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inexact and stochastic generalized conditional
gradient with augmented lagrangian and proximal

step

Antonio Silveti-Falls∗ Cesare Molinari∗ Jalal Fadili∗

Abstract In this paper we propose and analyze inexact and stochastic versions of the CGALP

algorithm developed in [34], which we denote ICGALP , that allow for errors in the computation

of several important quantities. In particular this allows one to compute some gradients, proximal

terms, and/or linear minimization oracles in an inexact fashion that facilitates the practical appli-

cation of the algorithm to computationally intensive settings, e.g., in high (or possibly infinite)

dimensional Hilbert spaces commonly found in machine learning problems. The algorithm is

able to solve composite minimization problems involving the sum of three convex proper lower-

semicontinuous functions subject to an affine constraint of the form 𝐴𝑥 = 𝑏 for some bounded

linear operator 𝐴. Only one of the functions in the objective is assumed to be differentiable, the

other two are assumed to have an accessible proximal operator and a linear minimization oracle.

As main results, we show convergence of the Lagrangian values (so-called convergence in the

Bregman sense) and asymptotic feasibility of the affine constraint as well as strong convergence of

the sequence of dual variables to a solution of the dual problem, in an almost sure sense. Almost

sure convergence rates are given for the Lagrangian values and the feasibility gap for the ergodic

primal variables. Rates in expectation are given for the Lagrangian values and the feasibility gap

subsequentially in the pointwise sense. Numerical experiments verifying the predicted rates of

convergence are shown as well.

1 introduction

1.1 problem statement

We consider the following composite minimization problem,

(𝒫) min

𝑥 ∈H𝑝

{𝑓 (𝑥) + 𝑔 (𝑇𝑥) + ℎ (𝑥) : 𝐴𝑥 = 𝑏} ,

and its associated dual problem,

(𝒟) min

𝜇∈H𝑑

(𝑓 + 𝑔 ◦𝑇 + ℎ)∗ (−𝐴∗𝜇) + ⟨𝜇, 𝑏⟩ ,

where we have denoted by ∗ both the Legendre-Fenchel conjugate and the adjoint operator, to be

understood from context. We considerH𝑝 ,H𝑑 , andH𝑣 to be arbitrary real Hilbert spaces, possibly

infinite-dimensional, whose indices correspond to a primal, dual, and auxiliary space, respectively;
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𝐴 : H𝑝 →H𝑑 and𝑇 : H𝑝 →H𝑣 to be bounded linear operators with 𝑏 ∈ ran(𝐴); functions 𝑓 , 𝑔, and ℎ
to all be convex, closed, and proper real-valued functions. Additionally, we will assume that the function

𝑓 satisfies a certain differentiability condition generalizing Lipschitz-smoothness, Hölder-smoothness,

etc (see Definition 2.7), that the function 𝑔 has a proximal mapping which is accessible, and that the

function ℎ admits an accessible linearly-perturbed minimization oracle with C def

= dom (ℎ) a weakly
compact subset ofH𝑝 .

In fact, the problem under consideration here is exactly the same as that of [34], however, in this

work, we consider an inexact extension of the algorithm presented and analyzed in [34] to solve (𝒫).

The extension amounts to allowing either deterministic or stochastic errors in the computation of

several quantities, including the gradient or proximal terms, e.g. ∇𝑓 , prox𝛽𝑔, and the linearminimization

oracle itself.

1.2 contribution and prior work

The primary contribution of this work is to analyze inexact and stochastic variants of the CGALP

algorithm presented in [34] to address (𝒫). We coin this algorithm Inexact Conditional Gradient with
Augmented Lagrangian and Proximal-step (ICGALP ). Although there has been a great deal of work on

developing and analyzing Frank-Wolfe or conditional gradient style algorithms,first studied in the 1950’s

in [17] and later in [24], in both the stochastic and deterministic case, e.g. [20, 21, 32, 18, 16, 35, 27, 19],

or [26], little to no work has been done to analyze the generalized version of these algorithms for

nonsmooth problems or problems involving an affine constraint, as we consider here. To the best of our

knowledge, the only such work is [25], where the authors consider a stochastic conditional gradient

algorithm applied to a composite problem of the form

min

𝑥 ∈X⊂ℝ𝑛
𝔼 [𝑓 (𝑥, 𝜂)] + 𝑔 (𝐴𝑥)

where the expectation is over the random variable 𝜂 and with 𝑔 possibly nonsmooth. The nonsmooth

term is possibly an affine constraint but, in such cases, it is addressed through smoothing rather than

through an augmented Lagrangian with a dual variable, in contrast to our work. They consider only

finite-dimensional problems and their problem formulation doesn’t allow for inexactness with respect

to 𝑔.

We show asymptotic feasibility of the primal iterates for the affine constraint, convergence of the

Lagrangian values at each iteration to an optimum value, strong convergence of the sequence of dual

iterates, and provide worst-case rates of convergence for the feasibility gap and the Lagrangian values;

all these results are in an almost sure sense. The rates of convergence for both the Lagrangian and the

feasibility gap are given globally, i.e., for the entire sequence of iterates, in the ergodic sense where the

Cesáro means are taken with respect to the primal step size, in an almost sure sense. We also show

rates in expectation which hold pointwise but subsequentially. In the case where (𝒫) admits a unique

solution, we furthermore have that the sequence of primal iterates converges weakly to the solution

almost surely. These results are established for a family of parameters satisfying abstract open loop

conditions, i.e. sequences of parameters which do not depend on the iterates themselves. We exemplify

the framework on problem instances involving a smooth risk minimization where the gradient is

computed inexactly either with stochastic noise or a deterministic error. In the stochastic case, we

show that our conditions outlined in Section 3 for convergence are satisfied via increasing batch size or

variance reduction. In the deterministic setting for minimizing an empirical risk, a sweeping approach

is described.

1.3 motivation

Conditional gradientmethods have seen increased interest in the last decade, due to their applicability to

solving a large variety of problems, in particular in large-scale signal/image processing and statistical
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learning. A chief advantage of conditional gradient is its ability to take advantage of the atomic

structure of the set (or level sets of the function) that come into play, and they can do so for problems

posed even in an infinite-dimensional setting. Besides this, conditional gradient methods offer an

alternative to projecting onto a closed convex set in constrained optimization by instead utilizing a

linear minimization oracle (lmo). The difference in complexity for these two operations depends on

the set in question; a survey comparing the two for sets commonly found in practice can be found

in [11]. Note that for some constraint sets, projection may not be even possible in closed form while

solving a linear minimization oracle is. One of the main motivations behind this work is to be able to

handle composite problems where not only one atomic constraint set is involved, but finitely many of

them. There are many problems in data processing and/or machine learning where such situation is

encountered, typically when one uses several regularizers or constraints in a variational formulation

(e.g., recover a sparse low rank matrix). We are also motivated by composite problems where it is

favourable to hybridize conditional gradient involving an lmo step on some (or several) atomic set,

and a proximal/projection step on another set; see [10] where the constraint is the intersection of

the semidefinite positive cone and the set of Toeplitz matrices to solve a semidefinite relaxation of

the Beurling lasso [15]. Our interest in the infinite-dimensional setting is motivated by the ability of

conditional gradient type algorithms to handle infinite-dimensional problems, most notably sparse

inverse problems [7], the Beurling lasso [15] to recover sparse Radonmeasures, training neural networks

with one hidden layer [4, 14], and optimal transport problems [8]. In the latter instances, the problems

are posed over infinite dimensional nonreflexive Banach spaces, a nontrivial endeavor. In this sense,

our work can be seen as an important intermediary step towards this goal, with proofs that provide

insight to how the infinite-dimensional case might be handled.

1.4 organization

The remainder of the paper is divided into four sections. In Section 2 the necessary notation and prior

results are recalled, consisting primarily of convex analysis, real analysis, and elementary probability. In

Section 3 the assumptions on the problem structure and the parameters are noted, the ICGALP algorithm

itself is presented. In Section 4, the main results, e.g. feasibility, Lagrangian convergence, and rates, are

established. The analysis and results are far-reaching extensions of those in [34] to the inexact and

stochastic setting, and require quite delicate new arguments. In Section 5 and Section 6, we consider

different problem instances where inexact deterministic or stochastic computations are involved.

Numerical results are reported in Section 7 to support our theoretical findings. Finally, in Section 8, we

summarize the work and provide some closing remarks.

2 notation and preliminaries

Many of the following notations for probabilistic concepts are adopted from [13]. A sequence (𝑥𝑘 )𝑘∈ℕ ∈
Hℕ

will be called strongly convergent to 𝑥 ∈ H , denoted 𝑥𝑘 → 𝑥 , iff ∥𝑥𝑘 − 𝑥 ∥ → 0; it will be

called weakly convergent to 𝑥 ∈ H , denoted 𝑥𝑘 ⇀ 𝑥 , iff, for any 𝑢 ∈ H , ⟨𝑥𝑘 , 𝑢⟩ → ⟨𝑥,𝑢⟩ . We

denote by (Ω, F ,ℙ) a probability space with set of events Ω, 𝜎-algebra F , and probability measure

ℙ. When discussing random variables we will assume that any Hilbert space H is endowed with

the Borel 𝜎-algebra, B (H). We denote a filtration by𝔉 = (ℱ𝑘 )𝑘∈ℕ, i.e. a sequence of sub-𝜎-algebras
which satisfies ℱ𝑘 ⊂ ℱ𝑘+1 for all 𝑘 ∈ ℕ. Given a set of random variables {𝑎0, . . . , 𝑎𝑛}, we denote

by 𝜎 (𝑎0, . . . , 𝑎𝑛) the 𝜎-algebra generated by 𝑎0, . . . , 𝑎𝑛 . An expression (𝑃) is said to hold (ℙ-a.s.) if
ℙ ({𝜔 ∈ Ω : (𝑃) holds}) = 1. Throughout the paper, both equalities and inequalities involving random

quantities should be understood as holding ℙ-almost surely, whether or not it is explicitly written.
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Definition 2.1. Given a filtration𝔉, we denote by ℓ+ (𝔉) the set of sequences of [0, +∞[-valued random

variables (𝑎𝑘 )𝑘∈ℕ such that, for each 𝑘 ∈ ℕ, 𝑎𝑘 isℱ𝑘 measurable. Then, we also define the following

set,

ℓ 1

+ (𝔉)
def

=

{
(𝑎𝑘 )𝑘∈ℕ ∈ ℓ+ (𝔉) :

∑︁
𝑘∈ℕ

𝑎𝑘 < +∞ (ℙ-a.s.)
}

Lemma 2.2. Given a filtration𝔉 and the sequences of random variables (𝑟𝑘 )𝑘∈ℕ ∈ ℓ+ (𝔉), (𝑎𝑘 )𝑘∈ℕ ∈ ℓ+ (𝔉),
and (𝑧𝑘 )𝑘∈ℕ ∈ ℓ 1

+ (𝔉) satisfying,

𝔼 [𝑟𝑘+1 | ℱ𝑘 ] − 𝑟𝑘 ≤ −𝑎𝑘 + 𝑧𝑘 (ℙ-a.s.)

then (𝑎𝑘 )𝑘∈ℕ ∈ ℓ 1

+ (𝔉) and (𝑟𝑘 )𝑘∈ℕ converges (ℙ-a.s.) to a random variable with value in [0, +∞[.

Proof. See [33, Theorem 1]. □

Lemma 2.3. Given a filtration𝔉 and a sequence of random variables (𝑤𝑘 )𝑘∈ℕ ∈ ℓ+ (𝔉) and a sequence of
real numbers (𝛾𝑘 )𝑘∈ℕ ∈ ℓ+ such that (𝛾𝑘𝑤𝑘 )𝑘∈ℕ ∈ ℓ 1

+ (𝔉) and (𝛾𝑘 )𝑘∈ℕ ∉ ℓ 1, then:

(i) There exists a subsequence
(
𝑤𝑘 𝑗

)
𝑗 ∈ℕ

such that lim inf𝑘 𝑤𝑘 = 0 (ℙ-a.s.) ,

(ii) Furthermore, if there exists a constant 𝛼 > 0 such that 𝑤𝑘 − 𝔼 [𝑤𝑘+1 | ℱ𝑘 ] ≤ 𝛼𝛾𝑘 (ℙ-a.s.) for
every 𝑘 ∈ ℕ, then

lim

𝑘
𝑤𝑘 = 0 (ℙ-a.s.) .

Proof. The second result is directly from [5, Lemma 2.2] and the first follows from [1] trivially extended

to the stochastic setting. □

Lemma 2.4. Consider the real sequences (𝑟𝑘 )𝑘∈ℕ ∈ ℓ+, (𝑝𝑘 )𝑘∈ℕ ∈ ℓ+, (𝑤𝑘 )𝑘∈ℕ ∈ ℓ+, and (𝑧𝑘 )𝑘∈ℕ ∈ ℓ 1

+.
Suppose further that (𝑝𝑘 )𝑘∈ℕ ∉ ℓ 1 and that, for some 𝛼 > 0, the following inequalities are satisfied for
every 𝑘 ∈ ℕ:

(2.1)

{
𝑟𝑘+1 ≤ 𝑟𝑘 − 𝑝𝑘𝑤𝑘 + 𝑧𝑘 ;

𝑤𝑘 −𝑤𝑘+1 ≤ 𝛼𝑝𝑘 .

Then,

(i) (𝑟𝑘 )𝑘∈ℕ is convergent and (𝑝𝑘𝑤𝑘 )𝑘∈ℕ ∈ ℓ 1

+.

(ii) lim𝑘 𝑤𝑘 = 0.

(iii) For every 𝑘 ∈ ℕ, inf 1≤𝑖≤𝑘 𝑤𝑖 ≤ (𝑟0 + 𝐸)/𝑃𝑘 , where, again, 𝑃𝑛 =
∑𝑛

𝑘=1
𝑝𝑘 and 𝐸 =

∑+∞
𝑘=1

𝑧𝑘 .

(iv) There exists a subsequence
(
𝑤𝑘 𝑗

)
𝑗 ∈ℕ

such that, for all 𝑗 ∈ ℕ,𝑤𝑘 𝑗
≤ 𝑃−1

𝑘 𝑗
.

Proof. See [1] for the proof. □

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .



J. Nonsmooth Anal. Optim. 2 (2021), 6480 page 5 of 41

We denote by Γ0 (H) the set of proper, convex, and lower semi-continuous functions 𝑓 : H →
ℝ ∪ {+∞}. We also consider the domain of a function 𝑓 to be dom (𝑓 ) def

= {𝑥 ∈ H : 𝑓 (𝑥) < +∞} and
the Legendre-Fenchel conjugate of 𝑓 to be the function 𝑓 ∗ : H → ℝ ∪ {+∞} such that, ∀𝑦 ∈ H ,

𝑓 ∗ (𝑦) def

= sup

𝑥 ∈H

{
⟨𝑦, 𝑥⟩ − 𝑓 (𝑥)

}
.

Throughout, differentiability will be intended in Fréchet sense, and we denote ∇𝑓 the (Fréchet) gradient
of a differentiable function 𝑓 . The proximal mapping (or proximal operator) associated to the function

𝑓 with parameter 𝛽 is given by

prox𝛽 𝑓 (𝑥)
def

= argmin

𝑦∈H

{
𝑓 (𝑦) + 1

2𝛽
∥𝑥 − 𝑦 ∥2

}
.

The following elementary result from convex analysis regarding proximal mappings will be used in

the proof of optimality.

Proposition 2.5. Let 𝑓 ∈ Γ0 (H) and denote 𝑥+ = prox𝑓 (𝑥). Then, for all 𝑦 ∈ H ,

2

(
𝑓

(
𝑥+

)
− 𝑓 (𝑥)

)
+



𝑥+ − 𝑦

2 − ∥𝑥 − 𝑦 ∥2 +


𝑥+ − 𝑥

2 ≤ 0.

Proof. The result is classical and the proof is readily available, e.g. in [30, Chapter 6.2.1]. □

The subdifferential of a function 𝑓 is the set-valued operator 𝜕𝑓 : H → 2
H
such that, for every

𝑥 ∈ H ,

(2.2) 𝜕𝑓 (𝑥) def

=
{
𝑢 ∈ H : 𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝑢, 𝑦 − 𝑥⟩ ∀𝑦 ∈ H

}
We denote dom (𝜕𝑓 ) def

= {𝑥 ∈ H : 𝜕𝑓 (𝑥) ≠ ∅} as the domain of the subdifferential. For 𝑥 ∈ dom (𝜕𝑓 ), the
minimal norm selection of 𝜕𝑓 (𝑥) is denoted by [𝜕𝑓 (𝑥)]0 def

= argmin𝑦∈𝜕𝑓 (𝑥) ∥𝑦 ∥ . The Moreau envelope
of the function 𝑓 with parameter 𝛽 is given by,

𝑓 𝛽 (𝑥) def

= inf

𝑦∈H

{
𝑓 (𝑦) + 1

2𝛽
∥𝑥 − 𝑦 ∥2

}
.

The following proposition recalls some key properties of the Moreau envelope which we will utilize in

the analysis of the algorithm.

Proposition 2.6 (Moreau envelope properties). Given a function 𝑓 ∈ Γ0 (H), the following holds:

(i) The Moreau envelope, 𝑓 𝛽 , is convex, real-valued, and continuous.

(ii) Lax-Hopf formula: the Moreau envelope is the viscosity solution to the following Hamilton Jacobi
equation:

(2.3)

{
𝜕
𝜕𝛽
𝑓 𝛽 (𝑥) = − 1

2



∇𝑓 𝛽 (𝑥)

2 (𝑥, 𝛽) ∈ H × (0, +∞)
𝑓 0 (𝑥) = 𝑓 (𝑥) 𝑥 ∈ H .

(iii) The gradient of the Moreau envelope, ∇𝑓 𝛽 , is 1

𝛽
-Lipschitz continuous and is given by the expression

∇𝑓 𝛽 (𝑥) =
𝑥 − prox𝛽 𝑓 (𝑥)

𝛽
.

(iv) ∀𝑥 ∈ dom(𝜕𝑓 ),


∇𝑓 𝛽 (𝑥)

 ↗ 

[𝜕𝑓 (𝑥)]0

 as 𝛽 ↘ 0.
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(v) ∀𝑥 ∈ H , 𝑓 𝛽 (𝑥) ↗ 𝑓 (𝑥) as 𝛽 ↘ 0. In addition, given two positive real numbers 𝛽 ′ < 𝛽 , for all
𝑥 ∈ H we have

0 ≤ 𝑓 𝛽′ (𝑥) − 𝑓 𝛽 (𝑥) ≤ 𝛽 − 𝛽 ′
2




∇𝑓 𝛽′ (𝑥)


2

;

0 ≤ 𝑓 (𝑥) − 𝑓 𝛽 (𝑥) ≤ 𝛽

2



[𝜕𝑓 (𝑥)]0

2

.

Proof. (i): see [6, Proposition 12.15]. The proof for (ii) can be found in [3, Lemma 3.27 and Remark 3.32]

(see also [22] or [2, Section 3.1]). The proof for claim (iii) can be found in [6, Proposition 12.29] and the

proof for claim (iv) can be found in [6,Corollary 23.46]. For the first part in (v), see [6, Proposition 12.32(i)].

To show the first inequality in (v), combine (ii) and convexity of the function 𝛽 ↦→ 𝑔𝛽 (𝑥) for every
𝑥 ∈ H . The second inequality follows from the first one and (iv), taking the limit as 𝛽 ′→ 0. □

Given a closed, convex set C, we write 𝑑C
def

= sup𝑥,𝑦∈C ∥𝑥 − 𝑦 ∥ to denote the diameter of C. We

denote the Bregman divergence of a differentiable function 𝐹 by

𝐷𝐹 (𝑥, 𝑦)
def

= 𝐹 (𝑥) − 𝐹 (𝑦) − ⟨∇𝐹 (𝑦) , 𝑥 − 𝑦⟩ .

Definition 2.7 ((𝐹, 𝜁 )-smoothness). Let 𝐹 : H → ℝ ∪ {+∞} and 𝜁 :]0, 1] → ℝ+. The pair (𝑓 , C), where
𝑓 : H → ℝ ∪ {+∞} and C ⊂ dom (𝑓 ), is said to be (𝐹, 𝜁 )-smooth if there exists an open set C0 such

that C ⊂ C0 ⊂ int (dom (𝐹 )) and
(i) 𝐹 and 𝑓 are differentiable on C0;

(ii) 𝐹 − 𝑓 is convex on C0;

(iii) it holds

(2.4) 𝐾(𝐹,𝜁 ,C)
def

= sup

𝑥,𝑠∈C;𝛾 ∈]0,1]
𝑧=𝑥+𝛾 (𝑠−𝑥)

𝐷𝐹 (𝑧, 𝑥)
𝜁 (𝛾) < +∞.

Remark 2.8. An important consequence of Definition 2.7(i) and Definition 2.7(ii) in (𝐹, 𝜁 )-smoothness

is the following. Let (𝑓 , C) be (𝐹, 𝜁 ) smooth. Then, for any 𝑥, 𝑦 ∈ C, we have

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥) , 𝑦 − 𝑥⟩ + 𝐷𝐹 (𝑦, 𝑥) .

Moreover, by Definition 2.7(iii), if 𝑦 = 𝑥 + 𝛾 (𝑠 − 𝑥) for some 𝑠 ∈ C and 𝛾 ∈]0, 1], we have,

(2.5) 𝐷𝐹 (𝑦, 𝑥) ≤ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾) .

Definition 2.9 (𝜔-smoothness). Consider a function 𝜔 : ℝ+ → ℝ+ such that 𝜔 (0) = 0 and 𝜉 (𝑠) def

=∫
1

0
𝜔 (𝑠𝑡) 𝑑𝑡 is nondecreasing. A differentiable function 𝑔 : H → ℝ is said to be 𝜔-smooth if, for every

𝑥, 𝑦 ∈ H ,

∥∇𝑔 (𝑥) − ∇𝑔 (𝑦)∥ ≤ 𝜔
(
∥𝑥 − 𝑦 ∥

)
Remark 2.10. A classical consequence of 𝜔-smoothness is the following. If 𝑔 : H → ℝ is 𝜔-smooth, for

every 𝑥, 𝑦 ∈ H we have

𝑓 (𝑦) ≤ 𝑓 (𝑥) + ⟨∇𝑓 (𝑥) , 𝑦 − 𝑥⟩ + 𝜉
(
∥𝑦 − 𝑥 ∥

)
∥𝑦 − 𝑥 ∥ .

Remark 2.11. Note that being 𝜔-smooth is a stronger condition than being (𝐹, 𝜁 )-smooth since every

𝜔-smooth function 𝑓 is also (𝐹, 𝜁 )-smooth with 𝐹 = 𝑓 , 𝜁 (𝑡) = 𝑑C𝑡𝜉 (𝑑C𝑡) and 𝐾(𝐹,𝜁 ,C) ≤ 1. Addi-

tionally, the assumptions on 𝜉 being nondecreasing can be replaced by the sufficient condition that

lim𝑡→0
+ 𝜔 (𝑡) = 𝜔 (0) = 0.

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .
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3 algorithm and assumptions

For each 𝑘 ∈ ℕ, we denote by 𝜆𝑘 and 𝜆𝑠
𝑘
random variables from (Ω, F ,ℙ) toH𝑝 and ℝ+ respectively.

In this context, 𝜆𝑘 will represent the error in the gradient or proximal terms and 𝜆𝑠
𝑘
will represent the

error in the linear minimization oracle itself.

Algorithm 1: Inexact Conditional Gradient with Augmented Lagrangian and Proximal-step

(ICGALP )

Input: 𝑥0 ∈ C
def

= dom (ℎ); 𝜇0 ∈ ran(𝐴); (𝛾𝑘 )𝑘∈ℕ, (𝛽𝑘 )𝑘∈ℕ, (𝜃𝑘 )𝑘∈ℕ, (𝜌𝑘 )𝑘∈ℕ ∈ ℓ+.
𝑘 = 0

repeat
𝑦𝑘 = prox𝛽𝑘𝑔

(𝑇𝑥𝑘 )

𝑧𝑘 = ∇𝑓 (𝑥𝑘 ) +𝑇 ∗ (𝑇𝑥𝑘 − 𝑦𝑘 ) /𝛽𝑘 +𝐴∗𝜇𝑘 + 𝜌𝑘𝐴∗ (𝐴𝑥𝑘 − 𝑏) + 𝜆𝑘
𝑠𝑘 ∈ Argmin𝑠∈H𝑝

{ℎ (𝑠) + ⟨𝑧𝑘 , 𝑠⟩}

�̂�𝑘 ∈
{
𝑠 ∈ H𝑝 : ℎ (𝑠) + ⟨𝑧𝑘 , 𝑠⟩ ≤ ℎ (𝑠𝑘 ) + ⟨𝑧𝑘 , 𝑠𝑘⟩ + 𝜆𝑠𝑘

}
𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘 (𝑥𝑘 − �̂�𝑘 )
𝜇𝑘+1 = 𝜇𝑘 + 𝜃𝑘 (𝐴𝑥𝑘+1 − 𝑏)
𝑘 ← 𝑘 + 1

until convergence;
Output: 𝑥𝑘+1.
To improve readability, we list some notation for the functionals we will employ throughout the

analysis of the algorithm,

(3.1) Φ (𝑥) def

= 𝑓 (𝑥) + 𝑔 (𝑇𝑥) + ℎ (𝑥) ;

L (𝑥, 𝜇) def

= 𝑓 (𝑥) + 𝑔 (𝑇𝑥) + ℎ (𝑥) + ⟨𝜇,𝐴𝑥 − 𝑏⟩ ;

L𝑘 (𝑥, 𝜇)
def

= 𝑓 (𝑥) + 𝑔𝛽𝑘 (𝑇𝑥) + ℎ (𝑥) + ⟨𝜇,𝐴𝑥 − 𝑏⟩ + 𝜌𝑘
2

∥𝐴𝑥 − 𝑏∥2 ;

E𝑘 (𝑥, 𝜇)
def

= 𝑓 (𝑥) + 𝑔𝛽𝑘 (𝑇𝑥) + ⟨𝜇,𝐴𝑥 − 𝑏⟩ + 𝜌𝑘
2

∥𝐴𝑥 − 𝑏∥2 ;

Φ𝑘 (𝑥)
def

= 𝑓 (𝑥) + 𝑔𝛽𝑘 (𝑇𝑥) + ℎ (𝑥) .

We can recognize L (𝑥, 𝜇) as the classical Lagrangian, L𝑘 (𝑥, 𝜇) as the augmented Lagrangian with

smoothed 𝑔, E𝑘 (𝑥, 𝜇) as the smooth part ofL𝑘 (𝑥, 𝜇), and Φ𝑘 (𝑥) as the primal objective with smoothed

𝑔. With this notation in mind, we can see 𝑧𝑘 as ∇𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) and 𝜆𝑘 as the error in the computation of

∇𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ).
We define the following filtration

(3.2) 𝔖
def

= (𝒮𝑘 )𝑘∈ℕ where 𝒮𝑘
def

= 𝜎 (𝑥0, 𝜇0, �̂�0, . . . , �̂�𝑘 )

and 𝜎 (𝑥0, 𝜇0, �̂�0, . . . , �̂�𝑘 ) is the 𝜎-algebra generated by the random variables 𝑥0, 𝜇0, �̂�0, . . . , �̂�𝑘 defined in

Algorithm 1. Furthermore, due to the error terms being contained in the direction finding step, we have

that 𝑥𝑘+1 and 𝜇𝑘+1 are completely determined by 𝒮𝑘 . Another noteworthy consequence of the error

terms being contained in the direction finding step is that the primal iterates (𝑥𝑘 )𝑘∈ℕ remain in C, as
in the classical Frank-Wolfe algorithm, while the dual iterates (𝜇𝑘 )𝑘∈ℕ remain in ran (𝐴).

Finally, we define the notation for the set of solutions for (𝒫) and (𝒟) to be

(3.3)

𝑺𝒫
def

= Argmin

𝑥 ∈H𝑝

{𝑓 (𝑥) + 𝑔 (𝑥) + ℎ (𝑥) : 𝐴𝑥 = 𝑏} and 𝑺𝒟
def

= Argmin

𝜇∈H𝑑

{
(𝑓 + 𝑔 + ℎ)∗ (−𝐴∗𝜇) + ⟨𝜇, 𝑏⟩

}
Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .
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and the notation for the set of weak cluster points of a sequence (𝑥𝑘 )𝑘∈ℕ inH𝑝 to be

(3.4) 𝔚 [(𝑥𝑘 )𝑘∈ℕ]
def

=

{
𝑥 ∈ H𝑝 : ∃

(
𝑥𝑘 𝑗

)
𝑗 ∈ℕ
, 𝑥𝑘 𝑗

⇀ 𝑥

}
.

3.1 assumptions

3.1.1 assumptions on the functions

We impose the following assumptions on the problem we consider; for some results, only a subset of

them will be necessary:

(A.1) The functions 𝑓 , 𝑔 ◦𝑇 , and ℎ belong to Γ0

(
H𝑝

)
.

(A.2) The pair (𝑓 , C) is (𝐹, 𝜁 )-smooth (see Definition 2.7), where we recall C def

= dom (ℎ).

(A.3) The set C is weakly compact (and thus contained in a ball of radius 𝑅 > 0).

(A.4) It holds 𝑇C ⊂ dom(𝜕𝑔) and sup

𝑥 ∈C



[𝜕𝑔 (𝑇𝑥)]0

 = 𝑀 < ∞.

(A.5) The function ℎ is Lipschitz continuous relative to its domain C with constant 𝐿ℎ ≥ 0, i.e.,

∀(𝑥, 𝑧) ∈ C2
, |ℎ(𝑥) − ℎ(𝑧) | ≤ 𝐿ℎ ∥𝑥 − 𝑧∥ .

(A.6) There exists a saddle-point

(
𝑥★, 𝜇★

)
∈ H𝑝 ×H𝑑 for the Lagrangian L.

(A.7) The set ran(𝐴) is closed.

(A.8) One of the following holds:

(a) 𝐴−1 (𝑏) ∩ int (dom (𝑔 ◦𝑇 )) ∩ int (C) ≠ ∅, where 𝐴−1 (𝑏) is the pre-image of 𝑏 under 𝐴.

(b) H𝑝 andH𝑑 are finite-dimensional and

(3.5)


𝐴−1 (𝑏) ∩ ri (dom (𝑔 ◦𝑇 )) ∩ ri (C) ≠ ∅
and

ran (𝐴∗) ∩ par (dom (𝑔 ◦𝑇 ) ∩ C)⊥ = {0} .

(A.9) The spaceH𝑑 is separable.

(A.10) The set-valued mappings

(
𝜕

(
Φ∗
𝑘
◦ (−𝐴∗)

))
𝑘∈ℕ

satisfy the following property: for any sequence

((𝑝𝑘 , 𝑞𝑘 ))𝑘∈ℕ satisfying, for each 𝑘 ∈ ℕ,

𝑝𝑘 ∈ 𝜕
(
Φ∗
𝑘
◦ (−𝐴∗)

)
(𝑞𝑘 ) ,

with 𝑝𝑘 → 𝑝 and 𝑞𝑘 ⇀ 𝑞, the sequence (𝑞𝑘 )𝑘∈ℕ admits a strong cluster point.

The following lemmas outline sufficient conditions ensure that assumption (A.4) holds for 𝑔 and

show why it’s unnecessary to make a similar assumption for 𝑓 in light of (A.1) and (A.2).

Lemma 3.1. Let 𝑇 : H𝑝 →H𝑣 be a bounded linear operator. Assume that one of the following holds:

(i) 𝑔 ∈ Γ0 (H𝑣), 𝑇C ⊂ int (dom (𝑔)) and C is a nonempty compact subset ofH𝑝 .

(ii) 𝑔 : H𝑣 → ℝ is continuous, convex and bounded on bounded sets of H𝑣 , and C is a nonempty
bounded subset ofH𝑝 .

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .
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(iii) H𝑣 andH𝑝 are finite dimensional, and either 𝑔 ∈ Γ0 (H𝑣),𝑇C ⊂ int (dom (𝑔)) and C is closed and
bounded, or 𝑔 : H𝑣 → ℝ is continuous and convex and C is a nonempty bounded subset ofH𝑝 .

Then (A.4) holds.

Proof. (i) Since 𝑔 ∈ Γ0

(
H𝑝

)
, it follows from [6, Proposition 16.21] that

𝑇C ⊂ int (dom (𝑔)) ⊂ dom(𝜕𝑔) .

Moreover, by [6, Corollary 8.30(ii) and Proposition 16.14], we have that 𝜕𝑔 is locally bounded

on int (dom (𝑔)). In particular, as we assume that C is bounded, so is 𝑇C, and since 𝑇C ⊂
int (dom (𝑔)), it means that for each 𝑧 ∈ 𝑇C there exists an open neighborhood of 𝑧, denoted

by𝑈𝑧 , such that 𝜕𝑔 (𝑈𝑧) is bounded. Since (𝑈𝑧)𝑧∈C is an open cover of 𝑇C and 𝑇C is compact,

there exists a finite subcover

(
𝑈𝑧𝑘

)𝑛
𝑘=1

. Then,⋃
𝑥 ∈C

𝜕𝑔 (𝑇𝑥) ⊂
𝑛⋃
𝑘=1

𝜕𝑔
(
𝑈𝑧𝑘

)
.

Since the right-hand-side is bounded (as it is a finite union of bounded sets),

sup

𝑥 ∈C, 𝑢∈𝜕𝑔 (𝑇𝑥)
∥𝑢∥ < +∞,

whence the desired conclusion trivially follows.

(ii) From the equivalence [6, Proposition 16.17(i)⇐⇒ (iii)], it follows that dom(𝜕𝑔) = H𝑣 and thus

𝑇C ⊂ dom(𝜕𝑔) trivially holds. Moreover, 𝜕𝑔 is bounded on every bounded set of H𝑣 , and in

particular on C.

(iii) In finite dimension, the claim follows trivially from (i) for the first case by a simple compactness

argument, and from (ii) in the second case since a continuous and convex is bounded on bounded

sets in finite dimension; see [6, Proposition 16.17].

□

Lemma 3.2. The assumptions (A.1) and (A.2) are sufficient to ensure that

sup

𝑥 ∈C
∥∇𝑓 (𝑥)∥ ≤ 𝐷

for some 𝐷 < +∞.

Proof. Fix 𝑠 ∈ C and let 𝑥 ∈ C. We have

𝑓 ∗ (∇𝑓 (𝑥)) + 𝑓 (𝑠) − ⟨∇𝑓 (𝑥) , 𝑠⟩ = 𝑓 (𝑠) − 𝑓 (𝑥) − ⟨∇𝑓 (𝑥) , 𝑠 − 𝑥⟩ = 𝐷 𝑓 (𝑠, 𝑥) ≤ 𝐷𝐹 (𝑠, 𝑥)
≤ 𝐾(𝐹,𝜁 ,C)𝜁 (1) ,

where we used the Fenchel identity ([6, Proposition 17.27]) in the first equality, Remark 2.8 in the first

inequality and Definition 2.7 in the second one. By [6, Corollary 9.20], 𝑓 is bounded from below on C
which entails

𝑓 ∗ (∇𝑓 (𝑥)) − ⟨∇𝑓 (𝑥) , 𝑠⟩ ≤ 𝐷𝐹 (𝑠, 𝑥) ≤ 𝐾(𝐹,𝜁 ,C)𝜁 (1) + 𝑐,

for some real constant 𝑐 . Now, since

𝑠 ∈ C ⊂ dom∇𝑓 ⊂ int (dom𝑓 )

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .
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by Definition 2.7 and [6, Proposition 17.41], we infer from [6, Theorem 14.17 and Proposition 14.16] (recall

that 𝑠 is fixed), that there exists 𝑎1 > 0 and 𝑎2 ∈ ℝ such that, for all 𝑥 ∈ C,

𝑎1 ∥∇𝑓 (𝑥)∥ + 𝑎2 ≤ 𝐾(𝐹,𝜁 ,C)𝜁 (1) + 𝑐.

Taking the supremum over 𝑥 ∈ C entails the desired claim with 𝐷 = 𝑎−1

1

(
𝐾(𝐹,𝜁 ,C)𝜁 (1) + 𝑐 − 𝑎2

)
. □

Remark 3.3. If the dimension ofH𝑑 is finite, then (A.10) is satisfied because weakly compact sets are

compact in such spaces. Alternatively, another sufficient condition is to impose that the sublevel sets

of the functions

(
Φ∗
𝑘
◦ (−𝐴∗)

)
𝑘∈ℕ

are compact, for instance if the functions are uniformly convex,

uniformly in 𝑘 .

3.1.2 assumptions on the parameters and error terms

We impose the following assumptions on the parameters and error terms and, as with the assumptions

above, for some results only a subset will be necessary:

(P.1) (𝛾𝑘 )𝑘∈ℕ ⊂]0, 1] and the sequences (𝜁 (𝛾𝑘 ))𝑘∈ℕ,
(
𝛾2

𝑘
/𝛽𝑘

)
𝑘∈ℕ

and (𝛾𝑘𝛽𝑘 )𝑘∈ℕ belong to ℓ 1

+.

(P.2) (𝛾𝑘 )𝑘∈ℕ ∉ ℓ 1
.

(P.3) (𝛽𝑘 )𝑘∈ℕ ∈ ℓ+ is nonincreasing and converges to 0.

(P.4) (𝜌𝑘 )𝑘∈ℕ ∈ ℓ+ is nondecreasing with 0 < 𝜌 ≤ 𝜌𝑘 ≤ 𝜌 < +∞.

(P.5) For some positive constants𝑀 and𝑀 ,𝑀 ≤ (𝛾𝑘/𝛾𝑘+1) ≤ 𝑀 .

(P.6) (𝜃𝑘 )𝑘∈ℕ satisfies 𝜃𝑘 =
𝛾𝑘
𝑐
for some 𝑐 > 0 such that

𝑀
𝑐
−

𝜌

2
< 0.

(P.7) The sequences (𝜌𝑘 )𝑘∈ℕ and (𝛾𝑘 )𝑘∈ℕ satisfy (1 − 𝛾𝑘+1) 𝜌𝑘+1 − 𝜌𝑘 + 2

𝑐
𝛾𝑘 −

𝛾2

𝑘

𝑐
≤ 0 with 𝑐 as in (P.6).

(P.8) (𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥ | 𝒮𝑘 ])𝑘∈ℕ ∈ ℓ 1

+ (𝔖) and

(
𝛾𝑘+1𝔼

[
𝜆𝑠
𝑘+1 | 𝒮𝑘

] )
𝑘∈ℕ
∈ ℓ 1

+ (𝔖).

(P.9) (𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥])𝑘∈ℕ ∈ ℓ 1

+ and

(
𝛾𝑘+1𝔼

[
𝜆𝑠
𝑘+1

] )
𝑘∈ℕ
∈ ℓ 1

+.

Remark 3.4. To satisfy (P.7), it suffices to take (𝜌𝑘 )𝑘∈ℕ to be a constant sequence, i.e. 𝜌𝑘 ≡ 𝜌 , with 𝜌
sufficiently large to satisfy 2

𝑀
𝑐
< 𝜌 , a similar requirement as in (P.6). The condition (P.7) would then

be satisfied as follows,

(1 − 𝛾𝑘+1) 𝜌 − 𝜌 +
2

𝑐
𝛾𝑘 −

𝛾2

𝑘

𝑐
= −𝛾𝑘+1𝜌 +

𝛾𝑘

𝑐
(2 − 𝛾𝑘 )

≤ −𝛾𝑘+1𝜌 +
2𝛾𝑘

𝑐

≤ 𝛾𝑘+1

(
2

𝑀

𝑐
− 𝜌

)
< 0.

Remark 3.5.We will also denote the gradient of E𝑘 with errors as

∇̂𝑥E𝑘 (𝑥, 𝜇)
def

= ∇𝑥E𝑘 (𝑥, 𝜇) + 𝜆𝑘 .

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .
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It is possible to further decompose the error term 𝜆𝑘 , for instance, into 𝜆
𝑓

𝑘
−𝑇 ∗𝜆𝑔

𝑘
/𝛽𝑘 where 𝜆

𝑓

𝑘
is the

error in computing ∇𝑓 (𝑥𝑘 ) and 𝜆𝑔𝑘 is the error in evaluating prox𝛽𝑘𝑔
(𝑇𝑥𝑘 ). In this case, the condition

(𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥ | 𝒮𝑘 ])𝑘∈ℕ ∈ ℓ 1

+ (𝔖) in (P.8) is sufficiently satisfied by demanding that(
𝛾𝑘+1𝔼

[


𝜆𝑓
𝑘+1




 | 𝒮𝑘

] )
𝑘∈ℕ
∈ ℓ 1

+ (𝔖) and
(
𝛾𝑘+1
𝛽𝑘+1

𝔼
[

𝜆𝑔

𝑘+1


 | 𝒮𝑘

] )
𝑘∈ℕ
∈ ℓ 1

+ (𝔖).

4 main results

4.1 preparatory results

Lemma 4.1. Suppose (A.1), (A.2) and (P.1) hold. For each 𝑘 ∈ ℕ, define the quantity

(4.1) 𝐿𝑘
def
=
∥𝑇 ∥2
𝛽𝑘
+ ∥𝐴∥2𝜌𝑘 .

Then, for each 𝑘 ∈ ℕ, we have the following inequality,

E𝑘 (𝑥𝑘+1, 𝜇𝑘 ) ≤ E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + ⟨∇𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , 𝑥𝑘+1 − 𝑥𝑘⟩ + 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 )

+ 𝐿𝑘
2

∥𝑥𝑘+1 − 𝑥𝑘 ∥2.

Proof. See [34, Lemma 4.5] □

Lemma 4.2. Suppose (A.1) and (A.2) hold. Then, for each 𝑘 ∈ ℕ and for every 𝑥 ∈ H𝑝 ,

E𝑘 (𝑥, 𝜇𝑘 ) ≥ E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + ⟨∇𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , 𝑥 − 𝑥𝑘⟩ +
𝜌𝑘

2

∥𝐴(𝑥 − 𝑥𝑘 )∥2.

Proof. See [34, Lemma 4.6]. □

Lemma 4.3. Assume that (A.3) and (P.4) hold. Let (𝑥𝑘 )𝑘∈ℕ be the sequence of primal iterates generated by
Algorithm 1 and𝔖 = (𝒮𝑘 )𝑘∈ℕ as given by (3.2). Then, for each 𝑘 ∈ ℕ, we have the following estimate,

𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 −
𝜌𝑘+1

2

𝔼
[
∥𝐴𝑥𝑘+1 − 𝑏∥2 | 𝒮𝑘−1

]
≤ 𝜌𝑑C ∥𝐴∥ (∥𝐴∥ 𝑅 + ∥𝑏∥) 𝛾𝑘 (ℙ-a.s.) .

Proof. For each 𝑘 ∈ ℕ, by convexity of the function
𝜌𝑘+1

2
∥𝐴 · −𝑏∥2 and the assumption (P.4) that

(𝜌𝑘 )𝑘∈ℕ is nondecreasing, we have,

𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 −
𝜌𝑘+1

2

∥𝐴𝑥𝑘+1 − 𝑏∥2 ≤
𝜌𝑘+1

2

∥𝐴𝑥𝑘 − 𝑏∥2 −
𝜌𝑘+1

2

∥𝐴𝑥𝑘+1 − 𝑏∥2

≤
〈
∇

(𝜌𝑘+1
2

∥𝐴 · −𝑏∥2 (𝑥𝑘 ) , 𝑥𝑘 − 𝑥𝑘+1
)〉

= 𝜌𝑘+1 ⟨𝐴𝑥𝑘 − 𝑏,𝐴 (𝑥𝑘 − 𝑥𝑘+1)⟩ .

Recall that, for each 𝑘 ∈ ℕ, 𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘 (𝑥𝑘 − �̂�𝑘 ) and take the expectation to find,

𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 − 𝔼
[𝜌𝑘+1

2

∥𝐴𝑥𝑘+1 − 𝑏∥2 | 𝒮𝑘−1

]
≤ 𝜌𝛾𝑘𝔼 [⟨𝐴𝑥𝑘 − 𝑏,𝐴 (𝑥𝑘 − �̂�𝑘 )⟩ | 𝒮𝑘−1]

≤ 𝜌𝛾𝑘𝑑C ∥𝐴∥ (∥𝐴∥ 𝑅 + ∥𝑏∥) ,

where we have used the Cauchy-Schwarz inequality and the boundedness of C, assumed in (A.3), in

the last inequality. □

Remark 4.4. The above result still holds if we replace both 𝜌𝑘 and 𝜌𝑘+1 by the constant 2 and shift the

index by 1, i.e., for each 𝑘 ∈ ℕ,

∥𝐴𝑥𝑘+1 − 𝑏∥2 − 𝔼
[
∥𝐴𝑥𝑘+2 − 𝑏∥2 | 𝒮𝑘

]
≤ 2𝑑C ∥𝐴∥ (∥𝐴∥ 𝑅 + ∥𝑏∥) 𝛾𝑘+1 (ℙ-a.s.)
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Lemma 4.5. Suppose that (A.1)-(A.6) hold. Let (𝑥𝑘 )𝑘∈ℕ be the sequence of primal iterates generated by
Algorithm 1 and 𝜇★ a solution, which exists by (A.6), of the dual problem, and recall the constant 𝐷 from
Lemma 3.2. Then, using the filtration𝔖 given in (3.2), for each 𝑘 ∈ ℕ, we have the following estimate,

L
(
𝑥𝑘 , 𝜇

★
)
− 𝔼

[
L

(
𝑥𝑘+1, 𝜇

★
)
| 𝒮𝑘−1

]
≤ 𝛾𝑘𝑑C

(
𝑀 ∥𝑇 ∥ + 𝐷 + 𝐿ℎ +



𝜇★

 ∥𝐴∥ ) (ℙ-a.s.) .
Proof. We recall the proof from [34, Lemma 4.7] with a slightmodification to account for the inexactness

of the algorithm. Define𝑢𝑘
def

= [𝜕𝑔(𝑇𝑥𝑘 )]0 and recall that, by (A.4) and the fact that for all 𝑘 ∈ ℕ, 𝑥𝑘 ∈ C,
we have ∥𝑢𝑘 ∥ ≤ 𝑀 . By (𝐴.1), the function Φ (𝑥) def

= 𝑓 (𝑥) + 𝑔 (𝑇𝑥) + ℎ (𝑥) is convex. Then, for each
𝑘 ∈ ℕ,

L
(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥𝑘+1, 𝜇

★
)
= Φ(𝑥𝑘 ) − Φ(𝑥𝑘+1) + ⟨𝜇★, 𝐴 (𝑥𝑘 − 𝑥𝑘+1)⟩
≤ ⟨𝑢𝑘 , 𝑇 (𝑥𝑘 − 𝑥𝑘+1)⟩ + ⟨∇𝑓 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘+1⟩
+ 𝐿ℎ ∥𝑥𝑘 − 𝑥𝑘+1∥ + ∥𝜇★∥ ∥𝐴∥ ∥𝑥𝑘 − 𝑥𝑘+1∥,

where we used the subdifferential inequality (2.2) on 𝑔 and 𝑓 , the 𝐿ℎ-Lipschitz continuity of ℎ relative

to C (see (A.5)), and the Cauchy-Schwarz inequality on the inner product. Since, for each 𝑘 ∈ ℕ,

𝑥𝑘+1 = 𝑥𝑘 + 𝛾𝑘 (̂𝑠𝑘 − 𝑥𝑘 ), we obtain, for each 𝑘 ∈ ℕ,

L
(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥𝑘+1, 𝜇

★
)
≤ 𝛾𝑘

(
⟨𝑢𝑘 , 𝑇 (𝑥𝑘 − �̂�𝑘 )⟩ + ⟨∇𝑓 (𝑥𝑘 ), 𝑥𝑘 − �̂�𝑘⟩ + 𝐿ℎ ∥𝑥𝑘 − �̂�𝑘 ∥

+ ∥𝜇★∥ ∥𝐴∥ ∥𝑥𝑘 − �̂�𝑘 ∥
)

Now take the expectation with respect to the filtration 𝒮𝑘−1, such that 𝑥𝑘 is completely determined, to

get, for each 𝑘 ∈ ℕ,

L
(
𝑥𝑘 , 𝜇

★
)
− 𝔼

[
L

(
𝑥𝑘+1, 𝜇

★
)
| 𝒮𝑘−1

]
≤ 𝛾𝑘

(
𝔼 [⟨𝑢𝑘 , 𝑇 (𝑥𝑘 − �̂�𝑘 )⟩ | 𝒮𝑘−1] + 𝔼 [⟨∇𝑓 (𝑥𝑘 ), 𝑥𝑘 − �̂�𝑘⟩ | 𝒮𝑘−1]

+ 𝐿ℎ𝔼 [∥𝑥𝑘 − �̂�𝑘 ∥ | 𝒮𝑘−1] + ∥𝜇★∥ ∥𝐴∥ 𝔼 [∥𝑥𝑘 − �̂�𝑘 ∥ | 𝒮𝑘−1]
)

≤ 𝛾𝑘𝑑C
(
𝑀 ∥𝑇 ∥ + 𝐷 + 𝐿ℎ + ∥𝜇★∥ ∥𝐴∥

)
,

where we have used the Cauchy-Schwarz inequality, the boundedness of the set C by (A.3), the

boundedness of 𝑢𝑘 by𝑀 by (A.4), and the boundedness of ∥∇𝑓 (𝑥)∥ by 𝐷 , the constant in (A.4). □

4.2 asymptotic feasibility

Lemma 4.6 (Feasibility estimate). Suppose that (A.1) - (A.4) and (A.6) all hold. Consider the sequence of
iterates (𝑥𝑘 )𝑘∈ℕ generated by Algorithm 1 with parameters satisfying (P.1) and (P.3)-(P.6). For each 𝑘 ∈ ℕ,
define the two quantities, Δ𝑝

𝑘
and Δ𝑑

𝑘
in the following way,

Δ
𝑝

𝑘

def
= L𝑘 (𝑥𝑘+1, 𝜇𝑘 ) − ˜L𝑘 (𝜇𝑘 ) , Δ𝑑

𝑘

def
= ˜L − ˜L𝑘 (𝜇𝑘 ) ,

where we have denoted ˜L𝑘 (𝜇𝑘 )
def
= min𝑥 L𝑘 (𝑥, 𝜇𝑘 ) and ˜L def

= L
(
𝑥★, 𝜇★

)
. Furthermore, for each 𝑘 ∈ ℕ,

denote the sum Δ𝑘
def
= Δ

𝑝

𝑘
+ Δ𝑑

𝑘
. We then have, using the filtration𝔖 given in (3.2), for each 𝑘 ∈ ℕ,

(4.2) 𝔼 [Δ𝑘+1 | 𝒮𝑘 ] − Δ𝑘 ≤ −𝛾𝑘+1
(
𝑀

𝑐
∥𝐴𝑥𝑘+1 − 𝑏∥2 + 𝛿 ∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

)
+ 𝛾2

𝑘+1
𝐿𝑘+1

2

𝑑2

C

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1) +
𝛽𝑘 − 𝛽𝑘+1

2

𝑀2 + (𝜌𝑘+1 − 𝜌𝑘 )
(
∥𝐴∥2 𝑅2 + ∥𝑏∥2

)
+ 𝛾𝑘+1𝔼

[
𝜆𝑠
𝑘+1 | 𝒮𝑘

]
+ 𝑑C𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥ | 𝒮𝑘 ] .

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .



J. Nonsmooth Anal. Optim. 2 (2021), 6480 page 13 of 41

Proof. The proof here is adapted from the analogous result found in [34, Theorem4.1]. As before,

the quantity Δ
𝑝

𝑘
≥ 0 and can be seen as a primal gap at iteration 𝑘 while Δ𝑑

𝑘
may be negative but is

uniformly bounded from below by our assumptions (see [34, Theorem 4.1]). We denote a minimizer of

L𝑘 (𝑥, 𝜇𝑘 ) by 𝑥𝑘 ∈ Argmin

𝑥 ∈H𝑝

L𝑘 (𝑥, 𝜇𝑘 ), which exists and belongs to C by (A.1)-(A.3). We have, for each

𝑘 ∈ ℕ,

Δ𝑘+1 − Δ𝑘 = L𝑘+1 (𝑥𝑘+2, 𝜇𝑘+1) − L𝑘 (𝑥𝑘+1, 𝜇𝑘+1) + 𝜃𝑘 ∥𝐴𝑥𝑘+1 − 𝑏∥2

+ 2 [L𝑘 (𝑥𝑘 , 𝜇𝑘 ) − L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1)] .

Recall that 𝑥𝑘 ∈ Argmin

𝑥 ∈H𝑝

L𝑘 (𝑥, 𝜇𝑘 ), that 𝑔𝛽𝑘 ≤ 𝑔𝛽𝑘+1 due to (P.3) and Proposition 2.6(v), and that

𝜌𝑘 ≤ 𝜌𝑘+1 by (P.4). Then, for each 𝑘 ∈ ℕ,

L𝑘 (𝑥𝑘 , 𝜇𝑘 ) − L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) ≤ L𝑘 (𝑥𝑘+1, 𝜇𝑘 ) − L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1)

=

[
𝑔𝛽𝑘 − 𝑔𝛽𝑘+1

]
(𝑇𝑥𝑘+1) +

1

2

[𝜌𝑘 − 𝜌𝑘+1] ∥𝐴𝑥𝑘+1 − 𝑏∥2

+ ⟨𝜇𝑘 − 𝜇𝑘+1, 𝐴𝑥𝑘+1 − 𝑏⟩
≤ −𝜃𝑘 ⟨𝐴𝑥𝑘+1 − 𝑏,𝐴𝑥𝑘+1 − 𝑏⟩ ,

where we have used the fact that 𝜇𝑘+1 = 𝜇𝑘 + 𝜃𝑘 (𝐴𝑥𝑘+1 − 𝑏) coming from Algorithm 1. So we get, for

each 𝑘 ∈ ℕ,

Δ𝑘+1 − Δ𝑘 ≤ L𝑘+1 (𝑥𝑘+2, 𝜇𝑘+1) − L𝑘 (𝑥𝑘+1, 𝜇𝑘+1) + 𝜃𝑘 ∥𝐴𝑥𝑘+1 − 𝑏∥2

− 2𝜃𝑘 ⟨𝐴𝑥𝑘+1 − 𝑏,𝐴𝑥𝑘+1 − 𝑏⟩ .

Note that, for each 𝑘 ∈ ℕ,

L𝑘 (𝑥𝑘+1, 𝜇𝑘+1) = L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) −
[
𝑔𝛽𝑘+1 − 𝑔𝛽𝑘

]
(𝑇𝑥𝑘+1) −

(𝜌𝑘+1 − 𝜌𝑘
2

)
∥𝐴𝑥𝑘+1 − 𝑏∥2 .

Then, for each 𝑘 ∈ ℕ,

Δ𝑘+1 − Δ𝑘 ≤ L𝑘+1 (𝑥𝑘+2, 𝜇𝑘+1) − L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) + 𝑔𝛽𝑘+1 (𝑇𝑥𝑘+1) − 𝑔𝛽𝑘 (𝑇𝑥𝑘+1)

+
(𝜌𝑘+1 − 𝜌𝑘

2

)
∥𝐴𝑥𝑘+1 − 𝑏∥2 + 𝜃𝑘 ∥𝐴𝑥𝑘+1 − 𝑏∥2 − 2𝜃𝑘 ⟨𝐴𝑥𝑘+1 − 𝑏,𝐴𝑥𝑘+1 − 𝑏⟩ .

We denote by T1 def

= L𝑘+1 (𝑥𝑘+2, 𝜇𝑘+1) − L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) and the remaining part of the right-hand side

by T2. For the moment, we focus our attention on T1. Recall that L𝑘 (𝑥, 𝜇𝑘 ) = E𝑘 (𝑥, 𝜇𝑘 ) + ℎ (𝑥) and
apply Lemma 4.1 between points 𝑥𝑘+2 and 𝑥𝑘+1, to get, for each 𝑘 ∈ ℕ,

T1 ≤ ℎ (𝑥𝑘+2) − ℎ (𝑥𝑘+1) + ⟨∇𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) , 𝑥𝑘+2 − 𝑥𝑘+1⟩

+ 𝐿𝑘+1
2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1) .

By (A.1) we have that ℎ is convex and thus, since 𝑥𝑘+2 is a convex combination of 𝑥𝑘+1 and �̂�𝑘+1, we get,
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for each 𝑘 ∈ ℕ,

T1 ≤ 𝛾𝑘+1
(
ℎ (̂𝑠𝑘+1) − ℎ (𝑥𝑘+1) + ⟨∇𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) , �̂�𝑘+1 − 𝑥𝑘+1⟩

)
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1)

= 𝛾𝑘+1
(
ℎ (̂𝑠𝑘+1) − ℎ (𝑥𝑘+1) +

〈
∇̂𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) , �̂�𝑘+1 − 𝑥𝑘+1

〉
+

〈
∇𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) − ∇̂𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) , �̂�𝑘+1 − 𝑥𝑘+1

〉 )
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1)

= 𝛾𝑘+1
(
ℎ (̂𝑠𝑘+1) − ℎ (𝑥𝑘+1) +

〈
∇̂𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) , �̂�𝑘+1 − 𝑥𝑘+1

〉
− ⟨𝜆𝑘+1, �̂�𝑘+1 − 𝑥𝑘+1⟩

)
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1) .

Applying the definition of �̂�𝑘 as the approximate minimizer of the linear minimization oracle gives, for

each 𝑘 ∈ ℕ,

T1 ≤ 𝛾𝑘+1
(
ℎ (𝑠𝑘+1) − ℎ (𝑥𝑘+1) +

〈
∇̂𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) , 𝑠𝑘+1 − 𝑥𝑘+1

〉
+ 𝜆𝑠

𝑘+1

− ⟨𝜆𝑘+1, �̂�𝑘+1 − 𝑥𝑘+1⟩
)
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1) .

We can apply the definition of 𝑠𝑘+1 as the minimizer of the linear minimization oracle and Lemma 4.2

to get, for each 𝑘 ∈ ℕ,

T1 ≤ 𝛾𝑘+1
(
ℎ (𝑥𝑘+1) − ℎ (𝑥𝑘+1) +

〈
∇̂𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) , 𝑥𝑘+1 − 𝑥𝑘+1

〉
+ 𝜆𝑠

𝑘+1

− ⟨𝜆𝑘+1, �̂�𝑘+1 − 𝑥𝑘+1⟩
)
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1)

= 𝛾𝑘+1
(
ℎ (𝑥𝑘+1) − ℎ (𝑥𝑘+1) + ⟨∇𝑥E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) , 𝑥𝑘+1 − 𝑥𝑘+1⟩ + 𝜆𝑠𝑘+1

− ⟨𝜆𝑘+1, �̂�𝑘+1 − 𝑥𝑘+1⟩
)
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1)

≤ 𝛾𝑘+1
(
ℎ (𝑥𝑘+1) − ℎ (𝑥𝑘+1) + E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) − E𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) −

𝜌𝑘+1
2

∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

+ 𝜆𝑠
𝑘+1 − ⟨𝜆𝑘+1, �̂�𝑘+1 − 𝑥𝑘+1⟩

)
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1)

= 𝛾𝑘+1
(
L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) − L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) −

𝜌𝑘+1
2

∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2 + 𝜆𝑠𝑘+1

− ⟨𝜆𝑘+1, �̂�𝑘+1 − 𝑥𝑘+1⟩
)
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1)

≤ −𝛾𝑘+1𝜌𝑘+1
2

∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2 + 𝛾𝑘+1
(
𝜆𝑠
𝑘+1 + ⟨𝜆𝑘+1, 𝑥𝑘+1 − �̂�𝑘+1⟩

)
+ 𝐿𝑘+1

2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1) ,

where we used that 𝑥𝑘+1 is a minimizer of L𝑘+1 (·, 𝜇𝑘+1) in the last inequality. Combining T1 and T2
and using the Pythagoras identity we have, for each 𝑘 ∈ ℕ,

(4.3) Δ𝑘+1 − Δ𝑘 ≤ −𝜃𝑘 ∥𝐴𝑥𝑘+1 − 𝑏∥2 +
(
𝜃𝑘 − 𝛾𝑘+1

𝜌𝑘+1
2

)
∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

+ 𝐿𝑘+1
2

∥𝑥𝑘+2 − 𝑥𝑘+1∥2 + 𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1) +
[
𝑔𝛽𝑘+1 − 𝑔𝛽𝑘

]
(𝑇𝑥𝑘+1)

+ 𝜌𝑘+1 − 𝜌𝑘
2

∥𝐴𝑥𝑘+1 − 𝑏∥2 + 𝛾𝑘+1
(
𝜆𝑠
𝑘+1 + ⟨𝜆𝑘+1, 𝑥𝑘+1 − �̂�𝑘+1⟩

)
.
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Now take the expectation with respect to 𝒮𝑘 = 𝜎 (𝑥0, 𝜇0, �̂�0, . . . , �̂�𝑘 ), which completely determines 𝑥𝑘+1,
𝑥𝑘+1, and 𝜇𝑘+1. We are also going to perform the following estimations.

• Under (P.5) and (P.6), we have that, for each 𝑘 ∈ ℕ, 𝜃𝑘 = 𝛾𝑘/𝑐 with𝑀𝛾𝑘+1 ≤ 𝛾𝑘 and so that

−𝜃𝑘 ≤ −
𝑀

𝑐
𝛾𝑘+1.

• Again by (P.6), we have, for each 𝑘 ∈ ℕ, 𝜃𝑘 = 𝛾𝑘/𝑐 for some 𝑐 > 0 such that

∃𝛿 > 0,
𝑀

𝑐
−
𝜌

2

= −𝛿 < 0,

where𝑀 is the constant such that, for each 𝑘 ∈ ℕ, 𝛾𝑘 ≤ 𝑀𝛾𝑘+1 (see (P.5)). Then, using again (P.5)

and the above inequality, for each 𝑘 ∈ ℕ,

(4.4) 𝜃𝑘 − 𝛾𝑘+1
𝜌𝑘+1

2

≤
(
𝑀

𝑐
− 𝜌𝑘+1

2

)
𝛾𝑘+1 ≤

(
𝑀

𝑐
−
𝜌

2

)
𝛾𝑘+1 = −𝛿𝛾𝑘+1.

• By Algorithm 1, for each 𝑘 ∈ ℕ, 𝑥𝑘+2 − 𝑥𝑘+1 = 𝛾𝑘+1 (̂𝑠𝑘+1 − 𝑥𝑘+1). Since �̂�𝑘+1 and 𝑥𝑘+1 are both in C
and C is bounded due to (A.3), for each 𝑘 ∈ ℕ,

𝐿𝑘+1
2

𝔼
[
∥𝑥𝑘+2 − 𝑥𝑘+1∥2 | 𝒮𝑘

]
=
𝐿𝑘+1

2

𝛾2

𝑘+1𝔼
[
∥�̂�𝑘+1 − 𝑥𝑘+1∥2 | 𝒮𝑘

]
≤ 𝐿𝑘+1

2

𝛾2

𝑘+1𝑑
2

C .

• Recall that, by (A.2), 𝑓 is (𝐹, 𝜁 )-smooth and invoke Remark 2.8, to get

𝔼 [𝐷𝐹 (𝑥𝑘+2, 𝑥𝑘+1) | 𝒮𝑘 ] ≤ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1) .

• By Proposition 2.6(v) and assumption (A.4),

𝔼
[ [
𝑔𝛽𝑘+1 − 𝑔𝛽𝑘

]
(𝑇𝑥𝑘+1) | 𝒮𝑘

]
≤ 𝛽𝑘 − 𝛽𝑘+1

2

𝔼
[

[𝜕𝑔 (𝑇𝑥𝑘+1)]0

2 | 𝒮𝑘

]
≤ 𝛽𝑘 − 𝛽𝑘+1

2

𝑀2.

• We also have, using Jensen’s inequality and (A.3), for each 𝑘 ∈ ℕ,(𝜌𝑘+1 − 𝜌𝑘
2

)
𝔼

[
∥𝐴𝑥𝑘+1 − 𝑏∥2 | 𝒮𝑘

]
≤ (𝜌𝑘+1 − 𝜌𝑘 )

(
∥𝐴∥2 𝑅2 + ∥𝑏∥2

)
.

In total, for each 𝑘 ∈ ℕ,

𝔼 [Δ𝑘+1 | 𝒮𝑘 ] − Δ𝑘 ≤ −
𝑀

𝑐
𝛾𝑘+1 ∥𝐴𝑥𝑘+1 − 𝑏∥2 − 𝛿𝛾𝑘+1 ∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

+ 𝐿𝑘+1
2

𝛾2

𝑘+1𝑑
2

C + 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1)

+ 𝛽𝑘 − 𝛽𝑘+1
2

𝑀2 + (𝜌𝑘+1 − 𝜌𝑘 )
(
∥𝐴∥2 𝑅2 + ∥𝑏∥2

)
+ 𝛾𝑘+1

(
𝔼

[
𝜆𝑠
𝑘+1 | 𝒮𝑘

]
+ 𝔼 [⟨𝜆𝑘+1, 𝑥𝑘+1 − �̂�𝑘+1⟩ | 𝒮𝑘 ]

)
.

Using Cauchy-Schwarz together with the fact that 𝑥𝑘+1 and �̂�𝑘+1 are in C, which is bounded by (A.3),

we also have, for each 𝑘 ∈ ℕ,

(4.5) 𝛾𝑘+1𝔼 [⟨𝜆𝑘+1, 𝑥𝑘+1 − �̂�𝑘+1⟩ | 𝒮𝑘 ] ≤ 𝛾𝑘+1𝑑C𝔼 [∥𝜆𝑘+1∥ | 𝒮𝑘 ] ,
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which gives, for each 𝑘 ∈ ℕ,

(4.6) 𝔼 [Δ𝑘+1 | 𝒮𝑘 ] − Δ𝑘 ≤ −
𝑀

𝑐
𝛾𝑘+1 ∥𝐴𝑥𝑘+1 − 𝑏∥2 − 𝛿𝛾𝑘+1 ∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2 + 𝛾2

𝑘+1
𝐿𝑘+1

2

𝑑2

C

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1) +
𝛽𝑘 − 𝛽𝑘+1

2

𝑀2 + (𝜌𝑘+1 − 𝜌𝑘 )
(
∥𝐴∥2 𝑅2 + ∥𝑏∥2

)
+ 𝛾𝑘+1𝔼

[
𝜆𝑠
𝑘+1 | 𝒮𝑘

]
+ 𝛾𝑘+1𝑑C𝔼 [∥𝜆𝑘+1∥ | 𝒮𝑘 ] ,

and (4.2) follows by trivial manipulations. □

Theorem 4.7 (Feasibility). Suppose that (A.1)-(A.4) and (A.6) all hold and recall Γ𝑘
def
=

𝑘∑
𝑖=0

𝛾𝑖 . For a sequence

(𝑥𝑘 )𝑘∈ℕ generated by Algorithm 1 using parameters satisfying (P.1) - (P.6) and (P.8) we have,

(i) Asymptotic feasibility: lim

𝑘→∞
∥𝐴𝑥𝑘 − 𝑏∥ = 0 (ℙ-a.s.) .

(ii) Ergodic rate: let 𝑥𝑘
def
=

∑𝑘
𝑖=0
𝛾𝑖𝑥𝑖/Γ𝑘 . Then

∥𝐴𝑥𝑘 − 𝑏∥ = 𝑂
(

1

√
Γ𝑘

)
(ℙ-a.s.) .(4.7)

(iii) It holds
(
𝛾𝑘+1 ∥𝐴𝑥𝑘+1 − 𝑏∥2

)
𝑘∈ℕ ∈ ℓ 1

+ (𝔖) and
(
𝛾𝑘+1 ∥𝐴𝑥𝑘+1 − 𝑏∥2

)
𝑘∈ℕ ∈ ℓ 1

+ (𝔖) where𝔖 is given in
(3.2).

Additionally, if (P.9) also holds then we have the following pointwise rates in expectation,

(iv) It holds inf

0≤𝑖≤𝑘
𝔼 [∥𝐴𝑥𝑖 − 𝑏∥] ∈ 𝑂

(
1√
Γ𝑘

)
.

(v) There exists a subsequence
(
𝑥𝑘 𝑗

)
𝑗 ∈ℕ

such that 𝔼
[

𝐴𝑥𝑘 𝑗

− 𝑏


] ≤ 1√

Γ𝑘𝑗
.

(vi) It holds
(
𝛾𝑘𝔼

[
∥𝐴𝑥𝑘 − 𝑏∥2

] )
𝑘∈ℕ ∈ ℓ

1

+ and
(
𝛾𝑘𝔼

[
∥𝐴𝑥𝑘 − 𝑏∥2

] )
𝑘∈ℕ ∈ ℓ

1

+.

Proof. Our goal is to first apply Lemma 2.2 and then apply Lemma 2.3. By Lemma 4.6, we have, for

each 𝑘 ∈ ℕ,

(4.8) 𝔼 [Δ𝑘+1 | 𝒮𝑘 ] − Δ𝑘 ≤ −𝛾𝑘+1
(
𝑀

𝑐
∥𝐴𝑥𝑘+1 − 𝑏∥2 + 𝛿 ∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

)
+ 𝛾2

𝑘+1
𝐿𝑘+1

2

𝑑2

C

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1) +
𝛽𝑘 − 𝛽𝑘+1

2

𝑀2 + (𝜌𝑘+1 − 𝜌𝑘 )
(
∥𝐴∥2 𝑅2 + ∥𝑏∥2

)
+ 𝛾𝑘+1𝔼

[
𝜆𝑠
𝑘+1 | 𝒮𝑘

]
+ 𝑑C𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥ | 𝒮𝑘 ] .

Because of (P.1) and (P.4), and in view of the definition of 𝐿𝑘+1 in (4.1), we have the following,(
𝐿𝑘+1

2

𝛾2

𝑘+1𝑑
2

C

)
𝑘∈ℕ

=

(
1

2

(
∥𝑇 ∥2

𝛽𝑘+1
+ ∥𝐴∥2 𝜌𝑘+1

)
𝛾2

𝑘+1𝑑
2

C

)
𝑘∈ℕ
∈ ℓ 1

+.

For the telescopic terms from the right hand side of (4.8) we have(
𝛽𝑘 − 𝛽𝑘+1

2

𝑀2

)
𝑘∈ℕ
∈ ℓ 1

+ and

(
(𝜌𝑘+1 − 𝜌𝑘 )

(
∥𝐴∥2 𝑅2 + ∥𝑏∥2

) )
𝑘∈ℕ ∈ ℓ

1

+,

where 𝑅 is the constant arising from (A.3). Under (P.1) we also have that(
𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1)

)
𝑘∈ℕ ∈ ℓ

1

+.
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Finally, due to (P.8), we also have(
𝛾𝑘+1𝔼

[
𝜆𝑠
𝑘+1 | 𝒮𝑘

] )
𝑘∈ℕ ∈ ℓ

1

+ (𝔖) and (𝑑C𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥ | 𝒮𝑘 ])𝑘∈ℕ ∈ ℓ 1

+ (𝔖) .

Using the notation of Lemma 2.2, we set, for each 𝑘 ∈ ℕ,

𝑟𝑘 = Δ𝑘 , 𝑎𝑘 = 𝛾𝑘+1

(
𝑀

𝑐
∥𝐴𝑥𝑘+1 − 𝑏∥2 + 𝛿 ∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

)
, and

𝑧𝑘 =
𝐿𝑘+1

2

𝛾2

𝑘+1𝑑
2

C + 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1) +
𝛽𝑘 − 𝛽𝑘+1

2

𝑀2 +
(𝜌𝑘+1 − 𝜌𝑘

2

)
∥𝐴𝑥𝑘+1 − 𝑏∥2

+ 𝛾𝑘+1𝔼
[
𝜆𝑠
𝑘+1 | 𝒮𝑘

]
+ 𝑑C𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥ | 𝒮𝑘 ] .

We have shown above that , for each 𝑘 ∈ ℕ,

𝔼 [𝑟𝑘+1 | 𝒮𝑘 ] − 𝑟𝑘 ≤ −𝑎𝑘 + 𝑧𝑘 ,

where (𝑧𝑘 )𝑘∈ℕ ∈ ℓ 1

+ (𝔖), and 𝑟𝑘 is bounded from below. We then deduce using Lemma 2.2 that (𝑟𝑘 )𝑘∈ℕ
is convergent (ℙ-a.s.) and

(4.9)

(
𝛾𝑘+1 ∥𝐴𝑥𝑘+1 − 𝑏∥2

)
𝑘∈ℕ ∈ ℓ

1

+ (𝔖) and

(
𝛾𝑘+1 ∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

)
𝑘∈ℕ ∈ ℓ

1

+ (𝔖)

satisfying (iii). Consequently,

(4.10)

(
𝛾𝑘+1 ∥𝐴𝑥𝑘+1 − 𝑏∥2

)
𝑘∈ℕ ∈ ℓ

1

+ (𝔖) ,

since by the Cauchy-Schwarz inequality,

∞∑︁
𝑘=1

𝛾𝑘 ∥𝐴𝑥𝑘 − 𝑏∥2 ≤ 2

∞∑︁
𝑘=1

𝛾𝑘
(
∥𝐴 (𝑥𝑘 − 𝑥𝑘 )∥2 + ∥𝐴𝑥𝑘 − 𝑏∥2

)
< +∞.

To finish proving (i) we simply apply Lemma 4.3 (with Remark 4.4) and the conditions of Lemma 2.3

are satisfied. Then, (ii) follows directly from the application of Jensen’s inequality as in the results of

[34, Theorem 4.1].

We now assume that (P.9) holds. By Lemma 4.6, we can take the total expectation and use the law of

total expectation to have, for each 𝑘 ∈ ℕ,

𝔼 [Δ𝑘+1] − 𝔼 [Δ𝑘 ] ≤ −𝛾𝑘+1
(
𝑀

𝑐
𝔼

[
∥𝐴𝑥𝑘+1 − 𝑏∥2

]
+ 𝛿𝔼

[
∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

] )
+ 𝛾2

𝑘+1
𝐿𝑘+1

2

𝑑2

C

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1) +
𝛽𝑘 − 𝛽𝑘+1

2

𝑀2 + (𝜌𝑘+1 − 𝜌𝑘 )
(
∥𝐴∥2 𝑅2 + ∥𝑏∥2

)
+ 𝛾𝑘+1𝔼

[
𝜆𝑠
𝑘+1

]
+ 𝑑C𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥] .

Define the following, for each 𝑘 ∈ ℕ,

𝑟𝑘 = 𝔼 [Δ𝑘 ] , 𝑝𝑘 = 𝛾𝑘+1, �̃�𝑘 =

(
𝑀

𝑐
𝔼

[
∥𝐴𝑥𝑘+1 − 𝑏∥2

]
+ 𝛿𝔼

[
∥𝐴 (𝑥𝑘+1 − 𝑥𝑘+1)∥2

] )
, and

𝑧𝑘 =
𝐿𝑘+1

2

𝛾2

𝑘+1𝑑
2

C + 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘+1) +
𝛽𝑘 − 𝛽𝑘+1

2

𝑀2 +
(𝜌𝑘+1 − 𝜌𝑘

2

)
𝔼

[
∥𝐴𝑥𝑘+1 − 𝑏∥2

]
+ 𝛾𝑘+1𝔼

[
𝜆𝑠
𝑘+1

]
+ 𝑑C𝛾𝑘+1𝔼 [∥𝜆𝑘+1∥] .

By the argument of the previous paragraph, in conjunction with (P.9), we have that (𝑧𝑘 )𝑘∈ℕ ∈ ℓ 1

+. We

can apply the total expectation to the results of both Lemma 4.3 and Lemma 4.5 and then the claims

of interest follow from Lemma 2.4 applied with (𝑟𝑘 )𝑘∈ℕ, (𝑝𝑘 )𝑘∈ℕ, (�̃�𝑘 )𝑘∈ℕ, and (𝑧𝑘 )𝑘∈ℕ defined as

above. □
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4.3 optimality

The following lemmas regard the boundedness of the sequence of dual iterates (𝜇𝑘 )𝑘∈ℕ and the uniform

boundedness of the Lagrangian. They were shown in the deterministic setting in [34] and easily extend

to the stochastic case in light of Theorem 4.7.

Lemma 4.8. Suppose that (A.1)-(A.3), (A.6)-(A.8), and (P.1)-(P.6) all hold and define, for each 𝑘 ∈ ℕ,

(4.11) 𝜑𝑘 (𝜇)
def
= − inf

𝑥 ∈H𝑝

L𝑘 (𝑥, 𝜇) and 𝜑
def
= 𝑓 (𝑥) + 𝑔 (𝑇𝑥) + ℎ (𝑥) + 𝜌

2

∥𝐴𝑥 − 𝑏∥2 .

Then the sequence of dual iterates (𝜇𝑘 )𝑘∈ℕ generated by Algorithm 1 is bounded (ℙ-a.s.), for each 𝑘 ∈ ℕ
the function 𝜑𝑘 (𝜇) is convex and differentiable with gradient

(4.12) ∇𝜑𝑘 (𝜇) = 𝜌−1

𝑘

(
𝜇 − prox𝜌𝑘Φ

∗
𝑘
◦(−𝐴∗) (𝜇 − 𝜌𝑘𝑏)

)
,

and it holds, for each 𝑘 ∈ ℕ,

(4.13) ∇𝜑𝑘 (𝜇𝑘 ) = 𝐴𝑥𝑘 − 𝑏.

Proof. Note that here we have denoted, for each 𝑘 ∈ ℕ, Φ𝑘 (𝑥) = 𝑓 (𝑥) +𝑔𝛽𝑘 (𝑥) +ℎ (𝑥) while in [34] it

is defined differently with 𝜙𝑘 (𝑥) = 𝑓 (𝑥) + 𝑔𝛽𝑘 (𝑥) + ℎ (𝑥) and Φ𝑘 (𝑥) having different meaning.

For brevity, we defer to the proof in [34, Lemma 4.11], noting that since

(
𝛾𝑘+1 ∥𝑥𝑘+1 − 𝑏∥2

)
𝑘∈ℕ ∈ ℓ 1

+ (𝔖)
and

(
𝛾𝑘+1 ∥𝑥𝑘+1 − 𝑏∥2

)
𝑘∈ℕ ∈ ℓ 1

+ (𝔖), there exists Ω̃ ⊂ F with ℙ
(
Ω̃
)
= 1 such that (𝜑𝑘 (𝜇𝑘 (𝜔)))𝑘∈ℕ is

convergent and thus bounded, and the uniform coercivity of (𝜑𝑘 )𝑘∈ℕ is unaffected by the inexactness,

i.e., (𝜇𝑘 (𝜔))𝑘∈ℕ is bounded. □

Lemma 4.9. Under (A.1)-(A.8) and (P.1)-(P.6), the composite function 𝑓 +𝑔 ◦𝑇 +ℎ is uniformly bounded on
C and we have

(4.14)
˜𝑀

def
= sup

𝑥 ∈C
|𝑓 (𝑥) + 𝑔 (𝑇𝑥) + ℎ (𝑥) | + sup

𝑘∈ℕ
∥𝜇𝑘 ∥ (∥𝐴∥ 𝑅 + 𝑏) < +∞ (ℙ-a.s.) ,

where 𝑅 is the radius from (A.3).

Proof. The proof follows in a (ℙ-a.s.) sense from [34, Lemma 4.12] with the addition of Theorem 4.7. □

We now begin with the main energy estimate needed to show the convergence of the Lagrangian

values to optimality.

Lemma 4.10 (Optimality estimate). Recall the constants 𝑐 , 𝐿𝑘 ,𝑀 , 𝐷 , and 𝐿ℎ from (P.6), Lemma 4.1, (A.4),
Lemma 4.3, and (A.5), respectively. Define, for each 𝑘 ∈ ℕ,

𝑟𝑘
def
= (1 − 𝛾𝑘 ) L𝑘 (𝑥𝑥 , 𝜇𝑘 ) +

𝑐

2



𝜇𝑘 − 𝜇★

2

and

𝐶𝑘
def
=
𝐿𝑘

2

𝑑2

C + 𝑑C
(
𝑀 ∥𝑇 ∥ + 𝐷 + 𝐿ℎ + ∥𝜇★∥ ∥𝐴∥

)
.

Then, under (A.1)-(A.8) and (P.1)-(P.7) with𝑀 ≥ 1, for the sequences (𝑥𝑘 )𝑘∈ℕ and (𝜇𝑘 )𝑘∈ℕ generated by
Algorithm 1, using the filtration𝔖′ = (𝒮𝑘−1)𝑘∈ℕ with 𝒮𝑘

def
= 𝜎 (𝑥0, 𝜇0, �̂�0, . . . , �̂�𝑘 ) as before, the following

inequality holds, for each 𝑘 ∈ ℕ with 𝑘 > 0,

(4.15) 𝔼 [𝑟𝑘+1 | 𝒮𝑘−1] − 𝑟𝑘 ≤ −𝛾𝑘
(
L

(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥★, 𝜇★

)
+ 𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2
)
+ (𝛽𝑘 − 𝛽𝑘+1)

𝑀2

2

+ (𝛾𝑘 − 𝛾𝑘+1) ˜𝑀 + 𝛾𝑘𝛽𝑘
𝑀2

2

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘 ) + 𝛾2

𝑘
𝐶𝑘 + 𝑑C𝛾𝑘𝔼 [∥𝜆𝑘 ∥ | 𝒮𝑘−1]

+ 𝛾𝑘𝔼
[
𝜆𝑠
𝑘
| 𝒮𝑘−1

]
(ℙ-a.s.) .
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Proof. Applying Lemma 4.2 to the points 𝑥★ and 𝑥𝑘 we have, for each 𝑘 ∈ ℕ,

E𝑘
(
𝑥★, 𝜇𝑘

)
≥ E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + ⟨∇𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , 𝑥★ − 𝑥𝑘⟩ +

𝜌𝑘

2



𝐴(𝑥★ − 𝑥𝑘 )

2

= E𝑘 (𝑥𝑘 , 𝜇𝑘 ) +
〈
∇̂𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , 𝑥★ − 𝑥𝑘

〉
+

〈
𝜆𝑘 , 𝑥𝑘 − 𝑥★

〉
+ 𝜌𝑘

2



𝐴(𝑥★ − 𝑥𝑘 )

2

= E𝑘 (𝑥𝑘 , 𝜇𝑘 ) +
〈
∇̂𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , 𝑥★ − 𝑥𝑘

〉
+ ℎ

(
𝑥★

)
− ℎ

(
𝑥★

)
+

〈
𝜆𝑘 , 𝑥𝑘 − 𝑥★

〉
+ 𝜌𝑘

2



𝐴(𝑥★ − 𝑥𝑘 )

2

.

By the definition of 𝑠𝑘 as a minimizer and the definition of �̂�𝑘 we further have, for each 𝑘 ∈ ℕ,

(4.16) E𝑘
(
𝑥★, 𝜇𝑘

)
≥ E𝑘 (𝑥𝑘 , 𝜇𝑘 ) +

〈
∇̂𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , 𝑠𝑘 − 𝑥𝑘

〉
+ ℎ (𝑠𝑘 ) − ℎ

(
𝑥★

)
+

〈
𝜆𝑘 , 𝑥𝑘 − 𝑥★

〉
+ 𝜌𝑘

2



𝐴(𝑥★ − 𝑥𝑘 )

2

≥ E𝑘 (𝑥𝑘 , 𝜇𝑘 ) +
〈
∇̂𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , �̂�𝑘 − 𝑥𝑘

〉
+ ℎ (̂𝑠𝑘 ) − 𝜆𝑠𝑘 − ℎ

(
𝑥★

)
+

〈
𝜆𝑘 , 𝑥𝑘 − 𝑥★

〉
+ 𝜌𝑘

2



𝐴(𝑥★ − 𝑥𝑘 )

2

.

From Lemma 4.1 applied to the points 𝑥𝑘+1 and 𝑥𝑘 and by definition of 𝑥𝑘+1
def

= 𝑥𝑘 + 𝛾𝑘 (̂𝑠𝑘 − 𝑥𝑘 ) in
Algorithm 1, we also have, for each 𝑘 ∈ ℕ,

E𝑘 (𝑥𝑘+1, 𝜇𝑘 ) ≤ E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + ⟨∇𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , 𝑥𝑘+1 − 𝑥𝑘⟩ + 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) +
𝐿𝑘

2

∥𝑥𝑘+1 − 𝑥𝑘 ∥2

= E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + 𝛾𝑘 ⟨∇𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , �̂�𝑘 − 𝑥𝑘⟩ + 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) + 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2

= E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + 𝛾𝑘 ⟨∇̂𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) , �̂�𝑘 − 𝑥𝑘⟩ + 𝛾𝑘 ⟨𝜆𝑘 , 𝑥𝑘 − �̂�𝑘⟩ + 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 )

+ 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2 .

We combine the latter with (4.16), to get, for each 𝑘 ∈ ℕ,

(4.17) E𝑘 (𝑥𝑘+1, 𝜇𝑘 ) ≤ E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + 𝛾𝑘
〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
+ 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) + 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2

+ 𝛾𝑘
(
E𝑘

(
𝑥★, 𝜇𝑘

)
+ ℎ(𝑥★) − E𝑘 (𝑥𝑘 , 𝜇𝑘 ) − ℎ (̂𝑠𝑘 ) −

𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 + 𝜆𝑠𝑘
)
.

By convexity of ℎ from (A.1) and the definition of 𝑥𝑘+1, we have, for each 𝑘 ∈ ℕ,

(4.18) L𝑘 (𝑥𝑘+1, 𝜇𝑘 ) − L𝑘 (𝑥𝑘 , 𝜇𝑘 ) = E𝑘 (𝑥𝑘+1, 𝜇𝑘 ) − E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + ℎ (𝑥𝑘+1) − ℎ (𝑥𝑘 )
≤ E𝑘 (𝑥𝑘+1, 𝜇𝑘 ) − E𝑘 (𝑥𝑘 , 𝜇𝑘 ) + 𝛾𝑘 (ℎ (̂𝑠𝑘 ) − ℎ (𝑥𝑘 ))

Combining (4.17) and (4.18), we obtain, for each 𝑘 ∈ ℕ,

(4.19) L𝑘 (𝑥𝑘+1, 𝜇𝑘 ) − L𝑘 (𝑥𝑘 , 𝜇𝑘 ) ≤ 𝛾𝑘
(
E𝑘

(
𝑥★, 𝜇𝑘

)
+ ℎ(𝑥★) − E𝑘 (𝑥𝑘 , 𝜇𝑘 ) − ℎ (𝑥𝑘 )

)
+ 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) +

𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2 + 𝛾𝑘
(〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
− 𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 + 𝜆𝑠𝑘
)

= 𝛾𝑘
(
L𝑘

(
𝑥★, 𝜇𝑘

)
− L𝑘 (𝑥𝑘 , 𝜇𝑘 )

)
+ 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) + 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2

+ 𝛾𝑘
(〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
− 𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 + 𝜆𝑠𝑘
)
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Recalling the definition of 𝜇𝑘+1
def

= 𝜇𝑘 +𝐴 (𝑥𝑘+1 − 𝑏) in Algorithm 1, we have, for each 𝑘 ∈ ℕ,

L𝑘 (𝑥𝑘+1, 𝜇𝑘+1) − L𝑘 (𝑥𝑘+1, 𝜇𝑘 ) = ⟨𝜇𝑘+1 − 𝜇𝑘 , 𝐴𝑥𝑘+1⟩ = 𝜃𝑘 ∥𝐴𝑥𝑘+1 − 𝑏∥2 .

We combine the above and (4.19) to get, for each 𝑘 ∈ ℕ,
(4.20)

L𝑘 (𝑥𝑘+1, 𝜇𝑘+1) − L𝑘 (𝑥𝑘 , 𝜇𝑘 ) ≤ 𝜃𝑘 ∥𝐴𝑥𝑘+1 − 𝑏∥2 + 𝛾𝑘
(
L𝑘

(
𝑥★, 𝜇𝑘

)
− L𝑘 (𝑥𝑘 , 𝜇𝑘 )

)
+ 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 )

+ 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2 + 𝛾𝑘
(〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
− 𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 + 𝜆𝑠𝑘
)
.

Notice that the update of the dual variable 𝜇 can be interpreted as a proximal operator in the following

way,

𝜇𝑘+1 = argmin

𝜇∈H𝑑

{
−L𝑘 (𝑥𝑘+1, 𝜇) +

1

2𝜃𝑘
∥𝜇 − 𝜇𝑘 ∥2

}
.

Then, using Lemma 2.5, we get, for each 𝑘 ∈ ℕ,

(4.21) 0 ≥ 𝜃𝑘
(
L𝑘

(
𝑥𝑘+1, 𝜇

★
)
− L𝑘 (𝑥𝑘+1, 𝜇𝑘+1)

)
+ 1

2

(

𝜇𝑘+1 − 𝜇★

2 −


𝜇𝑘 − 𝜇★

2 + ∥𝜇𝑘+1 − 𝜇𝑘 ∥2

)
= 𝜃𝑘

(
L𝑘

(
𝑥𝑘+1, 𝜇

★
)
− L𝑘 (𝑥𝑘+1, 𝜇𝑘+1)

)
+ 1

2

(

𝜇𝑘+1 − 𝜇★

2 −


𝜇𝑘 − 𝜇★

2 + 𝜃2

𝑘
∥𝐴𝑥𝑘+1 − 𝑏∥2

)
.

Recall that, by (P.6), 𝜃𝑘 = 𝛾𝑘/𝑐 . Multiply (4.21) by 𝑐 and sum with (4.20), to obtain, for each 𝑘 ∈ ℕ,

(1 − 𝑐𝜃𝑘 )L𝑘 (𝑥𝑘+1, 𝜇𝑘+1) − (1 − 𝑐𝜃𝑘 )L𝑘 (𝑥𝑘 , 𝜇𝑘 ) + 𝑐
2

(

𝜇𝑘+1 − 𝜇★

2 −


𝜇𝑘 − 𝜇★

2

)
≤

(
𝜃𝑘 −

𝑐𝜃 2

𝑘

2

)
∥𝐴𝑥𝑘+1 − 𝑏∥2 + 𝛾𝑘

(
L𝑘

(
𝑥★, 𝜇𝑘

)
− L𝑘 (𝑥𝑘 , 𝜇𝑘 )

)
− 𝑐𝜃𝑘 (L𝑘 (𝑥𝑘+1, 𝜇) − L𝑘 (𝑥𝑘 , 𝜇𝑘 ))

− 𝜌𝑘𝛾𝑘
2
∥𝐴𝑥𝑘 − 𝑏∥2 + 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) + 𝛾2

𝑘

𝐿𝑘
2
∥�̂�𝑘 − 𝑥𝑘 ∥2 + 𝛾𝑘

(〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
+ 𝜆𝑠

𝑘

)
.

The previous inequality can be re-written, by trivial manipulations, as, for each 𝑘 ∈ ℕ,

(1 − 𝑐𝜃𝑘+1)L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) − (1 − 𝑐𝜃𝑘 )L𝑘 (𝑥𝑘 , 𝜇𝑘 ) +
𝑐

2

(

𝜇𝑘+1 − 𝜇★

2 −


𝜇𝑘 − 𝜇★

2

)
≤ (1 − 𝑐𝜃𝑘+1)L𝑘+1 (𝑥𝑘+1, 𝜇𝑘+1) − (1 − 𝑐𝜃𝑘 )L𝑘 (𝑥𝑘+1, 𝜇𝑘+1) +

(
𝜃𝑘 −

𝑐𝜃 2

𝑘

2

)
∥𝐴𝑥𝑘+1 − 𝑏∥2

+ 𝛾𝑘
(
L𝑘

(
𝑥★, 𝜇𝑘

)
− L𝑘 (𝑥𝑘 , 𝜇𝑘 )

)
− 𝑐𝜃𝑘

(
L𝑘

(
𝑥𝑘+1, 𝜇

★
)
− L𝑘 (𝑥𝑘 , 𝜇𝑘 )

)
− 𝜌𝑘𝛾𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2

+ 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) + 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2 + 𝛾𝑘
(〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
+ 𝜆𝑠

𝑘

)
= 𝑐 (𝜃𝑘 − 𝜃𝑘+1) (𝑓 + ℎ + ⟨𝜇𝑘+1, 𝐴 · −𝑏⟩) (𝑥𝑘+1) +

(
(1 − 𝑐𝜃𝑘+1) 𝑔𝛽𝑘+1 − (1 − 𝑐𝜃𝑘 ) 𝑔𝛽𝑘

)
(𝑇𝑥𝑘+1)

+ 1

2

(
(1 − 𝑐𝜃𝑘+1) 𝜌𝑘+1 − (1 − 𝑐𝜃𝑘 ) 𝜌𝑘 + 2𝜃𝑘 − 𝑐𝜃 2

𝑘

)
∥𝐴𝑥𝑘+1 − 𝑏∥2 + 𝛾𝑘

(
L𝑘

(
𝑥★, 𝜇𝑘

)
− L𝑘 (𝑥𝑘 , 𝜇𝑘 )

)
− 𝑐𝜃𝑘

(
L𝑘

(
𝑥𝑘+1, 𝜇

★
)
− L𝑘 (𝑥𝑘 , 𝜇𝑘 )

)
− 𝜌𝑘𝛾𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 + 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) + 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2

+ 𝛾𝑘
(〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
+ 𝜆𝑠

𝑘

)
.

(4.22)

By (P.5), (P.6) and the assumption that 𝑀 ≥ 1, we have 𝜃𝑘+1 ≤ 𝑀−1𝜃𝑘 ≤ 𝜃𝑘 . In view of (P.3), we also

have 𝛽𝑘+1 ≤ 𝛽𝑘 . In particular, 𝑔𝛽𝑘 ≤ 𝑔𝛽𝑘+1 ≤ 𝑔 pointwise. By Proposition 2.6(iv) and assumption (A.4),
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we are able to, for each 𝑘 ∈ ℕ, estimate the quantity(
(1 − 𝑐𝜃𝑘+1) 𝑔𝛽𝑘+1 − (1 − 𝑐𝜃𝑘 ) 𝑔𝛽𝑘

)
(𝑇𝑥𝑘+1)

=

(
𝑔𝛽𝑘+1 − 𝑔𝛽𝑘

)
(𝑇𝑥𝑘+1) + 𝑐

(
𝜃𝑘𝑔

𝛽𝑘 − 𝜃𝑘+1𝑔𝛽𝑘+1
)
(𝑇𝑥𝑘+1)

≤ 1

2

(𝛽𝑘 − 𝛽𝑘+1)


(𝜕𝑔(𝑇𝑥𝑘+1))0

2 + 𝑐

(
𝜃𝑘𝑔

𝛽𝑘 − 𝜃𝑘+1𝑔𝛽𝑘
)
(𝑇𝑥𝑘+1)

≤ 1

2

(𝛽𝑘 − 𝛽𝑘+1)


(𝜕𝑔(𝑇𝑥𝑘+1))0

2 + 𝑐 (𝜃𝑘 − 𝜃𝑘+1) 𝑔(𝑇𝑥𝑘+1).

Then, for each 𝑘 ∈ ℕ,

(4.23) 𝑐 (𝜃𝑘 − 𝜃𝑘+1) (𝑓 + ℎ + ⟨𝜇𝑘+1, 𝐴 · −𝑏⟩) (𝑥𝑘+1) +
(
(1 − 𝑐𝜃𝑘+1) 𝑔𝛽𝑘+1 − (1 − 𝑐𝜃𝑘 ) 𝑔𝛽𝑘

)
(𝑇𝑥𝑘+1)

≤ 𝑐 (𝜃𝑘 − 𝜃𝑘+1) L (𝑥𝑘+1, 𝜇𝑘+1) +
1

2

(𝛽𝑘 − 𝛽𝑘+1)


(𝜕𝑔(𝑇𝑥𝑘+1))0

2

.

Recall the definition of 𝑟𝑘 in (4.10). Coming back to (4.22) and using (4.23), we obtain, for each 𝑘 ∈ ℕ,
(4.24)

𝑟𝑘+1 − 𝑟𝑘 ≤
1

2

(
(1 − 𝛾𝑘+1) 𝜌𝑘+1 − (1 − 𝛾𝑘 ) 𝜌𝑘 +

2

𝑐
𝛾𝑘 −

𝛾2

𝑘

𝑐

)
∥𝐴𝑥𝑘+1 − 𝑏∥2

+ 𝛾𝑘
(
L𝑘

(
𝑥★, 𝜇𝑘

)
− L𝑘

(
𝑥𝑘+1, 𝜇

★
) )
− 𝜌𝑘𝛾𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 +
𝛽𝑘 − 𝛽𝑘+1

2



(𝜕𝑔(𝑇𝑥𝑘+1))0

2

+ (𝛾𝑘 − 𝛾𝑘+1) L (𝑥𝑘+1, 𝜇𝑘+1) + 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) + 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2 + 𝛾𝑘
(〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
+ 𝜆𝑠

𝑘

)
.

Recall that, by feasibility of 𝑥★ for the affine constraint, L
(
𝑥★, 𝜇𝑘

)
= L

(
𝑥★, 𝜇★

)
and thus, for each

𝑘 ∈ ℕ,

L𝑘

(
𝑥★, 𝜇𝑘

)
− L𝑘

(
𝑥𝑘+1, 𝜇

★
)
= L

(
𝑥★, 𝜇★

)
− L

(
𝑥𝑘+1, 𝜇

★
)
+

(
𝑔𝛽𝑘 − 𝑔

)
(𝑇𝑥★) +

(
𝑔 − 𝑔𝛽𝑘

)
(𝑇𝑥𝑘+1)

− 𝜌𝑘
2

∥𝐴𝑥𝑘+1 − 𝑏∥2

= L
(
𝑥★, 𝜇★

)
− L

(
𝑥𝑘 , 𝜇

★
)
+ L

(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥𝑘+1, 𝜇

★
)(

𝑔𝛽𝑘 − 𝑔
)
(𝑇𝑥★) +

(
𝑔 − 𝑔𝛽𝑘

)
(𝑇𝑥𝑘+1) −

𝜌𝑘

2

∥𝐴𝑥𝑘+1 − 𝑏∥2

≤ L
(
𝑥★, 𝜇★

)
− L

(
𝑥𝑘 , 𝜇

★
)
+ L

(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥𝑘+1, 𝜇

★
)
+ 𝛽𝑘

2



(𝜕𝑔(𝑇𝑥𝑘+1))0

2

− 𝜌𝑘
2

∥𝐴𝑥𝑘+1 − 𝑏∥2 ,

where in the inequality we have used the fact that 𝑔𝛽𝑘 ≤ 𝑔 pointwise and that, by Proposition 2.6(v),

for each 𝑘 ∈ ℕ, (
𝑔 − 𝑔𝛽𝑘

)
(𝑇𝑥𝑘+1) ≤

𝛽𝑘

2



(𝜕𝑔(𝑇𝑥𝑘+1))0

2

.

Substituting the above into (4.24) we have, for each 𝑘 ∈ ℕ,

(4.25) 𝑟𝑘+1 − 𝑟𝑘 ≤
1

2

(
(1 − 𝛾𝑘+1) 𝜌𝑘+1 − 𝜌𝑘 +

2

𝑐
𝛾𝑘 −

𝛾2

𝑘

𝑐

)
∥𝐴𝑥𝑘+1 − 𝑏∥2

+ 𝛾𝑘
(
L

(
𝑥★, 𝜇★

)
− L

(
𝑥𝑘 , 𝜇

★
) )
+ 𝛾𝑘

(
L

(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥𝑘+1, 𝜇

★
) )

− 𝜌𝑘𝛾𝑘
2

∥𝐴𝑥𝑘 − 𝑏∥2 +
𝛽𝑘 − 𝛽𝑘+1

2



(𝜕𝑔(𝑇𝑥𝑘+1))0

2 + (𝛾𝑘 − 𝛾𝑘+1) L (𝑥𝑘+1, 𝜇𝑘+1)

+ 𝛾𝑘
𝛽𝑘

2



(𝜕𝑔(𝑇𝑥𝑘+1))0

2 + 𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) + 𝛾2

𝑘

𝐿𝑘

2

∥�̂�𝑘 − 𝑥𝑘 ∥2

+ 𝛾𝑘
(〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
+ 𝜆𝑠

𝑘

)
.
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Take the expectation with respect to𝒮𝑘−1

def

= 𝜎 (𝑥0, 𝜇0, �̂�0, . . . , �̂�𝑘−1), which will completely determine 𝑥𝑘
and 𝜇𝑘 , and perform the following estimations.

• From (P.7), we have, for each 𝑘 ∈ ℕ,

(1 − 𝛾𝑘+1) 𝜌𝑘+1 − 𝜌𝑘 +
2

𝑐
𝛾𝑘 −

𝛾2

𝑘

𝑐
≤ 0.

• By assumption (A.4), for each 𝑘 ∈ ℕ,

𝔼
[

(𝜕𝑔(𝑇𝑥𝑘+1))0

2 | 𝒮𝑘−1

]
≤ 𝑀2.

• By Lemma 4.9, for each 𝑘 ∈ ℕ,

𝔼 [L (𝑥𝑘+1, 𝜇𝑘+1) | 𝒮𝑘−1] ≤ ˜𝑀.

• Recall that, by (A.2), 𝑓 is (𝐹, 𝜁 )-smooth and invoke Remark 2.8, to get, for each 𝑘 ∈ ℕ,

𝔼 [𝐷𝐹 (𝑥𝑘+1, 𝑥𝑘 ) | 𝒮𝑘−1] ≤ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘 ) .

• Since, for each 𝑘 ∈ ℕ, �̂�𝑘 and 𝑥𝑘 are both in C, we have

𝔼 [∥�̂�𝑘 − 𝑥𝑘 ∥ | 𝒮𝑘−1] ≤ 𝑑C .

We have, for each 𝑘 ∈ ℕ,

𝔼 [𝑟𝑘+1 | 𝒮𝑘−1] − 𝑟𝑘 ≤ 𝛾𝑘
(
L

(
𝑥★, 𝜇★

)
− L

(
𝑥𝑘 , 𝜇

★
) )
+ 𝛾𝑘

(
L

(
𝑥𝑘 , 𝜇

★
)
− 𝔼

[
L

(
𝑥𝑘+1, 𝜇

★
)
| 𝒮𝑘−1

] )
− 𝜌𝑘𝛾𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 +
𝛽𝑘 − 𝛽𝑘+1

2

𝑀2 + (𝛾𝑘 − 𝛾𝑘+1) ˜𝑀 + 𝛾𝑘
𝛽𝑘

2

𝑀2

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘 ) + 𝛾2

𝑘

𝐿𝑘

2

𝑑2

C + 𝛾𝑘𝔼
[〈
𝜆𝑘 , 𝑥

★ − �̂�𝑘
〉
+ 𝜆𝑠

𝑘
| 𝒮𝑘−1

]
.

We can bound the inner product involving the error terms using the Cauchy-Schwarz inequality and

the boundedness of C. Applying Lemma 4.5 and regrouping terms with 𝛾2

𝑘
we get, for each 𝑘 ∈ ℕ,

𝔼 [𝑟𝑘+1 | 𝒮𝑘−1] − 𝑟𝑘 ≤ 𝛾𝑘
(
L

(
𝑥★, 𝜇★

)
− L

(
𝑥𝑘 , 𝜇

★
) )
− 𝜌𝑘𝛾𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2 + (𝛽𝑘 − 𝛽𝑘+1)
𝑀2

2

+ 𝛾2

𝑘
𝐶𝑘

+ (𝛾𝑘 − 𝛾𝑘+1) �̃� + 𝛾𝑘𝛽𝑘
𝑀2

2

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘 ) + 𝛾𝑘𝔼
[
𝑑C ∥𝜆𝑘 ∥ + 𝜆𝑠𝑘 | 𝒮𝑘−1

]
.

We conclude by trivial manipulations. □

We now proceed to prove the main theorem regarding optimality, recalling the notation of (3.3) for

the terms 𝑺𝒫 and 𝑺𝒟 and (3.4) for𝔚 [(𝑥𝑘 )𝑘∈ℕ]. The convergence and rates of the Lagrangian values

will be shown in terms L
(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥★, 𝜇★

)
, which is non-negative since (𝑥★, 𝜇★) is a saddle point.

This is however not a primal-dual gap. Nevertheless, observe that in view of [6, Proposition 19.21(v)],

we have

L
(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥★, 𝜇★

)
= Φ(𝑥) − Φ(𝑥★) + ⟨𝐴∗𝜇★, 𝑥𝑘 − 𝑥★⟩,

which is nothing but the Bregman divergence of Φ with the subgradient −𝐴∗𝜇 between 𝑥𝑘 and 𝑥★. This

Bregman divergence appears then as a good candidate to quantify the convergence rate of Algorithm 1

given that it captures both the discrepancy of the primal objective to the optimal value and violation

of the affine constraint.
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Theorem 4.11 (Optimality). Suppose that (A.1)-(A.10) and (P.1)-(P.8) hold, with𝑀 ≥ 1. Let (𝑥𝑘 )𝑘∈ℕ be the
sequence of primal iterates generated by Algorithm 1 and (𝑥★, 𝜇★) a saddle-point pair for the Lagrangian.
Then, in addition to the results of Theorem 4.7, the following holds

(i) Convergence of the Lagrangian:

(4.26) lim

𝑘→∞
L

(
𝑥𝑘 , 𝜇

★
)
= L

(
𝑥★, 𝜇★

)
(ℙ-a.s.) .

(ii) The sequence (𝑥𝑘 )𝑘∈ℕ satisfies 𝔚 [(𝑥𝑘 )𝑘∈ℕ] ⊂ 𝑺𝒫 (ℙ-a.s.) and there exists 𝜇, an 𝑺𝒟-valued
random variable, such that 𝜇𝑘 → 𝜇 (ℙ-a.s.).

(iii) Ergodic rate: for each 𝑘 ∈ ℕ, let 𝑥𝑘
def
=

∑𝑘
𝑖=0
𝛾𝑖𝑥𝑖+1/Γ𝑘 . Then, for each 𝑘 ∈ ℕ,

L
(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥★, 𝜇★

)
∈ 𝑂

(
1

Γ𝑘

)
(ℙ-a.s.) .(4.27)

(iv) If the problem (𝒫) admits a unique solution 𝑥★, then (𝑥𝑘 )𝑘∈ℕ converges weakly (ℙ-a.s.) to 𝑥★ a
solution of (𝒫). Moreover, ifΦ is uniformly convex on C withmodulus of convexity𝜓 : ℝ+ → [0,∞],
then (𝑥𝑘 )𝑘∈ℕ converges strongly (ℙ-a.s.) to 𝑥★ at the ergodic rate, for each 𝑘 ∈ ℕ,

𝜓

(

𝑥𝑘 − 𝑥★

) ∈ 𝑂 (
1

Γ𝑘

)
(ℙ-a.s.) .

Furthermore, if (P.9) holds then we have the following pointwise rates in expectation, for any
(
𝑥★, 𝜇★

)
∈

𝑺𝒫 × 𝑺𝒟,

(v) It holds inf

0≤𝑖≤𝑘
𝔼

[
L

(
𝑥𝑘 , 𝜇

★
) ]
− L

(
𝑥★, 𝜇★

)
∈ 𝑂

(
1

Γ𝑘

)
.

(vi) There exists a subsequence
(
𝑥𝑘 𝑗

)
𝑗 ∈ℕ

such that 𝔼
[
L

(
𝑥𝑘 𝑗
, 𝜇★

)]
− L

(
𝑥★, 𝜇★

)
≤ 1

Γ𝑘𝑗
.

Proof. As in the proof of Theorem 4.7, our goal is to first apply Lemma 2.2 and then apply Lemma 2.3.

By (4.15) in Lemma 4.10 we have, using the same notation, for each 𝑘 ∈ ℕ,

𝔼 [𝑟𝑘+1 | 𝒮𝑘−1] − 𝑟𝑘 ≤ −𝛾𝑘
(
L

(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥★, 𝜇★

)
+ 𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2
)

+ (𝛽𝑘 − 𝛽𝑘+1)
𝑀2

2

+ (𝛾𝑘 − 𝛾𝑘+1) ˜𝑀 + 𝛾𝑘𝛽𝑘
𝑀2

2

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘 ) + 𝛾2

𝑘
𝐶𝑘

+ 𝑑C𝛾𝑘𝔼 [∥𝜆𝑘 ∥ | 𝒮𝑘−1] + 𝛾𝑘𝔼
[
𝜆𝑠
𝑘
| 𝒮𝑘−1

]
.

Let, for each 𝑘 ∈ ℕ, 𝑎𝑘 = 𝛾𝑘
(
L

(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥★, 𝜇★

)
+ 𝜌𝑘

2
∥𝐴𝑥𝑘 − 𝑏∥2

)
and denote what remains on

the r.h.s. by 𝑧𝑘 . Then, to apply Lemma 2.2, we must show (𝑧𝑘 )𝑘∈ℕ ∈ ℓ 1

+ (𝔖′). The terms (𝛽𝑘 − 𝛽𝑘+1) 𝑀
2

2

and (𝛾𝑘 − 𝛾𝑘+1) ˜𝑀 are bounded and telescopic, hence in ℓ 1

+. The terms 𝛾𝑘𝛽𝑘
𝑀2

2
and 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘 ) are in

ℓ 1

+ by (P.1). Recalling the definition of 𝐶𝑘 , we have, for each 𝑘 ∈ ℕ,

𝛾2

𝑘
𝐶𝑘 = 𝛾2

𝑘

(
𝐿𝑘

2

𝑑2

C + 𝑑C
(
𝑀 ∥𝑇 ∥ + 𝐷 + 𝐿ℎ + ∥𝜇★∥ ∥𝐴∥

) )
=

(
𝑑2

C ∥𝑇 ∥
2

2

)
𝛾2

𝑘

𝛽𝑘
+

(
𝑑2

C ∥𝐴∥
2 𝜌𝑘

2

+ 𝑑C
(
𝑀 ∥𝑇 ∥ + 𝐷 + 𝐿ℎ + ∥𝜇★∥ ∥𝐴∥

))
𝛾2

𝑘

≤
(
𝑑2

C ∥𝑇 ∥
2

2

)
𝛾2

𝑘

𝛽𝑘
+

(
𝑑2

C ∥𝐴∥
2 𝜌

2

+ 𝑑C
(
𝑀 ∥𝑇 ∥ + 𝐷 + 𝐿ℎ + ∥𝜇★∥ ∥𝐴∥

))
𝛾2

𝑘
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which is in ℓ 1

+ by (P.1) and (P.3). The remaining terms,

𝑑C𝛾𝑘𝔼 [∥𝜆𝑘 ∥ | 𝒮𝑘−1] + 𝛾𝑘𝔼
[
𝜆𝑠
𝑘
| 𝒮𝑘−1

]
,

coming from the inexactness of the algorithm, are in ℓ 1

+ (𝔖′) by (P.8). Thus, the r.h.s. belongs to ℓ 1

+ (𝔖′)
and so by Lemma 2.2 we have,

𝑎𝑘 = 𝛾𝑘

(
L

(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥★, 𝜇★

)
+ 𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2
)
∈ ℓ 1

+ (𝔖′) (ℙ-a.s.) ,

and also that (𝑟𝑘 )𝑘∈ℕ converges (ℙ-a.s.).

The first claim (i) follows by applying Lemma 2.3, the conditions of which are satisfied directly from

Lemma 4.3 and Lemma 4.5.

The second claim, (ii), follows from the same arguments as in [34, Theorem 4.2(ii)] but adapted

to the stochastic case. For the claims about (𝑥𝑘 )𝑘∈ℕ, the proof is trivially extended to the stochastic

setting (ℙ-a.s.). However, the claims about (𝜇𝑘 )𝑘∈ℕ are more delicate to adapt so we write explicitly

the arguments below.

By Theorem4.7(iii) we have

(
𝛾𝑘 ∥𝐴𝑥𝑘 − 𝑏∥2

)
𝑘∈ℕ ∈ ℓ 1

+ (𝔖) which, by Lemma 2.4 implies that there

exists a subsequence

(
𝐴𝑥𝑘 𝑗

)
𝑗 ∈ℕ

with



𝐴𝑥𝑘 𝑗
− 𝑏



 → 0 (ℙ-a.s.). Since the sequence (𝜇𝑘 )𝑘∈ℕ is bounded

(ℙ-a.s.) by Lemma 4.8, the subsequence

(
𝜇𝑘 𝑗

)
𝑗 ∈ℕ

is bounded (ℙ-a.s.) as well and thus admits a weakly

(ℙ-a.s.) convergent subsequence
(
𝜇𝑘 𝑗𝑖

)
𝑖∈ℕ

with 𝜇𝑘 𝑗𝑖
⇀ 𝜇 for someH𝑑 -valued random variable 𝜇. By

Fermat’s rule ([6, Theorem 16.2]), the weak (ℙ-a.s.) sequential cluster point 𝜇 is a solution to (𝒟) iff

0 ∈ 𝜕 (Φ∗ ◦ (−𝐴∗)) (𝜇) + 𝑏 (ℙ-a.s.) .

The proximal operator is the resolvent of the subdifferential and so it follows that (4.12) is equivalent,

for each 𝑖 ∈ ℕ, to

(4.28) ∇𝜑𝑘 𝑗𝑖

(
𝜇𝑘 𝑗𝑖

)
− 𝑏 ∈ 𝜕

(
Φ∗
𝑘 𝑗𝑖
◦ (−𝐴∗)

) (
𝜇𝑘 𝑗𝑖
− 𝜌𝑘 𝑗𝑖

∇𝜑𝑘 𝑗𝑖

(
𝜇𝑘 𝑗𝑖

))
(ℙ-a.s.) .

Since

(
𝐴𝑥𝑘 𝑗

)
𝑗 ∈ℕ

converges strongly to𝑏 (ℙ-a.s.), and in view of (4.13), it holds that∇𝜑𝑘 𝑗

(
𝜇𝑘 𝑗

)
converges

strongly to 0 (ℙ-a.s.). However, 𝜇𝑘 𝑗𝑖
− 𝜌𝑘 𝑗𝑖

∇𝜑𝑘 𝑗𝑖

(
𝜇𝑘 𝑗𝑖

)
converges weakly to 𝜇 (ℙ-a.s.). We henceforth

argue that we can pass to the limit in (4.28) by sequential closedness using a Mosco convergence

(weak-strong epigraphical convergence) argument (see [9] and [3, Definition 3.7]). Indeed, it was shown

in the proof of [34, Theorem 4.2], which defer to for brevity, that Φ∗
𝑘 𝑗𝑖

◦ −(𝐴∗) Mosco-converges to

(Φ)∗◦ (−𝐴∗). This implies, via [3, Theorem 3.66], that 𝜕Φ∗
𝑘 𝑗𝑖

◦ (−𝐴∗) graph-converges to 𝜕Φ∗◦ (−𝐴∗), and

[3, Proposition 3.59] shows that

(
𝜕Φ𝑘 𝑗𝑖

◦ (−𝐴∗)
)
𝑖∈ℕ

is sequentially closed for graph-convergence in the

weak-strong topology onH𝑑 , i.e., for any sequence

((
𝑣𝑘 𝑗𝑖

, 𝜂𝑘 𝑗𝑖

))
𝑖∈ℕ

in the graph of 𝜕

(
Φ∗
𝑘 𝑗𝑖

◦ (−𝐴∗)
)
𝑖∈ℕ

such that 𝑣𝑘 𝑗𝑖
converges weakly to 𝑣 and 𝜂𝑘 𝑗𝑖

converges strongly to 𝜂, we have 𝜂 ∈ 𝜕Φ∗ ◦ (−𝐴∗) (𝑣). Let,
for each 𝑖 ∈ ℕ, 𝑣𝑘 𝑗𝑖

= ∇𝜑𝑘 𝑗𝑖

(
𝜇𝑘 𝑗𝑖

)
−𝑏 and 𝜂𝑘 𝑗𝑖

= 𝜇𝑘 𝑗𝑖
−𝜌𝑘 𝑗𝑖

∇𝜑𝑘 𝑗𝑖

(
𝜇𝑘 𝑗𝑖

)
, which converge strongly (ℙ-a.s.)

and weakly (ℙ-a.s.) respectively, and let Ω̃ ⊂ F such that ℙ
(
Ω̃
)
= 1 and, for all 𝜔 ∈ Ω̃, 𝑣𝑘 𝑗𝑖

(𝜔) → 𝑏

and 𝜂𝑘 𝑗𝑖
(𝜔) ⇀ 𝜇 (𝜔). We conclude that, for each 𝜔 ∈ Ω̃,

0 ∈ 𝜕 (Φ∗ ◦ (−𝐴∗)) (𝜇 (𝜔)) + 𝑏 (ℙ-a.s.) ,

i.e., 𝜇 is a solution of the dual problem (𝒟) (ℙ-a.s.).
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We now prove the existence of a set Ω̃ ⊂ F such that ℙ
(
Ω̃
)
= 1 and, for all 𝜔 ∈ Ω̃, for any 𝜇★ ∈ 𝑺𝒟,

Θ
(
𝜇★, 𝜔

)
def

= lim

𝑘



𝜇𝑘 (𝜔) − 𝜇★

2

exists. This does indeed hold (ℙ-a.s.) for each fixed 𝜇★ ∈ 𝑺𝒟 by the argument in the proof of [34,

Theorem 4.2] but 𝑺𝒟 may be uncountable and so the entire statement for any 𝜇★ ∈ 𝑺𝒟 may not

necessarily hold (ℙ-a.s.) . To rectify this situation, we make the assumption (A.9) and argue as in [12,

Proposition 2.3(iii)].

First repeat the argument made in the proof of [34, Theorem 4.2] to show that, for each fixed 𝜇★ ∈ 𝑺𝒟,
there exists Ω𝜇★ ⊂ F with ℙ

(
Ω𝜇★

)
= 1 such that, for any 𝜔 ∈ Ω𝜇★ , Θ

(
𝜇★, 𝜔

)
exists. Let 𝜇★ ∈ 𝑺𝒟 and

recall (𝑟𝑘 )𝑘∈ℕ in (4.10), for each 𝑘 ∈ ℕ,

𝑟𝑘
def

= (1 − 𝛾𝑘 ) L𝑘 (𝑥𝑘 , 𝜇𝑘 ) +
𝑐

2



𝜇𝑘 − 𝜇★

2

.

We have already shown that (𝑟𝑘 )𝑘∈ℕ is convergent (ℙ-a.s.). We also have, for each 𝑘 ∈ ℕ,

−L𝑘 (𝑥𝑘 , 𝜇𝑘 ) =
(
L(𝑥𝑘 , 𝜇★) − L𝑘 (𝑥𝑘 , 𝜇𝑘 )

)
− L(𝑥𝑘 , 𝜇★)

= 𝑔(𝑇𝑥𝑘 ) − 𝑔𝛽𝑘 (𝑇𝑥𝑘 ) +
〈
𝜇★ − 𝜇𝑘 , 𝐴𝑥𝑘 − 𝑏

〉
− 𝜌𝑘

2

∥𝐴𝑥𝑘 − 𝑏∥2

− L(𝑥𝑘 , 𝜇★) .

We have from Theorem 4.7 that
𝜌𝑘
2
∥𝐴𝑥𝑘 − 𝑏∥2 → 0 (ℙ-a.s.). Therefore,〈

𝜇★ − 𝜇𝑘 , 𝐴𝑥𝑘 − 𝑏
〉
→ 0

since (𝜇𝑘 )𝑘∈ℕ is bounded (ℙ-a.s.). We also have, by claim (i) of this theorem, thatL
(
𝑥𝑘𝜇

★
)
→ L

(
𝑥★, 𝜇★

)
(ℙ-a.s.). By Lemma 2.6 and (A.4), we get

0 ≤
(
𝑔 (𝑇𝑥𝑘 ) − 𝑔𝛽𝑘 (𝑇𝑥𝑘 )

)
≤ 𝛽𝑘

2

𝑀2 (ℙ-a.s.)

which implies, in light of (P.3), that𝑔 (𝑇𝑥𝑘 )−𝑔𝛽𝑘 (𝑇𝑥𝑘 ) → 0 (ℙ-a.s.). Altogether, it holds thatL𝑘 (𝑥𝑘 , 𝜇𝑘 ) →
L

(
𝑥★, 𝜇★

)
(ℙ-a.s.) and thus the limit

lim

𝑘



𝜇𝑘 − 𝜇★

2

= 2/𝑐
(
lim

𝑘
𝑟𝑘 − L

(
𝑥★, 𝜇★

) )
exists (ℙ-a.s.) for each 𝜇★ ∈ 𝑺𝒟.

SinceH𝑑 is separable by (A.9), there exists a countable set 𝑆 such that ¯𝑆 = 𝑺𝒟. The previous paragraph
has shown that, for every 𝜇★ ∈ 𝑺𝒟, there exists Ω𝜇★ ⊂ F such that ℙ

(
Ω𝜇★

)
= 1 and, for any 𝜔 ∈ Ω𝜇★ ,

Θ
(
𝜇★, 𝜔

)
exists. Set Ω̃ =

⋂
𝜇★∈𝑆

Ω𝜇★ and let Ω̃𝑐
be its set-theoretic complement. By the countability of 𝑆 ,

ℙ
(
Ω̃
)
= 1 − ℙ

(
Ω̃𝑐

)
= 1 − ℙ ©­«

⋃
𝜇★∈𝑆

Ω𝑐
𝜇★

ª®¬ ≥ 1 −
∑︁
𝜇★∈𝑆

ℙ
(
Ω𝑐
𝜇★

)
= 1,

i.e., ℙ
(
Ω̃
)
= 1. Fix 𝜇★ ∈ 𝑺𝒟; since ¯𝑆 = 𝑺𝒟, there exists a sequence

(
𝜇★𝑛

)
𝑛∈ℕ such that, for each 𝑛 ∈ ℕ,

𝜇★𝑛 ∈ 𝑆 and 𝜇★𝑛 → 𝜇★. As was already shown, for each 𝑛 ∈ ℕ, for any 𝜔 ∈ Ω𝜇★𝑛
, Θ

(
𝜇★𝑛 , 𝜔

)
exists. Let

𝜔 ∈ Ω̃, then we have, for each 𝑛 ∈ ℕ, for each 𝑘 ∈ ℕ,

−


𝜇★𝑛 − 𝜇★

 ≤ 

𝜇𝑘 (𝜔) − 𝜇★

 − 

𝜇𝑘 (𝜔) − 𝜇★𝑛 

 ≤ 

𝜇★𝑛 − 𝜇★
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and thus, for each 𝑛 ∈ ℕ,

−


𝜇★𝑛 − 𝜇★

 ≤ lim inf

𝑘



𝜇𝑘 (𝜔) − 𝜇★

 − lim

𝑘



𝜇𝑘 (𝜔) − 𝜇★𝑛 


= lim inf

𝑘



𝜇𝑘 (𝜔) − 𝜇★

 − Θ (
𝜇★𝑛 , 𝜔

)
≤ lim sup

𝑘



𝜇𝑘 (𝜔) − 𝜇★

 − Θ (
𝜇★𝑛 , 𝜔

)
= lim sup

𝑘



𝜇𝑘 (𝜔) − 𝜇★

 − lim

𝑘



𝜇𝑘 (𝜔) − 𝜇★𝑛 


≤



𝜇★𝑛 − 𝜇★

 .
Taking the limit as 𝑛 →∞ then gives that the sequence

(
Θ

(
𝜇★𝑛 , 𝜔

) )
𝑛∈ℕ converges to Θ

(
𝜇★, 𝜔

)
for any

𝜔 ∈ Ω̃ where Ω̃ does not depend on 𝜇★.

We now aim to use (A.10), for which we denote (𝑝𝑖)𝑖∈ℕ =

(
∇𝜑𝑘 𝑗𝑖

(
𝜇𝑘 𝑗𝑖

)
− 𝑏

)
𝑖∈ℕ

and (𝑞𝑖)𝑖∈ℕ =(
𝜇𝑘 𝑗𝑖
− 𝜌𝑘 𝑗𝑖

∇𝜑𝑘 𝑗𝑖

(
𝜇𝑘 𝑗𝑖

))
𝑖∈ℕ

. We’ve shown that (𝑝𝑖)𝑖∈ℕ converges strongly to 0 (ℙ-a.s.) and that (𝑞𝑖)𝑖∈ℕ
converges weakly to 𝜇 (ℙ-a.s.) and so there exists Ω̃ ⊂ F with ℙ

(
Ω̃
)
= 1 such that, for any 𝜔 ∈ Ω̃,

𝑝𝑖 (𝜔) → 𝑝 (𝜔) and 𝑞𝑖 (𝜔) ⇀ 𝑞 (𝜔). Due to (4.28), we furthermore have, for each 𝜔 ∈ Ω̃, for each
𝑖 ∈ ℕ,

𝑝𝑖 (𝜔) ∈ 𝜕
(
Φ∗
𝑘 𝑗𝑖
◦ (−𝐴∗)

)
(𝑞𝑖 (𝜔)) (ℙ-a.s.) ,

and thus by (A.10), for each 𝜔 ∈ Ω̃, (𝑞𝑖 (𝜔))𝑖∈ℕ admits a subsequence

(
𝑞𝑖𝑙 (𝜔)

)
𝑖∈ℕ such that 𝑞𝑖𝑙 (𝜔) →

𝑞 (𝜔), i.e., the sequence
(
𝜇𝑘 𝑗𝑖𝑙
− 𝜌𝑘 𝑗𝑖𝑙

∇𝜑𝑘 𝑗𝑖𝑙

(
𝜇𝑘 𝑗𝑖𝑙

))
𝑖∈ℕ

is strongly convergent (ℙ-a.s.). Thus, the sub-

sequence

(
𝜇𝑘 𝑗𝑖𝑙

)
𝑖∈ℕ

is strongly convergent to 𝜇 (ℙ-a.s.). Since 𝜇 is a solution to (𝒟), it holds that

lim

𝑘
∥𝜇𝑘 − 𝜇∥ exists (ℙ-a.s.). At the same time, we have shown that lim

𝑙




𝜇𝑘 𝑗𝑖𝑙
− 𝜇




 = 0 (ℙ-a.s.) and so

the whole sequence (𝜇𝑘 )𝑘∈ℕ converges strongly to 𝜇 ∈ 𝑺𝒟 (ℙ-a.s.).

Meanwhile the third claim, (iii), follows from the argument of [34, Theorem 4.2(iv)] directly applied

to the (ℙ-a.s.) setting and similarly for (iv) following from the argument of [34, Corollary 4.3].

Finally, assume that (P.9) holds. By taking the total expectation of (4.15) in Lemma 4.10 and using

the law of total expectation we have, for each 𝑘 ∈ ℕ,

𝔼 [𝑟𝑘+1] − 𝔼 [𝑟𝑘 ] ≤ −𝛾𝑘
(
𝔼

[
L

(
𝑥𝑘 , 𝜇

★
) ]
− L

(
𝑥★, 𝜇★

)
+ 𝜌𝑘

2

𝔼
[
∥𝐴𝑥𝑘 − 𝑏∥2

] )
+ (𝛽𝑘 − 𝛽𝑘+1)

𝑀2

2

+ (𝛾𝑘 − 𝛾𝑘+1) ˜𝑀 + 𝛾𝑘𝛽𝑘
𝑀2

2

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘 ) + 𝛾2

𝑘
𝐶𝑘 + 𝑑C𝛾𝑘𝔼 [∥𝜆𝑘 ∥]

+ 𝛾𝑘𝔼
[
𝜆𝑠
𝑘

]
(ℙ-a.s.) .

Define the following, for each 𝑘 ∈ ℕ,

𝑟𝑘 = 𝔼 [𝑟𝑘 ] and 𝑝𝑘 = 𝛾𝑘 and �̃�𝑘 = 𝔼
[
L

(
𝑥𝑘 , 𝜇

★
) ]
− L

(
𝑥★, 𝜇★

)
+ 𝜌𝑘

2

𝔼
[
∥𝐴𝑥𝑘 − 𝑏∥2

]
and denote what remains, for each 𝑘 ∈ ℕ,

𝑧𝑘 = (𝛽𝑘 − 𝛽𝑘+1)
𝑀2

2

+ (𝛾𝑘 − 𝛾𝑘+1) ˜𝑀 + 𝛾𝑘𝛽𝑘
𝑀2

2

+ 𝐾(𝐹,𝜁 ,C)𝜁 (𝛾𝑘 ) + 𝛾2

𝑘
𝐶𝑘 + 𝑑C𝛾𝑘𝔼 [∥𝜆𝑘 ∥] + 𝛾𝑘𝔼

[
𝜆𝑠
𝑘

]
By repeating the arguments of the previous paragraph, we have that (𝑧𝑘 )𝑘∈ℕ ∈ ℓ 1

+. Invoking Lemma 2.4,

again noting Lemma 4.3 and Lemma 4.5 hold with the total expectation as well, with (𝑟𝑘 )𝑘∈ℕ, (𝑝𝑘 )𝑘∈ℕ,
(�̃�𝑘 )𝑘∈ℕ, and (𝑧𝑘 )𝑘∈ℕ defined as above, we obtain the remaining claims. □
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Remark 4.12. The assumption (A.9) is only necessary for showing that the sequence of dual variables

(𝜇𝑘 )𝑘∈ℕ admits an optimal weak cluster point. The other results, e.g., convergence of the Lagrangian

values, the containment𝔚 [(𝑥𝑘 )𝑘∈ℕ] ⊂ 𝑺𝒫 (ℙ-a.s.) , etc, do not require the separability imposed by

(A.9). Likewise, something similar can be said for (A.10), which is only necessary for ensuring the

strong convergence of the sequence of dual variables (𝜇𝑘 )𝑘∈ℕ and can otherwise be omitted.

Remark 4.13. The combination of the Lagrangian convergence rate (4.27) with convexity and the

feasibility rate (4.7) leads directly to a rate for the objective itself evaluated at the ergodic iterate,��Φ (𝑥𝑘 ) − Φ (
𝑥★

) �� = 𝑂 (
1/

√︁
Γ𝑘

)
(ℙ-a.s.) .

5 stochastic examples

We examine the problem of risk minimization using two different ways to inexactly calculate the

gradient with stochastic noise to demonstrate that the assumptions on the error can be satisfied in

order to apply ICGALP .

Consider the following,

(𝒫1) min

𝑥 ∈C⊂H
𝐴𝑥=𝑏

{
𝑓 (𝑥) def

= 𝔼 [𝐿 (𝑥, 𝜂)]
}
,

where 𝐿 (·, 𝜂) is differentiable for every 𝜂, and 𝜂 is a random variable.

We will impose the following assumptions, or a subset of them depending on the context.Indeed,

only (E.1) and (E.2) will be used for risk minimization with increasing batch size while (E.3) and (E.4)

will be needed for the results on risk minimization with variance reduction.

(E.1) It holds, for all 𝑥 ∈ H𝑝 , ∇𝑓 (𝑥) = 𝔼 [∇𝑥𝐿 (𝑥, 𝜂)].

(E.2) For all 𝜂, the function 𝐿 (·, 𝜂) is 𝜔-smooth (see Definition 2.9) with 𝜔 nondecreasing.

(E.3) The function 𝑓 is 𝜔-smooth with 𝜔 nondecreasing.

(E.4) The function 𝑓 is Hölder-smooth with constant 𝐶𝑓 and exponent 𝜏 .

Remark 5.1. In practical contexts, it’s unrealistic that one will have access to the function 𝑓 or knowledge
of its regularity. To this end, we note that the assumptions (E.1) and (E.2), which depend only on

the function 𝐿 (𝑥, 𝜂), are sufficient to ensure that (E.3) holds and similarly for (E.4) if one adjusts

(E.2) for Hölder-smoothness. Moreover, since Hölder-smoothness is a special case of 𝜔-smoothness,

(E.4) =⇒ (E.3).

Remark 5.2.With the above choice for 𝜆𝑘 , the terms in ∇𝑥E𝑘 (𝑥𝑘 , 𝜇𝑘 ) coming from the augmented

Lagrangian are computed exactly, however our analysis extends to the case where∇𝑥
( 𝜌𝑘

2
∥𝐴𝑥𝑘 − 𝑏∥2

)
=

𝜌𝑘𝐴
∗ (𝐴𝑥𝑘 − 𝑏) is computed inexactly as well, as this function is always Lipschitz-continuous. We

demonstrate this alternative choice in Section 7 by sampling the components 𝜌𝑘𝐴
∗ (𝐴𝑥𝑘 − 𝑏) (𝑖) in the

numerical experiments.

For the sake of clarity, we demonstrate only the case where, for each 𝑘 ∈ ℕ, 𝜆𝑘 ≡ 𝜆𝑓𝑘 with 𝜆
𝑓

𝑘
=

∇̂𝑓 𝑘−∇𝑓 (𝑥𝑘 ) and ∇̂𝑓 𝑘 is our inexact computation of∇𝑓 (𝑥𝑘 ), to be defined in the following subsections.

5.1 risk minimization with increasing batch size

Consider (𝒫1) and define, for each 𝑘 ∈ ℕ,

∇̂𝑓 𝑘
def

=
1

𝑛 (𝑘)

𝑛 (𝑘)∑︁
𝑖=1

∇𝑥𝐿 (𝑥𝑘 , 𝜂𝑖)
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where 𝑛 (𝑘) is the number of samples to be taken at iteration 𝑘 . We assume that each 𝜂𝑖 is i.i.d.,

according to some fixed distribution, and that 𝑛 is a function of 𝑘 , i.e., the number of samples taken to

estimate the expectation is dependent on the iteration number itself.

Lemma 5.3. Under assumptions (E.1) and (E.2), denote

𝐶 = 2

(
𝜔 (𝑑C)2 + 𝔼

[

∇𝐿 (
𝑥★, 𝜂

)

2

] )
where 𝑥★ is a solution to (𝒫1) and, for each 𝑘 ∈ ℕ, 𝒮𝑘 = 𝜎 (𝑥0, 𝜇0, �̂�0, . . . , �̂�𝑘 ) as in (3.2). Then, for each
𝑘 ∈ ℕ, the following holds,

𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
≤

√︄
𝐶

𝑛 (𝑘 + 1) .

Proof. By Jensen’s inequality, for each 𝑘 ∈ ℕ,

𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
2

≤ 𝔼

[


𝜆𝑓
𝑘+1




2

| 𝒮𝑘

]
= 𝔼

[


∇𝑓 (𝑥𝑘+1) − ∇̂𝑓 𝑘+1


2

| 𝒮𝑘

]
.

Then, since ∇̂𝑓 𝑘+1 is an unbiased estimator for ∇𝑓 (𝑥𝑘+1), we have, for each 𝑘 ∈ ℕ,

𝔼

[


∇𝑓 (𝑥𝑘+1) − ∇̂𝑓 𝑘+1


2

| 𝒮𝑘

]
= 𝔼

[


𝔼 [
∇̂𝑓 𝑘+1

]
− ∇̂𝑓 𝑘+1




2

| 𝒮𝑘

]
= Var

[
∇̂𝑓 𝑘+1 | 𝒮𝑘

]
= Var

[
1

𝑛 (𝑘 + 1)

𝑛 (𝑘+1)∑︁
𝑖=1

∇𝐿 (𝑥𝑘+1, 𝜂𝑖) | 𝒮𝑘

]
=

1

𝑛 (𝑘 + 1)Var [∇𝐿 (𝑥𝑘+1, 𝜂) | 𝒮𝑘 ] ,

where the last equality follows from the independence and identical distribution of 𝜂𝑖 . Applying the

definition of conditional variance yields, for each 𝑘 ∈ ℕ,
1

𝑛 (𝑘 + 1)Var [∇𝐿 (𝑥𝑘+1, 𝜂) | 𝒮𝑘 ] =
1

𝑛 (𝑘 + 1)
(
𝔼

[
∥∇𝐿 (𝑥𝑘+1, 𝜂)∥2 | 𝒮𝑘

]
− ∥𝔼 [∇𝐿 (𝑥𝑘+1, 𝜂) | 𝒮𝑘 ] ∥2

)
≤ 1

𝑛 (𝑘 + 1)𝔼
[
∥∇𝐿 (𝑥𝑘+1, 𝜂)∥2 | 𝒮𝑘

]
.

We again use Jensen’s inequality, then 𝜔-smoothness, and finally the fact that 𝜔 is nondecreasing

together with the fact that 𝑥𝑘+1 and 𝑥
★
are both in C to find, for each 𝑘 ∈ ℕ,

1

𝑛 (𝑘 + 1)𝔼
[
∥∇𝐿 (𝑥𝑘+1, 𝜂)∥2 | 𝒮𝑘

]
≤ 2

𝑛 (𝑘 + 1)

(
𝔼

[

∇𝐿 (𝑥𝑘+1, 𝜂) − ∇𝐿 (
𝑥★, 𝜂

)

2 | 𝒮𝑘

]
+𝔼

[

∇𝐿 (
𝑥★, 𝜂

)

2

] )
≤ 2

𝑛 (𝑘 + 1)

(
𝔼

[
𝜔

(

𝑥𝑘+1 − 𝑥★

)2

| 𝒮𝑘

]
+ 𝔼

[

∇𝐿 (
𝑥★, 𝜂

)

2

] )
≤ 2

𝑛 (𝑘 + 1)

(
𝜔 (𝑑C)2 + 𝔼

[

∇𝐿 (
𝑥★, 𝜂

)

2

] )
=

𝐶

𝑛 (𝑘 + 1) .

The above shows that, for each 𝑘 ∈ ℕ, 𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
2

≤ 𝐶
𝑛 (𝑘+1) and so 𝔼

[


𝜆𝑓
𝑘+1




 | 𝒮𝑘

]
≤

√︃
𝐶

𝑛 (𝑘+1) as

desired. □

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .



J. Nonsmooth Anal. Optim. 2 (2021), 6480 page 29 of 41

Proposition 5.4. Under (E.1) and (E.2), assume that the number of samples 𝑛 (𝑘) at iteration 𝑘 is lower

bounded by
(

𝛾𝑘
𝜁 (𝛾𝑘 )

)
2

, i.e. for some 𝛼 > 0, 𝑛 (𝑘) ≥ 𝛼
(

𝛾𝑘
𝜁 (𝛾𝑘 )

)
2

. Then, the summability of the error in (P.8)
is satisfied; namely,

𝛾𝑘+1𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
∈ ℓ 1 (𝔖) .

Proof. By Lemma 5.3 we have, for each 𝑘 ∈ ℕ,

𝛾𝑘+1𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
≤ 𝛾𝑘+1

√︄
𝐶

𝑛 (𝑘 + 1) ≤
√︂
𝐶

𝛼
𝜁 (𝛾𝑘+1) .

The summability of 𝜁 (𝛾𝑘+1) is given by (P.1) and thus 𝛾𝑘=1𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
∈ ℓ 1 (𝔖) □

Remark 5.5. The lower bound 𝑛 (𝑘) ≥ 𝛼
(

𝛾𝑘
𝜁 (𝛾𝑘 )

)
2

is sufficient but not necessary; one can alternatively

choose 𝑛 (𝑘) to be lower bounded by 𝛼

(
𝛽𝑘
𝛾𝑘

)
2

or 𝛼

(
1

𝛽𝑘

)
2

and, due to (P.1), the result will still hold.

5.2 risk minimization with variance reduction

We reconsider (𝒫1) as before but now with a different ∇̂𝑓 . We define a stochastic-averaged gradient,

which will serve as a form of variance reduction, such that the number of samples at each iteration

need not increase as in the previous subsection. For each 𝑘 ∈ ℕ, let 𝜈𝑘 ∈ [0, 1] and define

(5.1) ∇̂𝑓 𝑘
def

= (1 − 𝜈𝑘 ) ∇̂𝑓 𝑘−1
+ 𝜈𝑘∇𝑥𝐿 (𝑥𝑘 , 𝜂𝑘 )

with ∇̂𝑓 −1
= 0 and with each 𝜂𝑖 i.i.d.. We call ∇̂𝑓 𝑘 the stochastic average of sampled gradients with

weight 𝜈𝑘 . This method of approximating ∇𝑓 (𝑥𝑘 ) is reminiscent of both the SARAH estimator [28]

and the SVRG estimator [23], although distinct from both since the SARAH estimator is biased and the

SVRG estimator requires and inner and outer loops.

In the previous section, we have used the number of batches 𝑛(𝑘) to ensure the error summability

condition. This in turn means that the number of gradient evaluations increases with 𝑘 (in particular,

for finite-sum objectives, one has to evaluate all gradients after finitely many iterations). This is in

stark contrast with variance reduction proposed in this section where we are able to take a single

(or a larger but fixed batch size) gradient sample at each iteration, while taking full advantage of the

flexibility offered by the choice of 𝜈𝑘 to reduce the stochastic error variance as we now show.

Lemma 5.6. Under (E.1) and (E.3), denote, for each 𝑘 ∈ ℕ,

(5.2) 𝜎2

𝑘

def
= 𝔼

[
∥∇𝑥𝐿 (𝑥𝑘 , 𝜂𝑘 ) − ∇𝑓 (𝑥𝑘 )∥2 | 𝒮𝑘−1

]
where 𝒮𝑘 is defined in (3.2) and assume that 𝜎2 = sup𝑘 𝜎

2

𝑘
< ∞. Then, for each 𝑘 ∈ ℕ, the following

inequality holds,

𝔼

[


𝜆𝑓
𝑘+1




2

| 𝒮𝑘

]
≤

(
1 − 𝜈𝑘+1

2

) 


𝜆𝑓
𝑘




2

+ 𝜈2

𝑘+1𝜎
2 + 2

𝜔 (𝑑C𝛾𝑘 )2

𝜈𝑘+1
.

Remark 5.7. Since (E.2) implies (E.3), see Remark 5.1, it is clear that Lemma 5.6 holds under (E.1)-(E.2).

Moreover, by arguing similarly to the end of the proof of Lemma 5.3, it can be easily shown that the

uniform boundedness assumption on 𝜎2

𝑘
is in force under (E.2).
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Proof. The proof of this theorem is inspired by a similar construction found in [29, Lemma 2]. By

definition of 𝜆
𝑓

𝑘+1 and ∇̂𝑓 𝑘+1, we have, for all 𝑘 ∈ ℕ,


𝜆𝑓
𝑘+1




2

=




∇̂𝑓 𝑘+1 − ∇𝑓 (𝑥𝑘+1)


2

=




(1 − 𝜈𝑘+1) ∇̂𝑓 𝑘 + 𝜈𝑘+1∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1)


2

.

We add and subtract (1 − 𝜈𝑘+1) ∇𝑓 (𝑥𝑘 ) to get,


𝜆𝑓
𝑘+1




2

=




(1 − 𝜈𝑘+1) 𝜆𝑓𝑘 + 𝜈𝑘+1 (∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1)) + (1 − 𝜈𝑘+1) (∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1))


2

.

Applying the pythagorean identity then gives,


𝜆𝑓
𝑘+1




2

= (1 − 𝜈𝑘+1)2



𝜆𝑓

𝑘




2

+ 𝜈2

𝑘+1 ∥∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1)∥
2

+ (1 − 𝜈𝑘+1)2 ∥∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)∥2

+ 2

〈
(1 − 𝜈𝑘+1)

(
𝜆
𝑓

𝑘
+ ∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)

)
, 𝜈𝑘+1 (∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1))

〉
+ 2

〈
(1 − 𝜈𝑘+1) 𝜆𝑓𝑘 , (1 − 𝜈𝑘+1) (∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1))

〉
.

Using Young’s inequality on the last inner product, we find,


𝜆𝑓
𝑘+1




2

≤ (1 − 𝜈𝑘+1)2



𝜆𝑓

𝑘




2

+ 𝜈2

𝑘+1 ∥∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1)∥
2

+ (1 − 𝜈𝑘+1)2 ∥∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)∥2

+ 2

〈
(1 − 𝜈𝑘+1)

(
𝜆
𝑓

𝑘
+ ∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)

)
, 𝜈𝑘+1 (∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1))

〉
+ 𝜈𝑘+1

2




𝜆𝑓
𝑘




2

+ 2

𝜈𝑘+1



(1 − 𝜈𝑘+1)2 (∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1))

2

.

Notice that 1 − 𝜈𝑘+1 ≤ 1 and thus (1 − 𝜈𝑘+1)4 ≤ 1 − 𝜈𝑘+1 for all 𝑘 ∈ ℕ. This leads to


𝜆𝑓
𝑘+1




2

≤
(
1 − 𝜈𝑘+1

2

) 


𝜆𝑓
𝑘




2

+ 𝜈2

𝑘+1 ∥∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1)∥
2 + ∥∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)∥2

+ 2

〈
(1 − 𝜈𝑘+1)

(
𝜆
𝑓

𝑘
+ ∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)

)
, 𝜈𝑘+1 (∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1))

〉
+ 2 (1 − 𝜈𝑘+1)

𝜈𝑘+1
∥(∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1))∥2

≤
(
1 − 𝜈𝑘+1

2

) 


𝜆𝑓
𝑘




2

+ 𝜈2

𝑘+1 ∥∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1)∥
2 +

(
2

𝜈𝑘+1

)
∥∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)∥2

+ 2

〈
(1 − 𝜈𝑘+1)

(
𝜆
𝑓

𝑘
+ ∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)

)
, 𝜈𝑘+1 (∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1))

〉
.

Recall that, by (E.3), 𝑓 is 𝜔-smooth with 𝜔 is nondecreasing. Furthermore, using the fact that 𝑥𝑘+1 =
𝑥𝑘 − 𝛾𝑘 (𝑥𝑘 − �̂�𝑘 ), we find


𝜆𝑓

𝑘+1




2

≤
(
1 − 𝜈𝑘+1

2

) 


𝜆𝑓
𝑘




2

+ 𝜈2

𝑘+1 ∥∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1)∥
2 +

(
2

𝜈𝑘+1

)
𝜔 (∥𝑥𝑘 − 𝑥𝑘+1∥)2

+ 2

〈
(1 − 𝜈𝑘+1)

(
𝜆
𝑓

𝑘
+ ∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)

)
, 𝜈𝑘+1 (∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1))

〉
≤

(
1 − 𝜈𝑘+1

2

) 


𝜆𝑓
𝑘




2

+ 𝜈2

𝑘+1 ∥∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1)∥
2 +

(
2

𝜈𝑘+1

)
𝜔 (𝑑C𝛾𝑘 )2

+ 2

〈
(1 − 𝜈𝑘+1)

(
𝜆
𝑓

𝑘
+ ∇𝑓 (𝑥𝑘 ) − ∇𝑓 (𝑥𝑘+1)

)
, 𝜈𝑘+1 (∇𝑥𝐿 (𝑥𝑘+1, 𝜂𝑘+1) − ∇𝑓 (𝑥𝑘+1))

〉
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We take the expectation on both sides, recalling the definition of 𝜎𝑘 (see (5.2)), 𝜎 , and that

𝔼 [∇𝑥𝐿 (𝑥𝑘 , 𝜂𝑘 ) | 𝒮𝑘−1] = ∇𝑓 (𝑥𝑘 ) ,

to find

𝔼

[


𝜆𝑓
𝑘+1




2

| 𝒮𝑘

]
≤

(
1 − 𝜈𝑘+1

2

) 


𝜆𝑓
𝑘




2

+ 𝜈2

𝑘+1𝜎
2 +

(
2

𝜈𝑘+1

)
𝜔 (𝑑C𝛾𝑘 )2 . □

In the following proposition, we analyze a particular case of parameter choices under the assumption

(E.4) of Hölder smoothness of 𝑓 , i.e. ∃𝐶𝑓 , 𝜏 > 0 such that 𝜔 : 𝑡 → 𝐶𝑓 𝑡
𝜏
.

Proposition 5.8. Under (E.1) and (E.4), for each 𝑘 ∈ ℕ, let ∇̂𝑓 𝑘 be defined as in (5.1) with weight 𝜈𝑘 = 𝛾𝛼
𝑘

for some 𝛼 ∈]0, 𝜏 [. If the following conditions on the sequence (𝛾𝑘 )𝑘∈ℕ hold,

(5.3)

(
𝛾

1+min{ 𝛼
2
,𝜏−𝛼}

𝑘

)
𝑘∈ℕ
∈ ℓ 1,

and, for 𝑘 sufficiently large,

(5.4)

𝛾𝑘

𝛾𝑘+1
≤ 1 + 𝑜

(
𝛾𝛼
𝑘

)
,

then the summability condition in (P.8) is satisfied; namely,

𝛾𝑘+1𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
∈ ℓ 1 (𝔖) .

Proof. Since (E.4) =⇒ (E.3), the assumptions (E.1) and (E.3) are satisfied and Lemma 5.6 gives, for all

𝑘 ∈ ℕ,

𝔼

[


𝜆𝑓
𝑘+1




2

| 𝒮𝑘

]
≤

(
1 −

𝛾𝛼
𝑘+1
2

) 


𝜆𝑓
𝑘




2

+ 𝜎2𝛾2𝛼
𝑘+1 +

2𝐶2

𝑓
𝑑2𝜏
C 𝛾

2𝜏
𝑘

𝛾𝛼
𝑘+1

.

By (P.5) we have, for all 𝑘 ∈ ℕ, 𝛾𝑘 ≤ 𝑀𝛾𝑘+1. It follows that, for each 𝑘 ∈ ℕ,

𝔼

[


𝜆𝑓
𝑘+1




2

| 𝒮𝑘

]
≤

(
1 −

𝛾𝛼
𝑘+1
2

) 


𝜆𝑓
𝑘




2

+ 𝜎2𝛾2𝛼
𝑘+1 + 2𝑀

2𝜏
𝐶2

𝑓
𝑑2𝜏
C 𝛾

2𝜏−𝛼
𝑘+1 .

Consolidating higher order terms gives, for each 𝑘 ∈ ℕ,

𝔼

[


𝜆𝑓
𝑘+1




2

| 𝒮𝑘

]
≤

(
1 −

𝛾𝛼
𝑘+1
2

) 


𝜆𝑓
𝑘




2

+
(
𝜎2 + 2𝑀

2𝜏
𝐶2

𝑓
𝑑2𝜏
C

)
𝛾

min{2𝛼,2𝜏−𝛼 }
𝑘+1 .

Since 𝛼 < 𝜏 ≤ 1 by 5.3, it holds that 𝛼 < min {1, 2𝜏 − 𝛼}, and the first condition of Lemma a.1 is satisfied.

Additionally, by (5.4), we have that the second condition, (a.2), of Lemma a.1 is satisfied as well and we

can apply Lemmaa.1 with

𝑢𝑘 =




𝜆𝑓
𝑘




2

, 𝑐 =
1

2

, 𝑠 = 𝛼, 𝑑 =

(
𝜎2 + 2𝑀

2𝜏
𝐶2

𝑓
𝑑2𝜏
C

)
, and 𝑡 = min {2𝛼, 2𝜏 − 𝛼} ,

to find, for 𝑘 sufficiently large,

𝔼

[


𝜆𝑓
𝑘+1




2

| 𝒮𝑘

]
≤ 2

˜𝐶𝛾
min{𝛼,2(𝜏−𝛼) }
𝑘+1 + 𝑜

(
𝛾

min{𝛼,2(𝜏−𝛼) }
𝑘+1

)
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and, by extension, for 𝑘 sufficiently large,

𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
≤

√︁
2𝐶𝛾

min{ 𝛼
2
,𝜏−𝛼}

𝑘+1 + 𝑜
(
𝛾

min{ 𝛼
2
,𝜏−𝛼}

𝑘+1

)
.

Then, for 𝑘 sufficiently large,

𝛾𝑘+1𝔼
[


𝜆𝑓

𝑘+1




 | 𝒮𝑘

]
≤ 𝛾𝑘+1

(√︁
2

˜𝐶𝛾
min{ 𝛼

2
,𝜏−𝛼}

𝑘+1 + 𝑜
(
𝛾

min{ 𝛼
2
,𝜏−𝛼}

𝑘+1

))
≤

√︁
2

˜𝐶𝛾
1+min{ 𝛼

2
,𝜏−𝛼}

𝑘+1 + 𝑜
(
𝛾

1+min{ 𝛼
2
,𝜏−𝛼}

𝑘+1

)
.

Under the assumptions 5.3 we have 𝛾
1+min{ 𝛼

2
,𝜏−𝛼}

𝑘
∈ ℓ 1

and thus the summability condition of (P.8) is

satisfied. □

Example 5.9. The condition (5.3) in Proposition 5.8 can be satisfied, for example, by taking 𝛾𝑘 = 1

(𝑘+1)1−𝑏 ,

𝑏 > 0. In this case, the condition (5.3) reduces to picking 𝑏 such that the following holds,

(1 − 𝑏)
(
1 +min

{𝛼
2

, 𝜏 − 𝛼
})

> 1.

Rearranging, we find that this is equivalent to,

(5.5) 𝑏 < 1 −
(
1 +min

{𝛼
2

, 𝜏 − 𝛼
})−1

.

The condition (5.4) in Proposition 5.8 can be satisfied under this choice of 𝛾𝑘 as well. We have,

𝛾𝑘

𝛾𝑘+1
=

(
𝑘 + 2

𝑘 + 1

)
1−𝑏

=

(
1 + 1

𝑘 + 1

)
1−𝑏
≈ 1 + 1 − 𝑏

𝑘 + 1

= 1 + 𝑜
(
𝛾𝜖
𝑘

)
for any 0 < 𝜖 < 1, for 𝑘 sufficiently large.

Using [34, Example 19], the predicted convergence rates for the ergodic iterates 𝑥𝑘 given by Theo-

rem 4.7 and Theorem 4.11 under the above choice of 𝛾𝑘 read,

∥𝐴𝑥𝑘 − 𝑏∥ = 𝑂
(

1

(𝑘 + 2)𝑏

)
(ℙ-a.s.) and L

(
𝑥𝑘 , 𝜇

★
)
− L

(
𝑥★, 𝜇★

)
= 𝑂

(
1

(𝑘 + 2)𝑏

)
(ℙ-a.s.) .

Thus, choosing 𝑏 to be as large as possible is desired. For a given value of 𝜏 corresponding to the

Hölder exponent of the gradient, the best choice for 𝛼 is
2

3
𝜏 . In turn, the largest possible choice of 𝑏

is 𝜏/(3 + 𝜏). If the function 𝑓 is Lipschitz-smooth, then 𝜏 = 1, and we get 𝛼 = 2

3
and 𝑏 = 1/4 (to be

compared with the strict upper-bound 1/3 in the exact case, see [34, Example 15]).

Notice that the choice of 𝛼 does not directly affect the predicted rates of convergence, which now

depends only on the constant 𝑏. However, the choice of 𝛼 dictates the largest possible choice for 𝑏

satisfying the assumptions and thus, indirectly, the rates of convergence as well.

6 sweeping

We now consider an example in which the errors in the computation of ∇𝑓 are deterministic; a finite

sum minimization problem,

(𝒫2) min

𝑥 ∈C⊂H
𝐴𝑥=𝑏

1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (𝑥)

where 𝑛 > 1 is fixed. We assume that:
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(F.1) 𝑓𝑖 is 𝜔-smooth (see Definition 2.9) for 1 ≤ 𝑖 ≤ 𝑛 with 𝜔 nondecreasing.

(F.2) (𝛾𝑘 )𝑘∈ℕ a nonincreasing sequence.

As in the previous section, Section 5, we examine only the case where, for each 𝑘 ∈ ℕ, 𝜆𝑘 ≡ 𝜆𝑓𝑘 =

∇𝑓 (𝑥𝑘 ) − ∇̂𝑓 𝑘 , with ∇̂𝑓 𝑘 to be defined below, although our analysis is straightforward to adapt to the

more general case where one computes 𝜌𝑘𝐴
∗ (𝐴𝑥𝑘 − 𝑏) inexactly as well, at the expense of brevity

(see Remark 5.2). We will sweep, or cycle, through the functions 𝑓𝑖 , taking the gradient of a single

one at each iteration and recursively averaging with the past gradients. For notation, fixed 𝑛, we take

𝑚𝑜𝑑 (𝑘) def

= (𝑘 mod 𝑛) with the convention that𝑚𝑜𝑑 (𝑛) def

= 𝑛. We define the inexact gradient in the

following way,

∇̂𝑓 𝑘
def

=
1

𝑛

𝑘∑︁
𝑖=1

∇𝑓𝑖 (𝑥𝑖) (∀𝑘 ≤ 𝑛)

and

∇̂𝑓 𝑘
def

= ∇̂𝑓 𝑘−1
+ 1

𝑛

(
∇𝑓𝑚𝑜𝑑 (𝑘) (𝑥𝑘 ) − ∇𝑓𝑚𝑜𝑑 (𝑘) (𝑥𝑘−𝑛)

)
(∀𝑘 ≥ 𝑛 + 1) .

For 𝑘 ≥ 𝑛 + 1 it can also be written in closed form as,

∇̂𝑓 𝑘 =
1

𝑛

©­«
𝑚𝑜𝑑 (𝑘)∑︁

𝑖=1

∇𝑓𝑖
(
𝑥𝑖+𝑘−𝑚𝑜𝑑 (𝑘)

)
+

𝑛∑︁
𝑖=𝑚𝑜𝑑 (𝑘)+1

∇𝑓𝑖
(
𝑥𝑖+𝑘−𝑛−𝑚𝑜𝑑 (𝑘)

)ª®¬ .
Lemma 6.1. Let 𝐵 = 1

𝑛
(𝑛 (𝑛 − 1) + (𝑛 − 1) (2𝑛 − 1)). Under (F.1) and (F.2), we then have, for all 𝑘 ≥ 2𝑛 − 1,

the following, 


𝜆𝑓
𝑘+1




 ≤ 𝐵𝜔 (𝛾𝑘+2−2𝑛𝑑C) .

Proof. Using the definition of 𝜆
𝑓

𝑘+1 for 𝑘 ≥ 2𝑛 − 1 ≥ 𝑛 + 1, we have


𝜆𝑓
𝑘+1




 =




∇𝑓 (𝑥𝑘+1) − ∇̂𝑓 𝑘+1



=

1

𝑛







(
𝑚𝑜𝑑 (𝑘+1)∑︁

𝑖=1

∇𝑓𝑖 (𝑥𝑘+1) − ∇𝑓𝑖
(
𝑥𝑖+𝑘+1−𝑚𝑜𝑑 (𝑘+1)

))
+ ©­«

𝑛∑︁
𝑖=𝑚𝑜𝑑 (𝑘+1)+1

∇𝑓𝑖 (𝑥𝑘+1) − ∇𝑓𝑖
(
𝑥𝑖+𝑘+1−𝑛−𝑚𝑜𝑑 (𝑘+1)

)ª®¬






 .

Then, we apply the triangle inequality and 𝜔-smoothness of 𝑓𝑖 assumed in (F.1),


𝜆𝑓
𝑘+1




 ≤ 1

𝑛

(
𝑚𝑜𝑑 (𝑘+1)∑︁

𝑖=1



∇𝑓𝑖 (𝑥𝑘+1) − ∇𝑓𝑖 (𝑥𝑖+𝑘+1−𝑚𝑜𝑑 (𝑘+1)
)



+
𝑛∑︁

𝑖=𝑚𝑜𝑑 (𝑘+1)+1



∇𝑓𝑖 (𝑥𝑘+1) − ∇𝑓𝑖 (𝑥𝑖+𝑘+1−𝑛−𝑚𝑜𝑑 (𝑘+1)
)

ª®¬

≤ 1

𝑛

(
𝑚𝑜𝑑 (𝑘+1)∑︁

𝑖=1

𝜔

(

𝑥𝑘+1 − 𝑥𝑖+𝑘+1−𝑚𝑜𝑑 (𝑘+1)


)

+
𝑛∑︁

𝑖=𝑚𝑜𝑑 (𝑘+1)+1
𝜔

(

𝑥𝑘+1 − 𝑥𝑖+𝑘+1−𝑛−𝑚𝑜𝑑 (𝑘+1)


)ª®¬ .
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Now we add and subtract the iterates in between 𝑥𝑘+1 and 𝑥𝑖+𝑘+1−𝑚𝑜𝑑 (𝑘+1) then use the definition

𝑥𝑘+1 = 𝑥𝑘 + 𝛾𝑘 (̂𝑠𝑘 − 𝑥𝑘 ) and the fact that, for all 𝑘 ∈ ℕ, �̂�𝑘 and 𝑥𝑘 are in C,


𝜆𝑓
𝑘+1




 ≤ 1

𝑛

(
𝑚𝑜𝑑 (𝑘+1)∑︁

𝑖=1

𝑚𝑜𝑑 (𝑘+1)−𝑖∑︁
𝑗=1

𝜔

(

𝑥𝑘+2−𝑗 − 𝑥𝑘+1−𝑗

)
+

𝑛∑︁
𝑖=𝑚𝑜𝑑 (𝑘+1)+1

𝑚𝑜𝑑 (𝑘+1)−𝑖+𝑛∑︁
𝑗=1

𝜔

(

𝑥𝑘+2−𝑗 − 𝑥𝑘+1−𝑗

)ª®¬
≤ 1

𝑛

(
𝑚𝑜𝑑 (𝑘+1)∑︁

𝑖=1

𝑚𝑜𝑑 (𝑘+1)−𝑖∑︁
𝑗=1

𝜔
(
𝛾𝑘+1−𝑗𝑑C

)
+

𝑛∑︁
𝑖=𝑚𝑜𝑑 (𝑘+1)+1

𝑚𝑜𝑑 (𝑘+1)−𝑖+𝑛∑︁
𝑗=1

𝜔
(
𝛾𝑘+1−𝑗𝑑C

)ª®¬ .
Recall that, by (F.2), (𝛾𝑘 )𝑘∈ℕ is nonincreasing, by (F.1), 𝜔 is a nondecreasing function, and, for each

𝑘 ∈ ℕ,𝑚𝑜𝑑 (𝑘) ≤ 𝑛. Then,


𝜆𝑓
𝑘+1




 ≤ 1

𝑛

(
𝑚𝑜𝑑 (𝑘+1)∑︁

𝑖=1

(−𝑖 +𝑚𝑜𝑑 (𝑘 + 1))𝜔
(
𝛾𝑘+1+𝑖−𝑚𝑜𝑑 (𝑘+1)𝑑C

)
+

𝑛∑︁
𝑖=𝑚𝑜𝑑 (𝑘+1)+1

(−𝑖 + 𝑛 +𝑚𝑜𝑑 (𝑘 + 1))𝜔
(
𝛾𝑘+1+𝑖−𝑛−𝑚𝑜𝑑 (𝑘+1)𝑑C

)ª®¬
≤ 1

𝑛

(
𝑚𝑜𝑑 (𝑘 + 1) (−1 +𝑚𝑜𝑑 (𝑘 + 1))𝜔

(
𝛾𝑘+2−𝑚𝑜𝑑 (𝑘+1)𝑑C

)
+ (𝑛 −𝑚𝑜𝑑 (𝑘 + 1)) (−1 + 𝑛 +𝑚𝑜𝑑 (𝑘 + 1))𝜔

(
𝛾𝑘+2−𝑛−𝑚𝑜𝑑 (𝑘+1)𝑑C

) )
≤ 1

𝑛
(𝑛 (𝑛 − 1)𝜔 (𝛾𝑘+2−𝑛𝑑C) + (𝑛 − 1) (2𝑛 − 1)𝜔 (𝛾𝑘+2−2𝑛𝑑C))

≤ 1

𝑛
(𝑛 (𝑛 − 1) + (𝑛 − 1) (2𝑛 − 1))𝜔 (𝛾𝑘+2−2𝑛𝑑C) .

□

Proposition 6.2. Under (F.1) and (F.2), and assuming that (𝛾𝑘𝜔 (𝑑C𝛾𝑘 ))𝑘∈ℕ ∈ ℓ 1, the summability condition
of (P.8) holds; namely,

𝛾𝑘+1




𝜆𝑓
𝑘+1




 ∈ ℓ 1.

Proof. By Lemma 6.1, we have, for all 𝑘 ≥ 2𝑛 − 1,

𝛾𝑘+1




𝜆𝑓
𝑘+1




 ≤ 𝐵𝛾𝑘+1𝜔 (𝑑C𝛾𝑘+2−2𝑛) ≤ 𝐵𝛾𝑘+2−2𝑛𝜔 (𝑑C𝛾𝑘+2−2𝑛)

where we have used the fact that (𝛾𝑘 )𝑘∈ℕ is a nonincreasing sequence by (F.2). Since (𝛾𝑘𝜔 (𝑑C𝛾𝑘 ))𝑘∈ℕ ∈
ℓ 1
, the desired claim follows. □

6.1 comparison of complexities

We summarize here the complexity of the three methods we have proposed. To make things clear and

concrete, we consider a Lipschitz-smooth function 𝑓 (𝑥) = 1

𝑛

𝑛∑
𝑖=1

𝑓𝑖 (𝑥) with all 𝑓𝑖 Lipschitz-smooth as
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well, such that all of our relevant assumptions hold. We take 𝛾𝑘 = 1/(𝑘 + 1)1−𝑏 with the rest of the

parameters chosen to satisfy the assumptions laid out in the algorithm (see Section 7 for more details),

and all fixed batch sizes to be 1.

Maximum 𝑏 Iterations 𝑘 # ∇𝑓𝑖 calls per iter. Total # ∇𝑓𝑖 calls

Increasing Batch Size ≈ 1

3
Ω

(
𝜖−3

)
(𝑘 + 1) 4

3 𝑂

(
𝜖−3∑
𝑖=1

(𝑖 + 1) 4

3

)
Variance Reduction ≈ 1

4
Ω

(
𝜖−4

)
1 𝑂

(
𝜖−4

)
Sweeping ≈ 1

3
Ω

(
𝜖−3

)
1 𝑂

(
𝜖−3

)
Deterministic (CGALP) ≈ 1

3
Ω

(
𝜖−3

)
𝑛 𝑂

(
(𝑛𝜖)−3

)
7 numerical experiments

We apply the sweeping method and the variance reduction method to solve the following projection

problem,

(7.1) min

∥𝑥 ∥
1
≤1

𝐴𝑥=0

1

2𝑛
∥𝑥 − 𝑦 ∥2 ,

where 𝑥 and 𝑦 are in ℝ𝑛
. Notice that this problem fits both the risk minimization and the sweeping

problem structures. By choosing 𝑓𝑖 (𝑥) = 1

2
(𝑥𝑖 − 𝑦𝑖)2 we can rewrite the problem to apply the sweeping

method of Section 6. Alternatively, we can let 𝜂 be a random variable taking values in the set {1, . . . , 𝑛}
and write 𝐿(𝑥, 𝜂) = 1

2

(
𝑥𝜂 − 𝑦𝜂

)
2

to cast the problem as risk minimization as in Section 5. In both of

these cases, it is possible by our analysis to consider also sampling components of the components of

the gradient term ∇𝑥 𝜌𝑘
2
∥𝐴𝑥𝑘 ∥2 = 𝜌𝑘𝐴

∗𝐴𝑥𝑘 .
The assumptions (E.1) - (E.4) and (F.1) all hold as the function 𝑓 is Lipschitz-smooth and the functions

𝐿 (·, 𝜂) are all Lipschitz-smooth for every 𝜂 as well. The assumptions ((A.1)) to ((a)) all hold as 𝑓 is

Lipschitz-smooth and has full domain.

For parameters, we take 𝛾𝑘 = 1/(𝑘 + 1)1−𝑏 , 𝜌𝑘 ≡ 𝜌 = 2
2−𝑏 + 1, 𝜃𝑘 = 𝛾𝑘 . If we take 𝑏 < 1

2
then all the

assumptions (P.1) to (P.7) are satisfied, as well as (F.2). In particular, to satisfy (P.8) in the variance

reduction case, we will take 𝑏 ∈
{

1

4
− 0.15, 1

4
− 0.01

}
. With this choice of 𝑏, we have𝑂

(
1

Γ𝑘

)
= 𝑂

(
𝑘−0.1

)
and 𝑂

(
1

Γ𝑘

)
= 𝑂

(
𝑘−0.24

)
, respectively. The weight 𝜈𝑘 in the variance reduction is chosen to be 𝜈𝑘 = 𝛾𝛼

𝑘

with 𝛼 = 2/3 since the problem is Lipschitz-smooth, i.e. the Hölder exponent is 𝜏 = 1. With this choice,

the condition (5.3) in Proposition 5.8 is satisfied as was discussed in Example 5.9.

Since the problem (7.1) is strongly convex, we show



𝑥𝑘 − 𝑥★

2

in addition to the feasibility gap,

∥𝐴𝑥𝑘 ∥2 where 𝑥𝑘 is the ergodic variable; for each 𝑘 ∈ ℕ,

𝑥𝑘
def

=

𝑘∑︁
𝑖=0

𝛾𝑖𝑥𝑖+1/Γ𝑘 .

The result in Theorem 4.11 ensures convergence of



𝑥𝑘 − 𝑥★

2

with a𝑂

(
1

Γ𝑘

)
rate since strong convexity

is a special case of uniform convexity with𝜓 (𝑡) = 1

2
𝑡2
.

We initialize 𝑦 ∈ ℝ𝑛
and 𝐴 ∈ ℝ2×𝑛

randomly. To find the solution 𝑥★ to high precision, we use

generalized forward-backward before running the experiments. As a baseline, we run CGALP, the

exact counterpart to ICGALP , and display the results. We run the sweeping method on ∇𝑓 (𝑥𝑘 ) for
two different step size choices, displayed in Figures 1 and 2. For the variance reduction, we examine

both the case where ∇𝐿 (𝑥𝑘 , 𝜂𝑘 ) is sampled and the case where the gradient of the quadratic term is

sampled (see Remark 5.2), for two different step size and weight choices as well as different batch sizes

(1, 64, or 256), displayed in Figures 1 and 2.
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102 103 104 105
k

10−2

|
̄x k
−
x
⋆
|2

Optimality
CGALP
Sweep̄∇xfi(xk)
VR  ingle ∇xfi(xk)
VR  mall batch ∇xfi(xk)
VR big batch ∇xfi(xk)
VR  mall batch ∇xfi(xk) + ρk(A *Axk)(i)

VR big batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+1)0.24)

102 103 104 105

k

10−5

10−4

|A
̄x k
|2

Feasibility
CGALP
Sweep ∇xfi(xk)
VR  ingle ∇xfi(xk)
VR 64 batch ∇xfi(xk)
VR 256 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk) + ρk(A *Axk)(i)

VR 256 batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+1)0.24)

Figure 1: Ergodic convergence profiles for ICGALP applied to the projection problem (7.1) with𝑛 = 1024.

The step size is, for each 𝑘 ∈ ℕ, 𝛾𝑘 = (𝑘 + 1)−(1−
1

4
+0.01)

and the weight for variance reduction

is, for each 𝑘 ∈ ℕ, 𝜈𝑘 = 𝛾
2/3
𝑘

.
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102 103 104 105
k

10−2

10−1

|
̄x k
−
x
⋆
|2

Optimality
CGALP
Sweep ∇xfi(xk)
VR 1 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk)
VR 256 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk) + ρk(A *Axk)(i)

VR 256 batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+1)0.24)

102 103 104 105
k

10−5

10−4

|A
̄x k
|2

Feasibility
CGALP
Sweep ∇xfi(xk)
VR 1 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk)
VR 256 batch ∇xfi(xk)
VR 64 batch ∇xfi(xk) + ρk(A *Axk)(i)

VR 256 batch ∇xfi(xk) + ρk(A *Axk)(i)

O( 1
(k+1)0.24)

Figure 2: Ergodic convergence profiles for ICGALP applied to the projection problem (7.1) with𝑛 = 1024.

The step size is, for each 𝑘 ∈ ℕ, 𝛾𝑘 = (𝑘 + 1)−(1−
1

4
+0.15)

and the weight for variance reduction

is, for each 𝑘 ∈ ℕ, 𝜈𝑘 = 𝛾
2/3
𝑘

.
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8 conclusion

We introduced an inexact extension of the CGALP algorithm, given in [34], which allows for either

stochastic or deterministic errors in the computation of several important quantities. The main benefit

of this extension will be in the high-dimensional setting, where computing the terms ∇𝑓 , prox𝛽𝑔, or

the linear minimization oracle can be impractical. Several different methods were considered which

demonstrated how the gradient ∇𝑓 could be computed in such a way that the summability conditions

of ICGALPwould be satisfied. The main drawbacks of using the inexact variant of the algorithm

emerge from the restrictions on the parameters one is free to choose. Indeed, here the choices of step

sizes are more strict than in the CGALP setting. However, the predicted convergence rates for both the

optimality and feasibility maintain the same dependence on parameters as was observed for CGALP

in an almost sure sense.

appendix a

Lemma a.1. Consider a positive sequence (𝑢𝑘 )𝑘∈ℕ which satisfies, for each 𝑘 ∈ ℕ,

(a.1) 𝑢𝑘+1 ≤
(
1 − 𝑐𝛾𝑠

𝑘

)
𝑢𝑘 + 𝑑𝛾𝑡𝑘 ,

for some real numbers 𝑠 and 𝑡 satisfying 0 < 𝑠 < min {1, 𝑡}. If, in addition, the sequence (𝛾𝑘 )𝑘∈ℕ satisfies,
for each 𝑘 ∈ ℕ,

(a.2)

𝛾𝑘

𝛾𝑘+1
≤ 1 + 𝑜

(
𝛾𝑠
𝑘

)
,

then, for 𝑘 sufficiently large, it holds,

𝑢𝑘 ≤
𝑑

𝑐
𝛾𝑡−𝑠
𝑘
+ 𝑜

(
𝛾𝑡−𝑠
𝑘

)
Proof. For each 𝑘 ∈ ℕ, we denote 𝜈𝑘

def

= 𝛾𝑠−𝑡
𝑘
𝑢𝑘 − 𝑑

𝑐
such that 𝑢𝑘 = 𝛾𝑡−𝑠

𝑘

(
𝜈𝑘 + 𝑑

𝑐

)
. Then, by (a.1),

𝜈𝑘+1 = 𝛾
𝑠−𝑡
𝑘+1𝑢𝑘+1 −

𝑑

𝑐
≤ 𝛾𝑠−𝑡

𝑘+1
( (

1 − 𝑐𝛾𝑠
𝑘

)
𝑢𝑘 + 𝑑𝛾𝑡𝑘

)
− 𝑑
𝑐
= 𝛾𝑠−𝑡

𝑘

(
𝛾𝑘

𝛾𝑘+1

)𝑡−𝑠 ( (
1 − 𝑐𝛾𝑠

𝑘

)
𝑢𝑘 + 𝑑𝛾𝑡𝑘

)
− 𝑑
𝑐
.

By (a.2), we then have, for each 𝑘 ∈ ℕ,

𝜈𝑘+1 ≤ 𝛾𝑠−𝑡𝑘

(
1 + 𝑜

(
𝛾𝑠
𝑘

) )𝑡−𝑠 ( (
1 − 𝑐𝛾𝑠

𝑘

)
𝑢𝑘 + 𝑑𝛾𝑡𝑘

)
− 𝑑
𝑐
.

Substituting for 𝑢𝑘 using the definition of 𝜈𝑘 we find, for each 𝑘 ∈ ℕ,

𝜈𝑘+1 ≤ 𝛾𝑠−𝑡𝑘

(
1 + 𝑜

(
𝛾𝑠
𝑘

) )𝑡−𝑠 ( (
1 − 𝑐𝛾𝑠

𝑘

) (
𝜈𝑘 +

𝑑

𝑐

)
𝛾𝑡−𝑠
𝑘
+ 𝑑𝛾𝑡

𝑘

)
− 𝑑
𝑐
.

Now, we take a Taylor expansion for the term (1 + 𝑜 (𝛾𝑘 )𝑠)𝑡−𝑠 ≈
(
1 + 𝑜

(
𝛾𝑠
𝑘

))
to get, for 𝑘 sufficiently

large,

𝜈𝑘+1 ≤ 𝛾𝑠−𝑡𝑘

(
1 + 𝑜

(
𝛾𝑠
𝑘

) ) ( (
1 − 𝑐𝛾𝑠

𝑘

) (
𝜈𝑘 +

𝑑

𝑐

)
𝛾𝑡−𝑠
𝑘
+ 𝑑𝛾𝑡

𝑘

)
− 𝑑
𝑐
.
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We distribute the 𝛾𝑠−𝑡
𝑘

and then expand parentheses,

𝜈𝑘+1 ≤
(
1 + 𝑜

(
𝛾𝑠
𝑘

) ) ( (
1 − 𝑐𝛾𝑠

𝑘

) (
𝜈𝑘 +

𝑑

𝑐

)
+ 𝑑𝛾𝑠

𝑘

)
− 𝑑
𝑐

=
(
1 − 𝑐𝛾𝑠

𝑘

)
𝜈𝑘 +

(
1 − 𝑐𝛾𝑠

𝑘

) 𝑑
𝑐
+ 𝑑𝛾𝑠

𝑘
+ 𝑜

(
𝛾𝑠
𝑘

) ( (
1 − 𝑐𝛾𝑠

𝑘

) (
𝜈𝑘 +

𝑑

𝑐

)
+ 𝑑𝛾𝑠

𝑘

)
− 𝑑
𝑐

=
(
1 − 𝑐𝛾𝑠

𝑘

)
𝜈𝑘 +

(
1 − 𝑐𝛾𝑠

𝑘

) 𝑑
𝑐
+ 𝑑𝛾𝑠

𝑘
+ 𝑜

(
𝛾𝑠
𝑘

) (
1 − 𝑐𝛾𝑠

𝑘

)
𝜈𝑘 + 𝑜

(
𝛾𝑠
𝑘

) (
1 − 𝑐𝛾𝑠

𝑘

) 𝑑
𝑐
+ 𝑜

(
𝛾𝑠
𝑘

)
𝑑𝛾𝑠

𝑘
− 𝑑
𝑐

=
(
1 − 𝑐𝛾𝑠

𝑘
+ 𝑜

(
𝛾𝑠
𝑘

) )
𝜈𝑘 + 𝑜

(
𝛾𝑠
𝑘

)
.

Fix 0 < 𝑐 < 𝑐 . Then, by definition of 𝑜

(
𝛾𝑠
𝑘

)
, ∃𝑘0 ∈ ℕ such that, ∀𝑘 > 𝑘0, 𝑜

(
𝛾𝑠
𝑘

)
≤ (𝑐 − 𝑐)𝛾𝑠

𝑘
. Then,(

1 − 𝑐𝛾𝑠
𝑘
+ 𝑜

(
𝛾𝑠
𝑘

) )
𝜈𝑘 ≤

(
1 − 𝑐𝛾𝑠

𝑘

)
𝜈𝑘 .

From this we conclude, by [31, Ch.2, Lemma 3], that lim sup

𝑘

𝜈𝑘 ≤ 0. Thus, by definition of 𝜈𝑘 ,

𝑢𝑘+1 ≤
𝑑

𝑐
𝛾𝑡−𝑠
𝑘
+ 𝑜

(
𝛾𝑡−𝑠
𝑘

)
. □

references

[1] Y. I. Alber, A. N. Iusem, and M. V. Solodov, On the projected subgradient method for nonsmooth

convex optimization in a Hilbert space, Mathematical Programming 81 (1998), 23–35.

[2] L. Ambrosio, N. Gigli, and G. Savare, Gradient Flows, Lectures in Mathematics. ETH Zürich,

Birkhäuser Basel, 2008.

[3] H. Attouch, Variational Convergence for Functions and Operators, Applicable mathematics series,

Pitman Advanced Publishing Program, 1984.

[4] F. Bach, Breaking the curse of dimensionality with convex neural networks,The Journal ofMachine
Learning Research 18 (2017), 629–681.

[5] K. Barty, J. S. Roy, and C. Strugarek, Hilbert-valued perturbed subgradient algorithms, Mathe-
matics of Operations Research 32 (2007), 551–562, http://www.jstor.org/stable/25151809.

[6] H. Bauschke and P. L. Combettes,Convex Analysis andMonotone Operator Theory in Hilbert Spaces,
Springer, 2011.

[7] N. Boyd, G. Schiebinger, and B. Recht, The alternating descent conditional gradient method for

sparse inverse problems, SIAM Journal on Optimization 27 (2017), 616–639.

[8] K. Bredies, M. Carioni, S. Fanzon, and F. Romero, A generalized conditional gradient method for

dynamic inverse problems with optimal transport regularization (2020), arXiv:2012.11706.

[9] H. Brezis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in

Banach spaces, J. Functional Analysis 9 (1972), 63–74.

[10] P. Catala, Relaxations Semi-Définies Positives pour l’Imagerie, PhD thesis, PSL University, 2020.

[11] C.W. Combettes and S. Pokutta, Complexity of linear minimization and projection on some sets

(2021), arXiv:2101.10040.

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .

http://www.jstor.org/stable/25151809
https://arxiv.org/abs/2012.11706
https://arxiv.org/abs/2101.10040


J. Nonsmooth Anal. Optim. 2 (2021), 6480 page 40 of 41

[12] P. L. Combettes and J. C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations

with random sweeping, SIAM Journal on Optimization 25 (2015), 1221–1248.

[13] P. L. Combettes and J. C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations

with random sweeping II: mean-square and linear convergence, Mathematical Programming 174

(2019), 433–451, doi:10.1007/s10107-018-1296-y.

[14] A. d’Aspremont and M. Pilanci, Global Convergence of Frank Wolfe on One Hidden Layer Net-

works, arXiv preprint arXiv:2002.02208 (2020).

[15] Q. Denoyelle, V. Duval, G. Peyré, and E. Soubies, The sliding Frank–Wolfe algorithm and its

application to super-resolution microscopy, Inverse Problems 36 (2019), 014001.

[16] L. Ding andM. Udell, Frank-Wolfe style algorithms for large scale optimization, in Large-Scale and
Distributed Optimization, P. Giselsson and A. Rantzer (eds.), Springer International Publishing,

Cham, 2018, 215–245, doi:10.1007/978-3-319-97478-1_9.

[17] M. Franke and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics
Quarterly 3 (1956), 95–110.

[18] D. Goldfarb, G. Iyengar, and C. Zhou, Linear convergence of stochastic Frank Wolfe variants

(2017), arXiv:1703.07269.

[19] H. Hassani, A. Karbasi, A. Mokhtari, and Z. Shen, Stochastic Conditional Gradient++ (2019),

arXiv:1902.06992.

[20] E. Hazan and S. Kale, Projection–free online learning, in ICML, 2012.

[21] E. Hazan and H. Luo, Variance-reduced and projection-free stochastic optimization, in ICML,
2016.

[22] C. Imbert, Convex Analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations,

Journal of Nonlinear and Convex Analysis 2 (2001), 333–343.

[23] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance

reduction, Advances in neural information processing systems 26 (2013), 315–323.

[24] E. Levitin and B. Polyak, Constrained minimization methods, USSR Computational Mathematics
and Mathematical Physics 6 (1966), 1 – 50, doi:10.1016/0041-5553(66)90114-5.

[25] F. Locatello, A. Yurtsever, O. Fercoq, and V. Cevher, Stochastic conditional gradient method for

composite convex minimization (2019), arXiv:1901.10348, arXiv:1901.10348.

[26] H. Lu and R.M. Freund, Generalized stochastic Frank-Wolfe algorithm with stochastic substitute

gradient for structured convex optimization, Mathematical Programming (2020), doi:10.1007/
s10107-020-01480-7.

[27] A. Mokhtari, H. Hassani, and A. Karbasi, Stochastic conditional gradient methods: from convex

minimization to submodular maximization, arXiv e-prints (2018), arXiv:1804.09554, arXiv:1804.
09554.

[28] L.M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč, SARAH: A novel method for machine learning

problems using stochastic recursive gradient, in International Conference on Machine Learning,
2017, 2613–2621.

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .

https://dx.doi.org/10.1007/s10107-018-1296-y
https://dx.doi.org/10.1007/978-3-319-97478-1_9
https://arxiv.org/abs/1703.07269
https://arxiv.org/abs/1902.06992
https://dx.doi.org/10.1016/0041-5553(66)90114-5
https://arxiv.org/abs/1901.10348
https://dx.doi.org/10.1007/s10107-020-01480-7
https://dx.doi.org/10.1007/s10107-020-01480-7
https://arxiv.org/abs/1804.09554
https://arxiv.org/abs/1804.09554


J. Nonsmooth Anal. Optim. 2 (2021), 6480 page 41 of 41

[29] L.M. Nguyen, J. Liu, K. Scheinberg, andM. Takac, SARAH: ANovelMethod forMachine Learning

Problems Using Stochastic Recursive Gradient, in ICML, 2017.

[30] J. Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Examples, Springer,
2015.

[31] B. T. Polyak, Introduction to Optimization, Optimization Software, 1987.

[32] S. J. Reddi, S. Sra, B. Poczos, and A. Smola, Stochastic Frank-Wolfe methods for nonconvex opti-

mization, arXiv e-prints (2016), arXiv:1607.08254.

[33] H. Robbins and D. Siegmund, A convergence theorem for non negative almost supermartingales

and some applications, in Herbert Robbins Selected Papers, Springer New York, 1985, 111–135, doi:
10.1007/978-1-4612-5110-1_10.

[34] A. Silveti-Falls, C. Molinari, and J. Fadili, Generalized conditional gradient with augmented

Lagrangian for composite minimization, SIAM Journal on Optimization 30 (2020), 2687–2725,

doi:10.1137/19m1240460.

[35] X. Wei and M. J. Neely, Primal-dual Frank-Wolfe for constrained stochastic programs with convex

and non-convex objectives (2018), arXiv:1806.00709.

Silveti-Falls, Molinari, Fadili Inexact and stochastic generalized conditional gradient . . .

https://dx.doi.org/10.1007/978-1-4612-5110-1_10
https://dx.doi.org/10.1007/978-1-4612-5110-1_10
https://dx.doi.org/10.1137/19M1240460
https://arxiv.org/abs/1806.00709

	Introduction
	Problem Statement
	Contribution and prior work
	Motivation
	Organization

	Notation and Preliminaries
	Algorithm and Assumptions
	Assumptions
	Assumptions on the functions
	Assumptions on the parameters and error terms


	Main Results
	Preparatory Results
	Asymptotic feasibility
	Optimality

	Stochastic Examples
	Risk minimization with increasing batch size
	Risk minimization with variance reduction

	Sweeping
	Comparison of complexities

	Numerical Experiments
	Conclusion

