
J. Nonsmooth Anal. Optim. 2 (2021), 7156, doi: 10.46298/jnsao-2021-7156

Submi�ed: 2021-02-05, accepted: 2021-10-12

page 1 of 26

© the authors, cc-by-sa 4.0

optimal control of plasticity with inertia

Stephan Walther∗

Abstract The paper is concerned with an optimal control problem governed by the equations of

elasto plasticity with linear kinematic hardening and the inertia term at small strain. The objective

is to optimize the displacement field and plastic strain by controlling volume forces. The idea

given in [11] is used to transform the state equation into an evolution variational inequality (EVI)

involving a certain maximal monotone operator. Results from [18] are then used to analyze the

EVI. A regularization is obtained via the Yosida approximation of the maximalmonotone operator,

this approximation is smoothed further to derive optimality conditions for the smoothed optimal

control problem.

1 introduction

We consider the following optimal control problem governed by the equations of elasto plasticity with

linear kinematic hardening and the inertia term at small strain:

(1.1)




min � (D,
.

D, I, 5 ) = Ψ(D,
.

D, I) +
U

2
‖ 5 ‖2

X2
,

s.t. d
..

D − divℂ(∇BD − I) = 5 ,
.

I ∈ �(ℂ∇BD − (ℂ + B)I),

(D,
.

D, I) (0) = (D0, E0, I0),

D ∈ � 1 (� 1
� (Ω;ℝ

3)) ∩ � 2 (!2(Ω;ℝ3 )),

I ∈ � 1 (!2(Ω;ℝ3×3
B )),

5 ∈ X2 .

Herein, Ω ⊂ ℝ
3 is the body under consideration with density d , where 3 ∈ ℕ is the dimension.

Its boundary is split into two disjoints parts Γ� and Γ# . Furthermore, D : [0,) ] × Ω → ℝ
3 is the

displacement field and I : [0,) ] × Ω → ℝ
3×3
B the plastic strain. The initial data (D0, E0, I0) is given

and fixed. The volume force is given by 5 : [0,) ] × Ω → ℝ
3 . The time derivative of, for instance,

the plastic strain is denoted by
.

I and the symmetric gradient by ∇B = 1/2(∇ + ∇⊤). Moreover, ℂ is

the elasticity tensor and B the hardening parameter. The flow rule is represented by the maximal

monotone operator �, in Section 5 below we will choose the von-Mises flow rule. The control space

X2 is a nonempty and closed subspace of� 1 ([0,) ];!2 (Ω;ℝ3)) and U > 0 a fixed Tikhonov parameter.

Note that higher time regularity of the controlwas also requiredwhen analyzing other problemswith a

non-smooth hyperbolic evolution structure, e.g. in [28]. The precise definitions and assumptions are

presented in Section 2 below. Note that the problem (1.1) is formulated only with the displacement
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and plastic strain as state variables. The stress is normally given by f = ℂ(∇BD − I) (and can thus be

easily integrated in Ψ), however, we eliminated it in (1.1) for convenience. Additionally, the Dirichlet

displacement and Neumann boundary forces (see the definition of the div-operator in Section 2) are

set to zero, cf. Remark 3.8 below. Regarding a detailed description and derivation of the plasticity

model, we refer to [16, 20, 22].

Let us put our work into perspective. Optimal control problems governed by plasticity were con-

sider in [6,15,17–19,23–26]. The articles [15,17] are concernedwith the static case of elasto plasticity, for

further articles of the static case we refer to the references therein. For the time dependent quasi-static

case we are only aware of [6,18,19,23–26]. The articles [23–26] and the application in [18] are devoted

to the case of elasto plasticity with linear kinematic hardening, whereas [6,19] are concerned with the

case of perfect plasticity, that is,with nohardening. In contrast,we consider the case of elasto plasticity

with the inertia term (and linear kinematic hardening), that is, the second time derivative of the dis-

placement (the accelaration) multiplied by the density d is present in the balance of momentum. Due

to this inertia term, the equations are physically more reasonable than the quasi-static case (of course,

the solution to both systems might not differ much when the accelaration of the body is small, which

is the reasoning when neglecting the inertia term). As said above, the application in [18] investigates

quasi-static (homogenized) plasticity with hardening. This application is analyzed by applying results

concerned with an abstract optimal control problem governed by an first-order evolution variational

inequality (EVI) involving a maximal monotone operator. As we will see below, the state equation in

(1.1) can also be transformed into such an abstract EVI. Let us note that the existence of a solution was

already proven in [11, Theorem 5.1] by using essentially the same transformation into an EVI as we

will do. However, there it was transformed into a second order EVI and the maximal monotonicity

of the (slightly different) operator given therein was proven in another way. In contrast, we consider

a first order EVI and will provide the concrete form of the resolvent in Proposition 3.11 (which will

also be used later in Section 4.2 to provide optimality conditions), the maximal monotonicity of our

operator will then follow easily. Having transformed the state equation, we can apply the results from

[18]. We only have to heed two differences between our EVI and the EVI analyzed in [18]. First, our

maximal monotone operator does not fulfill some properties required in [18], second, the given data

are more regular in time than in [18], as we will elaborate on at the end of Section 3.2. However, the

better regularity in time will compensate the missing properties of our maximal monotone operator,

so that the unique existence of a solution can still be shown (Theorem 3.15) and thus we can apply

results from [18]. There is a large list of literature on plasticity with inertia, we only refer to [1–3,7–9]

and the references therein. However, to best of the author’s knowledge, there exists no contribution

to optimal control of plasticity with the inertia term, except in [27]. We emphasize that this paper is

essentially based on [27, Part IV] and on the transformation idea from [11].

The paper is organized as follows. After introducing our notation and standing assumptions in

Section 2, we transform the state equation in (1.1) into a first-order EVI, prove the unique existence for

given data and provide regularization and convergence results in Section 3. Afterwards, in Section 4,

we analyze the optimal control problem (1.1), show the existence of a global solution, provide an ap-

proximation result via a regularized problem and finally present optimality conditions.

2 notation and standing assumptions

Notation When - is a normed vector space we denote its norm by ‖ · ‖- . For normed vector spaces

- and . we denote the space of linear and continuous functions on - with values in . by L(- ;. ).

We abbreviateL(- ) ≔ L(- ;- ). The dual space of- is denoted by- ∗ = L(- ;ℝ). The inner product

of a Hilber space� is denoted by (·, ·)� . For the whole paper, we fix the final time) > 0. For C > 0we

denote the Bochner space of square-integrable functions on the time interval [0, C] by !2 ([0, C];- ),

the Bochner-Sobolev space by � 1 ([0, C];- ) and the space of continuous functions by� ([0, C];- ). We
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furthermore abbreviate !2 (- ) := !2 ([0,) ];- ), � 1 (- ) := � 1 ([0,) ];- ) and � (- ) := � ([0,) ];- ).

When� ∈ L(- ;. ) is a linear and continuous operator,we can define an operator inL(!2(- );!2 (. ))

by � (D) (C) := � (D (C)) for all D ∈ !2 (- ) and for almost all C ∈ [0,) ], we denote this operator also by

� , that is, � ∈ L(!2(- );!2 (. )), and analog for Bochner-Sobolev spaces, i.e.,� ∈ L(� 1 (- );� 1 (. )).

Given a coercive and symmetric operator� ∈ L(� ) in a real Hilbert space� , we denote its coercivity

constant by W� , i.e., (�ℎ, ℎ)� ≥ W� ‖ℎ‖
2
� for all ℎ ∈ � . With this operator we can define a new scalar

product, which induces an equivalent norm, by � × � ∋ (ℎ1, ℎ2) ↦→ (�ℎ1, ℎ2)� ∈ ℝ. We denote the

Hilbert space equippedwith this scalar product by�� , that is (ℎ1, ℎ2)��
= (�ℎ1, ℎ2)� for allℎ1, ℎ2 ∈ � .

If ? ∈ [1,∞], then we denote its conjugate exponent by ? ′, that is 1
? +

1
?′ = 1. Throughout the paper, by

!? (Ω;") we denote Lebesgue spaces with values in" , where ? ∈ [1,∞] and" is a finite dimensional

space. By, 1,? (Ω;") we denote Sobolev spaces and,
1,?

�
(Ω;") is the subspace containing functions

which traces are zero on Γ� . For the dual spaces of,
1,?′ (Ω;") and,

1,?′

�
(Ω;") wewrite, −1,? (Ω;")

and,
−1,?

�
(Ω;"). We use the usual abbreviations� 1 (Ω;") ≔, 1,2(Ω;"), � 1

� (Ω;") ≔, 1,2
�

(Ω;"),

�−1 (Ω;") ≔, −1,2(Ω;") and �−1
� (Ω;") ≔, −1,2

� (Ω;"). Finally, by ℝ
3×3
B , we denote the space of

symmetric matrices and 2,� > 0 are generic constants.

standing assumptions

The following standing assumptions are tacitly assumed for the rest of the paper without mentioning

them every time.

Domain The domain Ω ⊂ ℝ
3 , 3 ∈ ℕ, is bounded with Lipschitz boundary Γ. The boundary consists

of two disjoint measurable parts Γ# and Γ� such that Γ = Γ# ∪Γ� . While Γ# is a relatively open subset,

Γ� is a relatively closed subset of Γ with positive boundary measure. In addition, the set Ω ∪ Γ# is

regular in the sense of Gröger, cf. [12].

Furthermore, the density of Ω is given by d > 0.

Coefficients The elasticity tensor and the hardening parameter satisfy ℂ,B ∈ L(ℝ3×3
B ) and are

symmetric and coercive, i.e., there exist constants 2 > 0 and 1 > 0 such that (ℂf, f)
ℝ
3×3
B

≥ 2 ‖f ‖2
ℝ
3×3
B

and (Bf, f)
ℝ
3×3
B

≥ 1 ‖f ‖2
ℝ
3×3
B

for all f ∈ ℝ
3×3
B .

We abbreviate further

D := B(ℂ + B)−1ℂ ∈ L(ℝ3×3
B ) and E := ℂ(ℂ + B)−1 ∈ L(ℝ3×3

B )(2.1)

and note that D is symmetric and coercive, according to [11, Lemma 4.2]. Moreover, for instance, we

denote the adjoint of E by E
⊤.

Initial data We choose D0, E0 ∈ � 1
� (Ω;ℝ

3) and I0 ∈ !2 (Ω;ℝ3×3
B ) and define @0 ≔ ℂ∇BD0 − (ℂ +

B)I0 ∈ !2 (Ω;ℝ3×3
B ). Moreover, we assume that (D0, E0, @0) is an element of � (A), where � (A) is

given in Definition 3.5.

Operators Throughout the paper, ∇B := 1
2 (∇ + ∇⊤) : , 1,? (Ω;ℝ3 ) → !? (Ω;ℝ3×3

B ) denotes the

linearized strain. Its restriction to,
1,?

�
(Ω;ℝ3×3

B ) is denoted by the same symbol and, for the adjoint

of this restriction, we write − div := (∇B )∗ : !?
′
(Ω;ℝ3×3

B ) →,
−1,?′

� (Ω;ℝ3 ).

The operator � : !2 (Ω;ℝ3×3
B ) → 2!

2 (Ω;ℝ3×3
B ) is maximal monotone with domain � (�). Further-

more, by �_ : !
2 (Ω;ℝ3×3

B ) → !2 (Ω;ℝ3×3
B ), _ > 0, we denote the Yosida approximation of � and by
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'_ = (� + _�)−1 the resolvent of �, so that�_ = 1
_ (� −'_). Moreover, for every _ > 0 the resolvent '_

can be expressed pointwise, that is, there exists '̃_ : ℝ3×3
B → ℝ

3×3
B such that

'_ (g) (G) = '̃_ (g (G)) f.a.a. G ∈ Ω and ∀g ∈ !2 (Ω;ℝ3×3
B ).(2.2)

With a slight abuse of notation we denote also '̃_ by '_ . It is to be noted that this is the case for the

subdifferential of an indicator function of a pointwise defined set, where the resolvent is simply the

projection onto this set, this example will be considered in Section 5 below. For further reference on

maximal monotone operators, we refer to [5], [29, Ch. 32], [4, Ch. 55], and [21, Ch. 55].

Optimization problem By � : !2 (H) × X2 → ℝ, � (D, E, I, 5 ) ≔ Ψ(D, E, I) + U
2 ‖ 5 ‖

2
X2

we denote the

objective function, whereH is given in Definition 3.5 and the control space X2 is a Hilbert space and

embedded into � 1 (!2(Ω;ℝ3)). We assume that Ψ : !2 (H) → ℝ is weakly lower semicontinuous,

continuous and bounded from below and that the Tikhonov parameter U is a positive constant.

3 state equation

Webegin our investigationwith the state equation. At firstwe give the definition of a solution and then

transform the state equation into an EVI with a new (maximal monotone) operatorA. In Section 3.2

we prove the existence of a solution by showing that the operatorA ismaximalmonotone, thenwe can

apply [4, Theorem 55.A]. Finally, in Section 3.3 we can use some results in [18] to obtain convergence

results.

The formal strong formulation of the state equation reads

d
..

D − ∇ · ℂ(∇BD − I) = 5 in Ω,(3.1a)

a · ℂ(∇BD − I) = 0 on Γ# ,(3.1b)

D = 0 on Γ� ,(3.1c)
.

I ∈ �(ℂ∇BD − (ℂ + B)I) in Ω,(3.1d)

(D,
.

D, I) (0) = (D0, E0, I0) in Ω.(3.1e)

Note that we have assumed in the standing assumptions above that the density is constant in Ω. It is

possible to consider a density which has a spatial dependency (that is, a function from Ω to (0,∞)),

one has then in particular to verify that the operator & , given in Definition 3.5, is well defined, that

is, the multiplication of d (and also 1/d) with a Sobolev function is again a Sobolev function. However,

for simplicity we assume that d is constant.

We impose the following assumption for the rest of this section.

Assumption 3.1 (Standing assumption for Section 3). Let 5 ∈ � 1 (!2 (Ω;ℝ3×3
B )) be given.

3.1 definition and transformation

Let us begin with the definition of a solution to the state equation (3.1).

Definition 3.2 (Solution to plasticity with inertia).We call D ∈ � 1 (� 1
� (Ω;ℝ

3)) ∩ � 2 (!2 (Ω;ℝ3)) and

I ∈ � 1 (!2 (Ω;ℝ3×3
B )) solution of (3.1) if

d
..

D − divℂ(∇BD − I) = 5 ,
.

I ∈ �(ℂ∇BD − (ℂ + B)I),

(D,
.

D, I) (0) = (D0, E0, I0)

(3.2)

holds.
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Before we can transform the state equation into an EVI we need to reformulate it, to this end we

introduce the following

Definition 3.3 (I to @ mapping).We define

Q : � 1 (Ω;ℝ3) × !2 (Ω;ℝ3×3
B ) → !2 (Ω;ℝ3×3

B ), (D, I) ↦→ ℂ∇BD − (ℂ + B)I

and its inverse (for fixed D)

ℨ : � 1 (Ω;ℝ3 ) × !2 (Ω;ℝ3×3
B ) → !2 (Ω;ℝ3×3

B ), (D, @) ↦→ (ℂ + B)−1 (ℂ∇BD − @).

These operators will also be used to transform the optimal control problem in Section 4.1 below.

For the following lemma, we recall the definition of D and E given in the standing assumptions

above, that is, D = B(ℂ + B)−1ℂ and E = ℂ(ℂ + B)−1.

Lemma 3.4 (Transformation of I to @). We consider

d
..

D − div(D∇BD + E@) = 5 ,

(ℂ + B)−1
.

@ +�(@) − E
⊤∇B .

D ∋ 0,

(D,
.

D, @) (0) = (D0, E0, @0) = (D0, E0,Q(D0, I0))

(3.3)

for functions D ∈ � 1 (� 1
� (Ω;ℝ

3)) ∩� 2 (!2(Ω;ℝ3 )), @ ∈ � 1 (!2(Ω;ℝ3×3
B )). Recall that E⊤ is the adjoint

of E. Then the following holds:

When (D, I) is a solution of (3.1), then (D, @) = (D,Q(D, I)) solves (3.3). Vice versa, when (D, @) solves

(3.3), then (D, I) = (D,ℨ(D, @)) is a solution of (3.1).

Proof. Both implications can be immediately obtained by using the definition ofQ andℨ and inserting

I in (3.2) and @ in (3.3), respectively (note thatℂ−ℂ(ℂ+B)−1ℂ = (� −ℂ(ℂ+B)−1)ℂ = B(ℂ+B)−1ℂ =

D). �

We are now in the position to introduce the EVI, respectively the operatorA.

Definition 3.5 (The operator A). For ? ∈ [1,∞] we set

Y? ≔,
1,?

�
(Ω;ℝ3 ) × !2 (Ω;ℝ3) × !? (Ω;ℝ3×3

B ) and H ≔ Y2 .

The scalar product onH is defined by

((D1, E1, @1), (D2, E2, @2))H

≔ (D∇BD1,∇
BD2)!2 (Ω;ℝ3×3

B ) + (E1, E2)!2 (Ω;ℝ3 ) + (@1, @2)!2 (Ω;ℝ3×3
B )

(recall that D is symmetric and coercive). We define

A : � (A) → 2H, (D, E, @) ↦→
©­«

−E

− div(D∇BD + E@)

�(@) − E
⊤∇BE

ª®¬
with the domain

� (A) ≔ {(D, E, @) ∈ � 1
� (Ω;ℝ

3) ×� 1
� (Ω;ℝ

3) × � (�) : div(D∇BD + E@) ∈ !2 (Ω;ℝ3 )}.

Moreover, we set

' : !2 (Ω;ℝ3) → Y∞, 5 ↦→ (0, 5 , 0)

and

& := (�, (1/d)�,ℂ + B).
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Lemma 3.6 (Transformation into an EVI). The tuple (D, @) solves (3.3) if and only if (D, E, @) = (D,
.

D, @) ∈

� 1 (H) is a solution of

&−1 (
.

D,
.

E,
.

@) + A(D, E, @) ∋ '5 , (D, E, @) (0) = (D0, E0, @0).(3.4)

Proof. This follows immediately from the definition of A. �

Remark 3.7 (Consequences of the transformation). We note that this transformation has some conse-

quences for the optimal control problem and its regularization discussed in Section 4. A first approach

to regularize (3.1) would be to simply regularize the operator�, as we did in the case of elasto plastic-

ity in [27, Part III]. However, our approach is different, due to the transformation into an EVI we can

regularize the operator A, this is our method in Section 3.3 and Section 4. We also mention that the

fact that E =
.

D will be lost after the regularization (cf. Corollary 4.5 and Definition 4.7) and that we

will transform our objective function in Definition 4.1, so that we obtain an optimal control problem

with respect to the state (D, E, @) in (4.1). The optimality conditions given in Theorem 4.14 below are

then also formulated for this transformed problem.

Remark 3.8 (Neumann surface forces and Dirichlet displacement). Let us shortly discuss some issues

with possible surface forces and Dirichlet displacements. Regarding surface forces, they are currently

equal to zero and contained in the domain � (A) by the requirement div(D∇BD + E@) ∈ !2 (Ω;ℝ3 ).

Allowing now surface forces which are time dependent, the domain, and thus A itself, would also

depend on the time.

An approach for Dirichlet displacements would be to exchange the displacement with a “new”

displacement minus the Dirichlet displacement, then one could still define the domain � (A) as a

subset of � 1
� (Ω;ℝ

3) × � 1
� (Ω;ℝ

3) × � (�). However, this would again make the domain and the

operator itself time dependent (the Dirichlet displacement would occur also in the operator).

In both cases one could still show that the arising operator is maximal monotone for a fixed time,

but for different points in time the monotonicity would be perturbed by the time dependent functions.

Having now a closer look at Theorem 3.15 below, respectively [4, Theorem 55.A], we see that a com-

parison of two different points in time is used to derive a priori estimates. Following this proof, the

time depend functions would occur and a straightforward adaption is not possible.

At this juncture, let us also elaborate on the underlying spaces of the operator A. One might try

to exchange !2 (ℝ;Ω) with a negative Sobolev space in the definition of H to allow surface forces.

However, with this definition of H , for instance, the proof of Lemma 3.12 (which is used to show the

monotonicity of A) would not be valid anymore. Thus, our choice of H seems reasonable.

3.2 existence of a solution

We prove now the existence of a solution to (3.1) by using an existence result for EVIs involving a

maximal monotone operator given in [4, Theorem 55.A], thus we need to show that A is maximal

monotone. Since the monotonicity of A can be easily obtained (cf. Lemma 3.12), it remains to prove

that the resolvent exists (cf. the proof of Proposition 3.13). For this it is sufficient to show the existence

of a solution to (3.9) in the case ? = 2. However, since the existence and Lipschitz continuity for ? > 2

is needed to derive optimality conditions in Section 4.2, we already provide the following corollary

for later needed results.

Corollary 3.9 (Extended nonlinear elasticity). Let _ > 0 and ? ∈ [2, ?], where ? is from [14, Theorem

1.1], with 2− 3
2 ≥ −3

?
. We assume that there exist<,", � ∈ ℝ, � ≥ 0 << ≤ " , such that the family of

Walther Optimal control of plasticity with inertia
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functions {1f : Ω ×ℝ
3×3
B → ℝ

3×3
B }f∈ℝ3×3

B
has the following properties:

10 (·, 0) ∈ !∞ (Ω;ℝ3×3
B ),(3.5)

1f (·, g) is measurable,(3.6)

(1f (G, g) − 1f (G, g)) : (g − g) + � ( |f − f | + |g − g |) |f − f | ≥< |g − g |2,(3.7)

|1f (G, g) − 1f (G, g) | ≤ "
(
|g − g | + |f − f |

)
(3.8)

for almost all G ∈ Ω and all f, f, g, g ∈ ℝ
3×3
B .

Then for everyi ∈ !? (Ω;ℝ3×3
B ) and! ∈,

−1,?

�
(Ω;ℝ3 ) there exists a unique solutionD ∈,

1,?

�
(Ω;ℝ3 )

of

− div1i (·,∇
BD) +

D

_2
= !.

Moreover, there exists a constant � such that the inequality

‖D1 − D2‖, 1,? (Ω;ℝ3 ) ≤ �
(
‖i1 − i2‖!? (Ω;ℝ3×3

B ) + ‖!1 − !2‖, −1,?

�
(Ω;ℝ3 )

)

holds for all i1, i2 ∈ !? (Ω;ℝ3×3
B ) and !1, !2 ∈ ,

−1,?

�
(Ω;ℝ3 ), where D1 and D2 are the solutions with

respect to (i1, !1) and (i2, !2).

Proof. Note that 1f (·, g) ∈ !? (Ω;ℝ3×3
B ) holds for all g, f ∈ !? (Ω;ℝ3×3

B ) (and in fact for all ? ∈ [1,∞]),

which follows from (3.5), (3.6) and (3.8) (taking into account that a pointwise limit of measurable

functions is also measurable, see [23, Corollary 3.1.5]).

Let us at first consider the case ? = 2. Then the existence of a solution follows from the Browder-

Minty theorem, Korn’s inequality and the Poincaré inequality. In order to verify the inequality, let

i1, i2 ∈ !2 (Ω;ℝ3×3
B ), !1, !2 ∈ �−1

�
(Ω;ℝ3) and D1, D2 ∈ � 1

�
(Ω;ℝ3) the corresponding solutions. Then

we obtain

〈!1 − !2, D1 − D2〉 =
(
1i1 ( ·) (·,∇

BD1 (·)) − 1i2 ( ·) (·,∇
BD2 (·)),∇

B (D1 − D2)
)
!2 (Ω;ℝ3×3

B )

+




D1 − D2

_




2
!2 (Ω;ℝ3 )

≥ <‖∇B (D1 − D2)‖
2

!2 (Ω;ℝ3×3
B )

− � ‖i1 − i2‖
2

!2 (Ω;ℝ3×3
B )

− �

∫
Ω

|∇B (D1 − D2) | |i1 − i2 | +
1

_2
‖D1 − D2‖

2
!2 (Ω;ℝ3 )

.

Using now

〈!1 − !2, D1 − D2〉 ≤ ‖!1 − !2‖, −1,2
�

(Ω;ℝ3 ) ‖D1 − D2‖, 1,2 (Ω;ℝ3 )

and

�

∫
Ω

|∇B (D1 − D2) | |i1 − i2 | ≤ � ‖∇B (D1 − D2)‖!2 (Ω;ℝ3 ) ‖i1 − i2‖!2 (Ω;ℝ3 )

and Young’s inequality, yields

‖D1 − D2‖
2
, 1,2 (Ω;ℝ3 )

≤ �
(
‖i1 − i2‖

2

!2 (Ω;ℝ3×3
B )

+ ‖!1 − !2‖
2

, −1,2
�

(Ω;ℝ3 )

)
≤ �

(
‖i1 − i2‖!2 (Ω;ℝ3×3

B ) + ‖!1 − !2‖, −1,2
�

(Ω;ℝ3 )

)2
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for a certain positive constant �, hence, the asserted inequality is fulfilled.

For the general case let now i ∈ !∞(Ω;ℝ3×3
B ) and ! ∈,

−1,?

� (Ω;ℝ3), we define 1 : Ω × ℝ
3×3
B →

ℝ
3×3
B by

1 (G, g) ≔ 1i (G) (G, g)

and !D ∈,
−1,?

� (Ω;ℝ3 ) by

〈!D, E〉 ≔ 〈!, E〉 −
1

_2
(D, E)!2 (Ω;ℝ3 ) ,

where D ∈ � 1
� (Ω;ℝ

3 ) ↩→ !@ (Ω;ℝ3 ), with 1− 3
2 = −3

@ when 3 > 2, @ = 2 when 3 = 2 and @ = ∞ when

3 = 1, is the solution in the case ? = 2 and E ∈ , 1,?′ (Ω;ℝ3 ) ↩→ !@
′
(Ω;ℝ3) (note that 1 − 3

?′ +
3
@′ =

1 + 3
?
− 3

@
= 2 + 3

?
− 3

2
≥ 0 when 3 > 2 and 1− 3

?′
+ 3

@′
> 0 otherwise). We can now apply [14, Theorem

1.1] (here we need i ∈ !∞ (Ω;ℝ3×3
B ) to satisfy [14, (1.6a)], the other requirements in [14, Assumption

1.5] are obviously fulfilled due to (3.5)–(3.8)) to obtain D ∈,
1,?

�
(Ω;ℝ3 ) such that

(1 (·,∇BD),∇BE)!2 (Ω;ℝ3×3
B ) = 〈!D, E〉,

that is,

(
1i (·,∇

BD),∇BE
)
!2 (Ω;ℝ3×3

B )
+

1

_2
(D, E)!2 (Ω;ℝ3 ) = 〈!, E〉,

holds for all E ∈,
1,?′

�
(Ω;ℝ3), we get in particularD = D ∈,

1,?

�
(Ω;ℝ3 ) since D is the unique solution

of the equation above for all E ∈ � 1
� (Ω;ℝ

3).

To prove the asserted inequality let i1, i2 ∈ !∞ (Ω;ℝ3×3
B ), !1, !2 ∈ ,

−1,?

�
(Ω;ℝ3) and D1, D2 ∈

, 1,? (Ω;ℝ3 ) the corresponding solutions and define !D1
, !D2

as before. Having a closer look at the

proof of [14, Theorem 1.1], respectively [12, Theorem 1], one can see that there exists a constant 2 > 0,

depending only on ?,< and" (thus not on !1, !2, i1, i2), such that

‖D1 − D2‖, 1,? (Ω;ℝ3 ) ≤ 2‖�1 (D2) −�2 (D2) − !D1
+ !D2

‖
,

−1,?

�
(Ω;ℝ3 )

,

where �8 :,
1,? (Ω;ℝ3) →,

−1,?

�
(Ω;ℝ3) is defined by

〈�8 (E1), E2〉 ≔
(
1i8

(·,∇BE1),∇
BE2

)
!2 (Ω;ℝ3×3

B )

for all E1 ∈,
1,? (Ω;ℝ3 ), E2 ∈,

1,?′ (Ω;ℝ3) and for 8 ∈ {1, 2}. We finally obtain

‖D1 − D2‖, 1,? (Ω;ℝ3 ) ≤ 2
(
‖�1 (D2) −�2 (D2)‖, −1,?

�
(Ω;ℝ3 )

+ ‖!D1
− !D2

‖
,

−1,?

�
(Ω;ℝ3 )

)
≤ 2

(
" ‖i1 − i2‖!? (Ω;ℝ3×3

B ) + ‖!1 − !2‖, −1,?

�
(Ω;ℝ3 )

+
�

_2
‖D1 − D2‖� 1 (Ω;ℝ3 )

)
,

where we have used again the embeddings� 1 (Ω;ℝ3) ↩→ !@ (Ω;ℝ3) and, 1,?′ (Ω;ℝ3) ↩→ !@
′
(Ω;ℝ3 ).

Taking into account that the assertion is already proven in the case ? = 2, we see that the desired

inequality holds.

One can now obtain the result for all i1, i2 ∈ !? (Ω;ℝ3×3
B ) by an approximation (using the just

proven inequality to see that the corresponding sequence D= is a Cauchy sequence). �
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The operator '0 in the following proposition will later be the resolvent, or a smoothed version of

the resolvent, of � and should not be confused with ' from Definition 3.5.

Proposition 3.10 (Solution operator T'0
). Let _ > 0 and ? ≥ 2 as in Corollary 3.9 and ℎ = (ℎ1, ℎ2, ℎ3) ∈

Y? . Moreover, let '0 : ℝ
3×3
B → ℝ

3×3
B be Lipschitz continuous and monotone. Then there exists a unique

solution D ∈,
1,?

�
(Ω;ℝ3 ) of

− div(D∇BD + E'0 (E
⊤∇B (D − ℎ1) + ℎ3)) =

ℎ2

_
+
ℎ1 − D

_2
.(3.9)

We denote the solution operator of this equation by T'0
: Y? → ,

1,?

�
(Ω;ℝ3), that is, T'0

(ℎ) = D.

Furthermore, T'0
is Lipschitz continuous. Note that the dependency of T'0

on _ and ? will always be clear

from the context.

Proof. For all f ∈ ℝ
3×3
B we define 1f : Ω ×ℝ

3×3
B → ℝ

3×3
B by

1f (G, g) ≔ Dg + E'0 (E
⊤g + f),

then the assertion follows from Corollary 3.9 (with i ≔ −E⊤∇Bℎ1 +ℎ3 for a given ℎ ∈ Y? ), let us only

prove that (3.7) is fulfilled, the other requirements can be easily checked. To this end let f, f, g, g ∈

ℝ
3×3
B , then

(1f (G, g) − 1f (G, g)) : (g − g)

≥ WD |g − g |2 +
(
'0 (E

⊤g + f) − '0 (E
⊤g + f)

)
:
(
E
⊤(g − g) + (f − f)

)
−
(
'0 (E

⊤g + f) − '0 (E
⊤g + f)

)
: (f − f)

≥ WD |g − g |2 − !'0
|f − f |2 − !'0

‖E‖ |g − g | |f − f |

holds, where !'0
is the Lipschitz constant of '0. �

Note that'_ : ℝ3×3
B → ℝ

3×3
B fulfills the requirements in Proposition 3.10 since'_ : !2 (Ω;ℝ3×3

B ) →

!2 (Ω;ℝ3×3
B ) is Lipschitz continuous and also monotone (cf. [4, Proposition 55.1 (ii) and Proposition

55.2 (a)]) and due to (2.2) these properties carry over to '_ : ℝ3×3
B → ℝ

3×3
B .

Let us also mention that '0 in Proposition 3.10 does not have to be monotone, the inequality

('0(0) − '0 (1)) : (0 − 1) ≥ −Y |0 − 1 |2

for 0,1 ∈ ℝ
3×3
B with Y < WD/‖E⊤ ‖2 would be sufficient.

We can now prove the existence of the resolvent ofA, from whichwe can then derive the maximal

monotonicity of A in Proposition 3.13 below.

Proposition 3.11 (Existence of the resolvent of A). For every _ > 0 and ℎ = (ℎ1, ℎ2, ℎ3) ∈ H , the tuple

©­«
D

E

@

ª®¬
=
©­«

T'_
(ℎ)

1
_ (T'_

(ℎ) − ℎ1)

'_ (E
⊤∇B (T'_

(ℎ) − ℎ1) + ℎ3)

ª®¬
is contained in � (A) and the unique solution of (D, E, @) + _A(D, E, @) ∋ ℎ.

Proof. Using the definition of T'_
we get

−_ div(D∇BD + E@) = ℎ2 − E,
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which is the second row in (D, E, @) + _A(D, E, @) ∋ ℎ and we also get (D, E, @) ∈ � (A) (note that

A6('_) ⊂ � (�)). That the first and last row in (D, E, @) + _A(D, E, @) ∋ ℎ is also fulfilled follows

immediately from the definitions of D, E and @.

Furthermore, when (D, E, @) is a solution of (D, E, @) + _A(D, E, @) ∋ ℎ, then one verifies analog

that (D, E, @) must have the claimed form, therefore the uniqueness follows from the uniqueness of a

solution to (3.9). �

Lemma 3.12 (Monotonicity of A). The equation

(A(D1, E1, @1) − A(D2, E2, @2), (D1, E1, @1) − (D2, E2, @2))H

= (�(@1) −�(@2), @1 − @2)!2 (Ω;ℝ3×3
B )

holds for all (D1, E1, @1), (D2, E2, @2) ∈ � (A).

Proof. Using the definition of A and the scalar product inH we obtain

(A(D1, E1, @1), (D1, E1, @1) − (D2, E2, @2))H

= − (D∇BE1,∇
B (D1 − D2))!2 (Ω;ℝ3×3

B ) − (div(D∇BD1 + E@1), E1 − E2)!2 (Ω;ℝ3 )

+
(
�(@1) − E

⊤,∇BE1
)
@1−@2

!2 (Ω;ℝ3×3
B )

= (D∇BE1,∇
BD2)!2 (Ω;ℝ3×3

B ) − (D∇BD1,∇
BE2)!2 (Ω;ℝ3×3

B ) −
(
E
⊤∇BE2, @1

)
!2 (Ω;ℝ3×3

B )

+
(
E
⊤∇BE1, @2

)
!2 (Ω;ℝ3×3

B )
+ (�(@1), @1 − @2)!2 (Ω;ℝ3×3

B ) ,

evaluating now (A(D2, E2, @2), (D1, E1, @1) − (D2, E2, @2))H and taking the difference yields the assertion.

�

Proposition 3.13 (A is maximal monotone). The operator A : H → 2H is maximal monotone.

Proof. The monotonicity of A follows immediately from Lemma 3.12 and the monotonicity of �.

To prove that A is maximal monotone, it is, according to [4, Proposition 55.1 (B)], sufficient that

'(� + A) = H , that is, we have to show that for every (ℎ1, ℎ2, ℎ3) ∈ H there exists (D, E, @) ∈ � (A)

such that (D, E, @) + A(D, E, @) ∋ (ℎ1, ℎ2, ℎ3). This follows from Proposition 3.11 with _ = 1. �

In what follows it is convenient to give the integration operator a name.

Definition 3.14 (Integration operator). We define F : � 1 (!2 (Ω;ℝ3)) → � 2 (!2(Ω;ℝ3)) by (F 5 ) (C) ≔∫ C

0
5 (B)3B for all 5 ∈ � 1 (!2(Ω;ℝ3)). Moreover, we abbreviate Fd ≔ F/d. As usual, we denote the oper-

atorswith different inverse images and rangeswith the same symbol, for instanceF : !2 (!2(Ω;ℝ3)) →

� 1 (!2(Ω;ℝ3)).

Theorem 3.15 (Existence of a solution to the state equation). There exists a unique solution (D, E, @) ∈

� 1 (H) of (3.4). Moreover, the inequality

‖(
.

D,
.

E,
.

@)‖!2 (H) ≤ � (1 + ‖ 5 ‖� 1 (!2 (Ω;ℝ3 )) )

holds, where the constant � does not depend on 5 .

Proof. The tuple (D, E, @) is a solution of (3.4) if and only ifF := (D, E, @) solves

.

F + Ã(F ) ∋
1

d
'5 , F (0) = (D0, E0, @0),
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with Ã := &A. One easily verifies that Ã is a maximal monotone operator with respect toH&−1 (that

is, the spaceH equipped with the scalar product
(
&−1·, ·

)
H&−1

), thus we can apply [4, Theorem 55.A]

to obtain a solutionF ∈ � 1 (H). Moreover, as can be seen in the proof of [4, Theorem 55.A] we get

√
W&−1 ‖

.

F_ ‖� (H) ≤ ‖
.

F_‖� (H&−1 ) ≤ � (1 +
1

d
‖'5 ‖� 1 (H) )) = � (1 +

1

d
‖ 5 ‖� 1 (!2 (Ω;ℝ3 )) )

for all _ > 0, whereF_ is the solution of

.

F_ + Ã_ (F_) =
1

d
'5 , F_ (0) = (D0, E0, @0).

SinceF_ ⇀ F in � 1 (H), we obtain the desired inequality. �

Remark 3.16 (A is not a subdifferential). Let us show that the maximal monotone operatorA : H →

H is not a subdifferential, that is, there exists no proper, convex and lower semicontinuous function

Φ : H → (−∞,∞] such that

A(D, E, @) = mΦ(D, E, @) = {(2, 3, 4) ∈ H : Φ(D̂, Ê, @̂) ≥ Φ(D, E, @)

+ ((2, 3, 4), (D̂ − D, Ê − E, @̂ − @))H ∀(D̂, Ê, @̂) ∈ H}

holds for all (D, E, @) ∈ H . In fact, there exists even not any function Φ : H → (−∞,∞] such that the

equation above holds, which can be seen as follows:

Let us assume that such a Φ exists and recall that (D0, E0, @0) ∈ � (A). Then, using Lemma 3.12 with

(D1, E1, @1) = (D + D0, E, @0) and (D2, E2, @2) = (D0, 0, @0),

Φ(D0, 0, @0) ≥ Φ(D + D0, E, @0) − (A(D + D0, E, @0), (D, E, 0))H

= Φ(D + D0, E, @0) − (A(D0, 0, @0), (D, E, 0))H

≥ Φ(D0, 0, @0) + (A(D0, 0, @0), (D, E, 0))H − (A(D0, 0, @0), (D, E, 0))H

= Φ(D0, 0, @0)

holds for all (D, E) such that (D + D0, E, @0) ∈ � (A), hence,

(A(D0, 0, @0), (D̂ − D, Ê − E, 0))H = Φ(D̂ + D0, Ê, @0) − Φ(D + D0, E, @0)

≥ (A(D + D0, E, @0), (D̂ − D, Ê − E, 0))H

which gives

0 ≥ (D∇BD,∇B Ê)H − (D∇BD̂,∇BE)H

for all (D̂, Ê), (D, E) such that (D + D0, E, @0), (D̂ + D0, Ê, @0) ∈ � (A). Choosing now an arbitrary D ∈

�∞
2 (Ω;ℝ3), D ≠ 0, Ê = D and D̂ = E = 0, we obtain the desired contradiction.

In light of Remark 3.16, the case of plasticity with inertia essentially differs from the EVI analyzed

in [18] in two aspects. First, we have more regularity in time as explained after Lemma 3.6. Second,

we lose a certain boundedness of the maximal monotone operator, which was assumed in [18, Sect. 2],

and it is not a subdifferential.

It is also to be noted that Remark 3.16 is independent of the operator�.
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3.3 regularization and convergence results

As already pointed out earlier, (3.4) can be transformed into the EVIwhichwas analyzed in [18], namely
.

? ∈ A('Fd 5 −&?), ? (0) = ?0,(3.10)

where we set ?0 := −&−1 (D0, E0, @0). We can observe that when (D, E, @) is a solution of (3.4), then ? :=

'F 5 −&−1 (D, E, @) is a solution of (3.10) and when ? is a solution of (3.10), then (D, E, @) := 'Fd 5 −&?

is a solution of (3.4).

Thanks to this transformation we can use several results from [18] (namely Lemma 3.7, Lemma

3.8 and Proposition 3.5), with which the derivation of convergence results will be an easy task. Let us

emphasize that the maximal monotone operator therein was assumed to have a closed domain and

that

�0 : � (�) → H , ℎ ↦→ argmin
E∈�(ℎ)

‖E ‖H

is bounded on bounded sets. Clearly, both assumptions are not fulfilled for A, however, they were

only needed to prove [18, Theorem 3.3], which can be replaced by Theorem 3.15, cf. also [18, Remark

3.13]. Therefore we can still apply the above mentioned results.

Theorem 3.17 (Weak convergence of the state). Let 5 ∈ � 1 (!2(Ω;ℝ3 )), {5=}=∈ℕ ⊂ � 1 (!2 (Ω;ℝ3)) such

that 5= ⇀ 5 in � 1 (!2 (Ω;ℝ3)) and F 5= → F � in !1 (!2(Ω;ℝ3 )). Moreover, let (D, E, @) ∈ � 1 (H) be the

solution of (3.4) and (D=, E=, @=) ∈ � 1 (H), for every = ∈ ℕ, either the solution of

&−1 (
.

D=,
.

E=,
.

@=) + A(D=, E=, @=) ∋ '5=, (D=, E=, @=) (0) = (D0, E0, @0)

or

&−1 (
.

D=,
.

E=,
.

@=) + A_= (D=, E=, @=) = '5=, (D=, E=, @=) (0) = (D0, E0, @0),

where {_=}=∈ℕ ⊂ (0,∞), _= ց 0.

Then (D=, E=, @=) ⇀ (D, E, @) in� 1 (H) and (D=, E=, @=) → (D, E, @) in� (� 1 (Ω;ℝ3))×!1(!2 (Ω;ℝ3))×

� (!2(Ω;ℝ3×3
B )). If additionally F 5= → F 5 in � (!2 (Ω;ℝ3×3

B )), then E= → E in � (!2(Ω;ℝ3 )).

Proof. The function ? := 'F 5 − &−1 (D, E, @) ∈ � 1 (H) is the unique solution of (3.10) and ?= :=

'F 5= −&−1 (D=, E=, @=) ∈ � 1 (H) either the unique solution of
.

?= ∈ A('Fd 5= −&?=), ?= (0) = ?0 .

or
.

?= = A_= ('Fd 5= −&?=), ?= (0) = ?0.

Thanks to Theorem 3.15, (
.

D=,
.

E=,
.

@=) is bounded in!
2 (H). We can now apply [18, Lemma 3.7]with�= =

A and �= = A_= (note that we can choose �= = A_= according to [18, Lemma 3.8]) to obtain the de-

sired result. Note that the convergence in [18, Lemma 3.7] thenmeans'F 5=−&
−1 (D=, E=, @=) → 'F 5 −

&−1 (D, E, @) in� (H), so that the convergence (D=, E=, @=) → (D, E, @) in� (� 1(Ω;ℝ3 ))×!1 (!2(Ω;ℝ3))×

� (!2(Ω;ℝ3×3
B )) follows from the fact that the range of ' is a subset of {0} × !2 (Ω;ℝ3) × {0}. �

Proposition 3.18 (Strong convergence for fixed forces). Let 5 ∈ � 1 (!2(Ω;ℝ3 )) and (D, E, @) ∈ � 1 (H)

be the solution of (3.4) and (D=, E=, @=) ∈ � 1 (H), for every = ∈ ℕ, the solution of

&−1 (
.

D=,
.

E=,
.

@=) + A_= (D=, E=, @=) = '5 ,

(D=, E=, @=) (0) = (D0, E0, @0).

where {_=}=∈ℕ ⊂ (0,∞), _= ց 0.

Then (D=, E=, @=) → (D, E, @) in � 1 (H).

Proof. We can argue as in the proof of Theorem 3.17, the assertion follows then directly from [18,

Proposition 3.5]. �
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4 optimal control

Also in this section we will make use of [18]. Since the smoothed operatorAB , given in Definition 4.7,

possesses the required properties for �B in [18, Assumption 5.1 (ii)] with Z = H (as we will see in

Definition 4.7 and Proposition 4.10 below), we can apply the finding concerned with the differentiabil-

ity of the solution operator associated with the EVI therein. Before we give the details in Section 4.2,

we tend to the existence and approximation of optimal controls.

4.1 existence and approximation of optimal controls

Let us now consider the optimal control problem (1.1). Note that we assumed in Section 2 that Ψ is

defined on !2 (H) and not on � 1 (H), which excludes for example evaluations at certain points in

time. Similar as in [18], we could also consider an objective function on � 1 (H), then we would only

obtain a (possible) weak solution of the adjoint state in Theorem 4.14, see also [18, Theorem 5.12]. We

decided to define Ψ on !2 (H) only for simplicity and to keep the discussion concise.

Since we have transformed our state equation (3.1) into (3.3) by introducing the new variable @, it

is reasonable to do the same with the optimal control problem. To this end, we need the following

Definition 4.1 (Transformed objective function). We define

ΨI : !
2 (H) → ℝ, (D, E, @) ↦→ Ψ(D, E,ℨ(D, @))

and the transformed objective function

�I : !
2 (H) × X2 → ℝ, (D, E, @, 5 ) ↦→ ΨI (D, E, @) +

U

2
‖ 5 ‖2

X2

Using the definition above and the transformation of the state equation into (3.4), we obtain the

equivalence of (1.1) and

(4.1)




min �I (D, E, @, 5 ) = ΨI (D, E, @) +
U

2
‖ 5 ‖2

X2
,

s.t. &−1 (
.

D,
.

E,
.

@) + A(D, E, @) ∋ '5 , (D, E, @) (0) = (D0, E0, @0),

(D, E, @) ∈ � 1 (� 1
� (Ω;ℝ

3 ) × !2 (Ω;ℝ3) × !2 (Ω;ℝ3×3
B )),

5 ∈ X2 .

Let us now select a sequence {_=}=∈ℕ ⊂ (0,∞) such that _= ց 0. We consider the regularized

optimization problem

(4.2)




min �I (D, E, @, 5 ) = ΨI (D, E, @) +
U

2
‖ 5 ‖2

X2
,

s.t. &−1 (
.

D,
.

E,
.

@) + A_= (D, E, @) = '5 , (D, E, @) (0) = (D0, E0, @0)

(D, E, @) ∈ � 1 (� 1
� (Ω;ℝ

3) × !2 (Ω;ℝ3) × !2 (Ω;ℝ3×3
B )),

5 ∈ X2 .

Theorem 4.2 (Existence and approximation of optimal solutions). Suppose that the control space X2 is

such that F : � 1 (!2 (Ω;ℝ3)) → � 2 (!2(Ω;ℝ3 )) with F ( 5 ) (C) =
∫ C

0
5 (B)3B is compact from X2 into

!1 (!2 (Ω;ℝ3)).

Then there exists a global solution of (4.1) (and thus of (1.1)) and of (4.2) for every = ∈ ℕ.

Moreover, let (D=, E=, @=, 5 =)=∈ℕ be a sequence of global solution of (4.2). Then there exists a weak accu-

mulation point (D, E, @, 5 ) and every weak accumulation point is a global solution of (4.1). The subsequence

of states which converges weakly towards (D, E, @) in � 1 (H), converges also strongly in � (� 1 (Ω;ℝ3)) ×
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!1 (!2 (Ω;ℝ3)) × � (!2 (Ω;ℝ3×3
B )) and, when F is compact from X2 into � (!

2 (Ω;ℝ3)), then the subse-

quence of E= converges also strongly in � (!2(Ω;ℝ3×3
B )). Moreover, the subsequence of controls converges

strongly to 5 in X2 .

Proof. The existence of a global solution to (4.1) follows from the standard directmethod of thecalculus

of variations using Theorem 3.17 and the assumed compactness of F , the proof is for instance analog

to the proof of [18, Theorem 4.2]. The existence of a global solution to (4.2) follows easily using the

Lipschitz continuity of A_= (which implies the Lipschitz continuity of the corresponding solution

operator).

The convergence result can also be obtained by standard arguments using again Theorem 3.17

and Proposition 3.18, the proof is again analog to [18, Theorem 4.5 & Corollary 4.6]. Note that the

strong convergence of the states in� (� 1 (Ω;ℝ3)) ×!1 (!2 (Ω;ℝ3)) ×� (!2(Ω;ℝ3×3
B )), and also of E= in

� (!2(Ω;ℝ3×3
B )) when F is compact from X2 into � (!

2(Ω;ℝ3)), follows directly from Theorem 3.17.

�

A strong convergence result of the states (in � 1 (H)) is not provided in the theorem above. In

[18, Corollary 4.6] we were able to prove the strong convergence either when the associated maximal

monotone operator is a subdifferential, which is here not the case (Remark 3.16), or when it can be

deduced from the weak convergence and the convergence of the evaluations of Ψ. Since we supposed

thatΨ is defined on !2 (H), this cannot be the case. However, as elaborated on at the beginning of this

section, it is possible for instance to consider a different Ψ defined on � 1 (H) such that this property

holds.

Let us shortly interrupt the discussion and give two examples for the control space X2 .

Example 4.3 (Control space). In order to satisfy the assumption on X2 in Theorem 4.2, we can use the

lemma of Lions-Aubin (cf. [21, III. Proposition 1.3]) and for instance choose X2 = � 1 (!2(Ω;ℝ3)) ∩

!2 (� 1 (Ω;ℝ3)) or X2 = {5 ∈ � 1 (!2(Ω;ℝ3)) : F 5 ∈ !2 (� 1 (Ω;ℝ3))} with corresponding norms.

Having dealt with the existence and approximation of optimal solutions we turn to the optimality

condition for a further smoothed problem.

4.2 optimality conditions

In order to derive first order optimality conditions we smoothen at first the optimal control problem

further. Thenwe prove the differentiability of the smoothed solution operator andcan after thatfinally

present our main result, the optimality conditions for the smoothed optimization problem.

We impose the following assumptions for the rest of this subsection.

Assumption 4.4 (Standing assumptions for Section 4.2). (i) Let 'B : ℝ3×3
B → ℝ

3×3
B be mono-

tone, Lipschitz continuous and Fréchet differentiable.

(ii) We fix 2 < ?̂ < ? < ? , where ? is from Corollary 3.9 (respectively [14, Theorem 1.1]), such

that 2 − 3
2 ≥ −3

?
.

(iii) Let the initial data (D0, E0, @0) be an element of Y? , where ? is given in (ii).

Thanks to Proposition 3.11, we can give the precise form of the resolvent and Yosida approximation

of A in the following

Corollary 4.5 (Precise form of the resolvent). Let _ > 0 and denote the resolvent of A by R_ . Then

R_ (ℎ) =
©­«

T'_
(ℎ)

1
_T'_

(ℎ) − ℎ1
_

'_ (E
⊤∇B (T'_

(ℎ) − ℎ1) + ℎ3)

ª®¬
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so that

A_ (ℎ) =
1

_

©­«
ℎ1 − T'_

(ℎ)

ℎ2 −
1
_T'_

(ℎ) + ℎ1
_

ℎ3 − '_ (E
⊤∇B (T'_

(ℎ) − ℎ1) + ℎ3)

ª®¬
for every ℎ = (ℎ1, ℎ2, ℎ3) ∈ H .

The Yosida approximation A_ is in view of Proposition 3.10 Lipschitz continuous from Y? to Y? ,

where ? is given in Assumption 4.4 (ii). Therefore the state equation in (4.2) admits a solution in Y?

(note that'maps intoY∞). However, since this regularity is not present in (1.1),we did not use it. In con-

trast, the same is true for the smoothed Yosida approximation, which is given below in Definition 4.7

(see Definition 4.11), but here this additional regularity will be used to prove the differentiability of the

smoothed solution operator in Proposition 4.12.

In order to smoothen the Yosida approximation, respectively the resolvent, ofA, we smoothen the

resolvent of � and then define the smoothed resolvent for A analog to R_. We denote this smoothed

resolvent of � by 'B : ℝ
3×3
B → ℝ

3×3
B (which indicates that the resolvent of � can be expressed point-

wise), from the properties given in Assumption 4.4 (i) one can easily derive the following inequalities,

which will be useful when proving the differentiability of T'B in Lemma 4.9 below.

Lemma 4.6 (Properties of '′
B ). There exists a constant � such that |'′

B (f)g | ≤ � |g | and 0 ≤ '′
B (f)g : g

holds for all f, g ∈ ℝ
3×3
B . Moreover, the same is true for '′

B (·)
∗.

Proof. Let f, g ∈ ℝ
3×3
B be arbitrary. The Lipschitz continuity and Fréchet differentiability of 'B gives

���A (Cg)
C

+ '′
B (f)g

��� = |'B (f + Cg) − 'B (f) |

C
≤ ! |g |

for all C ∈ ℝ \ {0}, where A is the remainder term of 'B . The limit C → 0 yields the first assertion.

The second claim follows using the monotonicity,

0 ≤
'B (f + Cg) − 'B (f)

C
: g → '′

B (f)g : g

as 0 ≠ C → 0.

Now, by definition we have '′
B (f)g : [ = g : '′

B (f)
∗[ for all f, g, [ ∈ ℝ

3×3
B , so that the second

assertion also holds for '′
B (·)

∗. Choosing in particular g = 'B (f)
∗[ we get

|'′
B (f)

∗[ |2 = |'′
B (f)'

′
B (f)

∗[ : [ | ≤ � |'′
B (f)

∗[ | |[ |,

which yields the first assertion for '′
B (·)

∗. �

Definition 4.7 (Smoothed resolvent). Let _B ∈ (0,∞). We define

RB : Y? → Y? , ℎ = (ℎ1, ℎ2, ℎ3) ↦→
©­­«

T'B (ℎ)
1
_B
T'B (ℎ) −

ℎ1
_B

'B (E
⊤∇B (T'B (ℎ) − ℎ1) + ℎ3)

ª®®¬
andAB ≔

1
_B
(�−RB ) (see Assumption 4.4 (ii) for?). According to Proposition 3.10 andAssumption 4.4

(i), RB andAB are well defined and Lipschitz continuous. As usual, with a slight abuse of notation, we

denote operators for different ? with the same symbol.
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Let us now consider the smoothed optimization problem

(4.3)




min �I (D, E, @, 5 ) = ΨI (D, E, @) +
U

2
‖ 5 ‖2

X2
,

s.t. &−1 (
.

D,
.

E,
.

@) + AB (D, E, @) = '5 , (D, E, @) (0) = (D0, E0, @0)

(D, E, @) ∈ � 1 (� 1
� (Ω;ℝ

3) × !2 (Ω;ℝ3) × !2 (Ω;ℝ3×3
B )),

5 ∈ X2 .

Analog to Theorem 4.2 one can analogously prove that there exists a global solution of (4.3).

As was done in [18, Theorem 4.5 & Corollary 4.6], whenAB and A_B are globally “close together”,

one can prove a result analog to the convergence result in Theorem 4.2with a sequence (DB, EB , @B , 5 B )B>0
of global solutions to (4.3) when supℎ∈H ‖A_B (ℎ) − AB (ℎ)‖H tends fast enough to zero relative to _B .

The following lemma shows that this is the case when the same is true for 1
_B

supg∈!2 (Ω;ℝ3×3
B ) ‖�_B (g)−

�B (g)‖!2 (Ω;ℝ3×3
B ) with �B = 1

_B
(� − 'B ), which holds in the case of the von-Mises flow rule inves-

tigated in Section 5 below for suitable sequences {_B }_B>0 and {B}B>0 , cf. (5.2). Note also that [18,

Lemma 3.15] was used in [18, Theorem 4.5 & Corollary 4.6], so that it was in particular required that

supg∈!2 (Ω;ℝ3×3
B ) ‖�_B (g) −�B (g)‖!2 (Ω;ℝ3×3

B ) tends faster to zero than exp(
1
_B
), thus the additional factor

1
_B

does not play a big role.

Lemma 4.8 (Convergence of the smoothed resolvent). The inequality

‖A_B (ℎ) − AB (ℎ)‖H ≤ �

√
1 +

1

_2B
sup

g∈!2 (Ω;ℝ3×3
B )

‖�_B (g) −�B (g)‖!2 (Ω;ℝ3×3
B )

holds for all ℎ ∈ !2 (Ω;ℝ3×3
B ), where �B ≔

1
_B
(� − 'B ) and the constant does only depend on ℂ and B,

� = � (ℂ,B).

Proof. Let us abbreviate

" ≔ sup
g∈!2 (Ω;ℝ3×3

B )

‖'_B (g) − 'B (g)‖!2 (Ω;ℝ3×3
B ) .

Due to the definitions of AB and �B we only have to prove that

‖R_B (ℎ) − RB (ℎ)‖H ≤ �

√
1 +

1

_2B
"(4.4)

holds for all ℎ ∈ H . To this end let ℎ ∈ H be arbitrary and abbreviate D ≔ T'_B
(ℎ),DB ≔ T'B (ℎ) ∈

� 1
� (Ω;ℝ

3), hence, D is the solution of (3.9) with respect to '_B and DB with respect to 'B , testing both

equations with D − DB and subtracting the second from the first, we get

‖∇B (D − DB )‖
2

!2 (Ω;ℝ3×3
B )D

+





D − DB

_B






2

!2 (Ω;ℝ3 )

= −
(
E('_B (F ) − 'B (FB)),∇

B (D − DB )
)
!2 (Ω;ℝ3×3

B )

= −
(
('_B (FB) − 'B (FB)),F −FB

)
!2 (Ω;ℝ3×3

B )

−
(
('_B (F ) − '_B (FB)),F −FB

)
!2 (Ω;ℝ3×3

B )

≤ −
(
D

−1
E('_B (FB) − 'B (FB)),∇

B (D − DB)
)
!2 (Ω;ℝ3×3

B )D

≤
1

2
‖D−1

E('_B (F ) − 'B (FB))‖
2

!2 (Ω;ℝ3×3
B )D

+
1

2
‖∇B (D − DB)‖

2

!2 (Ω;ℝ3×3
B )D

≤
‖E⊤

D
−1
E‖

2
"2 +

1

2
‖∇B (D − DB )‖

2

!2 (Ω;ℝ3×3
B )D
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with F ≔ E
⊤∇B (D − ℎ1) + ℎ3) and FB ≔ E

⊤∇B (DB − ℎ1) + ℎ3), where we used in particular the

monotonicity of '_B . Thus we obtain

‖∇B (D − DB )‖
2

!2 (Ω;ℝ3×3
B )D

+





D − DB

_B






2

!2 (Ω;ℝ3 )

≤ �"2.(4.5)

We get further

‖'_B (F ) − 'B (FB)‖!2 (Ω;ℝ3×3
B )

≤ ‖'_B (F ) − '_B (FB)‖!2 (Ω;ℝ3×3
B ) + ‖'_B (FB) − 'B (FB)‖!2 (Ω;ℝ3×3

B )

≤
�

_B
" +"

where we have used (4.5). We arrive at

‖R_B (ℎ) − RB (ℎ)‖
2
H ≤ �"2 +

�

_2B
"2

which implies (4.4). �

Let us now turn to optimality conditions. We first need to prove the Fréchet differentiability of the

smoothed solution operator of the constraint in (4.3). To this end,we need twonormgaps in Lemma 4.9

and Proposition 4.10, recall that the corresponding coefficients are fixed in Assumption 4.4 (ii).

Lemma 4.9 (Fréchet differentiability of T'B ). The operator T'B is from Y? into,
1,?̂

�
(Ω;ℝ3) Fréchet dif-

ferentiable and, for ℎ, 6 ∈ Y? , [ ≔ T ′
'B
(ℎ)6 is of class,

1,?

�
(Ω;ℝ3 ) and the unique solution of

− div(D∇B[ + E'′
B (E

⊤∇B (D − ℎ1) + ℎ3) (E
⊤∇B ([ − 61) + 63))) =

62

_B
+
61 − [

_2B
(4.6)

for all i ∈,
1,?′

�
(Ω;ℝ3), where D ≔ T'B (ℎ).

Moreover, there exists a constant� such that the extension ofT ′
'B
(ℎ) to an element ofL(H ;� 1

� (Ω;ℝ
3))

fulfills ‖T ′
'B
(ℎ)6‖� 1

�
(Ω;ℝ3 ) ≤ � ‖6‖H for all ℎ ∈ Y? and 6 ∈ H .

Proof. Let ℎ,6 ∈ Y? . At first we prove that (4.6) has a unique solution [ ∈ ,
1,?

�
(Ω;ℝ3) with respect

to ℎ and 6. For f ∈ ℝ
3×3
B we define 1f : Ω ×ℝ

3×3
B → ℝ

3×3
B by

1f (G, g) ≔ Dg + E'′
B (E

⊤∇B (D (G) − ℎ1 (G)) + ℎ3 (G))) (E
⊤g + f)

for almost all G ∈ Ω and all g ∈ ℝ
3×3
B . The existence of [ follows now from Corollary 3.9 (with

i ≔ −E⊤∇B61 + 63), when we have verified the requirements on 1f therein. Moreover, Corollary 3.9

also shows that the solution operator of (4.6) is continuous with respect to 6 ∈ Y? (clearly, it is also

linear).

Clearly, 10 (G, 0) = 0 ∈ !∞(Ω;ℝ3×3
B ) and 1f (·, g) is measurable as a pointwise limit of measurable

functions (see [23, Corollary 3.1.5]), for all g, f ∈ ℝ
3×3
B . Moreover, we have

(1f (G, g) − 1f (G, g)) : (g − g)

≥ WD |g − g |2 + '′
B (F (G)) (E⊤(g − g) + (f − f)) : E⊤(g − g)

≥ WD |g − g |2 −� |f − f | |g − g |,

withF ≔ E
⊤∇B (D − ℎ) + ℎ3), and

|1f (G, g) − 1f (G, g) | ≤ �
(
|g − g | + |f − f |

)
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for all f, f, g, g ∈ ℝ
3×3
B and almost all G ∈ Ω, where we have used Lemma 4.6 in both estimations.

Therefore (3.5)–(3.8) are fulfilled.

Considering now the equations for D6 ≔ T'B (ℎ + 6) and D ≔ T'B (ℎ), we see that

− div(D∇B (D6 − D − [)) +
D6 − D − [

_2B
= div(E('B (` + a6) − 'B (`) − '′

B (`)a6))

+ div(E'′
B (`) ((E

⊤∇B (D6 − D − [))),

where

` ≔ E
⊤∇B (D − ℎ1) + ℎ3),

a6 ≔ E
⊤∇B (D6 − D − 61) + 63) ∈ !? (Ω;ℝ3×3

B ),

hence,

− div(D∇B (D6 − D − [) − E'′
B (`) ((E

⊤∇B (D6 − D − [))) +
D6 − D − [

_2B
= divEA` (a6),

where A` (a6) is the remainder term of 'B at ` in direction a6. Applying Corollary 3.9 once again with

1f (G, g) ≔ Dg + E'′
B (` (G))E

⊤g

(and ? = ?̂) we obtain

‖D6 − D − [‖, 1,?̂ (Ω;ℝ3 )

‖6‖Y?

≤ �
‖A` (a6)‖!?̂ (Ω;ℝ3×3

B )

‖6‖Y?

≤ �
‖A` (a6)‖!?̂ (Ω;ℝ3×3

B )

‖a6‖!? (Ω;ℝ3×3
B )

→ 0,

as6 → 0 inY? ,wherewe also used the Lipschitz continuity ofT'B and the fact that'B : !
? (Ω;ℝ3×3

B ) →

!?̂ (Ω;ℝ3×3
B ) is Fréchet differentiable (cf. [10, Theorem 7]).

That the extension of T ′
'B
(ℎ) to an element of !(H ;� 1

� (Ω;ℝ
3 )) fulfills the asserted inequality, can

be proven as above (one can simply test (4.6) with [ ∈ � 1
� (Ω;ℝ

3) and use Lemma 4.6). �

Proposition 4.10 (Fréchet differentiability ofAB ). The mapping RB is fromY? toH Fréchet differentiable

and there exists a constant� such that the extension ofR ′
B (ℎ) ∈ L(Y? ;H) to an element ofL(H) fulfills

‖R ′
B (ℎ)6‖H ≤ � ‖6‖H for all ℎ ∈ Y? and 6 ∈ H .

For ℎ ∈ Y? and 6 ∈ H we have

R ′
B (ℎ)6 =

©­­«
T ′
'B
(ℎ)6

1
_B
T ′
'B
(ℎ)6 −

61
_B

'′
B (E

⊤∇B (T'B (ℎ) − ℎ1) + ℎ3) (E
⊤∇B (T ′

'B
(ℎ)6 − 61) + 63)

ª®®¬
The same is true for AB =

1
_B
(� − RB ) with A ′

B (ℎ)6 = 1
_B
(6 − R ′

B (ℎ)6) for all ℎ ∈ Y? and 6 ∈ H .

Proof. The assertion follows from Lemma 4.9, Lemma 4.6 for the estimate of (R ′
B (ℎ)6)3, the fact that

'B : !
?̂ (Ω;ℝ3×3

B ) → !2 (Ω;ℝ3×3
B ) is Fréchet differentiable (cf. [10, Theorem 7]) and the chain rule. �

Now, we can use [18, Theorem 5.5] to derive the differentiability of the solution operator of the

constraint in (4.3) from the differentiability ofAB . To this end, we first introduce the solution operator

in
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Definition 4.11 (Smoothed solution operator). We denote the solution operator of

&−1 (
.

D,
.

E,
.

@) + AB (D, E, @) = '5 , (D, E, @) (0) = (D0, E0, @0)(4.7)

by SB : !2 (!2 (Ω;ℝ3)) → � 1 (Y?), that is, SB ( 5 ) = (D, E, @), which existence follows from Banachs

contraction principle since AB is Lipschitz continuous according to Definition 4.7. Here we use the

improved regularity of (D0, E0, @0), see Assumption 4.4 (iii).

Proposition 4.12 (Fréchet differentiability of the smoothed solution operator). The solution operator

SB : !2 (!2(Ω;ℝ3 )) → � 1 (Y?) is Lipschitz continuous, SB : � 1 (!2(Ω;ℝ3)) → � 1 (H) is Fréchet

differentiable and, for 5 , 6 ∈ � 1 (!2(Ω;ℝ3 )), [ ≔ S ′
B ( 5 )6 ∈ � 1 (H) is the unique solution of

&−1 .[ + A ′
B (F )[ = '6, [ (0) = 0,(4.8)

where F ≔ SB ( 5 ). Moreover, there exists a constant � , such that ‖S ′
B ( 5 )6‖� 1 (H) ≤ � ‖6‖!2 (!2 (Ω;ℝ3 ))

holds for all 5 , 6 ∈ � 1 (!2 (Ω;ℝ3)).

Proof. Our goal is to use [18, Theorem 5.5], to this end we first consider the transformed equation from

Section 3.3. We again set ?0 ≔ −&−1 (D0, E0, @0) and denote the solution operator of

.

? = AB ('� −&?), ? (0) = ?0(4.9)

by S̃B : !
2 (!2(Ω;ℝ3)) → � 1 (Y?), that is, S̃B (� ) = ?. Thus we have SB ( 5 ) = 'Fd 5 −&S̃B (Fd 5 ) for all

5 ∈ !2 (!2(Ω;ℝ3 )).

We can now apply [18, Lemma 5.3 & Theorem 5.5] (with X = !2 (Ω;ℝ3), Y = Y? , Z = H ,

I = ? and I0 = ?0), note that the assumptions in [18, Assumption 5.1 (ii)] are satisfied thanks to

Proposition 4.10. Thus the solution operator S̃B : !2 (!2 (Ω;ℝ3)) → � 1 (Y?) is Lipschitz continuous

and S̃B : � 1 (!2 (Ω;ℝ3)) → � 1 (H) is Fréchet differentiable, hence, the desired Lipschitz continuity

and Fréchet differentiability also hold for SB . Furthermore, the asserted inequality holds and we have

[ = 'Fd6 −&[̃, where [ ≔ S ′
B ( 5 )6 and [̃ ≔ S̃ ′

B (Fd 5 )Fd6. [18, Theorem 5.5] also shows that [̃ is the

unique solution of

mC[̃ = A ′
B ('Fd 5 −&?) ('Fd6 −&[̃), [̃ (0) = 0,

where ? ≔ S̃B (Fd 5 ). Taking into account that [̃ = 'F6 − &−1[ and mCF6 = 6, we see that [ is the

solution of (4.8). �

Remark 4.13 (Control space). As seen in the proposition above, the smoothed solution operator de-

fined on � 1 (!2 (Ω;ℝ3)) is Fréchet differentiable. The norm gaps, which arise from the exponents

in Assumption 4.4 (ii), are only needed for the differentiability of T'B but not in the control space.

Unfortunately, we still require the compactness property imposed on X2 in Theorem 4.2 to use the

convergence results in Section 3.3. However, we can avoid taking a subspace of � 1 (!?̃ (Ω;ℝ3)), for a

certain ?̃ > 2, as the control space.

Let us now consider the following reduced optimization problem

min
5 ∈X2

�I ( 5 ),(4.10)

where the reduced objective function �I : X2 → ℝ is defined by �I ( 5 ) ≔ �I (SB ( 5 ), 5 ). Clearly, (4.10)

and (4.3) are equivalent.

We can finally present our main result.
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Theorem 4.14 (Optimality conditions for (4.10)). Let 5 ∈ X2 and abbreviate (D, E, @) ≔ SB ( 5 ) ∈ � 1 (Y?)

and F ≔ T'B (D, E, @) ∈ � 1 (,
1,?

� (Ω;ℝ3×3
B )). Then the variational equation

� ′
I ( 5 )6 = Ψ

′
I (SB ( 5 ))S

′
B ( 5 )6 + U

(
5 , 6

)
X2

= 0(4.11)

holds for all 6 ∈ X2 if and only if there exists an unique adjoint state (i,[∗) = (i1, i2, i3, [
∗) ∈ � 1 (H ×

� 1
� (Ω;ℝ

3)) such that the following optimality system is satisfied:

State equation:

©­­«

.

D
.

E
.

@

ª®®¬
=

1

_B

©­«
F − D

(F−D)/(d_B ) − E/d

(ℂ + B) (? − @)

ª®¬
+
©­«
0
5/d

0

ª®¬
(4.12a)

− div(D∇BF + E?) = E/_B + (F−D)/_B(4.12b)

? = 'B (E∇
B (F − D) + @)(4.12c)

(D, E, @) (0) = (D0, E0, @0)(4.12d)

Adjoint equation:

©­«
.

i1
.

i2
.

i3

ª®¬
=

1

_B

©­«
[∗ − i1

([∗−i1)/(d_B ) − i2/d

(ℂ + B) (A ∗ − i3)

ª®¬
−&Ψ

′
I (D, E, @)(4.12e)

− div(D∇B[∗ + EA ∗) = i2/_B + ([∗−i1)/_B(4.12f)

A ∗ = '′
B (E

⊤∇B (F − D) + @)∗(E⊤∇B ([∗ − i1) + i3)(4.12g)

(i1, i2, i3) () ) = 0(4.12h)

Gradient equation:

(i2, 6)!2 (!2 (Ω;ℝ3 )) = U
(
5 , 6

)
X2

∀6 ∈ X2 .(4.12i)

In particular, if 5 is locally optimal for (4.10), then there exists a unique adjoint state (i,[∗) ∈ � 1 (H×

� 1
� (Ω;ℝ

3)) such that (4.12) is fulfilled.

Proof. At first we proof that the assertion holds when we exchange (4.12) with

&−1 (
.

D,
.

E,
.

@) + AB (D, E, @) = '5 , (D, E, @) (0) = (D0, E0, @0),

&−1 .i + A ′
B (D, E, @)

∗i = −Ψ′
I (D, E, @), i () ) = 0,

(i2, 6)!2 (!2 (Ω;ℝ3 )) = U
(
5 , 6

)
X2

∀6 ∈ X2 .

(4.13)

To this end, let i be the solution of the second equation in (4.13) (which unique existence follows as

in [18, Lemma 5.11]) and [ ≔ S ′
B ( 5 )6 ∈ � 1 (H) for an arbitrary 6 ∈ X2 , then

(i2, 6)!2 (!2 (Ω;ℝ3 )) = (i, '6)!2 (H) =
(
i,&−1 .[

)
!2 (H)

+
(
i,A ′

B (D, E, @)[
)
!2 (H)

=
(
&−1 .i, [

)
!2 (H)

+
(
A ′

B (D, E, @)
∗i,[

)
!2 (H)

= −
(
Ψ

′
I (SB ( 5 )), [

)
!2 (H)
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holds for all 6 ∈ X2 , which implies the equivalence between (4.11) and the last equation in (4.13).

Moreover, it is well known that if 5 is locally optimal for (4.3), then (4.11) must hold.

Let us now prove the equivalence between (4.13) and (4.12). We choose ℎ, b ∈ H and denote by

[∗ ∈ � 1
� (Ω;ℝ

3×3
B ) the solution of

− div(D∇B[∗ + E'′
B (E

⊤∇B (T'B (ℎ) − ℎ1) + ℎ3)
∗(E⊤∇B ([∗ − b1) + b3))) =

b2

_B
+
b1 − [∗

_2B
(4.14)

for all q ∈ � 1
� (Ω;ℝ

3 ) (the existence of [∗ follows as in Lemma 4.9, note that the inequalities in

Lemma 4.6 hold also for the adjoint operator). Then

R ′
B (ℎ)

∗b =
©­­«

[∗

1
_B
[∗ −

b1
_B

'′
B (E

⊤∇B (T'B (ℎ) − ℎ1) + ℎ3)
∗(E⊤∇B ([∗ − b1) + b3)

ª®®¬
holds, which can be seen as follows: Let 6 ∈ H and abbreviate

[ ≔ T ′
'B
(ℎ)6, [E ≔

[ − 61

_B
, [@ ≔ '′

B (E
⊤∇B (T'B (ℎ) − ℎ1) + ℎ3) (E

⊤∇B ([ − 61) + 63),

[∗E ≔
[∗ − b1

_B
, [∗@ ≔ '′

B (E
⊤∇B (T'B (ℎ) − ℎ1) + ℎ3)

∗(E⊤∇B ([∗ − b1) + b3).

Testing (4.6) with q = b1 − [∗ gives

(D∇B[,∇B (b1 − [∗))!2 (Ω;ℝ3×3
B ) +

(
[E − 62, [

∗
E

)
!2 (Ω;ℝ3 )

=
(
E[@,∇

B ([∗ − b1)
)
!2 (Ω;ℝ3×3

B )

=
(
E
⊤∇B ([ − 61) + 63, [

∗
@

)
!2 (Ω;ℝ3×3

B )
−
(
[@, b3

)
!2 (Ω;ℝ3×3

B )
,

and testing (4.14) with q = [ − 61 yields

(D∇B[∗,∇B ([ − 61))!2 (Ω;ℝ3×3
B ) +

(
b2 − [∗E, [E

)
!2 (Ω;ℝ3 )

=
(
E[∗@,∇

B (61 − [)
)
!2 (Ω;ℝ3×3

B )
,

thus, adding both equations together, we arrive at

(D∇B[,∇Bb1)� 1 (Ω;ℝ3 ) + ([E, b2)!2 (Ω;ℝ3×3
B ) +

(
[@, b3

)
!2 (Ω;ℝ3×3

B )

= (D∇B[∗,∇B61)� 1 (Ω;ℝ3 ) +
(
[∗E, 62

)
!2 (Ω;ℝ3×3

B )
+
(
[∗@, 63

)
!2 (Ω;ℝ3×3

B )
,

which is equivalent to

(
R ′
B (ℎ)6, b

)
H

=
(
6,R ′

B (ℎ)
∗b
)
H
.

Now one only has to use the definitions of AB and ' to obtain the equivalence between (4.12) and

(4.13). �

5 examples

Let us concludewith examples about a concrete objective function, the gradient equation in Theorem 4.14

regarding a concrete control space and finally a realization of the maximal monotone operator �

(which will be the von-Mises flow rule).
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Objective function Let us consider a tracking type objective function, that is,

Ψ(D, E, I) =
1

2
‖(D, E, I) − (D3 , E3, I3)‖

2
!2 (H)

with a desired state (D3, E3 , I3) ∈ !2 (H). Then

ΨI (D, E, @) =
1

2
‖(D, E, (ℂ + B)−1 (ℂ∇BD − @)) − (D3 , E3, I3)‖

2
!2 (H)

and

Ψ
′
I (D, E, @) =

©­«
D̂

E − E3
(ℂ + B)−1 (ℂ∇BD − @)) − I3,

ª®¬
where D̂ is such that − div(D∇B (D̂ − D + D3 ) − ((ℂ + B)−1 (ℂ∇BD − @) − I3 )) = 0, hence, in this ex-

ample the adjoint equation in (4.12) has to be completed by this equation. Note that when one uses

a finite element approach to solve (4.12) numerically, then one can eliminate this additional equation

after multiplying (4.12e) with a test function, that is, taking theH -scalar product. When theH -scalar

product of&Ψ
′
I (D, E, @) and a test function ([1, [2, [3) is evaluated, the term (D∇BD̂, [1)!2 (Ω;ℝ3×3

B ) arises,

then one can use the additional equation to eliminate D̂ (respectively the equation).

Control space Let us consider the space

X2 ≔ {5 ∈ � 1 (!2 (Ω;ℝ3)) ∩ !2 (� 1 (Ω;ℝ3 )) : 5 (0) = 5 () ) = 0}

with the scalar product

( 5 , 6)X2
=
(
.

5 ,
.

6
)
!2 (!2 (Ω;ℝ3 ))

+ (∇5 ,∇6)!2!2 (Ω;ℝ3×3 ) ,

see Example 4.3. The Gradient equation in (4.12) then becomes

U
(
.

5 ,
.

6
)
!2 (!2 (Ω;ℝ3 ))

+ U (∇5 ,∇6)!2!2 (Ω;ℝ3×3 ) = (i2, 6)!2 (!2 (Ω;ℝ3 ))

for all 6 ∈ X2 , which is the weak formulation of

..

5 + Δ5 = −
i2

U
.

Maximal monotone operator � We consider the case of linear kinematic hardening with the von

Mises yield condition, cf. [13] for a detailed description of this model. In this case, � is the convex

subdifferential of the indicator functional �K(Ω) of the following set of admissible stresses

K(Ω) := {g ∈ !2 (Ω;ℝ3×3
B ) : |g� (G) | ≤ W f.a.a. G ∈ Ω},

where g� := g − 1
3 tr(g)� is the deviator of g ∈ ℝ

3×3
B and W denotes the initial uni-axial yield stress,

a given material parameter. The domain of � = m�K(Ω) is trivially K(Ω), which is nonempty, closed

and convex. For the Yosida approximation of m�K(Ω) , one obtains by a straightforward calculation

(5.1) �_ (g) =
1

_
(g − cK (g)) =

1

_
max

{
0, 1 −

W

|g� |

}
g� ,
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with the resolvent '_ = cK(Ω) , where cK(Ω) denotes the projection on K(Ω) in !2 (Ω;ℝ3×3
B ), i.e.,

cK (f) := argming∈K (Ω) ‖g − f ‖2
!2 (Ω;ℝ3×3

B )
. We get in particular

'_ (g) = cK(Ω) (g) = g −max
{
0, 1 −

W

|g� |

}
g� ,

so that (2.2) is fulfilled.

To smoothen this function let B > 0 and

maxB : ℝ → ℝ A ↦→

{
max{0, A }, |A | ≥ B,
1
4B (A + B)

2, |A | < B,

we then set

'B : ℝ
3×3
B → ℝ

3×3
B , g ↦→ g −maxB

(
1 −

W

|g� |

)
g� .

One easily checks that maxB ∈ �1 (ℝ) and we obtain

‖m�_,B (g) − m�_ (g)‖!2 (Ω;ℝ3×3
B )

≤
1

_

( ∫
Ω

���maxB

(
1 −

W

|g (G)� |

)
−max

(
0, 1 −

W

|g (G)� |

)���2 |g (G)� |2) 1/2
≤

|Ω |WB

4_(1 − B)

(5.2)

for all g ∈ !2 (Ω;ℝ3×3
B ). Moreover, it is also easy to verify that 'B : ℝ

3×3
B → ℝ

3×3
B is Fréchet differen-

tiable with

'′
B (g)ℎ = ℎ −max′B

(
1 −

W

|g� |

) W

|g� |3
(g� : ℎ� )g� −maxB

(
1 −

W

|g� |

)
ℎ�

and the following lemma shows that 'B is monotone and Lipschitz continuous, thus Assumption 4.4

(i) is satisfied. Note also that '′
B (g) is self adjoint for every g ∈ ℝ

3×3
B , hence, R ′

B (ℎ) is also self adjoint

for all ℎ ∈ H (cf. the proof of Theorem 4.14).

Lemma 5.1. For every B ∈ (0, 1), the mapping 'B is monotone and Lipschitz continuous with constant 1.

Proof. It is well known that, since maxB is continuously differentiable and convex,

maxB (G) −maxB (H) ≥ maxB (H)
′(G − H)(5.3)

holds for all G, H ∈ ℝ.

Let g, f ∈ ℝ
3×3
B , w.l.o.g. we can assume that |f� | ≥ |g� | > 0 and

maxB

(
1 −

W

|f� |

)
≥ maxB

(
1 −

W

|g� |

)
,

then, using (5.3) with G = 1 −
W

|g� |
and H = 1 −

W

|f� |
, we get

|maxB

(
1 −

W

|g� |

)
g� −maxB

(
1 −

W

|f� |

)
f� |

≤ (maxB

(
1 −

W

|f� |

)
−maxB

(
1 −

W

|g� |

)
) |g� | +maxB

(
1 −

W

|f� |

)
|g� − f� |

≤ W max′B

(
1 −

W

|f� |

)
|g� | |

1

|g� |
−

1

|f� |
| +maxB

(
1 −

W

|f� |

)
|g� − f� |,
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taking into account that

W |g� | |
1

|g� |
−

1

|f� |
| = W

��� |g� | − |f� |

|f� |

��� ≤ W

|f� |
|g� − f� |

we obtain

|maxB

(
1 −

W

|g� |

)
g� −maxB

(
1 −

W

|f� |

)
f� |

≤
(
max′B

(
1 −

W

|f� |

) W

|f� |
+maxB

(
1 −

W

|f� |

))
|g� − f� |

≤ maxB (1) |g − f | = |g − f |,

where we used (5.3) again with G = 1 and H = 1 −
W

|f� |
, and the fact that |g� − f� | ≤ |g − f |. This

proves the Lipschitz continuity of 'B . We also get

('B (g) − 'B (f)) : (g − f)

= |g − f |2 −
(
maxB

(
1 −

W

|g� |

)
g� −maxB

(
1 −

W

|f� |

)
f�

)
: (g − f)

≥ |g − f |2 − |g − f |2 = 0

which shows the monotonicity of 'B . �
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