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a new elementary proof for m-stationarity under
mpcc-gcq for mathematical programs with

complementarity constraints

Felix Harder ∗

Abstract It is known in the literature that local minimizers of mathematical programs with
complementarity constraints (MPCCs) are so-called M-stationary points, if a weak MPCC-tailored
Guignard constraint qualication (called MPCC-GCQ) holds. In this paper we present a new
elementary proof for this result. Our proof is signicantly simpler than existing proofs and does
not rely on deeper technical theory such as calculus rules for limiting normal cones. A crucial
ingredient is a proof of a (to the best of our knowledge previously open) conjecture, which was
formulated in a Diploma thesis by Schinabeck.
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1 introduction

We consider mathematical programs with complementarity constraints, or MPCCs for short, which
are nonlinear optimization problems of the form

(MPCC)

min
𝑥 ∈ℝ𝑛

𝑓 (𝑥)

s.t. 𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0,
𝐺 (𝑥) ≥ 0, 𝐻 (𝑥) ≥ 0, 𝐺 (𝑥)>𝐻 (𝑥) = 0.

Here, 𝑓 : ℝ𝑛 → ℝ, 𝑔 : ℝ𝑛 → ℝ𝑙 , ℎ : ℝ𝑛 → ℝ𝑚 , 𝐺,𝐻 : ℝ𝑛 → ℝ𝑝 are dierentiable functions.
MPCCs have been studied extensively in the literature, both from a numerical and a theoretical

perspective. Various problem-tailored stationarity conditions and constraint qualications have been
developed. One (necessary, rst-order) stationarity condition for MPCCs is the so-called strong sta-
tionarity (which is equivalent to the KKT conditions). However, the strong stationarity condition is
often too strong, as there are examples of MPCCs where the data is linear, but the unique minimizer is
not strongly stationary, see [11, Example 3].
In this article we will focus on M-stationarity (see Denition 2.1), which is another prominent

stationarity condition for MPCCs in the literature. We mention that there are other stationarity
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conditions between M- and strong stationarity, such as extended M-stationarity, strong M-stationarity,
Q𝑀 -stationarity, and linearized M-stationarity, see [6, 2, 7]. However, these conditions are used less
frequently than M-stationarity and are more complicated to formulate.

As shown in [5], M-stationarity holds for local minimizers of (MPCC) under MPCC-GCQ, see also
[4]. MPCC-GCQ, dened in Denition 2.3, is a relatively weak constraint qualication. These proofs
for M-stationarity under MPCC-GCQ rely on advanced techniques from variational analysis such as
the concept of the so-called limiting normal cone. In particular, calculus rules for limiting normal cones
are used, which are based on deeper technical theory and require to verify the calmness of certain
set-valued mappings.
We mention that there is also a weaker constraint qualication in [8, (6)], which is the weakest

constraint qualication under which local minimizers are M-stationary. An advantage is that the proof
of M-stationarity under this constraint qualication is very simple, but on the other hand the proof
that MPCC-GCQ implies this constraint qualication (or that this constraint qualication is satised
for MPCCs with ane data) relies on deeper results from variational analysis. Since MPCC-GCQ and
MPCC-ACQ (which trivially implies MPCC-GCQ) are used more frequently, we focus on MPCC-GCQ
in this article.
In this paper we want to present a new proof for the result from [5] that M-stationarity holds for

local minimizers under MPCC-GCQ. Our new proof does not rely on advanced theory such as the
properties of limiting normal cones. Our proof is signicantly simpler than any existing proofs that
we are aware of. The main ingredient of the new proof is a result which can be found in Lemma 3.2.
This result was already conjectured in [12, Section 4.4.2], and, to the best of our knowledge there
has not been a proof of this conjecture so far. With the knowledge that Lemma 3.2 holds, the rest of
the proof of M-stationarity under MPCC-GCQ will not be particularly surprising for readers familiar
with the implications of MPCC-GCQ. For the convenience of the reader we give a self-contained
presentation, which only requires familiarity with the basic theory of nonlinear optimization. Since the
constraint qualication in [8, (6)] is the weakest constraint qualication under which local minimizers
are M-stationary, the new proof also leads to a completely elementary proof that MPCC-GCQ implies
[8, (6)].
The structure of this paper is as follows: In Section 2, we introduce classical denitions related

to MPCCs. Then we use MPCC-GCQ to construct various multipliers that satisfy some auxiliary
stationarity systems, see Proposition 3.1. Afterwards, these multipliers are combined into a multiplier
which is M-stationary with the help of Lemma 3.2. The main result is then stated in Theorem 3.3.
Finally, we discuss conclusions and perspectives in Section 4.

2 definitions

It will be convenient to work with the index sets

𝐼 𝑙 := {1, . . . , 𝑙}, 𝐼𝑚 := {1, . . . ,𝑚}, 𝐼𝑝 := {1, . . . , 𝑝},
𝐼𝑔 (𝑥) := {𝑖 ∈ 𝐼 𝑙 | 𝑔𝑖 (𝑥) = 0},
𝐼+0(𝑥) := {𝑖 ∈ 𝐼𝑝 |𝐺𝑖 (𝑥) > 0 ∧ 𝐻𝑖 (𝑥) = 0},
𝐼 0+(𝑥) := {𝑖 ∈ 𝐼𝑝 |𝐺𝑖 (𝑥) = 0 ∧ 𝐻𝑖 (𝑥) > 0},
𝐼 00(𝑥) := {𝑖 ∈ 𝐼𝑝 |𝐺𝑖 (𝑥) = 0 ∧ 𝐻𝑖 (𝑥) = 0},

where 𝑥 ∈ ℝ𝑛 is a feasible point of (MPCC). Note that 𝐼+0(𝑥), 𝐼 0+(𝑥), 𝐼 00(𝑥) form a partition of 𝐼𝑝 . We
continue with the denition of M-, A- and S-stationarity.
Definition 2.1. Let 𝑥 ∈ ℝ𝑛 be a feasible point of (MPCC). We call 𝑥 an M-stationary point of (MPCC) if
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there exist multipliers 𝜆 ∈ ℝ𝑙 , 𝜂 ∈ ℝ𝑚 , 𝜇, 𝜈 ∈ ℝ𝑝 with

∇𝑓 (𝑥) +
∑︁
𝑖∈𝐼 𝑙

𝜆𝑖∇𝑔𝑖 (𝑥) +
∑︁
𝑖∈𝐼𝑚

𝜂𝑖∇ℎ𝑖 (𝑥) −
∑︁
𝑖∈𝐼𝑝

(
𝜇𝑖∇𝐺𝑖 (𝑥) + 𝜈𝑖∇𝐻𝑖 (𝑥)

)
= 0,(2.1a)

∀𝑖 ∈ 𝐼𝑔 (𝑥) : 𝜆𝑖 ≥ 0,(2.1b)
∀𝑖 ∈ 𝐼 𝑙 \ 𝐼𝑔 (𝑥) : 𝜆𝑖 = 0,(2.1c)
∀𝑖 ∈ 𝐼+0(𝑥) : 𝜇𝑖 = 0,(2.1d)
∀𝑖 ∈ 𝐼 0+(𝑥) : 𝜈𝑖 = 0,(2.1e)
∀𝑖 ∈ 𝐼 00(𝑥) : (𝜇𝑖 > 0 ∧ 𝜈𝑖 > 0) ∨ 𝜇𝑖𝜈𝑖 = 0.(2.1f)

If the multipliers 𝜆, 𝜂, 𝜇, 𝜈 only satisfy (2.1a)–(2.1e) and 𝜇𝑖 ≥ 0 ∨ 𝜈𝑖 ≥ 0 holds for all 𝑖 ∈ 𝐼 00(𝑥), then 𝑥 is
called an A-stationary point of (MPCC). If, additionally, 𝜇𝑖 ≥ 0 ∧ 𝜈𝑖 ≥ 0 holds for all 𝑖 ∈ 𝐼 00(𝑥), then 𝑥

is called a strongly stationary or S-stationary point of (MPCC).
These stationarity conditions can be found in [13, Denitions 2.5–2.7]. Other known stationarity

conditions B-, W- and C-stationarity, see [13, Denitions 2.2–2.4].
In preparation for the denition of MPCC-GCQ we dene some cones.

Definition 2.2. Let 𝑥 ∈ ℝ𝑛 be a feasible point of (MPCC).
(a) We dene the tangent cone of (MPCC) at 𝑥 via

T (𝑥) :=
{
𝑑 ∈ ℝ𝑛

����� ∃{𝑥𝑘 }𝑘∈ℕ ⊂ 𝐹, ∃{𝑡𝑘 }𝑘∈ℕ ⊂ (0,∞) :
𝑥𝑘 → 𝑥, 𝑡𝑘 ↓ 0, 𝑡−1

𝑘
(𝑥𝑘 − 𝑥) → 𝑑

}
,

where 𝐹 ⊂ ℝ𝑛 denotes the feasible set of (MPCC).
(b) We dene the MPCC-linearized tangent cone T lin

MPCC(𝑥) ⊂ ℝ𝑛 at 𝑥 via

T lin
MPCC(𝑥) :=


𝑑 ∈ ℝ𝑛

�����������������

∇𝑔𝑖 (𝑥)>𝑑 ≤ 0 ∀𝑖 ∈ 𝐼𝑔 (𝑥),
∇ℎ𝑖 (𝑥)>𝑑 = 0 ∀𝑖 ∈ 𝐼𝑚,

∇𝐺𝑖 (𝑥)>𝑑 = 0 ∀𝑖 ∈ 𝐼 0+(𝑥),
∇𝐻𝑖 (𝑥)>𝑑 = 0 ∀𝑖 ∈ 𝐼+0(𝑥),
∇𝐺𝑖 (𝑥)>𝑑 ≥ 0 ∀𝑖 ∈ 𝐼 00(𝑥),
∇𝐻𝑖 (𝑥)>𝑑 ≥ 0 ∀𝑖 ∈ 𝐼 00(𝑥),

(∇𝐺𝑖 (𝑥)>𝑑) (∇𝐻𝑖 (𝑥)>𝑑) = 0 ∀𝑖 ∈ 𝐼 00(𝑥)


.

Note that in general T (𝑥) and T lin
MPCC(𝑥) are nonconvex cones.

We also recall that the polar cone 𝐶◦ of a set 𝐶 ⊂ ℝ𝑛 is dened via

𝐶◦ := {𝑑 ∈ ℝ𝑛 | 𝑑>𝑦 ≤ 0 ∀𝑦 ∈ 𝐶}.

Now we are ready to give the denition of MPCC-GCQ, which can also be found in [5, (41)], where it
is called MPEC-GCQ.
Definition 2.3. Let 𝑥 ∈ ℝ𝑛 be a feasible point of (MPCC). We say that 𝑥 satises the MPCC-tailored
Guignard constraint qualication, or MPCC-GCQ, if

T (𝑥)◦ = T lin
MPCC(𝑥)◦

holds. Additionally, if T (𝑥) = T lin
MPCC(𝑥) holds then we say that 𝑥 satises MPCC-ACQ.

Clearly, MPCC-ACQ implies MPCC-GCQ. We mention that there are also other stronger constraint
qualications (such as MPCC-MFCQ if 𝑔, ℎ, 𝐺 , 𝐻 are continuously dierentiable, dened in [3, De-
nition 2.1]) which imply MPCC-ACQ or MPCC-GCQ and are sometimes easier to verify, see e.g. [13,
Theorem 3.2]. In particular, we emphasize that MPCC-GCQ (and MPCC-ACQ) are satised at every
feasible point of (MPCC) if the functions 𝑔, ℎ, 𝐺 , 𝐻 are ane, see [3, Theorem 3.2].
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3 m-stationarity under mpcc-gcq

We start with a proposition that generates several multipliers which satisfy a slightly stronger station-
arity condition than A-stationarity. The result can also be obtained from the proof of [3, Theorem 3.4],
with the minor dierence that we only require MPCC-GCQ and not MPCC-ACQ.
Proposition 3.1. Let 𝑥 ∈ ℝ𝑛 be a local minimizer of (MPCC) that satises MPCC-GCQ and let 𝛼 ∈ {1, 2}𝑝
be given. Then there exist multipliers 𝜆𝛼 ∈ ℝ𝑙 , 𝜂𝛼 ∈ ℝ𝑚 , 𝜇𝛼 , 𝜈𝛼 ∈ ℝ𝑝 with

∇𝑓 (𝑥) +
∑︁
𝑖∈𝐼 𝑙

𝜆𝛼𝑖 ∇𝑔𝑖 (𝑥) +
∑︁
𝑖∈𝐼𝑚

𝜂𝛼𝑖 ∇ℎ𝑖 (𝑥) −
∑︁
𝑖∈𝐼𝑝

(
𝜇𝛼𝑖 ∇𝐺𝑖 (𝑥) + 𝜈𝛼𝑖 ∇𝐻𝑖 (𝑥)

)
= 0,(3.1a)

∀𝑖 ∈ 𝐼𝑔 (𝑥) : 𝜆𝛼𝑖 ≥ 0,(3.1b)
∀𝑖 ∈ 𝐼 𝑙 \ 𝐼𝑔 (𝑥) : 𝜆𝛼𝑖 = 0,(3.1c)
∀𝑖 ∈ 𝐼+0(𝑥) : 𝜇𝛼𝑖 = 0,(3.1d)
∀𝑖 ∈ 𝐼 0+(𝑥) : 𝜈𝛼𝑖 = 0,(3.1e)
∀𝑖 ∈ 𝐼 00(𝑥), 𝛼𝑖 = 1 : 𝜇𝛼𝑖 ≥ 0,(3.1f)
∀𝑖 ∈ 𝐼 00(𝑥), 𝛼𝑖 = 2 : 𝜈𝛼𝑖 ≥ 0.(3.1g)

Proof. From Denition 2.2 (a) and the fact that 𝑥 is a local minimizer of (MPCC) it can be concluded
that the condition

∇𝑓 (𝑥)>𝑑 ≥ 0 ∀𝑑 ∈ T (𝑥)

is satised. Using polar cones and MPCC-GCQ, we obtain

−∇𝑓 (𝑥) ∈ T (𝑥)◦ = T lin
MPCC(𝑥)◦.

Furthermore, we dene the cone T lin
NLP(𝛼) (𝑥) ⊂ T lin

MPCC(𝑥) via

T lin
NLP(𝛼) (𝑥) :=

{
𝑑 ∈ T lin

MPCC(𝑥)
����� (𝛼𝑖 = 1 ⇒ ∇𝐻𝑖 (𝑥)>𝑑 = 0) ∀𝑖 ∈ 𝐼 00(𝑥),
(𝛼𝑖 = 2 ⇒ ∇𝐺𝑖 (𝑥)>𝑑 = 0) ∀𝑖 ∈ 𝐼 00(𝑥)

}
.

Using the denition of polar cones, the inclusion T lin
MPCC(𝑥)◦ ⊂ T lin

NLP(𝛼) (𝑥)
◦ follows from T lin

NLP(𝛼) (𝑥) ⊂
T lin
MPCC(𝑥). In particular,we have−∇𝑓 (𝑥) ∈ T lin

NLP(𝛼) (𝑥)
◦. Note that the condition (∇𝐺𝑖 (𝑥)>𝑑) (∇𝐻𝑖 (𝑥)>𝑑) =

0 ∀𝑖 ∈ 𝐼 00(𝑥) from T lin
MPCC(𝑥) is redundant in T lin

NLP(𝛼) (𝑥), and therefore T lin
NLP(𝛼) (𝑥) is a convex and

polyhedral cone (unlike T lin
MPCC(𝑥)). Thus, one can calculate its polar cone (e.g. using Farkas’ Lemma),

which results in

T lin
NLP(𝛼) (𝑥)

◦ =



∑︁
𝑖∈𝐼𝑔 (𝑥)

𝜆𝛼𝑖 ∇𝑔𝑖 (𝑥) +
∑︁
𝑖∈𝐼𝑚

𝜂𝛼𝑖 ∇ℎ𝑖 (𝑥)

−
∑︁

𝑖∈𝐼 0+ (𝑥)∪𝐼 00 (𝑥)
𝜇𝛼𝑖 ∇𝐺𝑖 (𝑥)

−
∑︁

𝑖∈𝐼+0 (𝑥)∪𝐼 00 (𝑥)
𝜈𝛼𝑖 ∇𝐻𝑖 (𝑥)

��������������

𝜆𝛼𝑖 ≥ 0, 𝑖 ∈ 𝐼𝑔 (𝑥),
𝜂𝛼𝑖 ∈ ℝ, 𝑖 ∈ 𝐼𝑚,

𝜇𝛼𝑖 ∈ ℝ, 𝑖 ∈ 𝐼 0+(𝑥) ∪ 𝐼 00(𝑥),
𝜈𝛼𝑖 ∈ ℝ, 𝑖 ∈ 𝐼+0(𝑥) ∪ 𝐼 00(𝑥),
𝜇𝛼𝑖 ≥ 0, if 𝛼𝑖 = 1, 𝑖 ∈ 𝐼 00(𝑥),
𝜈𝛼𝑖 ≥ 0, if 𝛼𝑖 = 2, 𝑖 ∈ 𝐼 00(𝑥)


.

Then the result follows from −∇𝑓 (𝑥) ∈ T lin
NLP(𝛼) (𝑥)

◦ by setting the remaining components of the
multipliers (i.e. 𝜆𝛼

𝑖
for 𝑖 ∈ 𝐼𝑝 \ 𝐼𝑔 (𝑥), 𝜇𝛼

𝑖
for 𝑖 ∈ 𝐼+0(𝑥), 𝜈𝛼

𝑖
for 𝑖 ∈ 𝐼 0+(𝑥)) to zero. �

We mention that if 𝑥 satises (3.1) for some 𝛼 ∈ {1, 2}𝑝 and suitable multipliers, then 𝑥 is an A-
stationary point of (MPCC). However, the statement of Proposition 3.1 is stronger than A-stationarity,
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namely for each index in 𝐼 00(𝑥) we can choose whether 𝜇𝛼
𝑖
or 𝜈𝛼

𝑖
is nonnegative. Note that (2.1a)–(2.1e)

are already satised by all 2𝑝 possible choices for the multipliers and any convex combination of these.
Thus, the question naturally arises whether a convex combination of these multipliers can be found
that also satises (2.1f). As the next result shows, this is indeed possible. The following lemma was
already stated as a conjecture in [12, Section 4.4.2]. To the best of our knowledge, this conjecture has
not been proven before.
Lemma 3.2. Let 𝐼 ⊂ 𝐼𝑝 be an index set. For all 𝛼 ∈ {1, 2}𝑝 , let points (𝜇𝛼 , 𝜈𝛼 ) ∈ 𝐴𝛼 be given, where the set
𝐴𝛼 is described via

𝐴𝛼 := {(𝜇, 𝜈) ∈ ℝ2𝑝 | 𝜇𝑖 ≥ 0 if 𝛼𝑖 = 1, 𝜈𝑖 ≥ 0 if 𝛼𝑖 = 2 ∀𝑖 ∈ 𝐼 }.

Then there exists a point (𝜇, 𝜈) in the set

𝐵 := conv
{
(𝜇𝛼 , 𝜈𝛼 )

�� 𝛼 ∈ {1, 2}𝑝
}
⊂ ℝ2𝑝

of convex combinations of these points, such that for all 𝑖 ∈ 𝐼 we have the condition

(3.2) (𝜇𝑖 > 0 ∧ 𝜈𝑖 > 0) ∨ 𝜇𝑖𝜈𝑖 = 0.

Proof. Let us choose points (𝜇𝛼 , 𝜈𝛼 ) ∈ 𝐵 ∩𝐴𝛼 , a vector 𝛽 ∈ {1, 2}𝑝 , and points 𝜇, 𝜈 ∈ ℝ𝑝 that satisfy

(𝜇𝛼 , 𝜈𝛼 ) ∈ argmin
(𝜇,𝜈) ∈𝐵∩𝐴𝛼

‖(𝜇, 𝜈)‖22 ∀𝛼 ∈ {1, 2}𝑝 ,(3.3)

𝛽 ∈ argmax
𝛼 ∈{1,2}𝑝

‖(𝜇𝛼 , 𝜈𝛼 )‖22,(3.4)

(𝜇, 𝜈) := (𝜇𝛽 , 𝜈𝛽 ) ∈ ℝ2𝑝 .(3.5)

These choices are possible because the sets 𝐵∩𝐴𝛼 is compact and nonempty (the nonemptiness follows
from (𝜇𝛼 , 𝜈𝛼 ) ∈ 𝐵 ∩𝐴𝛼 ) and the set {1, 2}𝑝 is nite. Furthermore, we have (𝜇, 𝜈) ∈ 𝐵, i.e. it is a convex
combination as claimed.
It remains to show that our choice (𝜇𝛽 , 𝜈𝛽 ) for (𝜇, 𝜈) satises (3.2). By contradiction, we assume

that there exists an 𝑖 ∈ 𝐼 such that (3.2) is not satised, i.e. 𝜇𝛽
𝑖
≠ 0, 𝜈𝛽

𝑖
≠ 0, and 𝜇

𝛽

𝑖
< 0 ∨ 𝜈

𝛽

𝑖
< 0 hold.

Without loss of generality we can assume that 𝛽𝑖 = 1 holds (otherwise one would exchange the roles
of 𝜇 and 𝜈 in the rest of the proof). Therefore, we have 𝜇𝛽

𝑖
≥ 0 due to (𝜇𝛽 , 𝜈𝛽 ) ∈ 𝐴𝛽 . Since (3.2) is not

satised this implies 𝜇𝛽
𝑖
> 0 and 𝜈𝛽

𝑖
< 0. We dene

𝛾 ∈ {1, 2}𝑝 , 𝛾 𝑗 :=
{
2 if 𝑗 = 𝑖,

𝛽 𝑗 if 𝑗 ∈ 𝐼𝑝 \ {𝑖}
∀𝑗 ∈ 𝐼𝑝 .

Due to 𝜇
𝛽

𝑖
> 0 we can choose 𝑡 ∈ (0, 1) such that the convex combination

(𝜇𝑡 , 𝜈𝑡 ) := 𝑡 (𝜇𝛾 , 𝜈𝛾 ) + (1 − 𝑡) (𝜇𝛽 , 𝜈𝛽 ) ∈ ℝ2𝑝

still satises 𝜇𝑡𝑖 > 0. Since 𝛾 𝑗 = 𝛽 𝑗 holds for 𝑗 ≠ 𝑖 we also have (𝜇𝑡 , 𝜈𝑡 ) ∈ 𝐴𝛽 ∩ 𝐵. However, 𝜈𝛾
𝑖
≥ 0

implies (𝜇𝛽 , 𝜈𝛽 ) ≠ (𝜇𝛾 , 𝜈𝛾 ). Thus, by also using (3.4), we have

‖(𝜇𝑡 , 𝜈𝑡 )‖22 < max
{
‖(𝜇𝛽 , 𝜈𝛽 )‖22, ‖(𝜇𝛾 , 𝜈𝛾 )‖22

}
= ‖(𝜇𝛽 , 𝜈𝛽 )‖22.

Due to (𝜇𝑡 , 𝜈𝑡 ) ∈ 𝐵 ∩𝐴𝛽 this is a contradiction to (3.3), which completes the proof. �
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Instead of the function (𝜇, 𝜈) ↦→ ‖(𝜇, 𝜈)‖22, any strictly convex function on ℝ2𝑝 would have worked
in the proof.

We mention that it was recognized already in [12, Section 4.4.2] that this lemma would signicantly
simplify the already existing proofs for M-stationarity. We further mention that the idea to combine
various multipliers of the form (𝜇𝛼 , 𝜈𝛼 ) was also used for the concept of Q-stationarity in [1].

A straightforward combination of Proposition 3.1 and Lemma 3.2 yields the desired M-stationarity
result.
Theorem 3.3. Let 𝑥 ∈ ℝ𝑛 be a local minimizer of (MPCC) that satises MPCC-GCQ. Then 𝑥 is an
M-stationary point.

Proof. For all 𝛼 ∈ {1, 2}𝑝 , let (𝜆𝛼 , 𝜂𝛼 , 𝜇𝛼 , 𝜈𝛼 ) ∈ ℝ𝑙+𝑚+2𝑝 be the multipliers generated by Proposition 3.1.
By applying Lemma 3.2 with 𝐼 = 𝐼 00(𝑥), we nd a convex combination (𝜆, 𝜂, 𝜇, 𝜈) ∈ ℝ𝑙+𝑚+2𝑝 of
these multipliers such that (2.1f) is satised. The conditions (2.1a)–(2.1e) follow from (3.1a)–(3.1e) by
convexity. �

4 conclusion and outlook

We provided a new proof for the M-stationarity of local minimizers of MPCCs under MPCC-GCQ.
Although this result was already known, the new proof uses only basic and well-known tools from
nonlinear programming theory. This new elementary proof for M-stationarity was enabled by proving
a (to the best of our knowledge previously open) conjecture from [12] in Lemma 3.2.
In the future, it would also be interesting to apply this approach to other problem classes from

disjunctive programming and to investigate to what extend the ideas from this paper can be generalized.
In Sobolev or Lebesgue spaces, the limiting normal cone turned out to be not as eective as in nite

dimensional spaces for obtaining stationarity conditions for complementarity-type optimization prob-
lems, see [9, 10]. Thus, it would be interesting to know whether the new elementary method from this
paper can provide ideas for possible approaches for better stationarity conditions of complementarity-
type optimization problems in Sobolev and Lebesgue spaces.
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