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on implicit variables in optimization theory

Matúš Benko ∗ Patrick Mehlitz †

Abstract Implicit variables of a mathematical program are variables which do not need to be
optimized but are used to model feasibility conditions. They frequently appear in several dierent
problem classes of optimization theory comprising bilevel programming, evaluated multiobjective
optimization, or nonlinear optimization problems with slack variables. In order to deal with implicit
variables, they are often interpreted as explicit ones. Here, we rst point out that this is a light-
headed approach which induces articial locally optimal solutions. Afterwards, we derive various
Mordukhovich-stationarity-type necessary optimality conditions which correspond to treating
the implicit variables as explicit ones on the one hand, or using them only implicitly to model the
constraints on the other. A detailed comparison of the obtained stationarity conditions as well
as the associated underlying constraint qualications will be provided. Overall, we proceed in a
fairly general setting relying on modern tools of variational analysis. Finally, we apply our ndings
to dierent well-known problem classes of mathematical optimization in order to visualize the
obtained theory.

Keywords: Implicit variables, Local minimizers, Metric subregularity, M-stationarity, Variational
analysis
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1 introduction

In this paper, we consider the mathematical program

𝑓 (𝑧) → min
𝑧

0 ∈ 𝐻 (𝑧)
𝑧 ∈ 𝑀

(P)

where 𝑓 : ℝ𝑛 → ℝ is a given locally Lipschitz continuous objective function and the set-valued
mapping 𝐻 : ℝ𝑛 ⇒ ℝ𝑠 attains the form

𝐻 (𝑧) :=
⋃

𝜆∈𝐹 (𝑧)
𝐺 (𝑧, 𝜆)

for set-valuedmappings 𝐹 : ℝ𝑛 ⇒ ℝ𝑚 and𝐺 : ℝ𝑛×ℝ𝑚 ⇒ ℝ𝑠 which possess a closed graph, respectively.
Furthermore,𝑀 ⊂ ℝ𝑛 is a nonempty and closed set of simple structure, e.g., a typical constraint set
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dened via standard inequality and equality constraints satisfying a suitable constraint qualication.
The feasible set of (P) will be denoted by 𝑍 ⊂ ℝ𝑛 . We emphasize that the objective in (P) is only
minimized w.r.t. 𝑧 and not w.r.t. 𝜆 although the latter variable is used implicitly in order to model 𝑍 .
That is why we call 𝜆 an implicit variable. Let us note that the rather general model (P) covers several
problem classes from optimization theory, which are modeled with the aid of implicit variables, e.g.,
bilevel programming problems, evaluated multiobjective programs, or programs with slack variables,
see Section 2 as well. In these examples, the implicit variables are given by means of the lower level
Lagrange multipliers, scalarization parameters, or the introduced slack variables, respectively.

The main diculty in (P) is the appearing union of image sets associated with the given set-valued
mappings 𝐹 and 𝐺 . An easy approach which can be used to handle this issue is to interpret 𝜆 as a
meaningful variable. This leads to the consideration of

𝑓 (𝑧) → min
𝑧,𝜆

𝜆 ∈ 𝐹 (𝑧)
0 ∈ 𝐺 (𝑧, 𝜆)
𝑧 ∈ 𝑀

(Q)

where 𝜆 now takes the role of an explicit variable. We denote the feasible set of this program by
𝑍 ⊂ ℝ𝑛 ×ℝ𝑚 . As we will see in Section 4.1, there is a one-to-one correspondence between the global
minimizers of (P) and (Q). However, the relationship between local minimizers is far more delicate.
Particularly, there may exist local minimizers of (Q) which do not correspond to local minimizers of
(P). Similar issues are pointed out in the context of bilevel programming, see [2, 20, 22, 23, 43], w.r.t.
the use of slack variables in logical programming, see [44, 46], or cardinality-constrained optimization,
see [17], and will be generalized in this paper.
Let us briey mention that the concept of implicit variables can be extended to related areas of

optimization theory like the numerical solution of generalized equations resulting from optimality
conditions of convex optimization programs. Here, it is also common to introduce intermediate or
slack variables in order to state the convex chain rule for compositions, see e.g. [15, Section 4], or to
decompose the inclusion to make it more tractable, see [35, Section 5]. It sometimes may be benecial,
however, to formulate the assumptions ensuring convergence in the implicit-variable-free setting.

Observing that the computation of localminimizers of (Q) does not generally yield localminimizers of
(P) while noting that (Q) is likely to be a nonconvex program due to the underlying applications we have
in mind, a direct treatment of (P) seems to be reasonable. With the aid of modern variational analysis, in
particular limiting coderivatives of set-valued mappings, see [48, 53], we will infer necessary optimality
conditions of Mordukhovich-stationarity-type (subsequently, we will use the term M-stationarity
for brevity) for (P) under mild constraint qualications. More precisely, we rst derive optimality
conditions comprising the implicitly known coderivative of the mapping 𝐻 under metric subregularity
of 𝐻 . Afterwards, we study assumptions which allow us to state these optimality conditions in terms
of the coderivatives associated with 𝐹 and 𝐺 . Clearly, this makes the utilization of a coderivative
chain rule necessary, so we discuss weak conditions ensuring its applicability. Therefore, we make
use of the recent results from [6, 9] which are mainly based on the presence of metric subregularity
for so-called “feasibility” mappings and inner semicompactness for so-called “intermediate” mappings.
Interestingly, these assumptions are mainly inherent for the example problems from Section 2 which
underlines the power of this approach. On the other hand, using problem (Q) as the starting point
enables us to avoid the (coderivative of) the mapping 𝐻 . A similar role is then played by an auxiliary
mapping, which depends on both, 𝑧 and 𝜆. As it will turn out, the procedures sketched above lead
to three stationarity systems and diverse constraint qualications which dier from each other w.r.t.
their degree of explicitness. We will provide a detailed comparison of all these stationarity conditions
and constraint qualications, and we will comment on their respective relation to the problem (Q). In
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[1], the authors discuss related issues by means of an equilibrium-constrained mathematical problem
with lower level inequality constraints. It turns out that there is a signicant dierence between the
M-stationarity conditions for problem (P), which are formulated without taking into account the special
structure of 𝐻 and, hence, without the variable 𝜆, and the M-stationarity conditions of (Q). Moreover,
the dierence between the corresponding constraint qualications, i.e., the conditions that guarantee
the validity of the two types of M-stationarity at local minimizers, is even more striking. Here, we
generalize and deepen the approach from [1]. Let us briey note that the theory of this paper can be
extended directly to the situation where ℝ𝑛 , ℝ𝑚 , and ℝ𝑠 are replaced by arbitrary Euclidean spaces.
For simplicity, however, we focus on the most elementary setting.

The remaining parts of this paper are organized as follows: In Section 2, we present three prototypical
example classes of optimization problems where implicit variables are used to model the feasible set,
namely bilevel optimization problems, evaluated multiobjective optimization problems, and mathe-
matical programs with cardinality constraints. We provide an overview of the notation used in this
manuscript before recalling the denitions and some background information about the fundamental
tools of variational analysis we are going to exploit here in Section 3. Furthermore, we motivate a rather
abstract notion of M-stationarity for mathematical problems with generalized equation constraints and
provide some calculus rules for the coderivative of compositions and products of set-valued mappings.
Afterwards, Section 4 is dedicated to the abstract analysis of the program (P) via (Q). First, we study
the relationship between the solutions of (P) and (Q) in Section 4.1. Second, we derive three potentially
distinct notions of M-stationarity for (P) as well as associated constraint qualications in Section 4.2.
Furthermore, we clarify how to obtain explicit M-stationarity conditions in terms of initial problem
data from the abstract M-stationarity conditions of (P). As we will demonstrate in Section 4.3, the
necessary assumptions are inherently satised in many practically relevant settings. Finally, we briey
comment on the suciency of the introduced M-stationarity notions in the presence of convexity in
Section 4.4. In Section 5, we apply some of our ndings to the aforementioned example problems. As
it will turn out, we recover or even enhance available results from the literature with our approach.
Finally, we present some concluding remarks in Section 6.

2 motivating examples

In this section, we present three prototypical classes of optimization problems whose respective feasible
sets can be modeled with the aid of implicit variables.

2.1 bilevel programming

Quite often, hierarchical decision making appears naturally in real world problems raising in economics,
logistics, natural sciences, or engineering. In case where two decision makers are involved, so-called
bilevel optimization problems can be used to model and study the underlying applications theoretically
and numerically, see [4, 19, 21, 48, 54]. For given parameters 𝑥 ∈ ℝ𝑛1 , let us consider the parametric
optimization problem

𝑗 (𝑥, 𝑦) → min
𝑦

𝑔(𝑦) ∈ 𝐶
(LL)

where 𝑗 : ℝ𝑛1 ×ℝ𝑛2 → ℝ is twice continuously dierentiable and convex w.r.t. 𝑦 for each 𝑥 ∈ ℝ𝑛1 while
𝑔 : ℝ𝑛2 → ℝ𝑚 is twice continuously dierentiable and convex w.r.t. the closed, convex cone 𝐶 ⊂ ℝ𝑚 .
Let us set Γ := {𝑦 ∈ ℝ𝑛2 | 𝑔(𝑦) ∈ 𝐶}. One generally refers to (LL) as the lower level or follower’s problem.
It is well known that due to the convexity of 𝑗 (𝑥, ·) and Γ, the set of optimal solutions associated with
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(LL) is equivalently characterized by

−∇𝑦 𝑗 (𝑥, 𝑦) ∈ N̂Γ (𝑦).

Under a suitable constraint qualication, we can characterize the set of optimal solutions associated
with (LL) equivalently by the generalized equation

−∇𝑦 𝑗 (𝑥, 𝑦) ∈ ∇𝑔(𝑦)>N̂𝐶 (𝑔(𝑦)) .

Above, we exploited the notion of the regular normal cone which coincides with the normal cone of
convex analysis due to convexity of Γ and 𝐶 , see Section 3.

The superordinate so-called upper level or leader’s problem, given by

𝑓 (𝑥, 𝑦) → min
𝑥,𝑦

𝑥 ∈ 𝑆

𝑦 ∈ Ψ(𝑥),

where 𝑆 ⊂ ℝ𝑛1 is a closed set and Ψ : ℝ𝑛1 ⇒ ℝ𝑛2 is the solution mapping associated with (LL), is
equivalent to

𝑓 (𝑥, 𝑦) → min
𝑥,𝑦

𝑥 ∈ 𝑆

0 ∈
⋃

𝜆∈N̂𝐶 (𝑔 (𝑦))

{
∇𝑦 𝑗 (𝑥, 𝑦) + ∇𝑔(𝑦)>𝜆

}(BPP)

whenever the aforementioned assumptions are valid. The latter is a program of type (P) in the sense

(2.1) 𝐹 (𝑧) := N̂𝐶 (𝑔(𝑦)), 𝐺 (𝑧, 𝜆) := ∇𝑦 𝑗 (𝑥, 𝑦) + ∇𝑔(𝑦)>𝜆, 𝑀 := 𝑆 ×ℝ𝑛2

where we used 𝑧 := (𝑥, 𝑦) and𝑛 := 𝑛1+𝑛2. Particularly, the implicit variable 𝜆 is the Lagrange multiplier
associated with the constraints in (LL). It is well known that interpreting 𝜆 as a variable in (BPP) may
cause diculties w.r.t. local minimizers, see e.g. [2, 20, 22, 43]. The authors in [1], where the particular
setting 𝐶 := ℝ𝑚

− is discussed, focused on a qualitative comparison of the reformulation

𝑓 (𝑥, 𝑦) → min
𝑥,𝑦

𝑥 ∈ 𝑆

−∇𝑦 𝑗 (𝑥, 𝑦) ∈ N̂Γ (𝑦),

which is fully equivalent to the original bilevel programming problem, and the problem (Q) associated
with (BPP) regarding constraint qualications and M-stationarity-type optimality conditions. They
came upwith the observation that the respective stationarity systems as well as constraint qualications
dier signicantly. The analysis in this paper will put their results into a more general context.

2.2 evaluating weakly efficient points in multicriteria optimization

For a twice continuously dierentiable componentwise convex function 𝑗 : ℝ𝑛 → ℝ𝑚 with𝑚 ≥ 2
components and a nonempty, closed, convex set Γ ⊂ ℝ𝑛 , we consider the following multicriteria
optimization problem which is a standard model from vector optimization, see [26, 41]:

𝑗 (𝑧) → “min ”
𝑧 ∈ Γ.

(MOP)
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The quotation marks emphasize that classical minimization is not possible since the componentwise
natural ordering in ℝ𝑚 only provides a partial order which is not total. In order to overcome this
problem, several dierent notions of so-called eciency have been derived in order to characterize
reasonable feasible points of (MOP). In this context, a point 𝑧 ∈ Γ is called weakly ecient for (MOP)
if the condition (

𝑗 (𝑧) −ℝ𝑚
++
)
∩ 𝑗 (Γ) = ∅

holds where we used ℝ𝑚
++ := {𝑦 ∈ ℝ𝑚 | ∀𝑖 ∈ {1, . . . ,𝑚} : 𝑦𝑖 > 0}. Let Γwe ⊂ ℝ𝑛 be the set of weakly

ecient points associated with (MOP). Using a classical linear scalarization approach, see [26], one
obtains the characterization

𝑧 ∈ Γwe ⇐⇒ ∃𝜆 ∈ Δ∀𝑧 ∈ Γ : 𝜆> 𝑗 (𝑧) ≤ 𝜆> 𝑗 (𝑧)

of weak eciency since the problem data in (MOP) is convex. Above, Δ ⊂ ℝ𝑚 given by

Δ :=
{
𝜆 ∈ ℝ𝑚 | 𝜆 ≥ 0,

∑𝑚
𝑖=1𝜆𝑖 = 1

}
denotes the standard simplex. In practice, the set Γwe will be quite large in general which is why it is
desirable to shrink it for applicability purposes using another decision criterion given in form of a
scalar function, see e.g. [10, 12, 13, 39]. Here, we investigate the evaluated multiobjective optimization
problem

𝑓 (𝑧) → min
𝑧 ∈ Γwe.

Invoking the above arguments, this is equivalent to

𝑓 (𝑧) → min

0 ∈
⋃
𝜆∈Δ

Ψ(𝜆) − 𝑧(EMOP)

where Ψ : ℝ𝑚 ⇒ ℝ𝑛 is the set-valued mapping dened by

Ψ(𝜆) :=

argmin

𝑧

{𝜆> 𝑗 (𝑧) | 𝑧 ∈ Γ} 𝜆 ∈ Δ,

∅ 𝜆 ∉ Δ.

Obviously, this is a program of type (P) where the scalarization parameter takes the role of the implicit
variable. Particularly, the data from (P) takes the form

(2.2) 𝐹 (𝑧) := Δ, 𝐺 (𝑧, 𝜆) := Ψ(𝜆) − 𝑧, 𝑀 := ℝ𝑛 .

It has been reported in [23] that interpreting scalarization parameters as variables is generally delicate
in multiobjective bilevel programming, and this observation clearly extends to (EMOP) as well.

2.3 cardinality-constrained programming

For some vector 𝑧 ∈ ℝ𝑛 , let ‖𝑧‖0 denote the number of non-zero entries of 𝑧. In order to guarantee
sparsity of solutions to optimization problems, one may consider the so-called cardinality-constrained
mathematical program

𝑓 (𝑧) → min
𝑧 ∈ 𝑀

‖𝑧‖0 ≤ 𝜅

(CCMP)
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where 𝜅 ∈ ℕ satises 1 ≤ 𝜅 ≤ 𝑛 − 1, see e.g. [11, 16, 17, 18, 45, 50, 51] for an overview of existing
reformulations, optimality conditions, solution algorithms, and further references.

Let us rewrite the cardinality constraint ‖𝑧‖0 ≤ 𝜅 as a constraint of type𝑞(𝑧) ∈ 𝐷 where𝑞 : ℝ𝑛 → ℝℓ

is continuously dierentiable and𝐷 ⊂ ℝℓ is the union of nitely many convex polyhedral sets, allowing
us to interpret (CCMP) as a so-called disjunctive optimization problem, see e.g. [7, 28, 45]. Therefore,
we introduce J𝜅 := {𝛼 ∈ {0, 1}𝑛 | ∑𝑛

𝑖=1 𝛼𝑖 = 𝜅}. Furthermore, for each 𝛼 ∈ {0, 1}𝑛 , we set

ℝ𝑛
𝛼 := span{e𝑖 | 𝑖 = 1, . . . , 𝑛, 𝛼𝑖 = 1}

where e𝑖 ∈ ℝ𝑛 denotes the 𝑖-th unit vector in ℝ𝑛 . Finally, we set 𝐷𝜅 :=
⋃

𝛼 ∈J𝜅 ℝ
𝑛
𝛼 . Then we easily see

(2.3) ∀𝑧 ∈ ℝ𝑛 : ‖𝑧‖0 ≤ 𝜅 ⇐⇒ 𝑧 ∈ 𝐷𝜅 .

The variational geometry of 𝐷𝜅 has been explored in [50, 51]. Particularly, exploiting the limiting and
regular normal cone to 𝐷𝜅 , reasonable notions of M- and strong stationarity are available for (CCMP).

It has been observed in [17, Theorem 3.2] that we have

∀𝑧 ∈ ℝ𝑛 : ‖𝑧‖0 ≤ 𝜅 ⇐⇒ ∃𝜆 ∈ ℝ𝑛 : e>𝜆 ≥ 𝑛 − 𝜅, (𝑧𝑖 , 𝜆𝑖) ∈ C ∀𝑖 ∈ {1, . . . , 𝑛}

where we used
C := {(𝑎, 𝑏) ∈ ℝ2 | 𝑎𝑏 = 0, 𝑏 ∈ [0, 1]},

and that gave rise to the reformulation of (CCMP) as

(2.4)

𝑓 (𝑧) → min
𝑧,𝜆

𝑧 ∈ 𝑀

e>𝜆 ≥ 𝑛 − 𝜅
(𝑧𝑖 , 𝜆𝑖) ∈ C 𝑖 = 1, . . . , 𝑛.

Above, e ∈ ℝ𝑛 denotes the all-ones vector. Clearly, the variable 𝜆 plays the role of an explicit variable
in (2.4) although it is not relevant for the purpose of minimization. In order to state (2.4) in the form
(P), one may choose

(2.5) 𝐹 (𝑧) ≡
{
𝜆 ∈ ℝ𝑛

��e>𝜆 ≥ 𝑛 − 𝜅
}
, 𝐺 (𝑧, 𝜆) :=

𝑛∏
𝑖=1

(C − (𝑧𝑖 , 𝜆𝑖)),

i.e., 𝑠 = 2𝑛 holds in this particular case.
It has been reported in [17] that (CCMP) and (2.4) are equivalent w.r.t. global minimizers, that the

local minimizers of (CCMP) can be found among the local minimizers of (2.4), and that for a local
minimizer (𝑧, 𝜆) ∈ ℝ𝑛 ×ℝ𝑛 of (2.4), which satises ‖𝑧‖0 = 𝜅, 𝑧 is a local minimizer of (CCMP). The
situation where ‖𝑧‖0 < 𝜅 holds, however, has been shown to be crucial since, in this case, 𝑧 does not
need to be locally optimal for (CCMP). First- and second-order optimality conditions for (CCMP) via
its surrogate (2.4) have been derived in [16, 17, 18] while the authors in [45, 50, 51] exploited (2.3) in
order to infer optimality conditions for (CCMP) without relying on implicit variables. To the best
of our knowledge, a detailed comparison of both approaches does not exist in the literature. Some
regarding remarks, however, can be found in the papers [16, 45]. We also refer the interested reader to
[5] where yet another approach to cardinality-constrained optimization is discussed which also avoids
the appearance of implicit variables.

3 notation and preliminaries

3.1 notation

Throughout the manuscript, we make use of the standard concepts of variational analysis, see [48, 53].
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basic notation

In this manuscript, we equipℝ𝑛 with the common Euclidean inner product and the common Euclidean
norm ‖·‖ . In order to extend the notion of norms to product spaces, we use the sum of the underlying
Euclidean norms to induce a norm in the product space. Due to notational purposes, for arbitrary
𝑧 ∈ ℝ𝑛 and𝑤 ∈ ℝ𝑚 , we use both notations(

𝑧

𝑤

)
and (𝑧,𝑤)

in order to represent elements of ℝ𝑛 ×ℝ𝑚 . We use 𝔹 in order to denote the closed unit ball around 0.
For a set 𝐴 ⊂ ℝ𝑛 and 𝑧 ∈ ℝ𝑛 , we exploit 𝑧 +𝐴 = 𝐴 + 𝑧 := {𝑧 + 𝑎 | 𝑎 ∈ 𝐴} for brevity. Furthermore, we
use

𝐴◦ :=
{
𝜉 ∈ ℝ𝑛

��∀𝑎 ∈ 𝐴 : 𝜉>𝑎 ≤ 0}, 𝐴⊥ :=
{
𝜉 ∈ ℝ𝑛

��∀𝑎 ∈ 𝐴 : 𝜉>𝑎 = 0}

in order to represent the polar cone and the annihilator of 𝐴. We make use of 𝑧⊥ := {𝑧}⊥. We set

dist(𝑧,𝐴) := inf{‖𝑎 − 𝑧‖ | 𝑎 ∈ 𝐴}

in order to denote the distance of 𝑧 to 𝐴. Throughout the manuscript, we exploit ℝ+ := {𝑠 ∈ ℝ | 𝑠 ≥ 0}
and ℝ− := {𝑠 ∈ ℝ | 𝑠 ≤ 0}.

set-valued mappings

For a set-valued mapping Υ : ℝ𝑛 ⇒ ℝ𝑚 , the sets gph Υ := {(𝑧,𝑤) ∈ ℝ𝑛 × ℝ𝑚 |𝑤 ∈ Υ(𝑧)}, dom Υ :=
{𝑧 ∈ ℝ𝑛 | Υ(𝑧) ≠ ∅}, rge Υ := {𝑤 ∈ ℝ𝑚 | ∃𝑧 ∈ ℝ𝑛 : 𝑤 ∈ Υ(𝑧)}, and ker Υ := {𝑧 ∈ ℝ𝑛 | 0 ∈ Υ(𝑧)} are
called graph, domain, range, and kernel of Υ, respectively. The set-valued mapping Υ−1 : ℝ𝑚 ⇒ ℝ𝑛 ,
given by Υ−1(𝑤) := {𝑧 ∈ ℝ𝑛 |𝑤 ∈ Υ(𝑧)} for all𝑤 ∈ ℝ𝑚 , is referred to as the inverse of Υ.
The mapping Υ is called locally bounded at 𝑧 ∈ dom Υ whenever we nd a neighborhood 𝑈 ⊂ ℝ𝑛

of 𝑧 and a bounded set 𝐵 ⊂ ℝ𝑚 such that Υ(𝑧) ⊂ 𝐵 holds for all 𝑧 ∈ 𝑈 . Furthermore, Υ is said to be
inner semicompact at 𝑧 w.r.t. Ω ⊂ ℝ𝑛 if for each sequence {𝑧𝑘 }𝑘∈ℕ ⊂ Ω such that 𝑧𝑘 → 𝑧, there is a
convergent sequence {𝑤𝑙 }𝑙 ∈ℕ ⊂ ℝ𝑚 and a subsequence {𝑧𝑘𝑙 }𝑙 ∈ℕ such that 𝑤𝑙 ∈ Υ(𝑧𝑘𝑙 ) holds for all
𝑙 ∈ ℕ. Clearly, whenever Υ is locally bounded at 𝑧, it is inner semicompact w.r.t. dom Υ at this point.
Similarly, Υ is called inner semicontinuous at (𝑧, �̄�) ∈ gph Υ w.r.t. Ω if for each sequence {𝑧𝑘 }𝑘∈ℕ ⊂ Ω
satisfying 𝑧𝑘 → 𝑧, there exists a sequence {𝑤𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that 𝑤𝑘 → �̄� and 𝑤𝑘 ∈ Υ(𝑧𝑘 ) for all
suciently large 𝑘 ∈ ℕ.

We call Υ convex whenever the property

∀𝑧1, 𝑧2 ∈ ℝ𝑛, ∀𝛼 ∈ [0, 1] : 𝛼Υ(𝑧1) + (1 − 𝛼)Υ(𝑧2) ⊂ Υ(𝛼𝑧1 + (1 − 𝛼)𝑧2)

holds, i.e., whenever gph Υ is convex. This property particularly holds for set-valued mappings of the
form Υ(𝑧) := 𝑔(𝑧) −𝐶 , 𝑧 ∈ ℝ𝑛 , where 𝐶 ⊂ ℝ𝑚 is a closed, convex cone and the single-valued mapping
𝑔 : ℝ𝑛 → ℝ𝑚 is convex w.r.t. 𝐶 , i.e.,

∀𝑧1, 𝑧2 ∈ ℝ𝑛, ∀𝛼 ∈ [0, 1] : 𝑔(𝛼𝑧1 + (1 − 𝛼)𝑧2) − 𝛼𝑔(𝑧1) − (1 − 𝛼)𝑔(𝑧2) ∈ 𝐶.

Let us recall some essential Lipschitzian properties of set-valued mappings. Therefore, we x a point
(𝑧, 𝑦) ∈ gph Υ. Recall that Υ possesses the Aubin property at (𝑧, �̄�) whenever there are a constant
𝜅 > 0 and neighborhoods𝑈 of 𝑧 and 𝑉 of �̄� such that

∀𝑧1, 𝑧2 ∈ 𝑈 ∀𝑤 ∈ Υ(𝑧1) ∩𝑉 : dist(𝑤, Υ(𝑧2)) ≤ 𝜅 ‖𝑧1 − 𝑧2‖ .
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Furthermore, Υ is calledmetrically regular at (𝑧, �̄�) whenever there are 𝜅 > 0 as well as neighborhoods
𝑈 and 𝑉 of 𝑧 and �̄� , respectively, such that

∀𝑧 ∈ 𝑈 , ∀𝑤 ∈ 𝑉 : dist(𝑧, Υ−1(𝑤)) ≤ 𝜅 dist(𝑤, Υ(𝑧)) .

It is well known that Υ is metrically regular at (𝑧, �̄�) if and only if Υ−1 possesses the Aubin property
at (�̄�, 𝑧). Finally, recall that Υ is referred to as metrically subregular at (𝑧, �̄�) whenever there exist a
constant 𝜅 > 0 and a neighborhood𝑈 of 𝑧 satisfying

∀𝑧 ∈ 𝑈 : dist(𝑧, Υ−1(�̄�)) ≤ 𝜅 dist(�̄�, Υ(𝑧)) .

The inmum of all such constants 𝜅 is referred to as the modulus of metric subregularity. Let us
mention that Υ is metrically subregular at (𝑧, �̄�) if and only if the inverse Υ−1 is so-called calm at (�̄�, 𝑧),
see [37, 38] for a denition and further details. It has turned out that metric subregularity is of essential
importance in order to guarantee applicability of the prominent calculus for the limiting constructions
of generalized dierentiation. This is one of the reasons why sucient conditions for its presence
were studied, see e.g. [3, 7, 27, 30, 40, 60] and the references therein as well as the aforementioned
papers dealing with calmness. We would like to mention that each polyhedral set-valued mapping, i.e.,
a set-valued mapping whose graph is the union of nitely many convex polyhedral sets, is metrically
subregular at each point of its graph. This result dates back to [52].

variational analysis

For a closed set 𝐴 ⊂ ℝ𝑛 and some point 𝑧 ∈ 𝐴, we refer to

T𝐴 (𝑧) := {𝑑 ∈ ℝ𝑛 | ∃{𝑧𝑘 }𝑘∈ℕ ⊂ 𝐴, ∃{𝑡𝑘 }𝑘∈ℕ ⊂ ℝ+ : 𝑧𝑘 → 𝑧, 𝑡𝑘 ↓ 0, (𝑧𝑘 − 𝑧)/𝑡𝑘 → 𝑑}

as the (Bouligand) tangent cone to 𝐴 at 𝑧. Based on that, let us introduce

N̂𝐴 (𝑧) := T𝐴 (𝑧)◦,

N𝐴 (𝑧) :=
{
𝜉 ∈ ℝ𝑛

�����∃{𝑧𝑘 }𝑘∈ℕ ⊂ 𝐴, ∃{𝜉𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 :
𝑧𝑘 → 𝑧, 𝜉𝑘 → 𝜉, 𝜉𝑘 ∈ N̂𝐴 (𝑧𝑘 ) ∀𝑘 ∈ ℕ

}
,

the so-called regular (or Fréchet) and limiting (or Mordukhovich) normal cone to 𝐴 at 𝑧, respectively.
In case where 𝐴 is convex, these normal cones correspond to the normal cone in the sense of convex
analysis, i.e., N̂𝐴 (𝑧) = N𝐴 (𝑧) = (𝐴 − 𝑧)◦.
For a locally Lipschitz continuous function 𝜑 : ℝ𝑛 → ℝ, we dene its limiting subdierential at

some point 𝑧 ∈ ℝ𝑛 by means of

𝜕𝜑 (𝑧) :=
{
𝜉 ∈ ℝ𝑛

�� (𝜉,−1) ∈ Nepi𝜑 (𝑧, 𝜑 (𝑧))
}

where epi𝜑 := {(𝑧, 𝑠) ∈ ℝ𝑛 ×ℝ | 𝑠 ≥ 𝜑 (𝑧)} denotes the epigraph of 𝜑 . In case where 𝜑 is convex, the
above arguments yield that 𝜕𝜑 (𝑧) coincides with the subdierential in the sense of convex analysis,
i.e.,

𝜕𝜑 (𝑧) =
{
𝜉 ∈ ℝ𝑛

��∀𝑧 ∈ ℝ𝑛 : 𝜑 (𝑧) ≥ 𝜑 (𝑧) + 𝜉>(𝑧 − 𝑧)
}

holds in this case.
For a set-valued mapping Υ : ℝ𝑛 ⇒ ℝ𝑚 with closed graph and some point (𝑧, �̄�) ∈ gph Υ, the

set-valued mapping 𝐷∗Υ(𝑧, �̄�) : ℝ𝑚 ⇒ ℝ𝑛 given by

∀𝜂 ∈ ℝ𝑚 : 𝐷∗Υ(𝑧, �̄�) (𝜂) :=
{
𝜉 ∈ ℝ𝑛

�� (𝜉,−𝜂) ∈ Ngph Υ (𝑧, �̄�)
}

Benko, Mehlitz On implicit variables in optimization theory



J. Nonsmooth Anal. Optim. 2 (2021), 7215 page 9 of 34

is referred to as the (limiting) coderivative of Υ at (𝑧, �̄�). For a single-valued mapping 𝜐 : ℝ𝑛 → ℝ𝑚 ,
we exploit the notation 𝐷∗𝜐 (𝑧) := 𝐷∗𝜐 (𝑧,𝜐 (𝑧)). Whenever 𝜐 is continuously dierentiable at 𝑧, then
𝐷∗𝜐 (𝑧) (𝜂) = ∇𝜐 (𝑧)>𝜂 holds for all 𝜂 ∈ ℝ𝑚 where ∇𝜐 (𝑧) denotes the Jacobian of 𝜐 at 𝑧.

Let us recall that Υ possesses the Aubin property at (𝑧, �̄�) if and only if the condition

𝐷∗Υ(𝑧, �̄�) (0) = {0}

holds. Thus, Υ is metrically regular at (𝑧, �̄�) if and only if we have

ker𝐷∗Υ(𝑧, �̄�) = {0}.

Both criteria are referred to as Mordukhovich criterion in the literature, see [48, Theorem 3.3].

3.2 m-stationarity for optimization problem with generalized equation constraints

The following result can be found in [37, Theorem 4.1] and [33, Proposition 4.1]. It provides a calculus
rule for the computation of the limiting normal cone to the pre-image associated with a set-valued
mapping which is metrically subregular at a certain point of interest.
Proposition 3.1. Let Υ : ℝ𝑛 ⇒ ℝ𝑚 be a set-valued mapping having locally closed graph around (𝑧, �̄�) ∈
gph Υ and assume that Υ is metrically subregular at (𝑧, �̄�) with modulus 𝜅 . Then the following estimate
is valid for each 𝜅 > 𝜅:

(3.1) NΥ−1 (�̄�) (𝑧) ⊂
{
𝜉 ∈ ℝ𝑛

��∃𝜂 ∈ 𝜅 ‖𝜉 ‖ 𝔹 : 𝜉 ∈ 𝐷∗Υ(𝑧, �̄�) (𝜂)
}
.

This motivates the subsequently stated extension of the denition of M-stationarity to abstract
optimization programs of the form

𝜑 (𝑧) → min
0 ∈ Υ(𝑧),

(G)

where 𝜑 : ℝ𝑛 → ℝ is a locally Lipschitz continuous function and Υ : ℝ𝑛 ⇒ ℝ𝑚 is a set-valued mapping
with closed graph, observing that Υ−1(0) is the feasible set of (G). A similar stationarity condition has
been studied in the literature, see [57, Section 3].
Definition 3.2.We say that a feasible point 𝑧 ∈ Υ−1(0) of the program (G) is M-stationary provided
there exists 𝜂 ∈ ℝ𝑚 such that

0 ∈ 𝜕𝜑 (𝑧) + 𝐷∗Υ(𝑧, 0) (𝜂) .
In case where the constraint mapping Υ is given in the form of a so-called “feasibility” mapping, i.e.,

Υ(𝑧) := Φ(𝑧) − Ω for all 𝑧 ∈ ℝ𝑛 , where, for simplicity, Φ : ℝ𝑛 → ℝ𝑚 is a continuously dierentiable
mapping and Ω ⊂ ℝ𝑚 is a closed set, Proposition 3.1 yields the standard pre-image calculus rule

NΦ−1 (Ω) (𝑧) ⊂ ∇Φ(𝑧)>NΩ (Φ(𝑧))

for each 𝑧 ∈ ℝ𝑛 such that Υ is metrically subregular at (𝑧, 0) ∈ gph Υ. This also justies the M-
stationarity terminology in Denition 3.2. Moreover, the additional bound ‖𝜂‖ ≤ 𝜅 ‖𝜉 ‖ in (3.1) implies
that for every 𝜉 ∈ NΦ−1 (Ω) (𝑧), there exists a multiplier 𝜂 ∈ NΩ (Φ(𝑧)) ∩ 𝜅 ‖𝜉 ‖ 𝔹 with 𝜉 = ∇Φ(𝑧)>𝜂.
This observation, however, brings forth the following important property of the associated multiplier
mapping which has been discussed in [6, Theorem 3.9] recently.
Proposition 3.3. Let Φ : ℝ𝑛 → ℝ𝑚 be continuously dierentiable and let Ω ⊂ ℝ𝑚 be closed. We consider
Υ : ℝ𝑛 ⇒ ℝ𝑚 given by Υ(𝑧) := Φ(𝑧) − Ω for each 𝑧 ∈ ℝ𝑛 . Let (𝑧, 𝑧∗) ∈ gphN𝐶 for𝐶 := Φ−1(Ω) be xed
and assume that the feasibility mapping Υ is metrically subregular at (𝑧, 0). Then the multiplier mapping
Λ : ℝ𝑛 ×ℝ𝑛 ⇒ ℝ𝑚 , given by

∀(𝑧, 𝑧∗) ∈ ℝ𝑛 ×ℝ𝑛 : Λ(𝑧, 𝑧∗) :=
{
𝜂 ∈ NΩ (Φ(𝑧))

��∇Φ(𝑧)>𝜂 = 𝑧∗
}
,

is inner semicompact at (𝑧, 𝑧∗) w.r.t. gphN𝐶 . Moreover, gphN𝐶 = domΛ holds provided Ω is convex.
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For comparison, it is well known that the stronger assumption of metric regularity yields local
boundedness of the multiplier mapping Λ, and this has indeed been often used to guarantee its inner
semicompactness, see Section 5.1 as well. While it may seem that local boundedness is notmuch stronger
than inner semicompactness, when the underlying assumptions are compared, the gap is noteworthy.
In case of standard nonlinear programs, metric regularity equals the prominentMangasarian–Fromovitz
constraint qualication (MFCQ), while in case of the more general class of geometric constraints as
discussed in Proposition 3.3, metric regularity of the feasibility mapping Υ at (𝑧, 0) ∈ gph Υ boils down
to

∇Φ(𝑧)>𝜂 = 0, 𝜂 ∈ NΩ (Φ(𝑧)) =⇒ 𝜂 = 0,

which is called generalized Mangasarian–Fromovitz constraint qualication (GMFCQ) or no nonzero
abnormal multiplier constraint qualication (NNAMCQ). The above propositions often enable us to
relax the metric regularity requirement to the so-called metric subregularity constraint qualication
(MSCQ) demanding Υ to be metrically subregular at (𝑧, 0).

3.3 calculus of set-valued mappings

Throughout this section, we assume that all considered set-valued mappings possess closed graphs.
We rst review the chain rule for the computation of coderivatives of compositions. Therefore,

let us consider set-valued mappings 𝑆1 : ℝ𝑛 ⇒ ℝ𝑚 and 𝑆2 : ℝ𝑚 ⇒ ℝ𝑠 as well as their composition
𝑆2 ◦ 𝑆1 : ℝ𝑛 ⇒ ℝ𝑠 given by

∀𝑧 ∈ ℝ𝑛 : (𝑆2 ◦ 𝑆1) (𝑧) :=
⋃

𝑦∈𝑆1 (𝑧)
𝑆2(𝑦) .

In order to estimate the coderivative of 𝑆2 ◦ 𝑆1, we introduce the standard “intermediate” mapping
Ξ : ℝ𝑛 ×ℝ𝑠 ⇒ ℝ𝑚 given by

(3.2) ∀𝑧 ∈ ℝ𝑛, ∀𝑤 ∈ ℝ𝑠 : Ξ(𝑧,𝑤) := 𝑆1(𝑧) ∩ 𝑆−12 (𝑤) = {𝑦 ∈ 𝑆1(𝑧) |𝑤 ∈ 𝑆2(𝑦)},

together with the “feasibility” mapping Υ : ℝ𝑛 ×ℝ𝑠 ×ℝ𝑚 ⇒ ℝ𝑚 ×ℝ𝑠 in the following form:

∀𝑧 ∈ ℝ𝑛, ∀𝑤 ∈ ℝ𝑠 , ∀𝑦 ∈ ℝ𝑚 : Υ(𝑧,𝑤, 𝑦) :=
(
𝑆1(𝑧) − 𝑦
𝑆2(𝑦) −𝑤

)
.

The following chain rule is taken from [9, Theorem 5.2].
Lemma 3.4. Fix (𝑧, �̄�) ∈ gph(𝑆2 ◦ 𝑆1). Let Ξ be inner semicompact w.r.t. domΞ at (𝑧, �̄�) and let Υ be
metrically subregular at all points ((𝑧, �̄�, 𝑦), (0, 0)) such that 𝑦 ∈ Ξ(𝑧, �̄�). Then we have

∀𝑤∗ ∈ ℝ𝑠 : 𝐷∗(𝑆2 ◦ 𝑆1) (𝑧, �̄�) (𝑤∗) ⊂
⋃

𝑦∈Ξ(𝑧,�̄�)

(
𝐷∗𝑆1(𝑧, 𝑦) ◦ 𝐷∗𝑆2(𝑦, �̄�)

)
(𝑤∗) .

In [9, Theorem 5.2], the subregularity assumption is replaced by the equivalent calmness assumption
associated with the inverse mapping of Υ given by

Υ−1(𝑎, 𝑏) = {(𝑧,𝑤, 𝑦) | 𝑦 + 𝑎 ∈ 𝑆1(𝑧),𝑤 + 𝑏 ∈ 𝑆2(𝑦)}.

Furthermore, note that Υ is slightly dierent from the typical feasibility mapping used in the chain
rule, see e.g. [53, proof of Theorem 10.37]. However, it is worth to mention that the respective metric
subregularity assumptions, which need to be postulated on these maps in order to infer the chain rule,
are actually equivalent due to [9, Proposition 2.6].
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The proof of Lemma 3.4 is based on the essential relations

(3.3) gph(𝑆2 ◦ 𝑆1) = domΞ, gphΞ = Υ−1(0, 0) .

Roughly speaking, the inner semicompactness of Ξ provides a connection between the graph of 𝑆2 ◦ 𝑆1
and the graph of Ξ while the metric subregularity of Υ connects the graph of Ξ with the graph of Υ
via Proposition 3.1, see [9, Sections 3 and 5.3] for details. The combination of these two assumptions,
hence, yields a way to estimate the coderivative of 𝑆2 ◦ 𝑆1 via the coderivative of Υ, namely

𝑧∗ ∈ 𝐷∗(𝑆2 ◦ 𝑆1) (𝑧, �̄�) (𝑤∗)
=⇒ ∃𝑦 ∈ Ξ(𝑧, �̄�), ∃𝜉1 ∈ ℝ𝑚, ∃𝜉2 ∈ ℝ𝑠 : (𝑧∗,−𝑤∗, 0) ∈ 𝐷∗Υ((𝑧, �̄�, 𝑦), (0, 0)) (𝜉1, 𝜉2) .

Finally, the coderivative of Υ can be expressed via its components as

𝐷∗Υ((𝑧, �̄�, 𝑦), (0, 0)) (𝜉1, 𝜉2) = 𝐷∗𝑆1(𝑧, 𝑦) (𝜉1) × {0} × 𝐷∗𝑆2(𝑦, �̄�) (𝜉2) − (0, 𝜉2, 𝜉1) .

This can be seen from Lemma 3.7 (b) (whose proof does not depend on the chain rule) where one can
split (𝑧,𝑤, 𝑦) either as ((𝑧,𝑤), 𝑦) or as (𝑧, (𝑤, 𝑦)). The above formulas now readily yield the desired
chain rule via the coderivatives of 𝑆1 and 𝑆2.

Naturally, in specic situations, one may prefer to use dierent intermediate and feasibility mappings
satisfying (3.3). The question then remains whether one can handle the coderivative of the chosen
feasibility mapping to derive the chain rule without additional assumptions.
For set-valued mappings Γ1 : ℝ𝑛 ⇒ ℝ𝑚1 and Γ2 : ℝ𝑛 ⇒ ℝ𝑚2 , we consider the product mapping

Γ : ℝ𝑛 ⇒ ℝ𝑚1 ×ℝ𝑚2 given by

∀𝑧 ∈ ℝ𝑛 : Γ(𝑧) := Γ1(𝑧) × Γ2(𝑧) .

For later use, we need to compute or at least estimate the coderivative of this mapping. From [9,
Section 5.4], we obtain the next result.
Lemma 3.5. Fix (𝑧, (�̄�1, �̄�2)) ∈ gph Γ. Assume that Υ̃ : ℝ𝑛×ℝ𝑚1×ℝ𝑚2×ℝ𝑛×ℝ𝑛 ⇒ ℝ𝑛×ℝ𝑛×ℝ𝑚1×ℝ𝑚2 ,
given by

∀𝑧, 𝑞1, 𝑞2 ∈ ℝ𝑛, ∀𝑤1 ∈ ℝ𝑚1, ∀𝑤2 ∈ ℝ𝑚2 : Υ̃(𝑧,𝑤1,𝑤2, 𝑞1, 𝑞2) :=
©«

𝑧 − 𝑞1
𝑧 − 𝑞2

Γ1(𝑞1) −𝑤1
Γ2(𝑞2) −𝑤2

ª®®®¬ ,
is metrically subregular at ((𝑧, �̄�1, �̄�2, 𝑧, 𝑧), (0, 0, 0, 0)). Then we have

(3.4) 𝐷∗Γ(𝑧, (�̄�1, �̄�2)) (𝜉1, 𝜉2) ⊂ 𝐷∗Γ1(𝑧, �̄�1) (𝜉1) + 𝐷∗Γ2(𝑧, �̄�2) (𝜉2) .

Moreover, Υ̃ is metrically subregular at ((𝑧, �̄�1, �̄�2, 𝑧, 𝑧), (0, 0, 0, 0)) whenever Γ1 and Γ2 are polyhedral or
if the qualication condition

(3.5) 𝐷∗Γ1(𝑧, �̄�1) (0) ∩
(
−𝐷∗Γ2(𝑧, �̄�2) (0)

)
= {0}

holds, in which case Υ̃ is even metrically regular at the point of interest.

The qualication condition (3.5) is clearly satised if one of the mappings Γ𝑖 , 𝑖 = 1, 2, possesses
the Aubin property at (𝑧, �̄�𝑖). In the following lemmas, we review more results from [9, Section 5.4]
concerning some exemplary settings where (3.5) holds naturally.
Lemma 3.6. Fix (𝑧, (�̄�1, �̄�2)) ∈ gph Γ and assume that one of the following conditions holds. Then (3.5) is
satised and, thus, the estimate (3.4) is valid.
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(a) There are a locally Lipschitz continuous function 𝛾 : ℝ𝑛 → ℝ𝑚2 as well as a closed set Ω ⊂ ℝ𝑚2

such that Γ2 is given by Γ2(𝑧) := 𝛾 (𝑧) − Ω for all 𝑧 ∈ ℝ𝑛 (an analogous statements holds if Γ1
admits such a representation).

(b) The variables 𝑧 can be decomposed as 𝑧 = (𝑧1, 𝑧2) ∈ ℝ𝑛1 ×ℝ𝑛2 . Furthermore, there are set-valued
mappings Γ̃1 : ℝ𝑛1 ⇒ ℝ𝑚1 and Γ̃2 : ℝ𝑛2 ⇒ ℝ𝑚2 as well as locally Lipschitz continuous functions
𝛾1 : ℝ𝑛2 → ℝ𝑚1 and 𝛾2 : ℝ𝑛1 → ℝ𝑚2 such that

∀𝑧 = (𝑧1, 𝑧2) ∈ ℝ𝑛1 ×ℝ𝑛2 : Γ1(𝑧) := Γ̃1(𝑧1) + 𝛾1(𝑧2), Γ2(𝑧) := Γ̃2(𝑧2) + 𝛾2(𝑧1).

We note that, in principle, the setting (a) can be viewed as an extreme case of setting (b) with 𝑛1 = 𝑛
and 𝑛2 = 0. Naturally, this does not t formally, but one could regard a set as a set-valued mapping
from a zero-dimensional space and propose a suitable relation for its coderivative via the normal cone
to the set.
In the specic settings outlined above, we can, in fact, get equality in (3.4) instead of inclusion

if we strengthen the Lipschitzness of the single-valued parts to continuous dierentiability, see [9,
Lemma 5.7].
Lemma 3.7. Fix (𝑧, (�̄�1, �̄�2)) ∈ gph Γ. Then the following statements hold.

(a) Consider the setting (a) from Lemma 3.6 and assume that the function𝛾 is continuously dierentiable.
Then we have

𝐷∗Γ(𝑧, (�̄�1, �̄�2)) (𝜉1, 𝜉2) =
{
𝐷∗Γ1(𝑧, �̄�1) (𝜉1) + ∇𝛾 (𝑧)>𝜉2 if 𝜉2 ∈ NΩ (𝛾 (𝑧) − �̄�2),
∅ otherwise.

(b) Consider the setting (b) from Lemma 3.6 and assume that the functions 𝛾1 and 𝛾2 are continuously
dierentiable. Then we have

𝐷∗Γ(𝑧, (�̄�1, �̄�2)) (𝜉1, 𝜉2) =
(
𝐷∗Γ̃1(𝑧1, �̄�1 − 𝛾1(𝑧2)) (𝜉1) + ∇𝛾2(𝑧1)>𝜉2
𝐷∗Γ̃2(𝑧2, �̄�2 − 𝛾2(𝑧1)) (𝜉2) + ∇𝛾1(𝑧2)>𝜉1

)
.

Up to now, we discussed the auxiliary issue of how to guarantee metric subregularity of Υ̃, while
the main target is to justify the upper estimate for the coderivative of Γ. Later, we will also employ
metric subregularity of the product mapping Γ itself, which is, however, often a more dicult issue.
We conclude the preliminary part by a simple result regarding how to ensure metric subregularity of
Γ from metric subregularity of its factors Γ1 and Γ2. Let us mention that there exists a much deeper
result by Klatte and Kummer, see [42, Theorem 3.6], on calmness of an intersection of mappings, which
can be equivalently stated in terms of metric subregularity of a product of mappings, and which has
several very interesting applications. In particular, since Υ̃ also has the structure of a product, it can be
utilized even in situations when (3.5) fails to hold. Moreover, as demonstrated in [1], it applies quite
nicely to the setting discussed in Section 2.1. Nevertheless, for the purposes of this paper, we will only
need the following result.
Lemma 3.8. Fix (𝑧, (�̄�1, �̄�2)) ∈ gph Γ and assume that Γ𝑖 is metrically subregular at (𝑧, �̄�𝑖) for 𝑖 = 1, 2
and, moreover, that the mapping Σ : ℝ𝑛 ⇒ ℝ𝑛 ×ℝ𝑛 given by

(3.6) ∀𝑧 ∈ ℝ𝑛 : Σ(𝑧) := (𝑧 − Γ−11 (�̄�1)) × (𝑧 − Γ−12 (�̄�2))

is metrically subregular at (𝑧, (0, 0)). Then Γ is metrically subregular at (𝑧, (�̄�1, �̄�2)).
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Proof. By assumption, we nd neighborhoods𝑈 ,𝑈1,𝑈2 ⊂ ℝ𝑛 of 𝑧 and reals 𝜅, 𝜅1, 𝜅2 > 0 satisfying

∀𝑧 ∈ 𝑈 : dist(𝑧, Σ−1(0, 0)) ≤ 𝜅 dist((0, 0), Σ(𝑧))

as well as
∀𝑧 ∈ 𝑈𝑖 : dist(𝑧, Γ−1𝑖 (�̄�𝑖)) ≤ 𝜅𝑖 dist(�̄�𝑖 , Γ𝑖 (𝑧))

for 𝑖 = 1, 2. Due to Γ−1(�̄�1, �̄�2) = Σ−1(0, 0), we obtain

dist(𝑧, Γ−1(�̄�1, �̄�2)) ≤ 𝜅
(
dist(𝑧, Γ−11 (�̄�1)) + dist(𝑧, Γ−12 (�̄�2))

)
≤ 𝜅max{𝜅1, 𝜅2} dist((�̄�1, �̄�2), Γ(𝑧))

for each 𝑧 ∈ 𝑈 ∩𝑈1 ∩𝑈2, and this shows the claim. �

Since Σ from (3.6) has a simpler structure than Γ, its coderivative can be readily computed by
Lemma 3.7. Particularly, we note that metric regularity of Σ at (𝑧, (0, 0)) reads

NΓ−11 (�̄�1) (𝑧) ∩
(
−NΓ−12 (�̄�2) (𝑧)

)
= {0},

and, by metric subregularity of Γ𝑖 at (𝑧, �̄�𝑖), 𝑖 = 1, 2, as well as the pre-image rule from Proposition 3.1,
the condition

rge𝐷∗Γ1(𝑧, �̄�1) ∩ (− rge𝐷∗Γ2(𝑧, �̄�2)) = {0}

is sucient to guarantee its validity.

4 abstract analysis with and without implicit variables

In this section, we rst address the relationship between the minimizers of (P) and (Q), respectively.
Afterwards, we will deal with the derivation of necessary optimality conditions and constraint quali-
cations for (P) with the aid of limiting variational analysis. In order to infer optimality conditions in
terms of initial problem data (particularly, in terms of the generalized derivatives of 𝐹 and 𝐺), we use
the chain and product rule of coderivative calculus from Section 3.3. As we will see, the associated
assumptions for their respective application are valid in several practically relevant settings, which
shows that the essential constraint qualication boils down to one subregularity assumption. We close
the section with some brief remarks regarding suciency of the derived optimality conditions for
convex problems of type (P).

4.1 solution behavior

Here, we want to study the relationship between the local and global minimizers of (P) and (Q),
respectively. To this end, the intermediate mapping 𝐾 : ℝ𝑛 ⇒ ℝ𝑚 given by

∀𝑧 ∈ ℝ𝑛 : 𝐾 (𝑧) := {𝜆 ∈ 𝐹 (𝑧) | 0 ∈ 𝐺 (𝑧, 𝜆)}

will be of essential importance. Note that we have 𝑍 = 𝑀 ∩ dom𝐾 by denition.
Lemma 4.1. If 𝐹 is a locally bounded set-valued mapping, then 𝐻 possesses a closed graph.

Proof. Let {(𝑧𝑘 ,𝑤𝑘 )}𝑘∈ℕ ⊂ gph𝐻 be a sequence converging to some (𝑧, �̄�) ∈ ℝ𝑛 × ℝ𝑠 . Then, by
denition of 𝐻 , for each 𝑘 ∈ ℕ, we nd 𝜆𝑘 ∈ 𝐹 (𝑧𝑘 ) such that𝑤𝑘 ∈ 𝐺 (𝑧𝑘 , 𝜆𝑘 ) holds. Since 𝐹 is locally
bounded at 𝑧, {𝜆𝑘 }𝑘∈ℕ must be bounded. Thus, along a subsequence (without relabeling) it converges
to some 𝜆 ∈ ℝ𝑚 . Recalling that 𝐹 and 𝐺 are set-valued mappings with a closed graph, 𝜆 ∈ 𝐹 (𝑧) and
�̄� ∈ 𝐺 (𝑧, 𝜆) follow, i.e., �̄� ∈ 𝐻 (𝑧) is obtained. This shows the closedness of gph𝐻 . �
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Exemplary, let us mention that in the setting of Section 2.1, the mapping 𝐹 is cone-valued and not
likely to be locally bounded. However, one can check that the associated mapping 𝐻 still possesses a
closed graph by closedness of the normal cone mapping associated with a convex set.

Subsequently, we discuss some properties of the mapping 𝐾 .
Lemma 4.2. The following assertions hold.

(a) The mapping 𝐾 possesses a closed graph.

(b) Fix 𝑧 ∈ dom𝐾 . If 𝐹 is locally bounded at 𝑧, then 𝐾 is inner semicompact at 𝑧 w.r.t. dom𝐾 .

Proof. Let us start with the proof of assertion (a). Let {(𝑧𝑘 , 𝜆𝑘 )}𝑘∈ℕ ⊂ gph𝐾 be chosen such that
𝑧𝑘 → 𝑧 and 𝜆𝑘 → 𝜆 hold. By denition, we have 𝜆𝑘 ∈ 𝐹 (𝑧𝑘 ) and 0 ∈ 𝐺 (𝑧𝑘 , 𝜆𝑘 ) for each 𝑘 ∈ ℕ. The
closedness of gph 𝐹 and gph𝐺 yields 𝜆 ∈ 𝐹 (𝑧) and 0 ∈ 𝐺 (𝑧, 𝜆), respectively. Hence, we have 𝜆 ∈ 𝐾 (𝑧),
i.e., gph𝐾 is closed.
In order to show (b), let {𝑧𝑘 }𝑘∈ℕ ⊂ dom𝐾 be chosen such that 𝑧𝑘 → 𝑧 holds. Then we nd a sequence
{𝜆𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that 𝜆𝑘 ∈ 𝐾 (𝑧𝑘 ) holds for all 𝑘 ∈ ℕ. Noting that 𝐾 is locally bounded at 𝑧 since
𝐹 enjoys this property by assumption, {𝜆𝑘 }𝑘∈ℕ is bounded and possesses a convergent subsequence.
Thus, 𝐾 is inner semicompact at 𝑧 w.r.t. dom𝐾 . �

In the upcoming theorem, we take a look at the global minimizers of (P) and (Q).
Theorem 4.3.

(a) Let 𝑧 ∈ ℝ𝑛 be a global minimizer of (P). Then, for each 𝜆 ∈ 𝐾 (𝑧), (𝑧, 𝜆) is a global minimizer of
(Q).

(b) Let (𝑧, 𝜆) ∈ ℝ𝑛 ×ℝ𝑚 be a global minimizer of (Q). Then 𝑧 is a global minimizer of (P).

Proof. Both statements of the theorem follow from the observation that for given 𝑧 ∈ ℝ𝑛 , we have the
equivalences

𝑧 ∈ 𝑍 ⇐⇒ 𝑧 ∈ 𝑀 ∩ dom𝐾 ⇐⇒ ∃𝜆 ∈ ℝ𝑚 : (𝑧, 𝜆) ∈ 𝑍,

while the objective function of (Q) does not depend on the variable 𝜆. �

The above theorem shows that the relationship between (P) and (Q) is straight whenever global
minimizers are under consideration. Thus, whenever these problems actually do not possess local
minimizers which are not globally optimal, then (P) and (Q) are equivalent w.r.t. their minimizers in
the sense of Theorem 4.3.
Corollary 4.4. Consider the situation where 𝐹 and𝐺 are convex set-valued mappings. One can easily check
that this implies convexity of 𝐻 . Particularly, whenever 𝑓 is a convex function and𝑀 is a convex set, then
(P) and (Q) are both convex optimization problems (i.e., their objective function and feasible set are convex,
respectively) whose minimizers correspond to each other in the sense of Theorem 4.3.

A quite popular and nearby situation which is addressed by Corollary 4.4 arises in the context of
(conic) linear programming where slack variables are used to transfer a given problem instance into
standard normal form. It is well known that the original problem and its surrogate are equivalent w.r.t.
their minimizers.
Next, we investigate the relationship between local minimizers of (P) and (Q). As we will see, this

issue is much more delicate in comparison with the situation where globally optimal solutions of these
programs are under consideration.
Theorem 4.5.

(a) Let 𝑧 ∈ ℝ𝑛 be a local minimizer of (P). Then, for each 𝜆 ∈ 𝐾 (𝑧), (𝑧, 𝜆) is a local minimizer of (Q).
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(b) Let (𝑧, 𝜆) ∈ ℝ𝑛 ×ℝ𝑚 be a local minimizer of (Q) for each 𝜆 ∈ 𝐾 (𝑧). Furthermore, let 𝐾 be inner
semicompact at 𝑧 w.r.t. dom𝐾 . Then 𝑧 is a local minimizer of (P).

Proof. For the proof of (a), suppose that, for some local minimizer 𝑧 ∈ 𝑍 of (P), there is some 𝜆 ∈ 𝐾 (𝑧)
such that (𝑧, 𝜆) is not a local minimizer of (Q). Then there is a sequence {(𝑧𝑘 , 𝜆𝑘 )}𝑘∈ℕ ⊂ 𝑍 such
that 𝑧𝑘 → 𝑧, 𝜆𝑘 → 𝜆, and 𝑓 (𝑧𝑘 ) < 𝑓 (𝑧) holds for each 𝑘 ∈ ℕ. Since we have 𝑧𝑘 ∈ 𝑀 ∩ dom𝐾 by
denition of 𝐾 , 𝑧𝑘 is feasible to (P) for each 𝑘 ∈ ℕ. Thus, 𝑧 cannot be a local minimizer of (P) which is
a contradiction. This shows (a).
For the proof of (b), let (𝑧, 𝜆) ∈ ℝ𝑛 × ℝ𝑚 be a local minimizer of (Q) for each 𝜆 ∈ 𝐾 (𝑧) and let 𝐾 be
inner semicompact at 𝑧 w.r.t. dom𝐾 . From 𝑧 ∈ 𝑀 ∩ dom𝐾 we infer the feasibility of 𝑧 to (P). Suppose
now that 𝑧 is not a local minimizer of (P). Then we nd a sequence {𝑧𝑘 }𝑘∈ℕ ⊂ 𝑍 such that 𝑧𝑘 → 𝑧

while 𝑓 (𝑧𝑘 ) < 𝑓 (𝑧) is satised for all 𝑘 ∈ ℕ. From 𝑧𝑘 ∈ 𝑍 we deduce 𝑧𝑘 ∈ 𝑀 ∩ dom𝐾 for each 𝑘 ∈ ℕ.
Due to the inner semicompactness of 𝐾 at 𝑧 w.r.t. dom𝐾 , there are a subsequence {𝑧𝑘𝑙 }𝑙 ∈ℕ and a
sequence {𝜆𝑙 }𝑙 ∈ℕ ⊂ ℝ𝑚 converging to some 𝜆 ∈ ℝ𝑚 such that 𝜆𝑙 ∈ 𝐾 (𝑧𝑘𝑙 ) holds for all 𝑙 ∈ ℕ . Since
we have 𝑧𝑘𝑙 → 𝑧, we can deduce 𝜆 ∈ 𝐾 (𝑧) from the closedness of gph𝐾 , see Lemma 4.2. Thus, the
points from {(𝑧𝑘𝑙 , 𝜆𝑙 )}𝑙 ∈ℕ as well as (𝑧, 𝜆) are feasible to (Q). Since we have 𝑓 (𝑧𝑘𝑙 ) < 𝑓 (𝑧) for all 𝑙 ∈ ℕ,
(𝑧, 𝜆) cannot be a local minimizer of (Q). This, however, contradicts our assumptions. �

Naturally, when dealing with the reformulated problem (Q), one can hardly expect to nd 𝑧 such that
(𝑧, 𝜆) is a local minimizer for all 𝜆 ∈ 𝐾 (𝑧). Typically, one simply nds a point (𝑧, 𝜆) which is locally
optimal (even this is often too optimistic and one only gets a stationary point instead). This underlines
that the approach via problem (Q) is indeed quite far from ideal. The proof of the previous theorem
yields that the situation can be saved if the stronger inner semicontinuity of 𝐾 is assumed.
Corollary 4.6. Let (𝑧, 𝜆) ∈ ℝ𝑛 × ℝ𝑚 be a local minimizer of (Q) and let 𝐾 be inner semicontinuous at
(𝑧, 𝜆) w.r.t. dom𝐾 . Then 𝑧 is a local minimizer of (P).
Due to Lemma 4.2, the inner semicompactness of 𝐾 can be guaranteed via local boundedness of

𝐹 . In the context of bilevel programming, see Section 2.1, we already mentioned that the mapping
𝐹 does not enjoy this property. However, 𝐾 is the Lagrange multiplier mapping associated with the
lower level problem in this context, and the latter is known to be locally bounded under validity of the
Mangasarian–Fromovitz constraint qualication which, thus, implies its inner semicompactness as well.
Hence, Theorem 4.5 recovers the popular result [20, Theorem 3.2]. However, exploiting Proposition 3.3,
we are in position to weaken this constraint qualication such that the resulting multiplier mapping still
possesses the necessary inner semicompactness, i.e., we will keep the essential result of Theorem 4.5
in this case, see Section 5.1 for details.
Remark 4.7. We point out that, in several exemplary cases, the inner semicompactness assumption will
be automatically fullled (or will be a consequence of some initial assumption on the data, such as
validity of a constraint qualication for the lower level program in bilevel programming). In fact, even
a stronger form of inner semicompactness considered in Section 4.2 (i.e., inner semicompactness w.r.t.
another intermediate mapping) will hold true, see Section 5.1 as well.
Below, we illustrate that none of the assumptions which are necessary in order to identify a local

minimizer of (P) via local minimizers of (Q) can be dropped in Theorem 4.5.
Example 4.8.

(a) Let us consider the setting 𝑛 =𝑚 = 𝑠 = 1 with 𝑓 := id,

∀𝑧, 𝜆 ∈ ℝ : 𝐹 (𝑧) :=


{0} 𝑧 > 0,
{0, 1} 𝑧 = 0,
{1} 𝑧 < 0,

𝐺 (𝑧, 𝜆) := [−𝑧 − 𝜆,∞),
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as well as𝑀 := ℝ. Obviously, we have 𝑍 = [−1,∞), i.e., 𝑧 := −1 is the uniquely determined local
and global minimizer of the associated problem (P). It holds

∀𝑧 ∈ ℝ : 𝐾 (𝑧) =


{0} 𝑧 > 0,
{0, 1} 𝑧 = 0,
{1} 𝑧 ∈ [−1, 0),
∅ 𝑧 < −1.

At 𝑧 := 0, 𝐾 is inner semicompact w.r.t. dom𝐾 = 𝑍 . It can be easily checked that (𝑧, 0) is a local
minimizer of (Q) while (𝑧, 1) is not. Thus, assertion (b) of Theorem 4.5 does not generally hold
whenever the local optimality for (Q) cannot be guaranteed for all realizations of the implicit
variables in question.

(b) For 𝑛 =𝑚 = 𝑠 = 1, we set 𝑓 := id,

∀𝑧, 𝜆 ∈ ℝ : 𝐹 (𝑧) :=
{
{0} 𝑧 ≥ 0,
{−1/𝑧} 𝑧 < 0,

𝐺 (𝑧, 𝜆) := [−1, 1 + 𝑧],

as well as𝑀 := ℝ. Again, we nd 𝑍 = [−1,∞), and 𝑧 := −1 is the uniquely determined local and
global minimizer of the associated problem (P). One easily computes

∀𝑧 ∈ ℝ : 𝐾 (𝑧) =


{0} 𝑧 ≥ 0,
{−1/𝑧} 𝑧 ∈ [−1, 0),
∅ 𝑧 < −1.

Let us consider 𝑧 := 0. At 𝑧, 𝐾 is not inner semicompact w.r.t. dom𝐾 . On the other hand, (𝑧, 0)
is a local minimizer of (Q) since for 𝑧 ↑ 0, we have 𝜆 → ∞ for any 𝜆 ∈ 𝐾 (𝑧). Consequently, we
cannot abstain from postulating inner semicompactness of 𝐾 in order to guarantee validity of
assertion (b) of Theorem 4.5.

The issues regarding the relationship between local minimizers of (P) and (Q) result from the fact
that the variable 𝜆 is equipped with a metric structure in (Q). This is quite natural when treating (Q)
as an optimization problem and forms the base for the derivation of necessary optimality conditions,
constraint qualications, and solution algorithms. In the context of bilevel optimization, the authors
of [58] used a dierent approach by disregarding the metric structure w.r.t. the lower level Lagrange
multipliers in a reformulation of the bilevel programming problem which exploits the optimal value
function as well as the Karush–Kuhn–Tucker-conditions of the lower level problem simultaneously,
see [58, Proposition 3.1]. In the more general setting considered here, this amounts to saying that a
feasible point (𝑧, 𝜆) ∈ ℝ𝑛 ×ℝ𝑚 of (Q) is a local minimizer whenever there is a neighborhood 𝑈 ⊂ ℝ𝑛

of 𝑧 such that

(4.1) ∀(𝑧, 𝜆) ∈ 𝑍 ∩ (𝑈 ×ℝ𝑚) : 𝑓 (𝑧) ≤ 𝑓 (𝑧)

holds. One can easily check that whenever 𝑧 ∈ ℝ𝑛 is a local minimizer of (P), then, for each 𝜆 ∈ 𝐾 (𝑧),
(𝑧, 𝜆) is a local minimizer of (Q) in the sense of (4.1). Conversely, if (𝑧, 𝜆) ∈ ℝ𝑛×ℝ𝑚 is a local minimizer
of (Q) in the sense of (4.1), then 𝑧 is a local minimizer of (P). At the rst glance, this approach seems to
solve all the issues observed in Theorem 4.5. However, it is completely unclear how local minimizers
of (Q) in the sense of (4.1) can be characterized or numerically identied. In [58], the authors do
not comment on this shortcoming at all. Thus, although faced with the disadvantages carved out in
Theorem 4.5, we will stick to the classical notion of local optimality in (Q), i.e., we impose a metric
structure on 𝜆 there.

We conclude this section with a brief remark regarding sucient optimality conditions.
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Remark 4.9. In optimization theory, sucient optimality conditions generally imply local linear or
quadratic growth, i.e., they impose local isolatedness of the characterized minimizer. Now, consider a
local minimizer 𝑧 ∈ 𝑍 of (P). Even if it is a locally isolated minimizer of (P), this property fails to hold
for the respective local minimizer (𝑧, 𝜆) for each 𝜆 ∈ 𝐾 (𝑧) as soon as 𝐾 (𝑧) is a connected set which is
not a singleton since the objective of (Q) does not depend on the variable 𝜆. As a consequence, one
cannot rely on classical rst- or second-order sucient optimality conditions in order to characterize
the minimizers of (Q) as soon as𝐾 is multivalued. In the light of Theorem 4.5, it is, thus, dicult to infer
local optimality of a feasible point of (P) via (Q). In the context of bilevel and cardinality-constrained
programming, this phenomenon has been mentioned recently in [47, Remark 4.21] and [16, Section 3.2],
respectively.

4.2 necessary optimality conditions

Here, we are going to investigate three notions of necessary optimality conditions of M-stationarity-
type for program (P). Two of them correspond to (standard) M-stationarity dened in Denition 3.2
applied either directly to (P) or to its reformulation (Q), while the third notion oers conditions in
a completely explicit form. Without mentioning it again, we assume throughout the section that
gph𝐻 is (locally) closed. As we have seen in Lemma 4.1 this is inherent if 𝐹 is locally bounded, but
it also holds in far more general but practically relevant situations. In particular, gph𝐻 is locally
closed around (𝑧, 0) ∈ gph𝐻 if the mapping 𝐾 from (4.3) below is inner semicompact at (𝑧, 0) w.r.t.
dom𝐾 = gph𝐻 . For later use, let us dene set-valued mappings H : ℝ𝑛 × ℝ𝑚 ⇒ ℝ𝑚 × ℝ𝑠 and
ℌ : ℝ𝑛 ×ℝ𝑚 ⇒ ℝ𝑛+𝑚 ×ℝ𝑛+𝑚+𝑠 by means of

∀𝑧 ∈ ℝ𝑛, ∀𝜆 ∈ ℝ𝑚 : H(𝑧, 𝜆) :=
(
𝐹 (𝑧) − 𝜆
𝐺 (𝑧, 𝜆)

)
, ℌ(𝑧, 𝜆) :=

(
(𝑧, 𝜆) − gph 𝐹
(𝑧, 𝜆, 0) − gph𝐺

)
.

In order to incorporate the constraints 𝑧 ∈ 𝑀 , we will exploit the mappings 𝐻𝑀 : ℝ𝑛 ⇒ ℝ𝑠 × ℝ𝑛 ,
H𝑀 : ℝ𝑛 × ℝ𝑚 ⇒ ℝ𝑚 × ℝ𝑠 × ℝ𝑛 , as well as ℌ𝑀 : ℝ𝑛 × ℝ𝑚 ⇒ ℝ𝑛+𝑚 × ℝ𝑛+𝑚+𝑠 × ℝ𝑛 obtained from
𝐻 , H , and ℌ by adding (𝑧 −𝑀) as a component, i.e., we exemplary have 𝐻𝑀 (𝑧) := 𝐻 (𝑧) × (𝑧 −𝑀)
for all 𝑧 ∈ ℝ𝑛 . Observe that we have 𝑧 ∈ 𝑍 if and only if (0, 0) ∈ 𝐻𝑀 (𝑧) and (𝑧, 𝜆) ∈ 𝑍 if and only if
(0, 0, 0) ∈ H𝑀 (𝑧, 𝜆) if and only if ((0, 0), (0, 0, 0), 0) ∈ ℌ𝑀 (𝑧, 𝜆).
Definition 4.10. Let 𝑧 ∈ ℝ𝑛 be a feasible point of (P). Then 𝑧 is said to be

(i) implicitly M-stationary if there exists 𝜈 ∈ ℝ𝑠 such that

0 ∈ 𝜕𝑓 (𝑧) + 𝐷∗𝐻 (𝑧, 0) (𝜈) + N𝑀 (𝑧),

(ii) fuzzily M-stationary (or fuzzily M-stationary w.r.t. 𝜆) if there exist 𝜆 ∈ 𝐾 (𝑧), 𝜇 ∈ ℝ𝑚 , and 𝜈 ∈ ℝ𝑠

such that
(0, 0) ∈ 𝜕𝑓 (𝑧) × {0} + 𝐷∗H((𝑧, 𝜆), (0, 0)) (𝜇, 𝜈) + N𝑀 (𝑧) × {0}

holds, i.e., if (𝑧, 𝜆) is M-stationary for (Q),

(iii) explicitly M-stationary (or explicitly M-stationary w.r.t. 𝜆) if there exist 𝜆 ∈ 𝐾 (𝑧), 𝜇 ∈ ℝ𝑚 , and
𝜈 ∈ ℝ𝑠 such that

0 ∈ 𝜕𝑓 (𝑧) + 𝐷∗𝐹 (𝑧, 𝜆) (𝜇) + {𝜉 ∈ ℝ𝑛 | (𝜉, 𝜇) ∈ 𝐷∗𝐺 ((𝑧, 𝜆), 0) (𝜈)} + N𝑀 (𝑧) .

Proposition 3.1 now immediately provides constraint qualications for the above M-stationarity
notions.
Proposition 4.11. Let 𝑧 ∈ ℝ𝑛 be a local minimizer of (P). Then the following assertions hold.
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(a) If 𝐻𝑀 is metrically subregular at (𝑧, (0, 0)), then 𝑧 is implicitly M-stationary.

(b) IfH𝑀 is metrically subregular at ((𝑧, 𝜆), (0, 0, 0)) for some 𝜆 ∈ 𝐾 (𝑧), then 𝑧 is fuzzily M-stationary
w.r.t. 𝜆.

(c) If ℌ𝑀 is metrically subregular at ((𝑧, 𝜆), ((0, 0), (0, 0, 0), 0)) for some 𝜆 ∈ 𝐾 (𝑧), then 𝑧 is explicitly
M-stationary w.r.t. 𝜆.

Proof. Since 𝑧 is a local minimizer of (P), [48, Theorem 6.1] guarantees validity of

0 ∈ 𝜕𝑓 (𝑧) + N𝐻−1
𝑀
(0,0) (𝑧) .

Noting that for each 𝜆 ∈ 𝐾 (𝑧), (𝑧, 𝜆) is a local minimizer of (Q), see Theorem 4.5, [48, Theorem 6.1]
furthermore implies

(0, 0) ∈ 𝜕𝑓 (𝑧) × {0} + NH−1
𝑀
(0,0,0) (𝑧, 𝜆),(4.2a)

(0, 0) ∈ 𝜕𝑓 (𝑧) × {0} + Nℌ−1
𝑀
( (0,0),(0,0,0),0) (𝑧, 𝜆) .(4.2b)

For the proof of (a), we exploit the metric subregularity of 𝐻𝑀 at (𝑧, (0, 0)) and Proposition 3.1 in order
to nd 0 ∈ 𝜕𝑓 (𝑧) + 𝐷∗𝐻𝑀 (𝑧, (0, 0)) (𝜈, 𝜉) for some 𝜈 ∈ ℝ𝑠 and 𝜉 ∈ ℝ𝑛 . Now, we can exploit assertion
(a) of Lemma 3.7 in order to nd

𝐷∗𝐻𝑀 (𝑧, (0, 0)) (𝜈, 𝜉) =
{
𝐷∗𝐻 (𝑧, 0) (𝜈) + 𝜉 𝜉 ∈ N𝑀 (𝑧),
∅ otherwise,

and this shows that 𝑧 is implicitly M-stationary.
The proof for (b) works in analogous way exploiting (4.2a).
In order to verify statement (c), we rst introduce a continuously dierentiable single-valued mapping
𝔥𝑀 : ℝ𝑛 ×ℝ𝑚 → ℝ𝑛+𝑚 ×ℝ𝑛+𝑚+𝑠 ×ℝ𝑛 and a set Ω ⊂ ℝ𝑛+𝑚 ×ℝ𝑛+𝑚+𝑠 ×ℝ𝑛 by means of

∀𝑧 ∈ ℝ𝑛, ∀𝜆 ∈ ℝ𝑚 : 𝔥𝑀 (𝑧, 𝜆) := ((𝑧, 𝜆), (𝑧, 𝜆, 0), 𝑧), Ω := gph 𝐹 × gph𝐺 ×𝑀

and observe thatℌ𝑀 (𝑧, 𝜆) = 𝔥𝑀 (𝑧, 𝜆)−Ω holds for all𝑧 ∈ ℝ𝑛 and𝜆 ∈ ℝ𝑚 . Thus, themetric subregularity
of the feasibility mapping ℌ𝑀 at the reference point guarantees applicability of the pre-image rule, see
Section 3.2. Together with the product rule for the limiting normal cone, see [53, Proposition 6.41], we
obtain

Nℌ−1
𝑀
( (0,0),(0,0,0),0) (𝑧, 𝜆)
⊂ ∇𝔥𝑀 (𝑧, 𝜆)>NΩ (𝔥𝑀 (𝑧, 𝜆))
= ∇𝔥𝑀 (𝑧, 𝜆)>

(
Ngph 𝐹 (𝑧, 𝜆) × Ngph𝐺 (𝑧, 𝜆, 0) × N𝑀 (𝑧)

)
=

{
(𝜉1 + 𝜉2 + 𝜉3, 𝜇1 + 𝜇2)

�����∃𝜈 ∈ ℝ𝑠 : 𝜉1 ∈ 𝐷∗𝐹 (𝑧, 𝜆) (−𝜇1),
(𝜉2, 𝜇2) ∈ 𝐷∗𝐺 ((𝑧, 𝜆), 0) (𝜈), 𝜉3 ∈ N𝑀 (𝑧)

}
.

Now, the claim follows from (4.2b). �

Remark 4.12. Taking into account Lemma 3.8 as well as the fact that the simple mapping 𝑧 ⇒ 𝑧 −𝑀 is
trivially metrically subregular at all points of its graph, metric subregularity of 𝐻𝑀 at (𝑧, (0, 0)) can be
ensured by metric subregularity of𝐻 at (𝑧, 0) and metric subregularity of 𝑧 ⇒ (𝑧−𝐻−1(0)) × (𝑧−𝑀) at
(𝑧, (0, 0)). Note that the latter implies applicability of the intersection rule for the set 𝑍 = 𝐻−1

𝑀
(0, 0) =

𝐻−1(0) ∩𝑀 , namely
N𝐻−1

𝑀
(0,0) (𝑧) ⊂ N𝐻−1 (0) (𝑧) + N𝑀 (𝑧)

and, hence, combined with the metric subregularity of 𝐻 , also provides a constraint qualication for
implicit M-stationarity, see Proposition 3.1.
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Let us briey comment on how to ensure the above metric subregularity assumptions via sucient
conditions in terms of coderivatives. Let 𝑧 ∈ ℝ𝑛 be a feasible point for (P) and let 𝜆 ∈ 𝐾 (𝑧) be chosen
arbitrarily.

(i) If, for all 𝜈 ∈ ℝ𝑠 and 𝜉 ∈ ℝ𝑛 , the implication

−𝜉 ∈ 𝐷∗𝐻 (𝑧, 0) (𝜈) ∩
(
− N𝑀 (𝑧)

)
=⇒ 𝜉, 𝜈 = 0

holds, then 𝐻𝑀 is metrically subregular at (𝑧, (0, 0)).

(ii) If, for all 𝜇 ∈ ℝ𝑚 , 𝜈 ∈ ℝ𝑠 , and 𝜉 ∈ ℝ𝑛 , the implication

(−𝜉, 0) ∈ 𝐷∗H((𝑧, 𝜆), (0, 0)) (𝜇, 𝜈), 𝜉 ∈ N𝑀 (𝑧) =⇒ 𝜉, 𝜇, 𝜈 = 0

holds, then H𝑀 is metrically subregular at ((𝑧, 𝜆), (0, 0, 0)).

(iii) If, for all 𝜁 ∈ ℝ𝑛 , 𝜇 ∈ ℝ𝑚 , 𝜈 ∈ ℝ𝑠 , and 𝜉 ∈ ℝ𝑛 , the implication

𝜁 ∈ 𝐷∗𝐹 (𝑧, 𝜆) (𝜇), (−𝜁 − 𝜉, 𝜇) ∈ 𝐷∗𝐺 ((𝑧, 𝜆), 0) (𝜈), 𝜉 ∈ N𝑀 (𝑧) =⇒ 𝜉, 𝜁 , 𝜇, 𝜈 = 0

holds, then ℌ𝑀 is metrically subregular at ((𝑧, 𝜆), ((0, 0), (0, 0, 0), 0)).

Observe that the above conditions correspond to the famous Mordukhovich criterion applied to the
respective situation at hand. This can be seen from statement (a) of Lemma 3.7, the sum rule for
coderivative calculus, see e.g. [48, Theorem 3.9], and the product rule for limiting normals, see [53,
Proposition 6.41]. Thus, the above conditions already imply metric regularity of the mappings 𝐻𝑀 ,
H𝑀 , and ℌ𝑀 at the respective point of interest. Weaker sucient conditions for the presence of
metric subregularity in terms of limiting normal cones and coderivatives can exemplary be found in
[37, 38, 40, 60]. Even ner sucient conditions can be obtained using the directional limiting approach,
namely the rst-order sucient condition for metric subregularity from [30] or the directional pseudo-
and quasi-normality conditions from [3, 7]. For more details on the directional limiting approach in
variational analysis, we exemplary refer to [8, 33] and the references therein.

Next, we are going to compare the three approaches on how to come up with necessary optimality
conditions for (P). First, we look at the qualication conditions and, afterwards, we deal with the
stationarity conditions. For that purpose, let us dene another intermediate mapping𝐾 : ℝ𝑛×ℝ𝑠 ⇒ ℝ𝑚 ,
closely related to 𝐾 , given by

(4.3) ∀𝑧 ∈ ℝ𝑛, ∀𝑤 ∈ ℝ𝑠 : 𝐾 (𝑧,𝑤) := {𝜆 ∈ 𝐹 (𝑧) |𝑤 ∈ 𝐺 (𝑧, 𝜆)}.

Proposition 4.13. Let 𝑧 ∈ ℝ𝑛 be a feasible point of (P). Consider the following two assumptions:

(a) H𝑀 is metrically subregular at ((𝑧, 𝜆), (0, 0, 0)) for each 𝜆 ∈ 𝐾 (𝑧) and 𝐾 is inner semicompact at
(𝑧, 0) w.r.t. dom𝐾 ,

(b) H𝑀 is metrically subregular at ((𝑧, 𝜆), (0, 0, 0)) for some 𝜆 ∈ 𝐾 (𝑧) and 𝐾 is inner semicontinuous
at ((𝑧, 0), 𝜆) w.r.t. dom𝐾 .

Then each of the conditions (a) and (b) implies that 𝐻𝑀 is metrically subregular at (𝑧, (0, 0)).

Proof. Let us rst show the statement under validity of (a). Suppose that𝐻𝑀 is not metrically subregular
at (𝑧, (0, 0)). Hence, for each 𝑘 ∈ ℕ, we nd 𝑧𝑘 ∈ ℝ𝑛 and some𝑤𝑘 ∈ 𝐻 (𝑧𝑘 ) satisfying

dist(𝑧𝑘 , 𝑍 ) = dist(𝑧𝑘 , 𝐻−1
𝑀 (0, 0)) > 𝑘 dist((0, 0), 𝐻𝑀 (𝑧𝑘 )) = 𝑘 (‖𝑤𝑘 ‖ + dist(𝑧𝑘 , 𝑀))
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such that 𝑧𝑘 → 𝑧. Particularly,𝑤𝑘 → 0 follows. By denition of 𝐻 and 𝐾 , we have (𝑧𝑘 ,𝑤𝑘 ) ∈ dom𝐾

for each 𝑘 ∈ ℕ. The assumed inner semicompactness of 𝐾 at (𝑧, 0) w.r.t. dom𝐾 yields the existence of
a sequence {𝜆𝑘 }𝑘∈ℕ and some 𝜆 ∈ ℝ𝑚 such that 𝜆𝑘 → 𝜆 and 𝜆𝑘 ∈ 𝐾 (𝑧𝑘 ,𝑤𝑘 ) hold along a subsequence
(without relabeling). Recalling that 𝐹 and 𝐺 are mappings with closed graphs, the above convergences
yield 𝜆 ∈ 𝐹 (𝑧) and 0 ∈ 𝐺 (𝑧, 𝜆), i.e., 𝜆 ∈ 𝐾 (𝑧, 0) = 𝐾 (𝑧). Consequently, we obtain

dist((𝑧𝑘 , 𝜆𝑘 ),H−1
𝑀 (0, 0, 0)) = dist((𝑧𝑘 , 𝜆𝑘 ), 𝑍 ) ≥ dist(𝑧𝑘 , 𝑍 )

> 𝑘
(
‖𝑤𝑘 ‖ + dist(𝑧𝑘 , 𝑀)

)
≥ 𝑘

(
dist(0,𝐺 (𝑧𝑘 , 𝜆𝑘 )) + dist(𝑧𝑘 , 𝑀)

)
= 𝑘

(
dist(0, 𝐹 (𝑧𝑘 ) − 𝜆𝑘 ) + dist(0,𝐺 (𝑧𝑘 , 𝜆𝑘 )) + dist(𝑧𝑘 , 𝑀)

)
= 𝑘 dist((0, 0, 0),H𝑀 (𝑧𝑘 , 𝜆𝑘 )),

showing thatH𝑀 is not metrically subregular at ((𝑧, 𝜆), (0, 0, 0)). This, however, contradicts the propo-
sition’s assumptions from (a).
The proof works similarly under validity of (b) observing that the sequence {𝜆𝑘 }𝑘∈ℕ can be chosen to
be convergent to the xed implicit variable 𝜆 ∈ 𝐾 (𝑧, 0) by inner semicontinuity of 𝐾 w.r.t. dom𝐾 at
((𝑧, 0), 𝜆). �

Proposition 4.14. Let 𝑧 ∈ ℝ𝑛 be a feasible point of (P) and x 𝜆 ∈ 𝐾 (𝑧). Assume that ℌ𝑀 is metrically
subregular at ((𝑧, 𝜆), ((0, 0), (0, 0, 0), 0)). Then H𝑀 is metrically subregular at ((𝑧, 𝜆), (0, 0, 0)).

Proof. The proof follows easily from H−1
𝑀
(0, 0, 0) = ℌ−1

𝑀
((0, 0), (0, 0, 0), 0) = 𝑍 , together with the

simple estimates

∀ (𝑧, 𝜆′) ∈ gph 𝐹, ∀𝜆 ∈ ℝ𝑚 : dist((𝑧, 𝜆), gph 𝐹 ) ≤ ‖𝜆 − 𝜆′‖ ,
∀ ((𝑧, 𝜆),𝑤) ∈ gph𝐺 : dist(((𝑧, 𝜆), 0), gph𝐺) ≤ ‖𝑤 ‖

which yield that dist(((0, 0), (0, 0, 0), 0),ℌ𝑀 (𝑧, 𝜆)) ≤ dist((0, 0, 0),H𝑀 (𝑧, 𝜆)) holds. �

Next, we investigate the relationship between the three stationarity notions from Denition 4.10 in
more detail. Let us rst address the relationship between fuzzy and explicit M-stationarity.
Remark 4.15. Lemmas 3.5 to 3.7 yield that, under suitable conditions, the coderivative ofH at some
point ((𝑧, 𝜆), (0, 0)) of its graph can be estimated or computed via its components, i.e.,

(Inc(𝜆)) 𝐷∗H((𝑧, 𝜆), (0, 0)) (𝜇, 𝜈) ⊂ 𝐷∗𝐹 (𝑧, 𝜆) (𝜇) × {−𝜇} + 𝐷∗𝐺 ((𝑧, 𝜆), 0) (𝜈)

for all 𝜇 ∈ ℝ𝑚 and 𝜈 ∈ ℝ𝑠 . A sucient condition for validity of (Inc(𝜆)) is given by

𝜉 ∈ 𝐷∗𝐹 (𝑧, 𝜆) (0), (−𝜉, 0) ∈ 𝐷∗𝐺 ((𝑧, 𝜆), 0) (0) =⇒ 𝜉 = 0,

see Lemma 3.5, and this is inherent if either 𝐹 possesses the Aubin property at (𝑧, 𝜆) or 𝐺 possesses
the Aubin property at ((𝑧, 𝜆), 0). Another situation where (Inc(𝜆)) naturally holds is given in the case
where 𝐹 and𝐺 are polyhedral set-valued mappings. Note that (Inc(𝜆)) does not hold for free in general
due to fact that the variable 𝑧 enters both set-valued parts 𝐹 and 𝐺 . Combining validity of (Inc(𝜆))
with simple computations provides conditions that guarantee that fuzzy M-stationarity implies or
even coincides with explicit M-stationarity. We will show in Section 4.3 that the latter is automatically
fullled for all of our example problems from Section 2, so we skip further details and consider these
two notions to be basically identical.
Let us now tackle the more interesting question when an implicitly M-stationary point is fuzzily

or explicitly M-stationary as well. The latter question can be easily answered by the chain rule since
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𝐻 (𝑧) = (𝐺 ◦ 𝐹 ) (𝑧) holds for all 𝑧 ∈ ℝ𝑛 where 𝐹 : ℝ𝑛 ⇒ ℝ𝑛 ×ℝ𝑚 is the set-valued mapping given by
𝐹 (𝑧) := {𝑧} × 𝐹 (𝑧) for all 𝑧 ∈ ℝ𝑛 . Taking into account that

𝐷∗𝐹 (𝑧, (𝑧, 𝜆)) (𝜉, 𝜇) = 𝜉 + 𝐷∗𝐹 (𝑧, 𝜆) (𝜇)

holds by Lemma 3.7 (a), Lemma 3.4 immediately yields the following result.
Proposition 4.16. Let 𝑧 ∈ ℝ𝑛 be an implicitly M-stationary point for (P). Then 𝑧 is explicitly M-stationary
provided the mapping

(4.4) (𝑧,𝑤) ⇒ 𝐹 (𝑧) ∩𝐺−1(𝑤) = {(𝑧, 𝜆) | 𝜆 ∈ 𝐹 (𝑧), 𝑤 ∈ 𝐺 (𝑧, 𝜆)}

is inner semicompact at (𝑧, 0) w.r.t. its domain while the mapping

(4.5) (𝑧,𝑤, 𝑞, 𝜆) ⇒
(
𝑧 − 𝑞, 𝐹 (𝑧) − 𝜆,𝐺 (𝑞, 𝜆) −𝑤

)
is metrically subregular at ((𝑧, 0, 𝑧, 𝜆), (0, 0, 0)) for each 𝜆 ∈ 𝐾 (𝑧).
On the other hand, using the intermediate mapping 𝐾 from (4.3), one obtains

gph𝐻 = dom𝐾, gph𝐾 = Ĥ−1(0, 0)

for the feasibility mapping Ĥ : ℝ𝑛 ×ℝ𝑠 ×ℝ𝑚 ⇒ ℝ𝑚 ×ℝ𝑠 given by

(4.6) ∀𝑧 ∈ ℝ𝑛, ∀𝑤 ∈ ℝ𝑠 , ∀𝜆 ∈ ℝ𝑚 : Ĥ (𝑧,𝑤, 𝜆) :=
(
𝐹 (𝑧) − 𝜆

𝐺 (𝑧, 𝜆) −𝑤

)
= H(𝑧, 𝜆) −

(
0
𝑤

)
.

Keeping Lemma 3.4 and the subsequently stated remarks in mind, the coderivative of 𝐻 can be
estimated via the coderivative of Ĥ under suitable assumptions. More precisely, for (𝑎, 𝑏) satisfying
𝑎 ∈ 𝐷∗𝐻 (𝑧, 0) (𝑏), the above approach yields the existence of 𝜆 ∈ 𝐾 (𝑧) together with 𝜇 ∈ ℝ𝑚 and
𝜈 ∈ ℝ𝑠 such that

(𝑎,−𝑏, 0) ∈ 𝐷∗Ĥ ((𝑧, 0, 𝜆), (0, 0)) (𝜇, 𝜈).

Consequently, the decoupled sum rule from [9, Section 5.4] implies that the relations 𝜈 = 𝑏 and
(𝑎, 0) ∈ 𝐷∗H((𝑧, 𝜆), (0, 0)) (𝜇, 𝜈) need to hold, and for the particular choice 𝑎 ∈ −𝜕𝑓 (𝑧) − N𝑀 (𝑧), we
end up with fuzzy M-stationarity.

We summarize these observations in the subsequent proposition.
Proposition 4.17. Let𝑧 ∈ ℝ𝑛 be an implicitlyM-stationary point of (P). Assume that𝐾 is inner semicompact
at (𝑧, 0) w.r.t. dom𝐾 , and let Ĥ be metrically subregular at ((𝑧, 0, 𝜆), (0, 0)) for each 𝜆 ∈ 𝐾 (𝑧). Then 𝑧 is
fuzzily M-stationary. Moreover, 𝑧 is also explicitly M-stationary if (Inc(𝜆)) holds for each 𝜆 ∈ 𝐾 (𝑧).
The metric subregularity assumption in Proposition 4.17 can again be replaced by the stronger

Mordukhovich criterion.
Corollary 4.18. Let 𝑧 ∈ ℝ𝑛 be an implicitly M-stationary point for (P). Let 𝐾 be inner semicompact at
(𝑧, 0) w.r.t. dom𝐾 .

(a) Assume that, for each 𝜆 ∈ 𝐾 (𝑧), the constraint qualication

(4.7) (0, 0) ∈ 𝐷∗H((𝑧, 𝜆), (0, 0)) (𝜇, 0) =⇒ 𝜇 = 0

holds, which is inherent whenever H is metrically regular at ((𝑧, 𝜆), (0, 0)). Then 𝑧 is fuzzily
M-stationary. If, additionally, (Inc(𝜆)) holds for each 𝜆 ∈ 𝐾 (𝑧), then 𝑧 is explicitly M-stationary.
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(b) Assume that (Inc(𝜆)) holds for each 𝜆 ∈ 𝐾 (𝑧) and let

(4.8) 𝜉 ∈ 𝐷∗𝐹 (𝑧, 𝜆) (𝜇), (−𝜉, 𝜇) ∈ 𝐷∗𝐺 ((𝑧, 𝜆), 0) (0) =⇒ 𝜇 = 0

be valid for each 𝜆 ∈ 𝐾 (𝑧) which is inherent whenever 𝐺 posseses the Aubin property at ((𝑧, 𝜆), 0)
for each 𝜆 ∈ 𝐾 (𝑧). Then 𝑧 is explicitly M-stationary.

(c) Assume that

(4.9) 𝜉 ∈ 𝐷∗𝐹 (𝑧, 𝜆) (𝜇), (−𝜉, 𝜇) ∈ 𝐷∗𝐺 ((𝑧, 𝜆), 0) (0) =⇒ 𝜉, 𝜇 = 0

is valid for each 𝜆 ∈ 𝐾 (𝑧) which is inherent whenever 𝐺 posseses the Aubin property at ((𝑧, 𝜆), 0)
for each 𝜆 ∈ 𝐾 (𝑧). Then 𝑧 is explicitly M-stationary.

Proof. Let us start with the proof of statement (a). The relation between the coderivatives ofH and
Ĥ , which has been discussed above Proposition 4.17, yields

ker𝐷∗Ĥ ((𝑧, 0, 𝜆), (0, 0)) =
{
(𝜇, 0)

�� (𝜇, 0) ∈ ker𝐷∗H((𝑧, 𝜆), (0, 0))
}

for each 𝜆 ∈ 𝐾 (𝑧). Thus, the constraint qualication (4.7) implies metric regularity of Ĥ at the point
((𝑧, 0, 𝜆), (0, 0)) for each 𝜆 ∈ 𝐾 (𝑧) by means of the Mordukhovich criterion. Thus, the assertion follows
from Proposition 4.17. For the proof of (b), we observe that due to validity of (Inc(𝜆)) for each 𝜆 ∈ 𝐾 (𝑧),
(4.8) implies (4.7) for each 𝜆 ∈ 𝐾 (𝑧), i.e., the assertion follows from statement (a). Finally, (c) follows
from (b) observing that (4.9) implies validity of (4.8) as well as (Inc(𝜆)) by means of Remark 4.15. �

Let us mention that, in general, explicitly M-stationary points do not need to be implicitly M-
stationary, see e.g. Section 5.3 and [44, Section 4] where this issue is visualized in the context of
cardinality- and or-constrained programming, respectively.

As a consequence of Propositions 4.11, 4.16 and 4.17, we obtain the following constraint qualications
which guarantee that a given local minimizer of (P) is explicitly M-stationary.
Theorem 4.19. Let 𝑧 ∈ ℝ𝑛 be a local minimizer of (P) and consider the following assumptions:

(a) 𝐻𝑀 is metrically subregular at (𝑧, (0, 0)), 𝐾 is inner semicompact at (𝑧, 0) w.r.t. dom𝐾 , and for
each 𝜆 ∈ 𝐾 (𝑧), Ĥ is metrically subregular at ((𝑧, 0, 𝜆), (0, 0)) while the inclusion (Inc(𝜆)) holds,

(b) 𝐻𝑀 is metrically subregular at (𝑧, (0, 0)), the mapping dened in (4.4) is inner semicompact at
(𝑧, 0) w.r.t. its domain, and for each 𝜆 ∈ 𝐾 (𝑧), the mapping dened in (4.5) is metrically subregular
at ((𝑧, 0, 𝑧, 𝜆), (0, 0, 0)),

(c) H𝑀 is metrically subregular at ((𝑧, 𝜆), (0, 0, 0)) for some 𝜆 ∈ 𝐾 (𝑧) and the inclusion (Inc(𝜆)) holds,

(d) ℌ𝑀 is metrically subregular at ((𝑧, 𝜆), ((0, 0), (0, 0, 0), 0)) for some 𝜆 ∈ 𝐾 (𝑧).

Then each of (a), (b), (c), and (d) implies that 𝑧 is explicitly M-stationary.

Once more, let us emphasize that validity of the inclusion (Inc(𝜆)) can be guaranteed under not too
restrictive conditions which can be found in Lemmas 3.6 and 3.7, see Remark 4.15 as well.
In Section 4.3, we will see that the most essential ingredients from Theorem 4.19 are the metric

subregularity assumptions on 𝐻𝑀 , H𝑀 , and ℌ𝑀 , respectively, while the other requirements can often
be guaranteed by simpler structure of the problem or by suitable qualication conditions.

A general purpose of necessary optimality conditions is to shrink the feasible set down to a (hopefully)
small number of points which are potential candidates for local minimizers. Since we are interested
in nding local minimizers 𝑧 ∈ ℝ𝑛 of (P) even if (Q) is under consideration, Theorem 4.5 underlines
that validity of explicit M-stationarity w.r.t. each 𝜆 ∈ 𝐾 (𝑧) is desirable for that purpose since this
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corresponds to standard M-stationarity for (Q) at its local minimizers (𝑧, 𝜆) under mild assumptions,
see Remark 4.15 again. In order to infer this directly from (Q), one has to impose metric subregularity of
ℌ𝑀 at all points ((𝑧, 𝜆), ((0, 0), (0, 0, 0), 0)) such that 𝜆 ∈ 𝐾 (𝑧) holds. Postulating that the intermediate
mapping𝐾 from (4.3) is inner semicompactw.r.t. dom𝐾 at (𝑧, 0) (which is inherent in several underlying
applications), Propositions 4.13 and 4.14 guarantee that 𝐻𝑀 is metrically subregular at (𝑧, (0, 0)). Due
to Proposition 4.11, this is already enough to ensure that the local minimizer 𝑧 of (P) is implicitly
M-stationary. In this regard, the constraint qualications one has to impose on (Q) in order to nd
potential candidates for local minimizers of (P) via the associated M-stationarity conditions are in
several situations notweaker than the constraint qualications one has to impose directly on (P) in order
to infer implicitM-stationarity as a necessary optimality condition. In the context of bilevel optimization,
the counterexamples in [1, Section 3.1] depict that the converse statement of Proposition 4.13 does not
hold in general. This also shows that, in some situations, the conditions in statement (a) of Theorem 4.19
might be weaker than the condition from statement (d) (but for all 𝜆 ∈ 𝐾 (𝑧)) in this regard. Let us sum
up some important points:

(i) it may happen that 𝑧 is implicitly M-stationary while it is not explicitly M-stationary w.r.t. all
elements of 𝐾 (𝑧) (in case where the chain rule is applicable in order to compute the coderivative
of𝐻 , one can only ensure explicit M-stationarity w.r.t. those implicit variables which are active in
the union appearing in the chain rule), however, under mild assumptions, explicit M-stationarity
for some instance of the implicit variable can be derived,

(ii) if 𝑧 is a local minimizer of (P), then due to Theorem 4.5, explicit M-stationarity w.r.t. all ele-
ments of 𝐾 (𝑧) is a reasonable necessary optimality condition for (P) (under suitable constraint
qualications), and

(iii) the constraint qualications needed to infer implicit M-stationarity of a local minimizer 𝑧 of
(P) (𝐻𝑀 metrically subregular at some reference point) and to obtain explicit M-stationarity
from that, see Propositions 4.16 and 4.17 as well as Corollary 4.18, might still be weaker than the
constraint qualications needed to infer explicit M-stationarity w.r.t. all 𝜆 ∈ 𝐾 (𝑧) directly from
(Q).

These observations underline that although the use of implicit variables as explicit ones might be
benecial for computational purposes, this transformation is disadvantageous since it comes for the
price of additional articial local minimizers and potentially stronger constraint qualications. Instead
of treating implicit variables as explicit ones, one should keep them implicit while exploiting the
inherent underlying problem structure as long as possible in order to infer reasonably weak constraint
qualications ensuring validity of useful necessary optimality conditions at local minimizers.

Let us mention some positive features of implicit variables regarding optimality conditions. Clearly,
whenever we are given some 𝑧 ∈ ℝ𝑛 feasible to (P) and some �̃� ∈ 𝐾 (𝑧) such that ℌ𝑀 is metrically
subregular at ((𝑧, �̃�), ((0, 0), (0, 0, 0), 0)) while 𝑧 is not explicitly M-stationary w.r.t. �̃�, then 𝑧 cannot
be a local minimizer of (P), see Proposition 4.11. This means that implicit variables can be used to infer
suboptimality conditions for (P). Secondly, let us mention that it might happen that a practically useful
representation of the coderivative of 𝐻 is not available for some underlying applications while the
computation of the coderivative of 𝐹 and 𝐺 might be possible in terms of initial problem data, see e.g.
Section 5.2. Then the explicit M-stationarity conditions of (P) might be applicable while the implicit
counterpart is of limited practical use. Of course, under rather mild assumptions one can estimate the
coderivative of 𝐻 via the coderivatives of 𝐹 and 𝐺 , but this is not completely for free in general.

4.3 necessary optimality conditions under additional structural assumptions

In this section, we show how the situation from Section 4.2 simplies in specic settings that cover
our example problems from Section 2. To this end, we impose that the following assumption on the
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problem data holds throughout the section.
Assumption 4.20. The set gph𝐻 is closed, and the problem data satises one of the following assump-
tions on the set-valued mapping 𝐺 :

(i) 𝐺 (𝑧, 𝜆) := 𝑔(𝑧, 𝜆) −Θ holds for all 𝑧 ∈ ℝ𝑛 and 𝜆 ∈ ℝ𝑚 where 𝑔 : ℝ𝑛×ℝ𝑚 → ℝ𝑠 is a continuously
dierentiable function and Θ ⊂ ℝ𝑠 is a closed set,

(ii) 𝐺 (𝑧, 𝜆) := 𝐺 (𝜆) + 𝑔(𝑧) holds for all 𝑧 ∈ ℝ𝑛 and 𝜆 ∈ ℝ𝑚 where 𝐺 : ℝ𝑚 ⇒ ℝ𝑠 is a set-valued
mapping with a closed graph and 𝑔 : ℝ𝑛 → ℝ𝑠 is a continuously dierentiable function.

Let us point out that (i) covers the setting of bilevel programming from (2.1) as well as the setting of
cardinality-constrained optimization from (2.5), while (ii) covers the setting of evaluated multiobjective
programming from (2.2).

Statements (a) and (b) of Lemma 3.7 yield that the inclusion (Inc(𝜆)) holds with equality under any
of the assumptions (i) or (ii). Thus, due to Remark 4.15, fuzzy M-stationarity in fact coincides with
explicit M-stationarity and so we can work only with the latter. Particularly, we will only consider
the implicit and explicit M-stationarity conditions with the respective constraint qualication being
metric subregularity of 𝐻𝑀 and H𝑀 .
For the remaining part, let us add the inner semicompactness of 𝐾 w.r.t. dom𝐾 at (𝑧, 0) for some

feasible point𝑧 ∈ ℝ𝑛 of (P) to the standing assumption. Then the comparison of themetric subregularity
conditions reduces to simply saying that 𝐻𝑀 is metrically subregular at (𝑧, (0, 0)) provided H𝑀 is
metrically subregular at ((𝑧, 𝜆), (0, 0, 0)) for all 𝜆 ∈ 𝐾 (𝑧), see Proposition 4.13.

Finally,we discuss when implicitM-stationarity implies explicit M-stationarity. Again, the statements
(a) and (b) of Lemma 3.7 show that there is now no problem with the computation of the coderivative
of the mapping H and the same applies to the mapping Ĥ from (4.6) due to the arguments above
Proposition 4.17. Particularly, we infer that Ĥ is metrically regular at ((𝑧, 0, 𝜆), (0, 0)) for 𝜆 ∈ 𝐾 (𝑧) if
and only if the constraint qualication (4.8) is valid. One can check that the latter is inherently satised
in the setting (i) since 𝐺 possesses the Aubin property in this case. If (ii) holds, (4.8) boils down to

ker𝐷∗𝐹 (𝑧, 𝜆) ∩ 𝐷∗𝐺 (𝜆,−𝑔(𝑧)) (0) = {0}.

We sum up all these arguments in the following proposition.
Proposition 4.21. Let 𝑧 ∈ ℝ𝑛 be implicitly M-stationary for problem (P) and let 𝐾 be inner semicompact
w.r.t. dom𝐾 at (𝑧, 0). Then the following assertions hold.

(a) Let 𝐺 be given as stated in (i). Then 𝑧 is explicitly M-stationary, i.e., there exist 𝜆 ∈ 𝐾 (𝑧) and
𝜈 ∈ NΘ(𝑔(𝑧, 𝜆)) such that

0 ∈ 𝜕𝑓 (𝑧) + 𝐷∗𝐹 (𝑧, 𝜆) (∇𝜆𝑔(𝑧, 𝜆)>𝜈) + ∇𝑧𝑔(𝑧, 𝜆)>𝜈 + N𝑀 (𝑧) .

(b) Let 𝐺 be given as stated in (ii) and let Ĥ be metrically subregular at ((𝑧, 0, 𝜆), (0, 0)) for each
𝜆 ∈ 𝐾 (𝑧). Then 𝑧 is explicitly M-stationary, i.e., there exist 𝜆 ∈ 𝐾 (𝑧) and 𝜈 ∈ ℝ𝑠 such that

0 ∈ 𝜕𝑓 (𝑧) +
(
𝐷∗𝐹 (𝑧, 𝜆) ◦ 𝐷∗𝐺 (𝜆,−𝑔(𝑧))

)
(𝜈) + ∇𝑔(𝑧)>𝜈 + N𝑀 (𝑧) .

The above proposition shows that in the setting (i) from Assumption 4.20, one only has to impose
metric subregularity of 𝐻𝑀 at some reference point (𝑧, (0, 0)), where 𝑧 is a local minimizer of (P), and
some inner semicompactness of 𝐾 in order to come up with fully explicit optimality conditions in
terms of initial problem data. In the setting (ii), an additional metric subregularity requirement on Ĥ
is necessary for that purpose. As we will see, inner semicompactness of 𝐾 is inherent under reasonable
assumptions in the context of the problem settings from Section 2. Thus, one might be tempted to say
that in any of the settings from Assumption 4.20, an implicitly M-stationary point of (P) is likely to be
explicitly M-stationary w.r.t. at least one choice of the implicit variable.
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4.4 convexity and sufficient optimality conditions

We want to close our theoretical analysis of the abstract model (P) with a brief look at sucient
optimality conditions in the presence of convexity. More precisely, we investigate the problem of
interest under the subsequently stated standing assumption.
Assumption 4.22. Let 𝑓 be a convex function, let 𝐹 and𝐺 be convex set-valued mappings, and let𝑀 be
a convex set.
As we already mentioned in Corollary 4.4, Assumption 4.22 ensures that 𝐻 is convex as well.

Observing that the graphs of 𝐹 ,𝐺 , and 𝐻 are convex, their coderivatives are given via the normal cone
in the sense of convex analysis. That is why we obtain the following result.
Theorem 4.23. Let 𝑧 ∈ ℝ𝑛 be an implicitly, fuzzily, or explicitly M-stationary point of (P). Then 𝑧 is a
minimizer of (P).

Proof. We only show the statement for explicitly M-stationary points. The remaining assertions can
be derived similarly.
Let 𝑧 be explicitly M-stationary. Then we nd 𝜆 ∈ 𝐾 (𝑧), 𝜇 ∈ ℝ𝑚 , and 𝜈 ∈ ℝ𝑠 as well as 𝜉1 ∈ 𝜕𝑓 (𝑧),
𝜉2 ∈ 𝐷∗𝐹 (𝑧, 𝜆) (𝜇), (𝜉3, 𝜇) ∈ 𝐷∗𝐺 ((𝑧, 𝜆), 0) (𝜈), and 𝜉4 ∈ N𝑀 (𝑧) with 0 = 𝜉1 + 𝜉2 + 𝜉3 + 𝜉4. For each
(𝑧, 𝜆) ∈ 𝑍 , we obtain

𝑓 (𝑧) ≥ 𝑓 (𝑧) + 𝜉>1 (𝑧 − 𝑧) = 𝑓 (𝑧) − 𝜉>2 (𝑧 − 𝑧) − 𝜉>3 (𝑧 − 𝑧) − 𝜉>4 (𝑧 − 𝑧)
≥ 𝑓 (𝑧) − 𝜉>2 (𝑧 − 𝑧) − (−𝜇)>(𝜆 − 𝜆) − 𝜉>3 (𝑧 − 𝑧) − 𝜇>(𝜆 − 𝜆) − (−𝜈)>(0 − 0)
≥ 𝑓 (𝑧)

by denition of the subdierential and the normal cone in the sense of convex analysis. This shows
that (𝑧, 𝜆) is a global minimizer of (Q), i.e., 𝑧 is a global minimizer of (P) due to Theorem 4.3. �

5 consequences for certain problem classes

In this section, we discuss some of the results obtained in Section 4 by means of the example problems
introduced in Section 2.

5.1 bilevel programming

In this section, we take a look back at the bilevel programming problem (BPP) from Section 2.1.
Throughout the section, the following additional standing assumption may hold.
Assumption 5.1. The lower level feasibility mapping 𝑦 ⇒ 𝑔(𝑦) −𝐶 is metrically subregular at all points
(𝑦, 0) belonging to its graph.
Clearly, the requirements from Assumption 5.1 are inherent whenever a Robinson-type constraint

qualication holds at all lower level feasible points. In case 𝐶 := ℝ𝑚
− , this amounts to validity of

MFCQ at all points from Γ. However, in many situations, the metric subregularity assumption from
Assumption 5.1 might be weaker.

Consulting Section 3.2 and [53, Theorem 6.14], we nd that the pre-image formula

N̂Γ (𝑦) = ∇𝑔(𝑦)>N̂𝐶 (𝑔(𝑦)) = ∇𝑔(𝑦)>
[
𝐶◦ ∩ 𝑔(𝑦)⊥

]
holds for all 𝑦 ∈ Γ. Thus, the associated intermediate mapping 𝐾 : ℝ𝑛1 ×ℝ𝑛2 ⇒ ℝ𝑚 is given by

𝐾 (𝑥, 𝑦) =
{
𝜆 ∈ 𝐶◦ ��∇𝑦 𝑗 (𝑥, 𝑦) + ∇𝑔(𝑦)>𝜆 = 0, 𝜆>𝑔(𝑦) = 0

}
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which is nothing else but the so-called Lagrange multiplier mapping associated with (LL). Keeping
Proposition 3.3 and the continuity of ∇𝑦 𝑗 (·, ·) in mind, 𝐾 is inner semicompact w.r.t. its domain
everywhere. Thus, our Theorems 4.3 and 4.5 recover the results obtained in [20, 22] under validity of
weaker constraint qualications at the lower level. Indeed,we do not exploit the local boundedness of the
intermediate mapping𝐾 , whichwas the key idea in the latter papers, but only its inner semicompactness.
For that purpose, metric subregularity of the feasibility mapping is enough. Let us inspect the assertion
of Corollary 4.6 in the light of the present setting. Therefore, we x a point ((𝑥, 𝑦), 𝜆) ∈ gph𝐾 .
Relying on [14, Lemma 4.44, Proposition 4.47] and observing that𝐶 is a cone, we obtain that 𝐾 is inner
semicontinuous at ((𝑥, 𝑦), 𝜆) if the condition

(5.1) ∇𝑔(𝑦)>𝜆 = 0, 𝜆>𝑔(𝑦) = 0, 𝜆 ∈ (𝐶 ∩ 𝜆⊥)◦ =⇒ 𝜆 = 0

is valid. Actually, this already implies 𝐾 (𝑥, 𝑦) = {𝜆} and that 𝐾 is so-called locally upper Lipschitz
continuous at (𝑥, 𝑦), see [14, Section 2.3] for a denition. In general, (5.1) is more restrictive than
validity of GMFCQ at 𝑦 . Noting that (5.1) depends on the multiplier 𝜆 and, thus, implicitly on the
objective function 𝑗 , this condition is not a constraint qualication in the narrower sense. In the
setting of standard nonlinear programming, i.e., where 𝐶 := ℝ𝑚

− holds, (5.1) is referred to as the strict
Mangasarian–Fromovitz condition which is known to be the weakest condition implying uniqueness of
Lagrange multipliers, see [55]. In the more general setting where 𝐶 is a polyhedral, convex cone, (5.1)
is implied by the so-called non-degeneracy condition

∇𝑔(𝑦)>𝜆 = 0, 𝜆 ∈
(
𝐶◦ ∩ 𝑔(𝑦)⊥ −𝐶◦ ∩ 𝑔(𝑦)⊥

)
=⇒ 𝜆 = 0

which corresponds to the prominent linear independence constraint qualication (LICQ) in standard
nonlinear programming. It can be distilled from [20, Theorem 3.2] that a bilevel optimization problem
and its reformulated single-level counterpart, where lower level multipliers are treated as explicit
variables, are equivalent w.r.t. local minimizers whenever LICQ is valid at each point which is feasible
for the lower level problem. In this regard, the above observations provide another generalization
of the results from [20]. Let us also mention that if 𝐶 is polyhedral, we can actually obtain stronger
properties of 𝐾 which correspond to inner semicontinuity and inner semicompactness but with linear
rate of change (called inner calmness and inner calmness*, respectively, in [6, 9], where more details
can be found).
Recalling the setting from (2.1), we have 𝐻 (𝑧) := ∇𝑦 𝑗 (𝑧) + N̂Γ (𝑦) for all 𝑧 := (𝑥, 𝑦). In this regard,

the implicit M-stationarity conditions of (BPP) at some feasible point 𝑧 := (𝑥, 𝑦) reduce to the existence
of 𝜈 ∈ ℝ𝑛2 such that

(0, 0) ∈ 𝜕𝑓 (𝑧) + ∇2
𝑦𝑧 𝑗 (𝑧)>𝜈 + {0} × 𝐷∗N̂Γ (𝑦,−∇𝑦 𝑗 (𝑧)) (𝜈) + N𝑆 (𝑥) × {0}.

Some recent progress in the eld of variational analysis even allows to calculate or estimate the
appearing coderivative of the normal cone mapping N̂Γ : ℝ𝑛2 ⇒ ℝ𝑛2 in terms of initial data under
suitable assumptions, see e.g. [31, 32, 34]. On the other hand, the explicit M-stationarity conditions of
(BPP) reduce to the existence of 𝜆 ∈ 𝐾 (𝑧) and 𝜈 ∈ ℝ𝑛2 which satisfy

(0, 0) ∈ 𝜕𝑓 (𝑧) + ∇2
𝑦𝑧 𝑗 (𝑧)>𝜈 +

{(
0,
∑𝑚

𝑖=1𝜆𝑖∇2𝑔𝑖 (𝑦)𝜈
)}

+ {0} × 𝐷∗(N̂𝐶 ◦ 𝑔) (𝑦, 𝜆) (∇𝑔(𝑦)𝜈) + N𝑆 (𝑥) × {0},

see statement (a) of Proposition 4.21. Above, 𝑔1, . . . , 𝑔𝑚 : ℝ𝑛2 → ℝ denote the component functions
of 𝑔. Naturally, this stationarity system might be deduced directly from the above system of implicit
M-stationarity with the aid of the chain rule from Lemma 3.4. Consulting Proposition 3.3 once more,
however, we see that the intermediate mapping 𝐾 from (4.3), which takes the form

𝐾 ((𝑥, 𝑦),𝑤) =
{
𝜆 ∈ 𝐶◦ �� −𝑤 + ∇𝑦 𝑗 (𝑥, 𝑦) + ∇𝑔(𝑦)>𝜆 = 0, 𝜆>𝑔(𝑦) = 0

}
,
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is also inner semicompactw.r.t. its domain at all points ((𝑥, 𝑦), 0) that satisfy the relation (𝑥, 𝑦) ∈ dom𝐾 .
In this regard, statement (a) of Proposition 4.21 guarantees that each implicitly M-stationary point of
(BPP) is automatically explicitly M-stationary as well. This observation generalizes the classical results
from [49].

Note that the coderivative of N̂𝐶 ◦𝑔might be computed or estimated using again a suitable chain rule
while observing that the associated intermediate mapping from (3.2) is naturally inner semicontinuous
w.r.t. its domain at each point of its graph by continuity of 𝑔. This way, one might be tempted to call
the stationarity system

(0, 0) ∈ 𝜕𝑓 (𝑧) + ∇2
𝑦𝑧 𝑗 (𝑧)>𝜈 +

{(
0,
∑𝑚

𝑖=1𝜆𝑖∇2𝑔𝑖 (𝑦)𝜈
)}

+ {0} × ∇𝑔(𝑦)>𝐷∗N̂𝐶 (𝑔(𝑦), 𝜆) (∇𝑔(𝑦)𝜈) + N𝑆 (𝑥) × {0}

the fully explicit M-stationarity system of (BPP) (w.r.t. 𝜆). We want to point out that this system can
be written equivalently as

(0, 0) ∈ 𝜕𝑓 (𝑧) + ∇2
𝑦𝑧 𝑗 (𝑧)>𝜈 +

{(
0,
∑𝑚

𝑖=1𝜆𝑖∇2𝑔𝑖 (𝑦)𝜈 + ∇𝑔(𝑦)>𝜇
)}

+ N𝑆 (𝑥) × {0}
(𝜇,−∇𝑔(𝑦)𝜈) ∈ Ngph N̂𝐶

(𝑔(𝑦), 𝜆),

corresponding to the M-stationarity system of the optimization problem

(5.2)

𝑓 (𝑥, 𝑦) → min
𝑥,𝑦,𝜆

𝑥 ∈ 𝑆

∇𝑦 𝑗 (𝑥, 𝑦) + ∇𝑔(𝑦)>𝜆 = 0
(𝑔(𝑦), 𝜆) ∈ gph N̂𝐶 .

Observing that 𝐶 is a convex cone, we have

gph N̂𝐶 =
{
(𝑎, 𝑏) ∈ 𝐶 ×𝐶◦ ��𝑎>𝑏 = 0

}
,

and this motivates us to call (5.2) a generalized mathematical problem with complementarity constraints,
see [29, Section 4] or [56]. Following the above arguments and keeping Section 3.2 in mind, we obtain
the following result.
Corollary 5.2. Let 𝑧 := (𝑥, 𝑦) ∈ ℝ𝑛1 × ℝ𝑛2 be a local minimizer of (BPP) and assume that, for some
𝜆 ∈ 𝐾 (𝑧), the mapping

(𝑥, 𝑦, 𝜆) ⇒
(
𝑥 − 𝑆,∇𝑦 𝑗 (𝑥, 𝑦) + ∇𝑔(𝑦)>𝜆, (𝑔(𝑦), 𝜆) − gph N̂𝐶

)
is metrically subregular at ((𝑥, 𝑦, 𝜆), (0, 0, (0, 0))). Then 𝑧 is fully explicitly M-stationary for (BPP) w.r.t.
𝜆.

Using the above terminology, we would like to mention that the authors in [1] discussed the implicit
and fully explicit M-stationarity conditions of (BPP) in case 𝐶 := ℝ𝑚

− . They came up with rened
conditions ensuring that the feasibility mapping from Corollary 5.2 is indeed metrically subregular at
some reference point, see [1, Theorem 8]. From the viewpoint of applicability, the system of fully explicit
M-stationarity might be the most useful one among the stated ones since the appearing coderivative of
the normal cone mapping N̂𝐶 is computable in some situations where the set 𝐶 is simple, see e.g. the
proof of [24, Theorem 2] and [33, Theorem 2.12]. Let us mention that yet another M-stationarity-type
system associated with (BPP) has been derived in the recent paper [36].
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5.2 evaluating weakly efficient points in multicriteria optimization

Let us consider (EMOP) under the assumptions from Section 2.2. Particularly, we consider problem (P)
with the setting from (2.2). The associated intermediate mapping 𝐾 : ℝ𝑛 ⇒ ℝ𝑚 reads as

∀𝑧 ∈ ℝ𝑛 : 𝐾 (𝑧) = {𝜆 ∈ Δ | 𝑧 ∈ Ψ(𝜆)}.

The subsequent lemma provides essential foundations of our analysis.
Lemma 5.3. The mapping𝐺 from (2.2) possesses a closed graph while 𝐾 from above is inner semicompact
w.r.t. its domain everywhere.

Proof. First, we show that𝐺 possesses a closed graph. Choose sequences {𝑧𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 , {𝜆𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 ,
and {𝑤𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 such that 𝑧𝑘 → 𝑧, 𝜆𝑘 → 𝜆, and𝑤𝑘 → 𝑤 for some 𝑧 ∈ ℝ𝑛 , 𝜆 ∈ ℝ𝑚 , and𝑤 ∈ ℝ𝑛 are
valid while𝑤𝑘 ∈ 𝐺 (𝑧𝑘 , 𝜆𝑘 ) holds for all 𝑘 ∈ ℕ. Particularly, we nd {𝜆𝑘 }𝑘∈ℕ ⊂ Δ and 𝑧𝑘 +𝑤𝑘 ∈ Ψ(𝜆𝑘 ),
i.e.,

∀𝑘 ∈ ℕ, ∀𝑧 ′ ∈ Γ : 𝜆>
𝑘
𝑗 (𝑧𝑘 +𝑤𝑘 ) ≤ 𝜆>

𝑘
𝑗 (𝑧 ′)

and 𝑧𝑘 +𝑤𝑘 ∈ Γ for all 𝑘 ∈ ℕ. Taking the limit 𝑘 → ∞ and observing that 𝑗 is continuous while Γ and
Δ are closed, we infer 𝑧 +𝑤 ∈ Γ and 𝜆> 𝑗 (𝑧 +𝑤) ≤ 𝜆> 𝑗 (𝑧 ′) for all 𝑧 ′ ∈ Γ. This yields 𝑧 +𝑤 ∈ Ψ(𝜆)
which equals𝑤 ∈ 𝐺 (𝑧, 𝜆), i.e., ((𝑧, 𝜆),𝑤) ∈ gph𝐺 . Particularly, gph𝐺 is closed.

By denition, 𝐹 is locally bounded everywhere which is why the lemma’s assertion regarding 𝐾
follows directly from Lemma 4.2. �

Now, Theorems 4.3 and 4.5 can be used to infer the precise relationship between (EMOP) and
its associated counterpart (Q) w.r.t. global and local minimizers, respectively. Related results can be
obtained in the slightly more general context of semivectorial bilevel programming where the lower
level decision maker has to solve a multiobjective optimization problem, see [23].

Let us now focus on optimality conditions for (EMOP). Clearly, the associated implicit M-stationarity
conditions take the form

0 ∈ 𝜕𝑓 (𝑧) + NΓwe (𝑧)

for an arbitrary feasible point 𝑧 ∈ ℝ𝑛 . However, these conditions are of limited practical use due to an
essential lack of knowledge regarding the variational geometry of Γwe. On the other hand, invoking
Proposition 4.21, we nd that the explicit M-stationarity conditions of (EMOP) take the following form:
there exist 𝜆 ∈ 𝐾 (𝑧) and 𝜈 ∈ ℝ𝑛 such that

𝜈 ∈ 𝜕𝑓 (𝑧), 0 ∈ 𝐷∗Ψ(𝜆, 𝑧) (𝜈) + NΔ (𝜆).

Taking into account that

∀𝜆 ∈ Δ : Ψ(𝜆) =
{
𝑧 ∈ ℝ𝑛

��� 0 ∈ ∇ 𝑗 (𝑧)>𝜆 + N̂Γ (𝑧)
}

holds, we refer to [25, 33] for a broader view on solution mappings of parametrized variational systems
and estimates of their generalized derivatives. Particularly, in case where 𝑗 is twice continuously
dierentiable, we obtain the additional estimate

𝐷∗Ψ(𝜆, 𝑧) (𝜈) ⊂
{
∇ 𝑗 (𝑧)𝜇

���−𝜈 ∈ ∑𝑚
𝑖=1𝜆𝑖∇2 𝑗𝑖 (𝑧)𝜇 + 𝐷∗N̂Γ

(
𝑧,−∇ 𝑗 (𝑧)>𝜆

)
(𝜇)

}
+ NΔ (𝜆)

applying the pre-image rule to

gphΨ =

{
(𝜆, 𝑧)

��� (𝑧,−∇ 𝑗 (𝑧)>𝜆, 𝜆) ∈ gph N̂Γ × Δ
}
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which is possible whenever the feasibility mapping (𝜆, 𝑧) ⇒ (𝑧,−∇ 𝑗 (𝑧)>𝜆, 𝜆)−gph N̂Γ×Δ is metrically
subregular at ((𝜆, 𝑧), (0, 0, 0)), see Section 3.2. The coderivative of the normal cone mapping associated
with Γ can be estimated from above in several interesting situations covering the setting where Γ
is the pre-image of a closed and convex (polyhedral) set under a suciently smooth mapping, see
the references mentioned in Section 5.1. Using a related approach, fully explicit necessary optimality
condition for semivectorial bilevel optimization problems are derived in [59].
Observing that 𝐹 and 𝐺 are metrically subregular mappings in the present setting (2.2), metric

subregularity of the mapping Σ̃ : ℝ𝑛 ×ℝ𝑚 ⇒ ℝ𝑚 ×ℝ𝑚+𝑛 given by

∀𝑧 ∈ ℝ𝑛, ∀𝜆 ∈ ℝ𝑚 : Σ̃(𝑧, 𝜆) :=
(
𝜆 − Δ

)
×
(
(𝜆, 𝑧) − gphΨ

)
at ((𝑧, 𝜆), (0, (0, 0))) for some 𝜆 ∈ 𝐾 (𝑧) is already enough to obtain that the associated mappingH𝑀 is
metrically subregular at ((𝑧, 𝜆), (0, 0)), see Lemma 3.8. Note that Σ̃ results from the mapping Σ given in
Lemma 3.8 by deleting the trivial factor ℝ𝑛 which does not inuence the metric subregularity property.
In the presence of this metric subregularity, 𝑧 is an explicitly M-stationary point of (EMOP) provided
𝑧 is a local minimizer of this program, see Proposition 4.11 and the arguments in Section 4.3.

5.3 cardinality-constrained programming

Finally, we investigate the setting of cardinality-constrained optimization from Section 2.3. In the
context of (2.5), the mapping 𝐾 : ℝ𝑛 ⇒ ℝ𝑛 is given by

∀𝑧 ∈ ℝ𝑛 : 𝐾 (𝑧) =
{
𝜆 ∈ [0, 1]𝑛

�� ∑
𝑖∈𝐼 0 (𝑧)𝜆𝑖 ≥ 𝑛 − 𝜅, ∀𝑖 ∈ 𝐼±(𝑧) : 𝜆𝑖 = 0

}
where we used

𝐼±(𝑧) := {𝑖 ∈ {1, . . . , 𝑛} | 𝑧𝑖 ≠ 0}, 𝐼 0(𝑧) := {𝑖 ∈ {1, . . . , 𝑛} | 𝑧𝑖 = 0}

for arbitrary 𝑧 ∈ ℝ𝑛 . Obviously, 𝐾 is locally bounded and, thus, inner semicompact w.r.t. the set
dom𝐾 = {𝑧 ∈ ℝ𝑛 | ‖𝑧‖0 ≤ 𝜅} at all points of its domain. The images of 𝐾 are polytopes (i.e.,
bounded polyhedrons). Furthermore, 𝐾 (𝑧) is a singleton if and only if 𝑧 satises ‖𝑧‖0 = 𝜅. In this
regard, Theorem 4.3 recovers [17, Theorem 3.2]. On the other hand, the results [17, Proposition 3.5,
Theorem 3.6] are consequences of Theorem 4.5. However, our result even applies to settings where
‖𝑧‖0 < 𝜅 is valid, and, thus, claries the situation in [17, Examples 1 and 2].
Let us mention rst that due to the arguments from Section 2.3, the mapping 𝐻 takes the form

𝑧 ⇒ 𝐷𝜅 − 𝑧 in the situation at hand, see (2.3), and we note that it is polyhedral by nature of 𝐷𝜅 (since
𝐷𝜅 is the union of nitely many convex, polyhedral sets). The implicit M-stationarity conditions of
(CCMP) w.r.t. a feasible point 𝑧 ∈ ℝ𝑛 are given by

0 ∈ 𝜕𝑓 (𝑧) + N𝐷𝜅
(𝑧) + N𝑀 (𝑧) .

By means of the formula

N𝐷𝜅
(𝑧) = {𝜈 ∈ ℝ𝑛 | ‖𝜈 ‖0 ≤ 𝑛 − 𝜅, ∀𝑖 ∈ 𝐼±(𝑧) : 𝜈𝑖 = 0},

which can be distilled from [50, Lemma 2.3], we obtain a reasonable optimality condition as soon as
the variational structure of𝑀 is nice enough. Let us point out that whenever𝑀 is the union of nitely
many convex polyhedral sets, then each local minimizer of the associated problem (CCMP) is implicitly
M-stationary by Remark 4.12 since the feasibility mapping 𝑧 ⇒ (𝑧 − 𝐷𝜅) × (𝑧 −𝑀) is polyhedral in
this situation and, thus, metrically subregular at all points of its graph. In case where the variational
geometry of 𝑀 is more dicult, metric subregularity of this feasibility mapping at (𝑧, (0, 0)) is still
enough to infer implicit M-stationarity whenever 𝑧 is a local minimizer of (CCMP). In case where
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𝑀 := {𝑧 ∈ ℝ𝑛 | Φ(𝑧) ∈ Ω} holds for a continuously dierentiable mapping Φ : ℝ𝑛 → ℝ𝑝 and a closed
set Ω ⊂ ℝ𝑝 , the associated Mordukhovich criterion, which ensures metric regularity of the feasibility
mapping and validity of the pre-image rule for the estimation of the limiting normal cone to 𝐷𝜅 ∩𝑀
at 𝑧, takes the form∇Φ(𝑧)>𝜂0 ≤ 𝑛 − 𝜅, 𝜂 ∈ NΩ (Φ(𝑧)), ∀𝑖 ∈ 𝐼±(𝑧) :

(
∇Φ(𝑧)>𝜂

)
𝑖
= 0 =⇒ 𝜂 = 0.

As we pointed out in Section 4.3, the fuzzy and explicit M-stationarity conditions of (CCMP) which
follow from the setting (2.5) coincide. Performing some calculations and keeping statement (a) of
Proposition 4.21 in mind, these explicit M-stationarity conditions take the following form at a reference
point 𝑧: there exists some 𝜆 ∈ 𝐾 (𝑧) such that

0 ∈ 𝜕𝑓 (𝑧) + {𝜈 ∈ ℝ𝑛 | ∀𝑖 ∈ 𝐼±(𝑧) : 𝜈𝑖 = 0} + N𝑀 (𝑧).

We note that this condition does not depend on 𝜆 at all. It corresponds to the M-stationarity notion
discussed in [16, 17, 18]. At the rst glance, we observe that the implicit M-stationarity condition is
more restrictive than its explicit counterpart. In light of statement (a) of Proposition 4.21, this is not
surprising since the intermediate mapping 𝐾 associated with the present setting is inner semicompact
w.r.t. its domain at each point of the latter. Recall that the explicit M-stationarity system does not
depend on the precise choice of the implicit variable from 𝐾 (𝑧), i.e., implicit M-stationarity of 𝑧 implies
explicit M-stationarity w.r.t. all implicit variables from 𝐾 (𝑧). On the other hand, let us mention that in
case of 𝑧 := 0 being feasible to (CCMP), it is always an explicitly M-stationary point of (CCMP) w.r.t.
each implicit variable from 𝐾 (𝑧) while this point is not necessarily implicitly M-stationary.

6 conclusions

The essentialmessage of this paper says thatwhenever optimization problemswith implicit variables are
under consideration, it is better to leave them implicit as long as possible. In many practically relevant
situations like cardinality-constrained programming, see Section 5.3, this procedure leads to more
restrictive necessary optimality conditions which hold under less restrictive constraint qualications
(in a certain sense). Furthermore, the implicit formulation avoids the appearance of articial local
minimizers, and this might be benecial not only from a theoretical but also from a numerical point of
view. It is, thus, always desirable to explore the inherent problem structure of the original problem
instead of making its implicit variables explicit for a non-negligible price. Exemplary, let us mention
that a convincing variational description of the weakly ecient set of a multiobjective optimization
problem which avoids the use of scalarization variables is likely to enhance the results from Section 5.2.
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