝑛𝑝𝑛 − 1) (1 − 𝑛𝑝1)

𝑛−2∑︁
𝑖=1

(𝑝𝑛 − 𝑧𝑖) (𝑧𝑖 − 𝑝1) .(4.5c)

Using (4.5), (4.3), and (4.4), we now set up the quotient of interest from (1.4):

(4.6) 〈𝑎, 𝑏〉
‖𝑎‖‖𝑏‖ =

𝑛−2∑︁
𝑖=1

(𝑝𝑛 − 𝑧𝑖) (𝑧𝑖 − 𝑝1)√︃
𝑝21 + ‖𝑧‖2 + (𝑛 + 1)𝑝2𝑛 − 2𝑝𝑛

√︃
(𝑛 + 1)𝑝21 − 2𝑝1 + ‖𝑧‖2 + 𝑝2𝑛

.
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5 maximizing the cosine quotient (with 𝑝1 and 𝑝𝑛 fixed)

We uphold the notation of the previous section. Now we turn toward maximizing the cosine quotient
(4.6), with 𝑝1 and 𝑝𝑛 xed. In view of (4.2), 𝑧 = (𝑝2, . . . , 𝑝𝑛−1) must belong to the compact convex set

(5.1) 𝐶 :=
{
𝑤 ∈ [𝑝1, 𝑝𝑛]𝑛−2

���� 𝑛−2∑︁
𝑖=1

𝑤𝑖 = 1 − 𝑝1 − 𝑝𝑛

}
.

The continuity of (4.6) as a function of 𝑧 coupled with the compactness of 𝐶 guarantees the existence
of a maximizer of the cosine quotient. Note that

(5.2) 𝐴(𝐶) ⊆ 𝐶,

where 𝐴 : ℝ𝑛−2 → ℝ𝑛−2 : 𝑤 ↦→ (𝜂, 𝜂, . . . , 𝜂) ∈ ℝ𝑛−2 and 𝜂 = 1
𝑛−2 (𝑤1 +𝑤2 + · · · +𝑤𝑛−2).

In general, maximizing a quotient is more involved; however, we will get a lucky break for our
problem: It turns out we can maximize the numerator and minimize the denominator of (4.6) with
respect to 𝑧 and we luckily obtain the same optimal vector!

For convenience, set 𝛼 := 𝑝1, 𝛽 := 𝑝𝑛 ,𝛾 := (𝛼 +𝛽)/2, and 1 := (1, 1, . . . , 1) ∈ ℝ𝑛−2. Then the numerator
of (4.6) — as a function of 𝑧 — is

𝑛−2∑︁
𝑖=1

(𝛽 − 𝑧𝑖) (𝑧𝑖 − 𝛼) = −
𝑛−2∑︁
𝑖=1

𝑧2𝑖 + (𝛼 + 𝛽)
𝑛−2∑︁
𝑖=1

𝑧𝑖 + constant(5.3a)

= −‖𝑧‖2 + (𝛼 + 𝛽) 〈1, 𝑧〉 + constant(5.3b)
= −‖𝑧 − 𝛾1‖2 + constant.(5.3c)

We want to maximize the numerator over 𝑧 ∈ 𝐶; equivalently, we want to minimize ‖𝑧 − 𝛾1‖2 over
𝑧 ∈ 𝐶 . By Corollary 2.2, we may restrict our attention to

(5.4) 𝑧 ∈ 𝐶 ∩ℝ1.

On to the denominator of (4.6)! It is clear that the denominator becomes small when ‖𝑧‖ becomes small.
So minimizing the denominator corresponds to minimizing ‖𝑧‖2 = ‖𝑧 − 01‖2. Again by Corollary 2.2,
we may restrict our attention to (5.4)! But if 𝑧 ∈ 𝐶 ∩ℝ1, say 𝑧 = 𝜁 1 for 𝜁 ∈ ℝ, then the requirement that
𝜁 1 ∈ 𝐶 forces

∑𝑛−2
𝑖=1 𝑧𝑖 = (𝑛 − 2)𝜁 = 1 − 𝑝1 − 𝑝𝑛 , i.e., 𝜁 = (1 − 𝑝1 − 𝑝𝑛)/(𝑛 − 2). Because (𝑛 − 1)𝑝1 + 𝑝𝑛 ≤

1 ≤ 𝑝1 + (𝑛 − 1)𝑝𝑛 , it follows that 𝑝1 ≤ 𝜁 ≤ 𝑝𝑛 . Altogether,

(5.5) 𝑧 =
1 − 𝑝1 − 𝑝𝑛

𝑛 − 2 (1, 1, . . . , 1) ∈ 𝐶 ∩ℝ1 ⊆ ℝ𝑛−2

maximizes (4.6) and

(5.6) ‖𝑧‖2 = (1 − 𝑝1 − 𝑝𝑛)2
𝑛 − 2 .

To sum up, when restricted to the one-dimensional slice𝐶∩ℝ1 (see (5.4)), we obtain the unique solution
𝑧 given by (5.5). Our next step is to plug (5.5) and (5.6) back into (4.6). We start with the numerator of
(4.6):

〈𝑎, 𝑏〉 =
𝑛−2∑︁
𝑖=1

(
𝑝𝑛 −

1 − 𝑝1 − 𝑝𝑛

𝑛 − 2

) ( 1 − 𝑝1 − 𝑝𝑛

𝑛 − 2 − 𝑝1
)

(5.7a)

= (𝑛 − 2)
( (𝑛 − 2)𝑝𝑛 − (1 − 𝑝1 − 𝑝𝑛)

𝑛 − 2

) ( 1 − 𝑝1 − 𝑝𝑛 − (𝑛 − 2)𝑝1
𝑛 − 2

)
(5.7b)

=
1

𝑛 − 2
(
𝑝1 + (𝑛 − 1)𝑝𝑛 − 1

) (
1 − 𝑝𝑛 − (𝑛 − 1)𝑝1

)
.(5.7c)

Bauschke, DiBerardino Minimal angle spread in the probability simplex
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Using (5.6), we see that the square of the denominator of (4.6) is

‖𝑎‖2‖𝑏‖2 =
(
𝑝21 +

(1 − 𝑝1 − 𝑝𝑛)2
𝑛 − 2 + (𝑛 + 1)𝑝2𝑛 − 2𝑝𝑛

)
(5.8a)

×
(
(𝑛 + 1)𝑝21 − 2𝑝1 +

(1 − 𝑝1 − 𝑝𝑛)2
𝑛 − 2 + 𝑝2𝑛

)
(5.8b)

=
1

(𝑛 − 2)2(5.8c)

×
(
(𝑛 − 2)𝑝21 + (1 − 𝑝1 − 𝑝𝑛)2 + (𝑛 − 2) (𝑛 + 1)𝑝2𝑛 − 2(𝑛 − 2)𝑝𝑛

)
(5.8d)

×
(
(𝑛 − 2) (𝑛 + 1)𝑝21 − 2(𝑛 − 2)𝑝1 + (1 − 𝑝1 − 𝑝𝑛)2 + (𝑛 − 2)𝑝2𝑛

)
.(5.8e)

Abbreviating 𝑥 = 𝑝1 and 𝑦 = 𝑝𝑛 , we use (5.7) and (5.8) to write the square of (4.6) as

〈𝑎, 𝑏〉2

‖𝑎‖2‖𝑏‖2 =

(
𝑥+(𝑛−1)𝑦−1

) 2 (
1−𝑦−(𝑛−1)𝑥

) 2(
(𝑛−2)𝑥2+(1−𝑥−𝑦)2+(𝑛−2) (𝑛+1)𝑦2−2(𝑛−2)𝑦

)(
(𝑛 − 2) (𝑛 + 1)𝑥2 − 2(𝑛 − 2)𝑥 + (1 − 𝑥 − 𝑦)2 + (𝑛 − 2)𝑦2

) .(5.9)

In the next section, we will do the nal maximization by setting 𝑝1 and 𝑝𝑛 , i.e., 𝑥 and 𝑦 , loose.

6 maximizing the cosine quotient (concluded)

While Section 5 looks like a huge mess, we can invoke one small but useful optimization: the objective
function value of the cosine quotient is by construction constant on [𝑎, 𝑏]. Now both 𝑎 and 𝑏 have at
least one coordinate equal to 0, namely 𝑎𝑛 = 0 and 𝑏1 = 0 (see (3.12)). Because the objective function in
(P) is constant on Δ r {𝑢} intersected with any line passing through 𝑢, we may and do nally assume
that 𝑎 = 𝑝 and thus 𝑝1 = 𝑥 = 0. Then Section 5 simplies to

(6.1) 〈𝑎, 𝑏〉2

‖𝑎‖2‖𝑏‖2 =

(
(𝑛 − 1)𝑦 − 1

)2 (1 − 𝑦
)2(

(1 − 𝑦)2 + (𝑛 − 2) (𝑛 + 1)𝑦2 − 2(𝑛 − 2)𝑦
) (
(1 − 𝑦)2 + (𝑛 − 2)𝑦2

) =: 𝑄 (𝑦) .

The constraints on 𝑝 are 0 ≤ 𝑝1 ≤ 𝑝2 = · · · = 𝑝𝑛−1 = (1 − 𝑝1 − 𝑝𝑛)/(𝑛 − 2) ≤ 𝑝𝑛 ≤ 1. With our
assumption that 𝑝1 = 0 = 𝑥 and 𝑝𝑛 = 𝑦 , these simplify to 0 ≤ (1 − 𝑦)/(𝑛 − 2) ≤ 𝑦 ≤ 1 and then to

(6.2) 1
𝑛 − 1 ≤ 𝑦 ≤ 1.

Because 𝑛 ≥ 3 > 2, we have

(6.3) 1
𝑛 − 1 <

2
𝑛
< 1.

So our remaining goal is to

(6.4) maximize 𝑄 (𝑦) subject to 1
𝑛 − 1 ≤ 𝑦 ≤ 1

where𝑄 (𝑦) is dened in (6.1) Using the chain quotient rule to compute the derivative of𝑄 (𝑦) followed
by factoring yields

𝑄 ′(𝑦) =
2(𝑛 − 2)

(
(𝑛 − 1)2𝑦2 − 𝑛𝑦 + 1

) (
(𝑛 − 1)𝑦 − 1

)
(𝑛𝑦 − 2) (𝑦 − 1)𝑦(

(𝑛2 − 𝑛 − 1)𝑦2 + 2(1 − 𝑛)𝑦 + 1
)2 ((𝑛 − 1)𝑦2 − 2𝑦 + 1

)2 .(6.5)
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Note that 𝑄 ′(𝑦) has six roots, namely

(6.6)
{
𝑛 ±

√︁
−(3𝑛 − 2) (𝑛 − 2)
2(𝑛 − 1)2 , 0, 1

𝑛 − 1 ,
2
𝑛
, 1
}
.

Because 𝑛 > 2 implies −(3𝑛 − 2) (𝑛 − 2) < 0, we note that there are exactly four real roots. Our
constraint (6.2) excludes 0. The remaining three roots include the endpoints of interval constraint.
Thus, the maximum value of (6.4) is found by substituting for 𝑦 the values 1/(𝑛 − 1), 2/𝑛, 1 into 𝑄 (𝑦)
which results in 0, (𝑛 − 2)2/(𝑛 + 2)2, 0.

To sum up, 𝑦 = 2
𝑛
is the solution of (6.4), with maximum value (𝑛 − 2)2/(𝑛 + 2)2. Using (5.5), we see

this gives rise to the probability distribution

(6.7) 𝑝∗ = 1
𝑛

(
0, 1, 1, . . . , 1, 2

)
.

We have shown that the angle spread is minimized for 𝑝∗ given by (6.7). In view of (3.10) and (3.11),
this gives rise to

(6.8) 𝑎∗ := 𝑎(𝑝∗) = 1
𝑛

(
2, 1, 1, . . . , 1, 0

)
and 𝑏∗ := 𝑏 (𝑝∗) = 1

𝑛

(
0, 1, 1, . . . , 1, 2

)
= 𝑝∗.

These vectors give the optimal value

(6.9) cos
(
](𝑎∗, 𝑏∗)

)
=

〈𝑎∗, 𝑏∗〉
‖𝑎∗‖‖𝑏∗‖ =

𝑛 − 2
𝑛 + 2

which we claimed in the introduction. The proof of Theorem 1.1 is thus complete.
Remark 6.1. We point out that the expression for the optimal value in (6.9) was discovered numerically
using Julia [10]. The computations in this section were veried with SageMath [14]. Finally, Figure 1
was created using Geogebra [7].

7 an application in cognitive science

Our main result (Theorem 1.1) provides an important theoretical and methodological advancement in
the study of probabilistic belief models in humans. Human learning is often modeled with Bayesian
statistics, where beliefs are represented as probability distributions over possible outcomes [8, 9, 13, 15].

a motivating example

Consider the expected returns on a $100 investment over 1 year. A “bull” investor believes market
prices will rise, while a “bear” investor believes market prices will fall. However, a bull still surely
accepts prices could fall, despite holding this belief to a lesser degree than the bear. In Bayesian terms,
the beliefs of our two investors can be represented as probability distributions over the domain of
potential investment returns. The bull’s “prior” (initial belief) will have most of its probability mass
over positive returns, while the opposite is true for the bear’s prior. These priors change over time in
light of new evidence. While it is theoretically optimal to update according to the laws of probability,
the empirical question remains as to how people actually represent and update probabilistic beliefs.

previous work

Much of the experimental work in this eld infers prior and posterior beliefs from sequential partic-
ipant actions, or elicits them with insucient detail [2, 6, 12]. This requires experimenters to make
unwarranted assumptions about the way that probabilistic beliefs are parameterized as probability
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distributions, and the nature of how they are updated with new data. It may be that a strict Bayesian
model of human cognition is inappropriate when these assumptions are relaxed. Recent work by
DiBerardino, Filipowicz, Danckert, and Anderson used a computerized version of the game “Plinko”,
where at each trial a ball falls through an array of pegs into one of 𝑛 = 40 slots below. Participants
were tasked with estimating the distribution of future ball drops by explicitly drawing a probability
distribution that represents their beliefs after each trial [5]. This work found that initial beliefs (priors)
vary across individuals and that these dierences indicated future ball drop learning accuracy, thus
demonstrating the importance of directly measuring individual beliefs in a theoretically agnostic
manner [5].

However, [5] cannot make any additional claims about why participants with some priors appear to
learn better than others. Its main limitation is that some participants’ priors are more similar to the
forthcoming ball drop distribution than others. As a result, it cannot be determined whether or not the
observed dierences in learning ability across dierent priors are due to participant “state” or “trait”
dierences. It may be that some participants are better probabilistic learners, which is a trait that can
be detected by the shape of their prior beliefs. But it may also be that the participants who performed
the best only did so because they just happened to have an initial state of belief more amenable to
learning the forthcoming distribution.

on-going work

Our main result (Theorem 1.1) allows for a new Plinko experiment that presents each participant with
a ball drop distribution of a set level of similarity to any arbitrary participant’s prior. Specically,
when measuring similarity between discrete probability distributions as the angular spread between
representative Euclidean vectors, as was done in [5], we can determine the maximum possible rotation
(dissimilarity) for any given vector (participant’s prior) with respect to the uniform distribution. We
require the following result.
Corollary 7.1. For every 𝑝 ∈ Δ𝑛 r {𝑢} there exist 𝑞 and 𝑣 in Δ𝑛 ∩ (𝑢 +ℝ(𝑝 − 𝑢)) such that

(7.1) ](𝑝, 𝑞) = 1
2 arccos

(𝑛 − 2
𝑛 + 2

)
= ](𝑢, 𝑣) .

Proof. Let 𝑝 ∈ Δ𝑛 r {𝑢}, and set 𝛼𝑛 := arccos((𝑛 − 2)/(𝑛 + 2)). We have seen earlier (see Section 3)
that there exist two unique points 𝑎 = 𝑎(𝑝) and 𝑏 = 𝑏 (𝑝) in Δ𝑛 such that {𝑢, 𝑝} ⊆ [𝑎, 𝑏] and ‖𝑎 − 𝑏‖ is
maximal. Consequently,

(7.2) ](𝑎, 𝑝) + ](𝑝, 𝑏) = ](𝑎, 𝑏) = ](𝑎,𝑢) + ](𝑢,𝑏) .

On the other hand, Theorem 1.1 yields ](𝑎, 𝑏) ≥ 𝛼𝑛 . Altogether,

(7.3) ](𝑎, 𝑝) + ](𝑝, 𝑏) = ](𝑎,𝑢) + ](𝑢,𝑏) ≥ 𝛼𝑛 = arccos
(𝑛 − 2
𝑛 + 2

)
.

Thus if ](𝑎, 𝑝) ≥ 𝛼𝑛/2, then rotating 𝑝 towards 𝑎 yields 𝑞. If ](𝑎, 𝑝) < 𝛼𝑛/2, then ](𝑝, 𝑏) > 𝛼𝑛/2
and we rotate 𝑝 towards 𝑏 to obtain 𝑞. Similarly, if ](𝑎,𝑢) ≥ 𝛼𝑛/2, then rotating 𝑢 towards 𝑎 yields 𝑣 .
Finally, if ](𝑎,𝑢) < 𝛼𝑛/2, then ](𝑢,𝑏) > 𝛼𝑛/2 and we rotate 𝑢 towards 𝑏 to obtain 𝑣 . �

By Corollary 7.1, if a participant produces a prior 𝑝 ∈ Δ𝑛 r {𝑢}, then the experimenter presents
a ball drop distribution 𝑞 where ](𝑝, 𝑞) = 𝛼𝑛/2. If a participant produces the uniform prior 𝑢, then
the experimenter presents a ball drop distribution 𝑣 where ](𝑢, 𝑣) = 𝛼𝑛/2 arising from an arbitrary
𝑝 ∈ Δ𝑛 r {𝑢} via Corollary 7.1.

More psychological research is required to determine the precise measure of similarity humans use to
compare probability distributions. Angular similarity is only one such possibility. This result also poses
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an interesting theoretical development: Does the shrinking minimal angle spread as the dimension
tends to innity create any diculties for people to perceive or act upon any particular set of probability
distributions? It may be that thinking about opposite/dissimilar probability distributions becomes more
dicult as the number of discrete histogram bins approaches innity if these mathematics correspond
to mechanisms of human inference.

references

[1] H.H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, second edition, Springer, 2017.

[2] G. Charness, U. Gneezy, and V. Rasocha, Experimental methods: Eliciting beliefs, Journal of
Economic Behavior & Organization 189 (2021), 234–256.

[3] M. Claus and K. Spürkel, Improving constants of strong convexity in linear stochastic program-
ming, Operations Research Letters 50 (2022), 76–83.

[4] T. A. Cover and J.M. Thomas, Elements of Information Geometry, second edition, Wiley, 2006.

[5] P. A. V. DiBerardino, A. L. S. Filipowicz, J. Danckert, and B. Anderson, Plinko: Eliciting beliefs to
build better models of statistical learning and mental model updating, hps://arxiv.org/abs/2107.
11477.

[6] P. H. Garthwaite, J. B. Kadane, and A. O’Hagan, Statistical methods for eliciting probability
distributions, Journal of the American Statistical Association 100(470) (2005), 680–701.

[7] The GeoGebra Developers, GeoGebra, hps://www.geogebra.org.

[8] C.M. Glaze, A. L. Filipowicz, J.W. Kable, V. Balasubramanian, and J. I. Gold, A bias–variance
trade-o governs individual dierences in on-line learning in an unpredictable environment,
Nature Human Behaviour 2(3) (2018), 213–224.

[9] T. L. Griths and J. B. Tenenbaum, Optimal predictions in everyday cognition, Psychological
Science 17(9) (2006), 767–773.

[10] The Julia Developers, Julia, hps://www.julialang.org.

[11] K. Lange, Optimization, second edition, Springer, 2013.

[12] C. F. Manski, Measuring expectations, Econometrica 72(5) (2004), 1329–1376.

[13] M. R. Nassar, R. C. Wilson, B. Heasly, and J. I. Gold, An approximately Bayesian delta-rule
model explains the dynamics of belief updating in a changing environment, Journal of Neuro-
science 30(37) (2010), 12366–12378.

[14] The Sage Developers, SageMath, hps://www.sagemath.org.

[15] J. B. Tenenbaum, C. Kemp, T. L. Griths, and N.D. Goodman, How to grow a mind: Statistics,
structure, and abstraction, Science, 331(6022) (2011), 1279–1285.

[16] Wikipedia, Table of polyhedron dihedral angles, hps://en.wikipedia.org/wiki/Table_of_
polyhedron_dihedral_angles, retrieved February 20, 2022.

Bauschke, DiBerardino Minimal angle spread in the probability simplex

https://arxiv.org/abs/2107.11477
https://arxiv.org/abs/2107.11477
https://www.geogebra.org
https://www.julialang.org
https://www.sagemath.org
https://en.wikipedia.org/wiki/Table_of_polyhedron_dihedral_angles
https://en.wikipedia.org/wiki/Table_of_polyhedron_dihedral_angles

	1 Introduction
	2 An auxiliary result
	3 Determining the relative boundary points a and b
	4 Setting up the cosine quotient
	5 Maximizing the cosine quotient (with p1 and pn fixed)
	6 Maximizing the cosine quotient (concluded)
	7 An application in cognitive science

