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on inner calmness*, generalized calculus, and
derivatives of the normal cone mapping

Matúš Benko∗

Abstract In this paper, we study continuity and Lipschitzian properties of set-valued mappings,
focusing on inner-type conditions. We introduce new notions of inner calmness* and, its relaxation,
fuzzy inner calmness*. We show that polyhedral maps enjoy inner calmness* and examine (fuzzy)
inner calmness* of a multiplier mapping associated with constraint systems in depth. Then we
utilize these notions to develop some new rules of generalized dierential calculus, mainly for
the primal objects (e.g. tangent cones). In particular, we propose an exact chain rule for graphical
derivatives. We apply these results to compute the derivatives of the normal cone mapping, essential
e.g. for sensitivity analysis of variational inequalities.
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1 introduction

The normal cone mapping, closely related to variational inequalities, is a standard tool of variational
analysis. Among other things, it plays an important role in the formulation of optimality conditions
for constrained optimization problems. Generalized derivatives of the normal cone mapping, in turn,
enable us to study various stability and sensitivity properties of solutions of such optimization problems.
Moreover, they also oer a pathway to optimality conditions for dicult problems, where the normal
cone mapping is used to describe the constraints (mathematical programs with equilibrium constraints,
bilevel programs, etc.). For more information about the normal cone mapping and related issues we
refer to the standard textbooks [12, 30, 39, 44].
Recently, a lot of success has been achieved in the computation of the graphical derivative of the

normal cone mapping 𝑥 ⇒ 𝑁Γ (𝑥), where Γ = {𝑥 | 𝑔(𝑥) ∈ 𝐷} denotes the feasible region of a
constraint system. Here, 𝑔 is continuously dierentiable and 𝐷 is a closed convex set. For the results
with polyhedral𝐷 see, e.g., [5, 7, 21, 24], while the papers [20, 26] extend the scope beyond polyhedrality.
Let us mention that most of these results actually deal with more challenging cases when the feasible
set depends on the parameter or even when it depends on the parameter as well as on the solution
itself, see Section 5 for more details.
In general, the graphical derivative provides criteria for isolated calmness and the Aubin property,

see [12, Corollary 4E.2 and Theorem 4B.2] for the precise statements and more details. On top of that,
it is also used to characterize tilt stability of a local minimizer of a function, see [8, Theorem 3.3],
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and, in the constrained case, the essential part of this criterion is precisely the graphical derivative
of the normal cone mapping. Interestingly, this criterion seems to be more applicable than a similar
tilt stability criterion based on the (limiting) coderivative; see e.g. [3] for the application to second-
order cone programming. The reason is that the standard calculus provides an upper estimate for
the limiting coderivative of the normal cone mapping, but the estimate becomes exact only under
additional assumptions, see [22]. On the other hand, as suggested above, the graphical derivative can
be often fully computed under very mild assumptions.
The aforementioned results regarding the computation of the graphical derivative of the normal

cone mapping were derived directly from the denition. The main motivation for this paper is to
better understand these computations. More precisely, we ask the question, whether there are some
underlying calculus principles in play, which could be identied and brought to light.

Generalized dierential calculus belongs among the most fundamental apparatus of modern varia-
tional analysis [1, 2, 30, 36, 39, 41, 44]. Arguably, more focus has been placed on the dual constructions
(normal cones, subdierentials, coderivatives) and this area is very developed and well-understood.
When it comes to the primal constructions (tangent cones, subderivatives, graphical derivatives), an
obvious problem appears: the lack of a suitable chain rule for graphical derivatives. A closer look
shows that the problem boils down to the following issue regarding tangent cones. Given a closed set
𝐶 and a continuously dierentiable mapping 𝜑 , let 𝑦 ∈ 𝑄 := 𝜑 (𝐶) and consider the estimate

(1.1) 𝑇𝑄 (𝑦) ⊂
⋃

(𝑥 ∈𝐶,𝜑 (𝑥)=𝑦)
∇𝜑 (𝑥)𝑇𝐶 (𝑥) .

It is well-known that the opposite inclusion always holds true [44, Theorem 6.43]. The question is
whether there exists a reasonable (practically applicable) assumption that guarantees this estimate.
Thus, let us now comment on the standard assumptions accompanying the calculus rules.

Two main patterns can be observed throughout the most of the calculus formulas. The rst one can
be represented by the image rule, where, as above, the set 𝑄 under investigation is generated as the
(forward) image of set 𝐶 under mapping 𝜑 . The second one can be represented by the pre-image rule,
where the examined set 𝐶 is given as a (backward) pre-image of another given set under a given map
(𝐶 := 𝜑−1(𝑄)). We will refer to these patterns as forward and backward, respectively.

The main assumption utilized in the backward pattern, typically called a qualication condition,
is known to be the calmness of the associated perturbation mapping, often equivalently expressed
via the metric subregularity of the feasibility mapping [27, 28, 31]. We point out that calmness can be
viewed as an outer (also called upper) Lipschitzian property of set-valued mappings since, roughly
speaking, it resembles outer semicontinuity with an additional Lipschitzian requirement regarding the
rate of change of the map. Both calmness and metric subregularity are central notions of set-valued
analysis with applications far beyond calculus. Over the years, they drew attention of several renown
researchers, see the aforementioned publications as well as [11, 13, 17, 29, 42] and the references therein.
The less-developed forward pattern seems to be linked with conditions of inner-type. Indeed, the

corresponding estimates for the dual objects are known to hold under inner semicompactness and inner
semicontinuity, see [32, 38]. In order to obtain reasonable rules for the primal constructions, it turns
out that one can proceed by strengthening the above continuity notions of inner-type to suitable inner
(also called lower) Lipschitzian notions, such as inner calmness.

Interestingly, the term inner calmness was already coined in [4], where we proposed calculus rules
for directional limiting normal cones and associated directional constructions. It is not very surprising,
however, since directional limiting normal cone is, in a way, a primal-dual object: it consists of limits
of (dual) normals along (primal) tangent directions. Moreover, inner calmness can be found in the
literature also under other names, such as, e.g., Lipschitz lower semicontinuity [37] or recession with
linear rate/linear recession [9, 30]. In particular, [9] contains a comprehensive study of this property.
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Let us also mention the stronger notion of Lipschitz lower semicontinuity*, recently introduced in [10]
and motivated by a relaxation of the Aubin property from earlier works of Klatte [34, 35].

This paper revolves around two new notions of inner calmness* and, its relaxation, fuzzy inner
calmness*. Both these conditions are milder than inner calmness, since the latter is based on inner
semicontinuity, while inner calmness* is based on (milder) inner semicompactness. All the denitions
as well as some basic properties are provided in the preliminary Section 2.

The main part of the paper is Section 3, which contains a justication of the new notions. First,
we show that polyhedral set-valued maps enjoy the inner calmness* property. This provides an
inner counterpart to the famous result on the calmness (the upper Lipschitzness) of polyhedral maps
by Robinson [42]. More importantly, in Theorem 3.9, we look into a general multiplier mapping
associated with constraint systems and, under gradually strengthening assumptions, we show its inner
semicompactness, fuzzy inner calmness* and inner calmness*.

In Section 4,we easily derive several calculus rules of the forward pattern. First, we prove the estimate
(1.1) under fuzzy inner calmness* and then apply it to obtain a chain rule for graphical derivatives
in exact form. We also provide some useful corollaries of the chain rule, such as the product rule in
Theorem 4.10.

Finally, in Section 5, we return to the normal cone mapping associated with constraint systems and
apply our results to compute or estimate its generalized derivatives. In particular, the computation of
the graphical derivative is just a simple corollary of Theorems 3.9 and 4.10. For the most challenging
setting, where the feasible region Γ(𝑝, 𝑥) = {𝑧 ∈ | 𝑔(𝑝, 𝑥, 𝑧) ∈ 𝐷} depends on the parameter 𝑝 as well
as on the decision variable 𝑥 (𝑥 typically corresponds to the solution of an underlying parametrized
variational inequality), we recover the state of the art results from [5]. This suggests that our calculus
based on (fuzzy) inner calmness* is applicable in quite relevant situations. Using the analogous calculus
based on inner calmness is also possible if one signicantly strengthens the assumptions imposed on
the constraints (nevertheless, one still recovers the recent results from [24]). Using the standard result
from [44, Theorem 6.43], however, seems completely out of question, since it requires convexity of the
graph of the aforementioned multiplier mapping.

As a specic application, we discuss the semismoothness* of the normal cone mapping, based on
the estimates of its directional limiting coderivative. Semismoothness* is an extension of the standard
semismoothness property to set-valued mappings. It was recently introduced in [25] and used to design
a novel Newton method for generalized equations. The notion was then further explored e.g. in [14, 33].

The following notation is employed. Given a set 𝐴 ⊂ ℝ𝑛 , the closure and interior of 𝐴 are denoted,
respectively, by cl𝐴 and int𝐴, sp𝐴 stands for the linear hull of 𝐴 and 𝐴◦ is the (negative) polar
cone of 𝐴. A set is called cone if any nonnegative multiple of its element also belongs to the set. If
𝐴 = {𝑎}, we use just [𝑎] instead of sp {𝑎} and [𝑎]⊥ stands for its orthogonal complement. We denote
by dist(·, 𝐴) := inf𝑦∈𝐴 ‖ · −𝑦 ‖ the usual point to set distance with the convention dist(·, ∅) = ∞ and
〈·, ·〉 stands for the standard scalar product. Further, B, S stand respectively for the closed unit ball and
the unit sphere of the space in question. Given a (suciently) smooth function 𝑓 : ℝ𝑛 → ℝ, denote its
gradient and Hessian at 𝑥 by ∇𝑓 (𝑥) and ∇2 𝑓 (𝑥), respectively. Considering further a vector function
𝜑 : ℝ𝑛 → ℝ𝑠 with 𝑠 > 1, denote by ∇𝜑 (𝑥) the Jacobian of 𝜑 at 𝑥 , i.e., the mapping 𝑥 → ∇𝜑 (𝑥) goes
from ℝ𝑛 into the space of 𝑠 × 𝑛 matrices, denoted by (ℝ𝑠)𝑛 . Moreover, for a mapping 𝛽 : ℝ𝑛 → (ℝ𝑠)𝑚
and a vector 𝑦 ∈ ℝ𝑠 , we introduce the scalarized map 〈𝑦, 𝛽〉 : ℝ𝑛 → ℝ𝑚 given by 〈𝑦, 𝛽〉(𝑥) = 𝛽 (𝑥)𝑇 𝑦 .
Following traditional patterns, given a number 𝛼 ≥ 0 we denote by 𝑜 (𝑡𝛼 ) for 𝑡 ≥ 0 a term with the
property that 𝑜 (𝑡𝛼 )/𝑡𝛼 → 0 when 𝑡 ↓ 0. Particularly, 𝑜 (1) stands for a term which converges to 0 as
the variable in question goes to 0. Finally, if no confusion arises, we denote a sequence (𝑥𝑘 )∞𝑘=1 ⊂ ℝ𝑛

simply by (𝑥𝑘 ) and very often we also drop the brackets and write just 𝑥𝑘 .
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2 preliminaries

We begin by recalling several denitions and results from variational analysis. Let Ω ⊂ ℝ𝑛 be an
arbitrary closed set and 𝑥 ∈ Ω. The tangent (also called Bouligand or contingent) cone to Ω at 𝑥 is given
by

𝑇Ω (𝑥) := {𝑢 ∈ ℝ𝑛 | ∃(𝑡𝑘 ) ↓ 0, (𝑢𝑘 ) → 𝑢 : 𝑥 + 𝑡𝑘𝑢𝑘 ∈ Ω ∀𝑘}.

We denote by
𝑁Ω (𝑥) := 𝑇Ω (𝑥)◦ = {𝑥∗ ∈ ℝ𝑛 | 〈𝑥∗, 𝑢〉 ≤ 0 ∀𝑢 ∈ 𝑇Ω (𝑥)}

the regular (Fréchet) normal cone to Ω at 𝑥 . The limiting (Mordukhovich) normal cone to Ω at 𝑥 is dened
by

𝑁Ω (𝑥) := {𝑥∗ ∈ ℝ𝑛 | ∃(𝑥𝑘 ) → 𝑥, (𝑥∗
𝑘
) → 𝑥∗ : 𝑥∗

𝑘
∈ 𝑁Ω (𝑥𝑘 ) ∀𝑘}.

Finally, given a direction 𝑢 ∈ ℝ𝑛 , we denote by

𝑁Ω (𝑥 ;𝑢) := {𝑥∗ ∈ ℝ𝑛 | ∃(𝑡𝑘 ) ↓ 0, (𝑢𝑘 ) → 𝑢, (𝑥∗
𝑘
) → 𝑥∗ : 𝑥∗

𝑘
∈ 𝑁Ω (𝑥 + 𝑡𝑘𝑢𝑘 ) ∀𝑘}

the directional limiting normal cone to Ω at 𝑥 in direction 𝑢.
If 𝑥 ∉ Ω, we put𝑇Ω (𝑥) = ∅, 𝑁Ω (𝑥) = ∅, 𝑁Ω (𝑥) = ∅ and 𝑁Ω (𝑥 ;𝑢) = ∅. Further note that 𝑁Ω (𝑥 ;𝑢) = ∅

whenever 𝑢 ∉ 𝑇Ω (𝑥). If Ω is convex, then 𝑁Ω (𝑥) = 𝑁Ω (𝑥) amounts to the classical normal cone in the
sense of convex analysis and we will write 𝑁Ω (𝑥). More generally, we say that Ω is Clarke regular at
point 𝑥 , provided 𝑁Ω (𝑥) = 𝑁Ω (𝑥) and we write 𝑁Ω (𝑥) in such case.
The following generalized derivatives of set-valued mappings are dened by means of tangents

and normals to the graph of the mapping. Let𝑀 : ℝ𝑛 ⇒ ℝ𝑚 be a set-valued map with closed graph
gph𝑀 := {(𝑥, 𝑦) | 𝑦 ∈ 𝑀 (𝑥)} and let (𝑥, 𝑦) ∈ gph𝑀 . The mapping 𝐷𝑀 (𝑥, 𝑦) : ℝ𝑛 ⇒ ℝ𝑚 , dened by

𝐷𝑀 (𝑥, 𝑦) (𝑢) := {𝑣 ∈ ℝ𝑚 | (𝑢, 𝑣) ∈ 𝑇gph𝑀 (𝑥, 𝑦)},

is called the graphical derivative of𝑀 at (𝑥, 𝑦). The mapping 𝐷∗𝑀 (𝑥, 𝑦) : ℝ𝑚 ⇒ ℝ𝑛

𝐷∗𝑀 (𝑥, 𝑦) (𝑣∗) := {𝑢∗ ∈ ℝ𝑛 | (𝑢∗,−𝑣∗) ∈ 𝑁gph𝑀 (𝑥, 𝑦)}

is called the regular (Fréchet) coderivative of𝑀 at (𝑥, 𝑦). The mapping 𝐷∗𝑀 (𝑥, 𝑦) : ℝ𝑚 ⇒ ℝ𝑛

𝐷∗𝑀 (𝑥, 𝑦) (𝑣∗) := {𝑢∗ ∈ ℝ𝑛 | (𝑢∗,−𝑣∗) ∈ 𝑁gph𝑀 (𝑥, 𝑦)}

is called the limiting (Mordukhovich) coderivative of 𝑀 at (𝑥, 𝑦). Given a pair of directions (𝑢, 𝑣) ∈
ℝ𝑛 ×ℝ𝑚 , the mapping 𝐷∗𝑀 ((𝑥, 𝑦); (𝑢, 𝑣)) : ℝ𝑚 ⇒ ℝ𝑛 , given by

𝐷∗𝑀 ((𝑥, 𝑦); (𝑢, 𝑣)) (𝑣∗) := {𝑢∗ ∈ ℝ𝑛 | (𝑢∗,−𝑣∗) ∈ 𝑁gph𝑀 ((𝑥, 𝑦); (𝑢, 𝑣))},

is called the directional limiting coderivative of𝑀 at (𝑥, 𝑦) in direction (𝑢, 𝑣).
In the rest of the section, we recall some well-known continuity and Lipschitzian notions for set-

valued maps and introduce some new ones. As advertised in Introduction, we will mainly focus on
the inner-type properties. In order to dene also directional versions of these notions, we employ the
following terminology. Given 𝑥,𝑢 ∈ ℝ𝑛 , we say that a sequence 𝑥𝑘 converges to 𝑥 from direction 𝑢 if
there exist 𝑡𝑘 ↓ 0 and 𝑢𝑘 → 𝑢 with 𝑥𝑘 = 𝑥 + 𝑡𝑘𝑢𝑘 .

Recall that 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 is inner semicompact at 𝑦 with respect to (wrt) Ω ⊂ ℝ𝑚 if for every sequence
𝑦𝑘 → 𝑦 with 𝑦𝑘 ∈ Ω there exists a subsequence 𝐾 of ℕ and a sequence (𝑥𝑘 )𝑘∈𝐾 with 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ) for
𝑘 ∈ 𝐾 converging to some 𝑥 . Given 𝑥 ∈ 𝑆 (𝑦), we say that 𝑆 is inner semicontinuous at (𝑦, 𝑥) wrt Ω if for
every sequence 𝑦𝑘 → 𝑦 with 𝑦𝑘 ∈ Ω there exists a sequence 𝑥𝑘 → 𝑥 with 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ) for suciently
large 𝑘 . If Ω = ℝ𝑚 , we speak only about inner semicompactness at 𝑦 and inner semicontinuity at
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(𝑦, 𝑥). If we restrict ourselves to sequences 𝑦𝑘 converging to 𝑦 from a xed direction 𝑣 ∈ ℝ𝑚 , we
speak of inner semicompactness and inner semicontinuity in direction 𝑣 . For more details regarding
these standard notions we refer to [38].

We point out that inner semicompactness is implied by the simpler, more intuitive, local boundedness
condition [44,Denition 5.14]. In fact, local boundedness is often imposed in the development of calculus
instead of inner semicompactness, see [44]. We believe, however, that the boundedness assumption
is slightly misleading, since, as the name suggests, its purpose is to restrict the mapping, while inner
semicompactness, in a sense, says the opposite - be as unbounded as you like, I just need a convergent
subsequence. In Section 3, we will see the impact of these dierences when dealing with a multiplier
map.

For the purposes of this paper, it suces to say that 𝑆 is outer semicontinuous (osc) if gph 𝑆 is closed,
see [44, Theorem 5.7]. Hence, when dealing with derivatives of set-valued maps, given as normals or
tangents to their graphs, we will use osc as a standing assumption, since we want the graphs to be
closed.
In Section 4, we will be interested in tangents and normals to sets, which are actually domains of

certain maps. The following lemma shows that inner semicompactness of an osc map guarantees local
closedness of its domain. Clearly, local closedness, dened below, is sucient for our needs. See [44,
Theorem 5.25 (b)] for a similar result based on local boundedness.
Lemma 2.1. Let 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 be osc and inner semicompact at 𝑦 wrt dom 𝑆 := {𝑦 ∈ ℝ𝑚 | 𝑆 (𝑦) ≠ ∅}.
Then, dom 𝑆 is locally closed around 𝑦 , i.e., dom 𝑆 ∩𝑉 is closed for some closed neighbourhood of 𝑦 .

Proof. By contraposition, assume that for every 𝑘 the set dom 𝑆 ∩ (𝑦 + (1/𝑘)B) is not closed, i.e., there
exists 𝑦𝑘 ∉ dom 𝑆 with ‖𝑦𝑘 − 𝑦 ‖ ≤ 1/𝑘 , together with a sequence (𝑦𝑙

𝑘
)∞
𝑙=1 ⊂ dom 𝑆 such that 𝑦𝑙

𝑘
→ 𝑦𝑘

as 𝑙 →∞ and ‖𝑦𝑙
𝑘
− 𝑦 ‖ ≤ 1/𝑘 for all 𝑙 ∈ ℕ.

Now if there exists 𝑘0 such that for all 𝑙 there exists some 𝑥𝑙
𝑘0
∈ 𝑆 (𝑦𝑙

𝑘0
) with ‖𝑥𝑙

𝑘0
‖ ≤ 𝑘0, then 𝑥𝑙𝑘0

must converge to some 𝑥𝑘0 along a subsequence. Since (𝑦𝑙
𝑘0
, 𝑥𝑙
𝑘0
) ∈ gph 𝑆 and gph 𝑆 is closed, we infer

(𝑦𝑘0, 𝑥𝑘0) ∈ gph 𝑆 , which contradicts 𝑦𝑘0 ∉ dom 𝑆 . This means that for each 𝑘 there exists 𝑙𝑘 such that
𝑥
𝑙𝑘
𝑘
∈ 𝑆 (𝑦𝑙𝑘

𝑘
) implies ‖𝑥𝑙𝑘

𝑘
‖ > 𝑘 . Then, however, we get dom 𝑆 3 𝑦𝑙𝑘

𝑘
→ 𝑦 as 𝑘 → ∞ and the inner

semicompactness of 𝑆 yields the existence of 𝑥𝑙𝑘
𝑘
∈ 𝑆 (𝑦𝑙𝑘

𝑘
) converging to some 𝑥 along a subsequence,

contradicting ‖𝑥𝑙𝑘
𝑘
‖ > 𝑘 . This completes the proof. �

In [4],we needed to strengthen the above continuity properties by controlling the rate of convergence
𝑥𝑘 → 𝑥 . To this end, we came up with inner calmness based on inner semicontinuity. Here we also
introduce the following milder concept of inner calmness* based on inner semicompactness.
Definition 2.2. A set-valued mapping 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 is called

(i) inner calm* at 𝑦 ∈ ℝ𝑚 wrt Ω ⊂ ℝ𝑚 if there exists 𝜅 > 0 such that for every sequence 𝑦𝑘 → 𝑦

with 𝑦𝑘 ∈ Ω, there exist a subsequence 𝐾 of ℕ, together with a sequence (𝑥𝑘 )𝑘∈𝐾 and 𝑥 ∈ ℝ𝑛
with 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ) for 𝑘 ∈ 𝐾 and

(2.1) ‖𝑥𝑘 − 𝑥 ‖ ≤ 𝜅‖𝑦𝑘 − 𝑦 ‖;

(ii) inner calm at (𝑦, 𝑥) ∈ gph 𝑆 wrt Ω if there exist 𝜅 > 0 such that for every sequence 𝑦𝑘 → 𝑦 with
𝑦𝑘 ∈ Ω there exists a sequence 𝑥𝑘 satisfying 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ) and (2.1) for suciently large 𝑘 .

As before, if we restrict ourselves to sequences 𝑦𝑘 converging to 𝑦 from a xed direction 𝑣 ∈ ℝ𝑚 , we
speak of inner calmness* and inner calmness in direction 𝑣 .
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Clearly, we have the implications:

inner calmness*

'/
inner calmness

'/

/7

inner semicompactness

inner semicontinuity

/7

Note that each of the four inner conditions implies that 𝑆 (𝑦) ≠ ∅ for 𝑦 ∈ Ω near 𝑦 . While this can
be desirable in some situations, it can also be quite restrictive. For our purposes, however, we will
often consider these properties wrt to the domain of 𝑆 , adding no restriction at all.
We also consider one important outer Lipschitzian notion. We say that 𝑆 is calm at (𝑦, 𝑥) ∈ gph 𝑆 ,

provided there exists 𝜅 > 0 such that for every sequence 𝑥𝑘 → 𝑥 for which there exists a sequence 𝑦𝑘
with 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ), there exists a sequence 𝑥𝑘 satisfying 𝑥𝑘 ∈ 𝑆 (𝑦) and

(2.2) ‖𝑥𝑘 − 𝑥𝑘 ‖ ≤ 𝜅‖𝑦𝑘 − 𝑦 ‖

for suciently large 𝑘 . Interestingly, in the denition of calmness, the crucial sequence is 𝑥𝑘 in the
image space ℝ𝑛 . By the same token, 𝑆 is called calm in direction 𝑢 ∈ ℝ𝑛 if the above holds for all
sequences 𝑥𝑘 converging to 𝑥 from 𝑢. This is also related to the well-known fact that calmness of 𝑆 at
(𝑦, 𝑥) is equivalent to metric subregularity of𝑀 := 𝑆−1 at (𝑥, 𝑦).
Finally, we employ the following terminology. We say that 𝑆 is calm at (𝑦, 𝑥) with constant 𝜅 ≥ 0 if

𝜅 satises (2.2). The inmum of all calmness constants is called the calmness modulus of 𝑆 , which is set
to be +∞ if 𝑆 fails to be calm. Naturally, the same applies to inner calmness* and inner calmness as
well as to the directional versions of these properties.

2.1 elementary results and other notions

Calmness and inner calmness are typically dened via neighbourhoods instead of sequences. First, we
show that these denitions coincide.
Lemma 2.3. Let 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 and (𝑦, 𝑥) ∈ gph 𝑆 . Then

(i) 𝑆 is inner calm at (𝑦, 𝑥) wrt Ω with modulus 𝜅 if and only if 𝜅 is the inmum of 𝜅 over all
combinations of 𝜅 and neighbourhoods 𝑉 of 𝑦 satisfying

(2.3) 𝑥 ∈ 𝑆 (𝑦) + 𝜅‖𝑦 − 𝑦 ‖B ∀ 𝑦 ∈ 𝑉 ∩ Ω;

(ii) 𝑆 is calm at (𝑦, 𝑥) with modulus 𝜅 if and only if 𝜅 is the inmum of 𝜅 over all combinations of 𝜅
and neighbourhoods𝑈 of 𝑥 satisfying

(2.4) 𝑆 (𝑦) ∩𝑈 ⊂ 𝑆 (𝑦) + 𝜅‖𝑦 − 𝑦 ‖B ∀ 𝑦 ∈ ℝ𝑚 .

Proof. Clearly, if 𝜅 satises (2.3) for some neighbourhood 𝑉 of 𝑦 , then it also satises (2.1) from the
denition of inner calmness. On the other hand, if 𝜅 satises (2.1), then there exists a neighbourhood
𝑉 of 𝑦 such that (2.3) holds. Indeed, if not, we nd a sequence Ω 3 𝑦𝑘 → 𝑦 with

dist(𝑥, 𝑆 (𝑦𝑘 )) > 𝜅‖𝑦𝑘 − 𝑦 ‖,

violating (2.1). Hence, the inmum dening modulus equals the inmum from the statement.
The proof for calmness is analogous. �
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Note that calmness is sometimes dened by (2.4) with ℝ𝑚 replaced by a neighbourhood of 𝑦 . As [12,
Exercise 3H.4] claries, these denitions are in fact equivalent. Clearly, calmness and inner calmness
are implied by the so-called Aubin property [44, Denition 9.36].

For the sake of completeness, we write down the neighbourhood-based denition of metric subreg-
ularity.
Definition 2.4. Let𝑀 : ℝ𝑛 ⇒ ℝ𝑚 and (𝑥, 𝑦) ∈ gph𝑀 . We say that𝑀 is metrically subregular at (𝑥, 𝑦)
provided there exist 𝜅 > 0 and a neighbourhood𝑈 of 𝑥 such that

dist(𝑥,𝑀−1(𝑦)) ≤ 𝜅dist(𝑦,𝑀 (𝑥)) ∀𝑥 ∈ 𝑈 .

Next we look into the relation between the standard and the directional versions of the various
calmness properties. We note that our interest in the directional approach stems from its successful
implementation and development in recent years by Gfrerer [15].
Lemma 2.5. Given 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 , 𝑦 ∈ ℝ𝑚 and Ω ⊂ ℝ𝑚 , let 𝜅 denote the modulus of inner calmness* of 𝑆
at 𝑦 wrt Ω (inner calmness of 𝑆 at (𝑦, 𝑥) ∈ gph 𝑆 wrt Ω , calmness of 𝑆 at (𝑦, 𝑥)) and let 𝜅𝑣 denote the
corresponding modulus in direction 𝑣 ∈ ℝ𝑚 (for calmness 𝜅𝑢 with 𝑢 ∈ ℝ𝑛). Then

(2.5) 𝜅 = max
𝑣∈S

𝜅𝑣 (𝜅 = max
𝑢∈S

𝜅𝑢 for calmness) .

Proof. Let 𝜅 by any constant of inner calmness* of 𝑆 . Then, clearly, for any direction 𝑣 we have 𝜅𝑣 ≤ 𝜅
and hence 𝜅𝑣 ≤ 𝜅 by the denition of inmum and sup𝑣∈S 𝜅𝑣 ≤ 𝜅 follows. Naturally, if 𝜅 = ∞, the
inequality holds as well.
On the other hand, let 𝜅 < 𝜅. Then there exists a sequence 𝑦𝑘 ∈ Ω converging to 𝑦 such that for

any 𝑥 ∈ ℝ𝑛 there exists 𝑘0 such that for all 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ) with 𝑘 ≥ 𝑘0 one has

‖𝑥𝑘 − 𝑥 ‖ > 𝜅‖𝑦𝑘 − 𝑦 ‖.

By passing to a subsequence, however, we may assume that there exists 𝑣 ∈ S such that (𝑦𝑘 − 𝑦)/‖𝑦𝑘 −
𝑦 ‖ → 𝑣 and hence we conclude that 𝜅 can not be an inner calmness* constant of 𝑆 in direction 𝑣 , i.e.,
𝜅 ≤ 𝜅𝑣 . Thus 𝜅 ≤ 𝜅𝑣 holds as well and (2.5) follows.

The proofs for inner calmness and calmness follow by the same steps. �

We point out that (2.5) yields, in particular, that the standard (nondirectional) version of any of the
calmness properties is equivalent to the validity of that property in every direction from the unit
sphere. Indeed, 𝜅 = +∞ if and only if there exists a direction 𝑣 with 𝜅𝑣 = +∞.

We will also use the following relaxed version of inner calmness*.
Definition 2.6. A set-valued mapping 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 is called inner calm* at 𝑦 ∈ ℝ𝑚 in direction 𝑣 ∈ ℝ𝑚
wrt Ω ⊂ ℝ𝑚 in the fuzzy sense, if, either 𝑣 ∉ 𝑇Ω (𝑦), or there exist 𝜅𝑣 > 0 (constant of fuzzy inner
calmness* in direction 𝑣) together with sequences 𝑦𝑘 ∈ Ω converging to 𝑦 from 𝑣 and 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ) and
a point 𝑥 ∈ ℝ𝑛 such that

‖𝑥𝑘 − 𝑥 ‖ ≤ 𝜅𝑣 ‖𝑦𝑘 − 𝑦 ‖.
The inmum 𝜅𝑣 of all such 𝜅𝑣 is called the modulus of fuzzy inner calmness* in direction 𝑣 with the
convention that 𝜅𝑣 := 0 if 𝑣 ∉ 𝑇Ω (𝑦). We say that 𝑆 is inner calm* at 𝑦 wrt Ω ⊂ ℝ𝑚 in the fuzzy sense,
provided it is inner calm* in the fuzzy sense in every direction 𝑣 ∈ S.
The case 𝑣 ∉ 𝑇Ω (𝑦) is included because if there is no sequence 𝑦𝑘 ∈ Ω converging to 𝑦 from 𝑣 , there is
no requirement to meet. Moreover, it is also needed in order to make sure that inner calmness* in the
fuzzy sense is implied by inner calmness*.

Note also that we do not dene the (nondirectional) modulus of fuzzy inner calmness*. The reason
is that, unlike in the case of the other calmness properties, it may happen that a map is inner calm* in
the fuzzy sense in every direction, yet the supremum of the moduli over the unit directions blows up.
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Figure 1: Sketch of set 𝐺 .

Example 2.7. Consider the set 𝐺 ⊂ ℝ3 given as a curve 𝑡 → (𝑦1(𝑡), 𝑦2(𝑡), 𝑥 (𝑡)) for 𝑡 ∈ (0, 2𝜋] with

(2.6) 𝑦1(𝑡) = cos(𝑡), 𝑦2(𝑡) = sin(𝑡), 𝑥 (𝑡) = 1
𝑡
− 1
2𝜋
,

see Figure 1. Now let 𝑆 : ℝ2 ⇒ ℝ be the set-valued map whose graph consists of rays starting from
the origin (0, 0, 0) and passing through the points of 𝐺 , i.e., gph 𝑆 = {𝑟𝐺 | 𝑟 ≥ 0}. Consider point
𝑦 = (0, 0). It is easy to see that for any unit direction (cos(𝑡), sin(𝑡)) with 𝑡 ∈ (0, 2𝜋), the modulus of
inner calmness* and fuzzy inner calmness* coincide and equal 1/𝑡 − 1/(2𝜋). Clearly, this quantity goes
to innity as 𝑡 goes to 0, while for 𝑡 = 2𝜋 it becomes 0. In fact, this precisely entails the issue with
direction 𝑣 = (1, 0). Indeed, on one hand it means that 𝑆 is inner calm* at 𝑦 in the fuzzy sense (the
modulus in direction 𝑣 is 0). On the other hand, from Lemma 2.5 we conclude that for the modulus of
inner calmness* we have 𝜅 = 𝜅𝑣 = +∞ and hence 𝑆 is not inner calm* at 𝑦 .

Finally, in case of a single-valued mapping 𝜑 : ℝ𝑚 → ℝ𝑛 , calmness at 𝑦 is dened as the existence
of 𝜅 > 0 and a neighbourhood 𝑉 of 𝑦 such that

(2.7) ‖𝜑 (𝑦) − 𝜑 (𝑦)‖ ≤ 𝜅‖𝑦 − 𝑦 ‖ ∀ 𝑦 ∈ 𝑉 ,

or, equivalently, the existence of 𝜅 > 0 such that (2.7), with 𝑦 replaced by iterates 𝑦𝑘 of an arbitrary
sequence 𝑦𝑘 → 𝑦 , holds for suciently large 𝑘 . If it holds for 𝑦𝑘 converging to 𝑦 from a direction 𝑣 ,
we say 𝜑 is calm at 𝑦 in direction 𝑣 . Interestingly, the above denition coincides with the denition of
inner calmness of 𝜑 at (𝑦, 𝜑 (𝑦)), but not with calmness (due to neighbourhood𝑈 ) or inner calmness*
(due to not requiring 𝑥 ∈ 𝑆 (𝑦)). Naturally, if we restrict ourselves to continuous mappings, all three
notions coincide. Further, 𝜑 is called Lipschitz continuous near 𝑦 if the inequality

‖𝜑 (𝑦) − 𝜑 (𝑦 ′)‖ ≤ 𝜅‖𝑦 − 𝑦 ′‖ ∀ 𝑦, 𝑦 ′ ∈ 𝑉

is fullled with 𝜅 > 0 and 𝑉 being a neighbourhood of 𝑦 .

3 inner semicompactness and inner calmness*

The role of inner calmness* as an assumption is highlighted in the next section dealing with the calculus
rules. In this section, we discuss two interesting cases when it is satised. In both cases, we rst prove
some basic result in terms of inner semicompactness, which gets improved to inner calmness* (in the
fuzzy sense) after we add suitable polyhedrality assumptions.
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3.1 polyhedral set-valued maps

We begin by the simple example showing the limitations of inner semicontinuity and inner calmness,
namely, that the lack of convexity of the graph can easily lead to violation of these properties.
Example 3.1. Let 𝑆 : ℝ ⇒ ℝ by given by

𝑆 (𝑦) =
{
0 for 𝑦 ≤ 0,
1 for 𝑦 ≥ 0.

It is easy to see that 𝑆 is not inner semicontinuous at (𝑦, 𝑥) = (0, 0), due to 𝑦𝑘 := 1/𝑘 → 𝑦 and
𝑆 (𝑦𝑘 ) = 1 6→ 0, or at (𝑦, 𝑥) = (0, 1), due to 𝑦𝑘 := −1/𝑘 → 𝑦 and 𝑆 (𝑦𝑘 ) = 0 6→ 1.

On the other hand, 𝑆 is clearly inner semicompact (even inner calm*) at 𝑦 . Indeed, given a sequence
𝑦𝑘 → 𝑦 , we can choose 𝑥 to be either 0 or 1, depending on which of the two values is attained by 𝑆 (𝑦𝑘 )
innitely many times.

Next, consider a map 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 whose graph is a nite union of sets𝐺𝑖 for 𝑖 = 1, . . . , 𝑙 and denote
by 𝑆𝑖 the maps with gph 𝑆𝑖 = 𝐺𝑖 , referred to as the components of 𝑆 . If 𝐺𝑖 are closed, i.e., components
𝑆𝑖 are osc, then so is gph 𝑆 and hence 𝑆 is also osc. We will now show that the properties of inner
semicompactness and inner calmness* are also preserved under nite unions.
Lemma 3.2. Given a map 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 , assume that its components 𝑆𝑖 are inner semicompact (inner
calm*) at 𝑦 ∈ ℝ𝑚 wrt to dom 𝑆𝑖 . Then 𝑆 is inner semicompact (inner calm*) at 𝑦 wrt to its domain.

Proof. Let 𝑦𝑘 → 𝑦 with 𝑦𝑘 ∈ dom 𝑆 . By passing to a subsequence if necessary, we may assume that
there exists 𝑖 with 𝑦𝑘 ∈ dom 𝑆𝑖 for all 𝑘 . The inner semicompactness (inner calmness*) of 𝑆𝑖 yields the
existence of a sequence 𝑥𝑘 ∈ 𝑆𝑖 (𝑦𝑘 ) converging to some 𝑥 (and 𝜅𝑖 ≥ 0 with ‖𝑥𝑘 − 𝑥 ‖ ≤ 𝜅𝑖 ‖𝑦𝑘 − 𝑦 ‖).
Since 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ), the claim follows (with 𝜅 := max𝑖=1,...,𝑙 𝜅𝑖 ). �

The question is how to apply this lemma. It is known that mappings with convex graphs are inner
semicontinuous at any (𝑦, 𝑥) with 𝑦 in the interior of the domain [44, Theorem 5.9(b)]. The following
example shows, however, that even a map with closed convex graph and domain may fail to be inner
semicompact wrt its domain at every point of the boundary of domain.
Example 3.3. Consider again the set𝐺 ⊂ ℝ3 from Example 2.7. Now let 𝑆 : ℝ2 ⇒ ℝ be the set-valued
map whose graph is the closure of the convex hull of 𝐺 . Note also that the domain of 𝑆 is the closed
unit ball. We claim that 𝑆 is not inner semicompact at 𝑦 = (1, 0) wrt to dom 𝑆 . Indeed, consider a
sequence 𝑡𝑘 ↓ 0 and set 𝑦𝑘 := (cos(𝑡𝑘 ), sin(𝑡𝑘 )) → 𝑦 . We will show that there is no 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ) with
𝑥𝑘 < 1/𝑡𝑘 →∞. To this end, for every 𝑘 we construct a halfspace containing set𝐺 but no (𝑦𝑘 , 𝑥𝑘 ) with
𝑥𝑘 < 1/𝑡𝑘 . Set 𝑞𝑘 := 𝑡2

𝑘
(1/𝑡𝑘 − 1/(2𝜋)),

𝑏𝑘 :=
(
sin(𝑡𝑘 ) + 𝑞𝑘 cos(𝑡𝑘 ), 1 − cos(𝑡𝑘 ) + 𝑞𝑘 sin(𝑡𝑘 ),−𝑡2𝑘 (1 − cos(𝑡𝑘 ))

)
and consider the halfspace

H𝑘 := {𝑧 ∈ ℝ3 | 〈𝑏𝑘 , 𝑧〉 ≤ sin(𝑡𝑘 ) + 𝑞𝑘 cos(𝑡𝑘 )}.

Clearly, (1, 0, 0) ∈ H𝑘 . Moreover, let us explain that 𝐺 ⊂ H𝑘 , i.e., that every point (𝑦, 𝑥) of the form
(2.6) also belongs toH𝑘 . Consider the function

ℎ𝑘 (𝑡) := 〈𝑏𝑘 , (cos(𝑡), sin(𝑡), 1/𝑡 − 1/(2𝜋))〉.

A simple computation yields ℎ𝑘 (𝑡𝑘 ) = sin(𝑡𝑘 ) + 𝑞𝑘 cos(𝑡𝑘 ). Thus, it suces to show that ℎ𝑘 attains its
global maximum over (0, 2𝜋] at 𝑡𝑘 . Since

ℎ′
𝑘
(𝑡) = 〈𝑏𝑘 , (− sin(𝑡), cos(𝑡),−1/𝑡2)〉 and ℎ′′

𝑘
(𝑡) = 〈𝑏𝑘 , (− cos(𝑡),− sin(𝑡), 2/𝑡3)〉,
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we get ℎ′
𝑘
(𝑡𝑘 ) = 0 and ℎ′′

𝑘
(𝑡𝑘 ) = −

(
sin(𝑡𝑘 ) + 𝑞𝑘 + 2(1 − cos(𝑡𝑘 ))/𝑡𝑘

)
and thus ℎ′′

𝑘
(𝑡𝑘 ) < 0 for 𝑡𝑘 < 𝜋 .

In order to see that this maximum is not only local, note that ℎ𝑘 (𝑡) → −∞ as 𝑡 ↓ 0 while ℎ𝑘 (2𝜋) =
sin(𝑡𝑘 ) +𝑞𝑘 cos(𝑡𝑘 ) = ℎ𝑘 (𝑡𝑘 ). Without going into details, taking into account properties of the functions
dening ℎ𝑘 , we deduce that there is only one more stationary point of ℎ𝑘 in (0, 2𝜋], corresponding to
a local minimum. Thus, the maximum at 𝑡𝑘 is global.
Finally, since −𝑡2

𝑘
(1 − cos(𝑡𝑘 )) < 0 for 𝑡𝑘 ∈ (0, 2𝜋), a point (𝑦𝑘 , 𝑥) belongs to H𝑘 if and only if

𝑥 ≥ 1/𝑡𝑘 . Since gph 𝑆 is the intersection of all the closed halfspaces containing 𝐺 by [43, Corollary
11.5.1], we conclude that there is no 𝑥𝑘 ∈ 𝑆 (𝑦𝑘 ) with 𝑥𝑘 < 1/𝑡𝑘 . Hence, 𝑆 is not inner semicompact at 𝑦
wrt to dom 𝑆 .

We forgo the details of applying the above lemma to a map whose graph is a union of general
convex sets, since the result inevitably suers from the limitations to the interiors of the domains of its
components. Instead, we look into polyhedral mappings. Recall that a set 𝐷 ⊂ ℝ𝑠 is said to be convex
polyhedral if it can be represented as the intersection of nitely many halfspaces. We say that a set
𝐸 ⊂ ℝ𝑠 is polyhedral if it is a union of nitely many convex polyhedral sets. A set-valued map is called
(convex) polyhedral, if its graph is a (convex) polyhedral set.

In the polyhedral setting, there is no problem with the points on the boundary of the domain.
Indeed, the prominent result of Walkup and Wets [45], see also [44, Example 9.35], says that a convex
polyhedral map 𝑆 is Lipschitz continuous on its domain, i.e., there exist 𝜅 > 0 such that

𝑆 (𝑦 ′) ⊂ 𝑆 (𝑦) + 𝜅‖𝑦 ′ − 𝑦 ‖B ∀ 𝑦, 𝑦 ′ ∈ dom 𝑆.

Since this property is obviously stronger even than inner calmness at any point, we obtain the following
result. For the sake of completeness, we include also the well-known result regarding (outer) calmness
due to Robinson [42], who used the name upper Lipschitzness. We point out that the calmness below is
not localized to a point 𝑥 , since there is no neighbourhood𝑈 as in (2.4).
Theorem 3.4 (Two-sided calmness of polyhedral maps). Let 𝑆 : ℝ𝑚 ⇒ ℝ𝑛 be a polyhedral set-valued
map. Then there exists a number 𝜅 > 0 such that for every 𝑦 ∈ dom 𝑆 , 𝑆 is inner calm* with constant 𝜅
wrt dom 𝑆 at 𝑦 as well as calm with constant 𝜅 at 𝑦 , i.e.,

𝑆 (𝑦) ⊂ 𝑆 (𝑦) + 𝜅‖𝑦 − 𝑦 ‖B

holds for all 𝑦 near 𝑦 .

Note that, in inner calmness* we have found a suitable inner Lipschitzian property which, from the
Lipschitzness of convex polyhedral maps, extends to polyhedral maps. The key reason is that inner
calmness* is based on inner semicompactness, which is preserved under nite unions.

3.2 multiplier mappings

In [23, Proposition 4.1], Gfrerer and Outrata showed the following interesting result.
Proposition 3.5. Let𝑀 : ℝ𝑛 ⇒ ℝ𝑚 be a set-valued mapping having locally closed graph around (𝑥, 𝑦) ∈
gph𝑀 and assume that𝑀 is metrically subregular at (𝑥, 𝑦) with modulus 𝜅. Then

(3.1) 𝑁𝑀−1 (𝑦) (𝑥) ⊂
{
𝑥∗ | ∃𝑦∗ ∈ 𝜅‖𝑥∗‖B : (𝑥∗, 𝑦∗) ∈ 𝑁gph𝑀 (𝑥, 𝑦)

}
.

In fact, [23, Proposition 4.1] contains, apart from the additional result for the tangent cone, the stronger,
directional, estimate. For our purposes, however, the important part is the bound ‖𝑦∗‖ ≤ 𝜅‖𝑥∗‖. Let
us mention that the idea that metric subregularity yields this bound appeared already in the proof
of [27, Theorem 4.1]. Moreover, similar arguments were also used in [7, Lemma 3.2] in the setting of
nonlinear programs.
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Corollary 3.6. In the setting of Proposition 3.5, metric subregularity of𝑀 at (𝑥, 𝑦) implies inner semicom-
pactness of the mapping

Λ(𝑥, 𝑥∗) := 𝐷∗𝑀−1(𝑦, 𝑥) (−𝑥∗) = {𝑦∗ | (𝑥∗, 𝑦∗) ∈ 𝑁gph𝑀 (𝑥, 𝑦)}

at (𝑥, 𝑥∗) wrt gph𝑁𝑀−1 (𝑦) for every 𝑥∗ ∈ 𝑁𝑀−1 (𝑦) (𝑥).

Proof. Suppose (𝑥𝑘 , 𝑥∗𝑘 ) → (𝑥, 𝑥
∗) with 𝑥∗

𝑘
∈ 𝑁𝑀−1 (𝑦) (𝑥𝑘 ). Metric subregularity of𝑀 at (𝑥, 𝑦) implies

metric subregularity of𝑀 at (𝑥𝑘 , 𝑦) for all suciently large 𝑘 with the modulus𝜅 ′ independent of𝑘 (see,
e.g., [16, Lemma 2] with 𝑢 = 0 and 𝛾 = 1). Hence, Proposition 3.5 yields the existence of 𝑦∗

𝑘
∈ Λ(𝑥𝑘 , 𝑥∗𝑘 )

with ‖𝑦∗
𝑘
‖ ≤ 𝜅 ′‖𝑥∗

𝑘
‖. In particular, by passing to a subsequence we may assume that 𝑦∗

𝑘
→ 𝑦∗ for some

𝑦∗, showing the inner semicompactness of Λ. �

For the constraint mapping 𝑀 (𝑥) = 𝜑 (𝑥) −𝑄 , where 𝑄 ⊂ ℝ𝑚 is a closed set and 𝜑 : ℝ𝑛 → ℝ𝑚 is
continuously dierentiable, (3.1) gives the standard pre-image calculus rule

(3.2) 𝑁𝐶 (𝑥) ⊂ ∇𝜑 (𝑥)𝑇𝑁𝑄 (𝜑 (𝑥))

where 𝐶 := 𝑀−1(0) = 𝜑−1(𝑄), see, e.g., [4, Lemma 6.1]. Moreover, denoting 𝛽 (𝑥) := ∇𝜑 (𝑥), the
(multiplier) mapping Λ attains the standard form

Λ(𝑥, 𝑥∗) := {𝜆 ∈ 𝑁𝑄 (𝜑 (𝑥)) | 𝛽 (𝑥)𝑇𝜆 = 𝑥∗},

where we use 𝜆 instead of 𝑦∗ to denote the multipliers.
Remark 3.7 (On inner semicompactness of the multiplier mapping). In the area of second-order analysis,
one often deals with a sequence 𝑥∗

𝑘
∈ 𝑁𝜑−1 (𝑄) (𝑥𝑘 ). Under metric subregularity of 𝜑 (𝑥) −𝑄 , one gets

the existence of suitable multipliers 𝜆𝑘 , but needs to nd also a limit multiplier 𝜆 ← 𝜆𝑘 . Hence, many
authors used to assume boundedness of the multipliers, for which they had to impose some stronger
conditions, such as the generalized Mangasarian-Fromovitz constraint qualication (GMFCQ), see also
[18] for more subtle approach. Thanks to the inner semicompactness of Λ from Corollary 3.6, however,
we know that metric subregularity alone is sucient for this task. This fact has already been utilized
in several recent works, see, e.g., [3, 5, 19, 20].
We conclude this section by showing that Λ is even inner calm* (in the fuzzy sense) provided 𝑄 is

polyhedral. The following lemma will be essential for our proof.
Lemma 3.8. Let 𝐷 be a convex polyhedral set and let 𝑧∗ ∈ 𝑁𝐷 (𝑧). Then there exists a neighbourhood O of
0 such that

(3.3)
(
gph𝑁𝐷 − (𝑧, 𝑧∗)

)
∩ O = {(𝑤,𝑤∗) | 𝑤 ∈ K𝐷 (𝑧, 𝑧∗),𝑤∗ ∈ (K𝐷 (𝑧, 𝑧∗))◦, 〈𝑤,𝑤∗〉 = 0} ∩ O,

where K𝐷 (𝑧, 𝑧∗) := 𝑇𝐷 (𝑧) ∩ [𝑧∗]⊥ stands for the critical cone to 𝐷 at (𝑧, 𝑧∗).

Proof. The reduction lemma [12, Lemma 2E.4] yields the existence of a neighbourhood O of 0 such that

(3.4)
(
gph𝑁𝐷 − (𝑧, 𝑧∗)

)
∩ O = gph𝑁K𝐷 (𝑧,𝑧∗) ∩ O,

and [12, Proposition 2A.3] gives the description of gph𝑁K𝐷 (𝑧,𝑧∗) . �

Theorem 3.9. Let (𝑥, 𝑥∗) ∈ gph𝑁𝐶 for 𝐶 = 𝜑−1(𝑄) with twice continuously dierentiable 𝜑 and assume
that the constraint mapping𝑀 (𝑥) = 𝜑 (𝑥) −𝑄 is metrically subregular at (𝑥, 0).

(i) If 𝑄 is Clarke regular near 𝜑 (𝑥) (which is the case if 𝑄 is convex), then Λ is inner semicompact at
(𝑥, 𝑥∗) wrt its domain.
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(ii) If 𝑄 is convex polyhedral, then Λ is inner calm* at (𝑥, 𝑥∗) wrt its domain in the fuzzy sense.

(iii) Given (𝑢,𝑢∗) ∈ S, if 𝑄 is convex polyhedral and the system 𝜑 (·) ∈ 𝑄 is non-degenerate at 𝑥 in
direction 𝑢, i.e.,

(3.5) 𝛽 (𝑥)𝑇𝜆 = 0, 𝜆 ∈ sp𝑁𝑇𝑄 (𝜑 (𝑥)) (∇𝜑 (𝑥)𝑢) =⇒ 𝜆 = 0,

then Λ is inner calm* at (𝑥, 𝑥∗) wrt its domain in direction (𝑢,𝑢∗).

Proof. The rst claim follows from Corollary 3.6 once we justify the use of domΛ instead of gph𝑁𝐶 .
Due to the Clarke regularity, however, we obtain 𝑁𝑄 (𝜑 (𝑥 ′)) = 𝑁𝑄 (𝜑 (𝑥 ′)) for 𝑥 ′ near 𝑥 and [44,
Theorem 6.14] then yields that

𝛽 (𝑥 ′)𝑇𝑁𝑄 (𝜑 (𝑥 ′)) = 𝛽 (𝑥 ′)𝑇𝑁𝑄 (𝜑 (𝑥 ′)) ⊂ 𝑁𝐶 (𝑥 ′) .

Moreover, the opposite inclusion is also true, taking into account (3.2) and the fact that𝑀 is subregular
also at (𝑥 ′, 0) as argued in the proof of Corollary 3.6. Hence, locally around (𝑥, 𝑥∗), one has domΛ =

gph𝑁𝐶 .
To show the second one, assume that 𝑄 is convex polyhedral and consider a sequence (𝑥𝑘 , 𝑥∗𝑘 ) ∈

domΛ converging to (𝑥, 𝑥∗) from a direction (𝑢,𝑢∗) ∈ S, i.e.,

(𝑥𝑘 , 𝑥∗𝑘 ) = (𝑥, 𝑥
∗) + 𝑡𝑘 (𝑢𝑘 , 𝑢∗𝑘 )

for some 𝑡𝑘 ↓ 0 and (𝑢𝑘 , 𝑢∗𝑘 ) → (𝑢,𝑢
∗). The inner semicompactness of Λ wrt domΛ from (i) yields the

existence of �̃�𝑘 ∈ 𝑁𝑄 (𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 )) with

𝑥∗ + 𝑡𝑘𝑢∗𝑘 = 𝛽 (𝑥 + 𝑡𝑘𝑢𝑘 )𝑇 �̃�𝑘

as well as 𝜆 ∈ 𝑁𝑄 (𝜑 (𝑥)) with 𝑥∗ = 𝛽 (𝑥)𝑇𝜆 such that �̃�𝑘 → 𝜆. Moreover, the Taylor expansion gives

(3.6) 𝛽 (𝑥)𝑇 �̃�𝑘 − 𝜆
𝑡𝑘

= 𝑢∗
𝑘
− ∇〈𝜆, 𝛽〉(𝑥)𝑢 + 𝑜 (1) .

Employing Lemma 3.8 and denoting K := K𝑄 (𝜑 (𝑥), 𝜆) we infer

(3.7) 𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 ) − 𝜑 (𝑥) ∈ K, �̃�𝑘 − 𝜆 ∈ K◦, 〈𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 ) − 𝜑 (𝑥), �̃�𝑘 − 𝜆〉 = 0

for suciently large 𝑘 . Thus, F𝑘 := K ∩ [�̃�𝑘 − 𝜆]⊥ is a face of the critical cone K , see [12, p. 258], with
𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 ) −𝜑 (𝑥) ∈ F𝑘 . Since there are only nitely many faces of a polyhedral cone, we may assume
that F𝑘 ≡ F and, in particular, we have

(�̃�𝑘 − 𝜆)/𝑡𝑘 ∈ K◦ ∩ (spF )⊥.

Hence, we can now invoke Homan’s lemma [6, Theorem 2.200] to nd for every 𝑘 some 𝜂𝑘 ∈
K◦ ∩ (spF )⊥ satisfying

𝛽 (𝑥)𝑇𝜂𝑘 = 𝛽 (𝑥)𝑇 �̃�𝑘 − 𝜆
𝑡𝑘

and ‖𝜂𝑘 ‖ ≤ 𝛼 ‖𝛽 (𝑥)𝑇 (�̃�𝑘 − 𝜆)/𝑡𝑘 ‖ for some constant 𝛼 > 0 not depending on 𝑘 . Since the right-hand
side of (3.6) is bounded, so is 𝜂𝑘 and by possibly passing to a subsequence we can assume that 𝜂𝑘
converges to some 𝜂 ∈ K◦ ∩ (spF )⊥ satisfying

𝛽 (𝑥)𝑇𝜂 = 𝑢∗ − ∇〈𝜆, 𝛽〉(𝑥)𝑢
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by (3.6). Since 𝜂𝑘 ∈ K◦ ∩ (spF )⊥ we see that (3.7) remains true with �̃�𝑘 − 𝜆 replaced by 𝑡𝑘𝜂𝑘 . Conse-
quently, Lemma 3.8 yields that for suciently large 𝑘 we have

(𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 ), 𝜆 + 𝑡𝑘𝜂𝑘 ) = (𝜑 (𝑥), 𝜆) + (𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 ) − 𝜑 (𝑥), 𝑡𝑘𝜂𝑘 ) ∈ gph𝑁𝑄 .

Hence, setting 𝜆𝑘 := 𝜆 + 𝑡𝑘𝜂𝑘 , for any 𝜅 (𝑢,𝑢∗) > ‖𝜂‖ we get

(3.8) ‖𝜆𝑘 − 𝜆‖ = ‖𝜂𝑘 ‖𝑡𝑘 =
‖𝜂𝑘 ‖

‖(𝑢𝑘 , 𝑢∗𝑘 )‖
‖(𝑥𝑘 , 𝑥∗𝑘 ) − (𝑥, 𝑥

∗)‖ ≤ 𝜅 (𝑢,𝑢∗) ‖(𝑥𝑘 , 𝑥∗𝑘 ) − (𝑥, 𝑥
∗)‖

for 𝑘 large enough, since ‖(𝑢𝑘 , 𝑢∗𝑘 )‖ → 1 and ‖𝜂𝑘 ‖ → ‖𝜂‖.
Finally, denoting

𝑥∗
𝑘
:= 𝛽 (𝑥 + 𝑡𝑘𝑢𝑘 )𝑇𝜆𝑘 = 𝛽 (𝑥)𝑇𝜆 + 𝑡𝑘 (𝛽 (𝑥)𝑇𝜂𝑘 + ∇〈𝜆, 𝛽〉(𝑥)𝑢) + 𝑜 (𝑡𝑘 ) = 𝑥∗ + 𝑡𝑘𝑢∗𝑘 + 𝑜 (𝑡𝑘 ) = 𝑥

∗
𝑘
+ 𝑜 (𝑡𝑘 )

yields, in particular, that (𝑥𝑘 , 𝑥∗𝑘 ) converges to (𝑥, 𝑥
∗) from direction (𝑢,𝑢∗). Hence, the inner calmness*

of Λ in direction (𝑢,𝑢∗) in the fuzzy sense with the modulus not greater than ‖𝜂‖ follows. Since
direction (𝑢,𝑢∗) was arbitrary, Lemma 2.5 yields the inner calmness* in the fuzzy sense of Λ.
The third statement can now be shown easily. If 𝑥𝑘 = 𝑥 for innitely many 𝑘 , in the previous

argument we actually get

𝛽 (𝑥)𝑇𝜂𝑘 = 𝛽 (𝑥)𝑇 �̃�𝑘 − 𝜆
𝑡𝑘

= 𝑢∗
𝑘
.

Then, however, we obtain
𝛽 (𝑥)𝑇𝜆𝑘 = 𝑥∗ + 𝑡𝑘𝑢∗𝑘 = 𝑥∗

𝑘
,

which means that the newmultipliers 𝜆𝑘 correspond to the same 𝑥∗
𝑘
and this implies the inner calmness*

in direction (𝑢,𝑢∗).
On the other hand, if 𝑥𝑘 ≠ 𝑥 for innitely many 𝑘 , we conduct the same arguments as in case (ii)

and then show that we can in fact use the original multipliers �̃�𝑘 . To this end, note that �̃�𝑘 − 𝜆𝑘 ∈
sp𝑁𝑄 (𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 )) and thus [5, Proposition 2.14] says that the assumed directional non-degeneracy
yields the existence of 𝛼 > 0 such that

‖�̃�𝑘 − 𝜆𝑘 ‖ ≤ 𝛼 ‖𝛽 (𝑥 + 𝑡𝑘𝑢𝑘 )𝑇 (�̃�𝑘 − 𝜆𝑘 )‖ = 𝛼 ‖𝑥∗𝑘 − 𝑥
∗
𝑘
‖ = 𝑜 (𝑡𝑘 ) .

Consequently, we obtain

‖�̃�𝑘 − 𝜆‖ ≤ ‖𝜆𝑘 − 𝜆‖ + ‖�̃�𝑘 − 𝜆𝑘 ‖ ≤ ‖𝜂𝑘 ‖𝑡𝑘 + 𝑜 (𝑡𝑘 ) = (‖𝜂𝑘 ‖ + 𝑜 (1)) 𝑡𝑘

and we infer that �̃�𝑘 also satises the inner calmness* estimate (3.8) for any 𝜅 (𝑢,𝑢∗) > ‖𝜂‖ due to
‖𝜂𝑘 ‖ + 𝑜 (1) → ‖𝜂‖. �

Remark 3.10. Let us briey comment on the above results.

1. We only used the fact that 𝛽 (𝑥) := ∇𝜑 (𝑥) in the proof of (iii). More precisely, we only used the
feature of non-degeneracy from [5, Proposition 2.14]. Looking into the proof of this proposition,
however, it is clear that the result remains valid under assumption (3.5) even if 𝛽 (𝑥) ≠ ∇𝜑 (𝑥). In
such case, it is not appropriate to call this assumption non-degeneracy of 𝜑 (·) ∈ 𝑄 , naturally.
This means that for arbitrary suciently smooth function 𝛽 (𝑥) it holds that Λ(𝑥, 𝑥∗) is inner
calm* at (𝑥, 𝑥∗) wrt its domain in the fuzzy sense, provided Λ is inner semicompact at (𝑥, 𝑥∗) wrt
gph𝑁𝐶 and 𝑄 is convex polyhedral and it is even inner calm* in direction (𝑢,𝑢∗) if (3.5) holds
as well. This enables us to handle the parametrized setting in Section 5 with ease.
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2. As already mentioned, in order to replace the inner semicompactness in (i) by local boundedness,
one has to impose a stronger assumption, such as GMFCQ. Moreover, in order to obtain analogous
results in terms of inner semicontinuity and inner calmness, one can, e.g., assume uniqueness
of the multiplier. In turn, one needs to strengthen the assumption even more and require, say,
the standard non-degeneracy from [6, Formula 4.17], which corresponds to (3.5) with 𝑢 = 0.
Directional non-degeneracy was introduced in [5, Denition 2.13] and it is strictly milder than
the standard one, see the example below.

3. If (𝑢,𝑢∗) = (0, 𝑢∗) ∈ S in (iii), (3.5) becomes the standard non-degeneracy assumption. Since
𝑢∗ ∈ 𝐷𝑁𝐶 (𝑥, 𝑥∗) (𝑢), such directions exist if and only if the normal cone mapping 𝑁𝐶 is not
isolatedly calm at (𝑥, 𝑥∗).

4. Finally, note that our proof follows the arguments from the proof of [5, Theorem 5.3].

The following example comes from [5, Example 2.15].
Example 3.11. Consider the constraint system 𝜑 (𝑥) ≤ 0 given by

𝑥1 − 𝑥4 ≤ 0, −𝑥1 − 𝑥4 ≤ 0, 𝑥2 − 𝑥4 ≤ 0, −𝑥2 − 𝑥4 ≤ 0, 𝑥3 + 𝑥21 − 𝑥4 ≤ 0, −𝑥3 − 𝑥4 ≤ 0

and the point 𝑥 = 0. We have ker∇𝜑 (𝑥)𝑇 = ℝ(1, 1, 0, 0,−1,−1)𝑇 +ℝ(0, 0, 1, 1,−1,−1)𝑇 . Denoting𝑄 := ℝ6
−

yields 𝑁𝑄 (𝜑 (𝑥)) = ℝ6
+ and so sp𝑁𝑄 (𝜑 (𝑥)) = ℝ6, implying that the system is degenerate. Moreover,

the so-called constant rank constraint qualication is clearly also violated at 𝑥 .
On the other hand, MFCQ holds 𝑥 , as can be seen from ker∇𝜑 (𝑥)𝑇 ∩ 𝑁𝑄 (𝜑 (𝑥)) = {0}. More

interestingly, however, let us explain that the system is actually non-degenerate in every non-zero
direction. Given a direction 𝑢 with ∇𝜑 (𝑥)𝑢 ≤ 0 and denoting I(𝑢) := {𝑖 | ∇𝜑𝑖 (𝑥)𝑢 = 0}, we
have sp𝑁𝑇𝑄 (𝜑 (𝑥)) (∇𝜑 (𝑥)𝑢) = {𝜆 ∈ ℝ6 | 𝜆𝑖 = 0, 𝑖 ∉ I(𝑢)}. Thus, non-degeneracy in direction 𝑢 is
equivalent to the linear independence of the gradients ∇𝜑𝑖 (𝑥), 𝑖 ∈ I(𝑢). For𝑢 ≠ 0, ∇𝜑 (𝑥)𝑢 ≤ 0 readily
implies that 𝑢4 > 0, since 𝑢4 < 0 is not possible and 𝑢4 = 0 enforces 𝑢 = 0. Hence, I(𝑢) can never
contain 1 and 2 simultaneously, 3 and 4 simultaneously or 5 and 6 simultaneously, which ensures the
linear independence of ∇𝜑𝑖 (𝑥), 𝑖 ∈ I(𝑢).
Consequently, the above theorem yields that Λ is inner calm* at (𝑥, 𝑥∗) wrt its domain for any

𝑥∗ ∈ 𝑁𝜑−1 (𝑄) (𝑥).

4 selected calculus rules

In this section, we show some new calculus rules based on (fuzzy) inner calmness* with focus on the
primal objects (tangents and graphical derivatives).

4.1 tangents and directional normals to image sets

In this section, we deal with the rules for image sets, which provide the base for all of the remaining
calculus. Given a closed set 𝐶 ⊂ ℝ𝑛 and a continuous mapping 𝜑 : ℝ𝑛 → ℝ𝑙 , set 𝑄 := 𝜑 (𝐶) and
consider 𝑦 ∈ 𝑄 . Moreover, let Ψ : ℝ𝑙 ⇒ ℝ𝑛 be given by Ψ(𝑦) := 𝜑−1(𝑦) ∩𝐶 and note that domΨ = 𝑄

and gphΨ = gph𝜑−1 ∩ (ℝ𝑙 ×𝐶). Hence gphΨ is closed by the properties of 𝜑 and 𝐶 and, recalling
Lemma 2.1, we suppose that Ψ is also inner semicompact at 𝑦 wrt domΨ.
Theorem 4.1 (Tangents to image sets). If 𝜑 : ℝ𝑛 → ℝ𝑙 is calm at some 𝑥 ∈ Ψ(𝑦), we have

𝑇𝐶 (𝑥) ⊂ {𝑢 | ∃ 𝑣 ∈ 𝑇𝑄 (𝑦) with 𝑣 ∈ 𝐷𝜑 (𝑥)𝑢}.

On the other hand, if Ψ is inner calm* at 𝑦 wrt domΨ in the fuzzy sense, then

𝑇𝑄 (𝑦) ⊂
⋃

𝑥 ∈Ψ(𝑦)
{𝑣 | ∃𝑢 ∈ 𝑇𝐶 (𝑥) with 𝑣 ∈ 𝐷𝜑 (𝑥)𝑢}
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and, moreover, if there exists 𝑥 ∈ Ψ(𝑦) such that Ψ is inner calm at (𝑦, 𝑥) wrt domΨ, then the estimate
holds with this 𝑥 , i.e., the union over Ψ(𝑦) is superuous.

Proof. Pick 𝑢 ∈ 𝑇𝐶 (𝑥). We will show a slightly stronger statement, namely that 𝐷𝜑 (𝑥)𝑢 ∩𝑇𝑄 (𝑦) ≠ ∅,
provided 𝜑 is calm at 𝑥 in direction 𝑢. Indeed, consider 𝑡𝑘 ↓ 0 and𝑢𝑘 → 𝑢 with 𝑥 + 𝑡𝑘𝑢𝑘 ∈ 𝐶 and observe
that

(4.1) 𝑄 3 𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 ) = 𝑦 + 𝑡𝑘𝑣𝑘 ,

where 𝑣𝑘 := (𝜑 (𝑥 + 𝑡𝑘𝑢𝑘 ) − 𝑦)/𝑡𝑘 is bounded by the assumed calmness in direction 𝑢 and we may
assume that 𝑣𝑘 → 𝑣 for some 𝑣 ∈ 𝑇𝑄 (𝑦). Moreover, (4.1) can be written as (𝑥 + 𝑡𝑘𝑢𝑘 , 𝑦 + 𝑡𝑘𝑣𝑘 ) ∈ gph𝜑 ,
showing also 𝑣 ∈ 𝐷𝜑 (𝑥)𝑢.
Consider now 𝑣 ∈ 𝑇𝑄 (𝑦). The inner calmness* of Ψ at 𝑦 wrt domΨ = 𝑄 in the fuzzy sense in

direction 𝑣 yields the existence of 𝑡𝑘 ↓ 0, 𝑣𝑘 → 𝑣 with 𝑦 + 𝑡𝑘𝑣𝑘 ∈ 𝑄 as well as 𝑥𝑘 ∈ 𝐶 and 𝑥 with

𝑦 + 𝑡𝑘𝑣𝑘 = 𝜑 (𝑥𝑘 ) and ‖𝑥𝑘 − 𝑥 ‖ ≤ 𝜅𝑣𝑡𝑘 ‖𝑣𝑘 ‖

for some 𝜅𝑣 > 0. This means, however, that (𝑥 + 𝑡𝑘𝑢𝑘 , 𝑦 + 𝑡𝑘𝑣𝑘 ) ∈ gph𝜑 for the bounded sequence
𝑢𝑘 := (𝑥𝑘 − 𝑥)/𝑡𝑘 and the existence of 𝑢 ∈ 𝑇𝐶 (𝑥) with 𝑣 ∈ 𝐷𝜑 (𝑥)𝑢 follows. Finally, the closedness of 𝐶
and the continuity of 𝜑 imply 𝑥 ∈ Ψ(𝑦).

The last statement now follows easily from the denition of inner calmness. �

If 𝜑 is dierentiable, 𝐷𝜑 (𝑥)𝑢 = {∇𝜑 (𝑥)𝑢} is a singleton and we obtain the following simpler
estimates.
Corollary 4.2 (Tangents to image sets - dierentiable case). If 𝜑 is continuously dierentiable, then

𝑇𝑄 (𝑦) ⊃
⋃

𝑥 ∈Ψ(𝑦)
∇𝜑 (𝑥)𝑇𝐶 (𝑥).

The above inclusion becomes equality if Ψ is inner calm* at 𝑦 wrt domΨ in the fuzzy sense.

In [44, Theorem 6.43], the upper estimate for𝑇𝑄 (𝑦) is obtained only in quite a special setting, namely
for𝐶 convex and 𝜑 linear. As the previous section shows, our approach is applicable in a much broader
context. On the other hand, our result also does not cover the estimate from [44, Theorem 6.43], which
reads

(4.2) 𝑇𝑄 (𝑦) = cl
(
𝜑 (𝑇𝐶 (𝑥))

)
for every 𝑥 ∈ 𝜑−1(𝑦) ∩𝐶.

To see this, consider again the mapping 𝑆 from Example 3.3 and set𝐶 = gph 𝑆 ,𝑄 = dom 𝑆 , i.e.,𝑄 = 𝜑 (𝐶),
where 𝜑 is just the projection: 𝜑 (𝑥) = 𝑦 for 𝑥 = (𝑦, 𝑧) ∈ ℝ2 × ℝ. While this setting ts into [44,
Theorem 6.43], Corollary 4.2 cannot be applied. Indeed, among the standing assumptions, we ask Ψ to
be inner semicompact at 𝑦 , but it is not since Ψ(𝑦) = {𝑦} × 𝑆 (𝑦) and 𝑆 is not inner semicompact at 𝑦 ,
as claried in Example 3.3.

Let us look more closely into the two approaches. Since it is not essential for our argument, however,
we omit the details. For 𝑦 = (1, 0), we clearly have 𝑇𝑄 (𝑦) = ℝ− ×ℝ, since 𝑄 is the closed unit sphere.
On the other hand, one can show that 𝑆 (𝑦) = ℝ+, and thus Ψ(𝑦) = 𝜑−1(𝑦) ∩𝐶 = {𝑦} ×ℝ+, and

𝜑 (𝑇𝐶 (𝑦, 𝑧)) = {𝑣 ∈ ℝ2 | ∃𝑤 ∈ ℝ : (𝑣,𝑤) ∈ 𝑇𝐶 (𝑦, 𝑧)} = {(0, 0)} ∪ {𝑣 ∈ ℝ2 | 𝑣1 < 0}

for any 𝑧 ∈ ℝ+. This shows the importance of the closure in (4.2). Moreover, it also shows that
the estimate from Corollary 4.2 is actually false, since vectors (0,±1) ∈ 𝑇𝑄 (𝑦) do not belong to
∇𝜑 (𝑥)𝑇𝐶 (𝑥) = 𝜑 (𝑇𝐶 (𝑥)) for any 𝑥 = (𝑦, 𝑧) ∈ Ψ(𝑦).
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Naturally, the estimates for directional normals to image sets from [4, Theorem 3.2] can also be
enriched by the inner calmness* assumption. The next theorem shows how these estimates dier based
on the assumption used. Given a direction 𝑣 ∈ ℝ𝑙 , let us denote

Σ(𝑣) := {𝑦∗ | 𝐷∗𝜑 (𝑥 ; (𝑢, 𝑣)) (𝑦∗) ∩ 𝑁𝐶 (𝑥 ;𝑢) ≠ ∅}.

Trivial modications of the proof of [4, Theorem 3.2] yield the following result.
Theorem 4.3 (Directional normals to image sets). Consider a direction 𝑣 ∈ ℝ𝑙 and assume that 𝜑 is
Lipschitz continuous near every 𝑥 ∈ Ψ(𝑦). Then

(i) if Ψ is inner semicompact at 𝑦 wrt domΨ in direction 𝑣 , one has

𝑁𝑄 (𝑦 ; 𝑣) ⊂
⋃

𝑥 ∈Ψ(𝑦)

( ⋃
𝑢∈𝐷Ψ(𝑦,𝑥) (𝑣)

Σ(𝑣) ∪
⋃

𝑢∈𝐷Ψ(𝑦,𝑥) (0)∩S
Σ(0)

)
and the union over Ψ(𝑦) is superuous if Ψ is inner semicontinuous at (𝑦, 𝑥) wrt domΨ in 𝑣 ;

(ii) if Ψ is inner calm* at 𝑦 wrt domΨ in 𝑣 , one has

𝑁𝑄 (𝑦 ; 𝑣) ⊂
⋃

𝑥 ∈Ψ(𝑦)

⋃
𝑢∈𝐷Ψ(𝑦,𝑥) (𝑣)

{𝑦∗ | 𝐷∗𝜑 (𝑥 ; (𝑢, 𝑣)) (𝑦∗) ∩ 𝑁𝐶 (𝑥 ;𝑢) ≠ ∅}

and the union over Ψ(𝑦) is superuous if Ψ is inner calm at (𝑦, 𝑥) wrt domΨ in 𝑣 .

In fact, 𝜑 needs to be Lipschitz continuous only in relevant directions, see [4, Theorem 3.2]. The
following example shows that inner calmness* in the fuzzy sense is not enough for (ii).
Example 4.4. Let 𝐶 ∈ ℝ3 be given by

𝐶 = ℝ− ×ℝ × {0} ∪ {𝑥 = (𝑥1, 𝑥2, 𝑥3) | 𝑥1 > 0, 𝑥2 =
√
𝑥1, 𝑥3 =

√
𝑥2},

let 𝜑 : ℝ3 → ℝ2 be given by 𝜑 (𝑥) = (𝑥1, 𝑥2) and set

𝑄 := 𝜑 (𝐶) = ℝ− ×ℝ ∪ {(𝑥1, 𝑥2) | 𝑥1 > 0, 𝑥2 =
√
𝑥1}.

In order to be consistent with our notation, we use 𝑦 for (𝑥1, 𝑥2). First, we claim that

Ψ(𝑦) = 𝜑−1(𝑦) ∩𝐶 = {𝑥 = (𝑦, 𝑥3) | 𝑥 ∈ 𝐶}

is not inner calm* at 𝑦 = (0, 0) in direction 𝑣 = (0, 1) wrt 𝑄 , but in the fuzzy sense, it is.
Indeed, the sequence 𝑄 3 𝑦𝑘 = (1/𝑘2, 1/𝑘) = (0, 0) + 1/𝑘 (1/𝑘, 1) converges to 𝑦 from 𝑣 , but Ψ(𝑦𝑘 ) =
(1/𝑘2, 1/𝑘, 1/

√
𝑘) → (0, 0, 0) = Ψ(𝑦) = 𝑥 and thus

‖Ψ(𝑦𝑘 ) − Ψ(𝑦)‖/‖𝑦𝑘 − 𝑦 ‖ ≥
√
𝑘 →∞.

On the other hand, the sequence 𝑄 3 �̃�𝑘 = (0, 1/𝑘) = (0, 0) + 1/𝑘 (0, 1) also converges to 𝑦 from 𝑣 with
Ψ(�̃�𝑘 ) = Ψ(𝑦).
We have 𝑦∗ = (−1, 0) ∈ 𝑁𝑄 (𝑦, 𝑣). The only direction 𝑢 ∈ 𝑇𝐶 (𝑥) = ℝ− ×ℝ × {0} ∪ {0} × {0} ×ℝ+

with ∇𝜑 (𝑥)𝑢 = 𝑣 , however, is 𝑢 = (0, 1, 0) and ∇𝜑 (𝑥)𝑇 𝑦∗ = (−1, 0, 0) ∉ 𝑁𝐶 (𝑥 ;𝑢) = ℝ+ × {0} ×ℝ. This
shows that the estimate from (ii) does not hold.
In the remaining part of this section we will use the above results to derive other calculus rules

for graphical derivatives of set-valued mappings. Let us just mention that one can also obtain the
corresponding estimates, based on inner calmness*, for the dual constructions dened via directional
normals, such as the directional subdierentials of value (or marginal) functions, see [4, Theorem 4.2],
or the directional coderivatives of compositions or sums of set-valued maps, see [4, Theorems 5.1 and
5.2].
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4.2 chain rule and sum rule for graphical derivatives of set-valued maps

Let us begin with the chain rule. To this end, consider the mappings 𝑆1 : ℝ𝑛 ⇒ ℝ𝑚, 𝑆2 : ℝ𝑚 ⇒ ℝ𝑠

with closed graphs, i.e., 𝑆1 and 𝑆2 are osc, and set 𝑆 = 𝑆2 ◦ 𝑆1. Let (𝑥, 𝑧) ∈ gph 𝑆 and (𝑢,𝑤) ∈ ℝ𝑛 ×ℝ𝑠
be a pair of directions. Finally, consider the “intermediate” map Ξ : ℝ𝑛 ×ℝ𝑠 ⇒ ℝ𝑚 dened by

Ξ(𝑥, 𝑧) := 𝑆1(𝑥) ∩ 𝑆−12 (𝑧) = {𝑦 ∈ 𝑆1(𝑥) | 𝑧 ∈ 𝑆2(𝑦)}.

Following the approach from [44, Theorem 10.37] one has

(4.3) domΞ = gph 𝑆 = 𝜑 (gphΞ), gphΞ = 𝜙−1(gph 𝑆1 × gph 𝑆2),

where 𝜑 : (𝑥, 𝑧, 𝑦) ↦→ (𝑥, 𝑧) and 𝜙 : (𝑥, 𝑧, 𝑦) ↦→ (𝑥, 𝑦, 𝑦, 𝑧). This suggests applying rst the image set
rule from Corollary 4.2 and then the pre-image set rule.

Note also that
Ψ(𝑥, 𝑧) := 𝜑−1(𝑥, 𝑧) ∩ gphΞ = {(𝑥, 𝑧, 𝑦) | 𝑦 ∈ Ξ(𝑥, 𝑧)},

so it is not surprising that the fuzzy inner calmness* assumption, needed for the image set rule, can be
imposed on Ξ, instead of Ψ. As before, we note that gphΞ is closed by continuity of 𝜙 and osc of 𝑆1
and 𝑆2. Taking into account Lemma 2.1, let us assume that Ξ is inner semicompact at (𝑥, 𝑧) wrt domΞ.

On the other hand, for the pre-image set rule we will need metric subregularity of the mapping

𝐹 (𝑥, 𝑧, 𝑦) := gph 𝑆1 × gph 𝑆2 − 𝜙 (𝑥, 𝑧, 𝑦) =
[
gph 𝑆1 − (𝑥, 𝑦)
gph 𝑆2 − (𝑦, 𝑧)

]
.

Theorem 4.5 (Chain rule for graphical derivatives). If Ξ is inner calm* at (𝑥, 𝑧) wrt domΞ in the fuzzy
sense, then

(4.4) 𝐷𝑆 (𝑥, 𝑧) ⊂
⋃

𝑦∈Ξ(𝑥,𝑧)
𝐷𝑆2(𝑦, 𝑧) ◦ 𝐷𝑆1(𝑥, 𝑦).

On the other hand, for any 𝑦 ∈ Ξ(𝑥, 𝑧),

(4.5) 𝐷𝑆2(𝑦, 𝑧) ◦ 𝐷𝑆1(𝑥, 𝑦) ⊂ 𝐷𝑆 (𝑥, 𝑧)

holds provided 𝐹 is metrically subregular at ((𝑥, 𝑦, 𝑧), (0, 0)) and

(4.6) (𝑢, 𝑣, 𝑣,𝑤) ∈ 𝑇gph𝑆1×gph𝑆2 (𝑥, 𝑦, 𝑦, 𝑧) ⇐⇒ (𝑢, 𝑣) ∈ 𝑇gph𝑆1 (𝑥, 𝑦), (𝑣,𝑤) ∈ 𝑇gph𝑆2 (𝑦, 𝑧) .

Proof. Instead of proving the two estimates one by one, we rather propose a proof that emphasizes the
role of the graphical derivative of Ξ. To this end, recall (4.3). First, we claim that, given 𝑦 ∈ Ξ(𝑥, 𝑧) and
𝑣 ∈ 𝐷Ξ((𝑥, 𝑧), 𝑦) (𝑢,𝑤), we have

𝑤 ∈ 𝐷𝑆 (𝑥, 𝑧) (𝑢) and 𝑤 ∈ 𝐷𝑆2(𝑦, 𝑧) ◦ 𝐷𝑆1(𝑥, 𝑦) (𝑢) .

Indeed, since (𝑢,𝑤) = ∇𝜑 (𝑥, 𝑦, 𝑧) (𝑢, 𝑣,𝑤), Corollary 4.2 yields𝑤 ∈ 𝐷𝑆 (𝑥, 𝑧) (𝑢). On the other hand,
∇𝜙 (𝑥, 𝑦, 𝑧) (𝑢, 𝑣,𝑤) = (𝑢, 𝑣, 𝑣,𝑤) and [44, Theorem 6.31] implies (𝑢, 𝑣, 𝑣,𝑤) ∈ 𝑇gph𝑆1×gph𝑆2 (𝑥, 𝑦, 𝑦, 𝑧).
Hence,𝑤 ∈ 𝐷𝑆2(𝑦, 𝑧) ◦ 𝐷𝑆1(𝑥, 𝑦) (𝑢) follows from the forward implication⇒ of (4.6), which always
holds by [44, Proposition 6.41].

Note that we have used the image set and the pre-image set rule, but we have not needed any of the
assumptions. The assumptions are in fact needed to get 𝑦 ∈ Ξ(𝑥, 𝑧) and 𝑣 ∈ 𝐷Ξ((𝑥, 𝑧), 𝑦) (𝑢,𝑤).
Consider𝑤 ∈ 𝐷𝑆 (𝑥, 𝑧) (𝑢). Thanks to the fuzzy inner calmness* of Ξ, Corollary 4.2 precisely gives

𝑦 ∈ Ξ(𝑥, 𝑧) and 𝑣 ∈ 𝐷Ξ((𝑥, 𝑧), 𝑦) (𝑢,𝑤) and (4.4) follows.
Given now 𝑤 ∈ 𝐷𝑆2(𝑦, 𝑧) ◦ 𝐷𝑆1(𝑥, 𝑦) (𝑢), using (4.6) and then the subregularity of 𝐹 (which is

equivalent to the calmness of 𝐹−1), [28, Proposition 1] again yields 𝑣 ∈ 𝐷Ξ((𝑥, 𝑧), 𝑦) (𝑢,𝑤). �
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We point out that the subregularity assumption and (4.6) can be replaced by asking directly for the
implication

(4.7) 𝑤 ∈ 𝐷𝑆2(𝑦, 𝑧) ◦ 𝐷𝑆1(𝑥, 𝑦) (𝑢) =⇒ ∃ 𝑣 ∈ 𝐷Ξ((𝑥, 𝑧), 𝑦) (𝑢,𝑤) .

Thus, if this is satised for every 𝑦 ∈ Ξ(𝑥, 𝑧), we get the exact chain rule

𝐷𝑆 (𝑥, 𝑧) =
⋃

𝑦∈Ξ(𝑥,𝑧)
𝐷𝑆2(𝑦, 𝑧) ◦ 𝐷𝑆1(𝑥, 𝑦) .

Note that in [44, p. 454], the authors argue that it is dicult to obtain a reasonable chain rule for
graphical derivatives, since the image set and pre-image set rules for tangent cones in general work in
“opposite direction”, see [44, Theorems 6.31 and 6.43]. More precisely, the upper estimate of the tangent
cone to image set in [44, Theorem 6.43] was obtained only under quite restrictive assumptions, see the
discussion after Corollary 4.2. Here we see that it can be done using (fuzzy) inner calmness*, which
can be applied in relevant situations, as the previous (and even more so the next) section shows.

Next we briey discuss the situation when one of the mappings is single-valued.
Corollary 4.6. If 𝑆1 is single-valued and calm at 𝑥 , then 𝐷𝑆 (𝑥, 𝑧) ⊂ 𝐷𝑆2(𝑆1(𝑥), 𝑧) ◦ 𝐷𝑆1(𝑥). If 𝑆1 is even
dierentiable at 𝑥 , the opposite inclusion holds as well provided the map

(𝑥, 𝑧, 𝑦) ⇒ (𝑆1(𝑥) − 𝑦) × (gph 𝑆2 − (𝑦, 𝑧))

is metrically subregular at ((𝑥, 𝑧, 𝑆1(𝑥)), (0, 0, 0)).

Proof. If 𝑆1 is single-valued and calm at 𝑥 , then Ξ, given by Ξ(𝑥, 𝑧) = 𝑆1(𝑥) if 𝑧 ∈ 𝑆2(𝑆1(𝑥)) and
Ξ(𝑥, 𝑧) = ∅ otherwise, is single- (or empty-) valued and inner calm at (𝑥, 𝑧) ∈ gph 𝑆 . This shows the
rst statement.
To prove the second, let us rst argue that (4.6) holds for dierentiable 𝑆1. Indeed, given (𝑢, 𝑣,𝑤)

with 𝑣 = ∇𝑆1(𝑥) (𝑢) and (𝑣,𝑤) ∈ 𝑇gph𝑆2 (𝑆1(𝑥), 𝑧), consider 𝑡𝑘 ↓ 0, (𝑣𝑘 ,𝑤𝑘 ) → (𝑣,𝑤) with 𝑧 + 𝑡𝑘𝑤𝑘 ∈
𝑆2(𝑆1(𝑥) + 𝑡𝑘𝑣𝑘 ). We get 𝑆1(𝑥 + 𝑡𝑘𝑢) = 𝑆1(𝑥) + 𝑡𝑘𝑣𝑘 for 𝑣𝑘 = ∇𝑆1(𝑥)𝑢 + 𝑜 (1) → 𝑣 . Thus

(𝑥, 𝑆1(𝑥), 𝑆1(𝑥), 𝑧) + 𝑡𝑘 (𝑢, 𝑣𝑘 , 𝑣𝑘 ,𝑤𝑘 ) ∈ gph 𝑆1 × gph 𝑆2

and (4.6) follows. Finally, it is known and easy to check that the assumed subregularity is equivalent
to the subregularity required by Theorem 4.5 (instead of gph 𝑆1 − (𝑥, 𝑦) we use 𝑆1(𝑥) − 𝑦). �

Corollary 4.7. Assume that 𝑆2 is single-valued. Then (4.4) holds if Ξ is inner calm* at (𝑥, 𝑧) wrt domΞ in
the fuzzy sense. On the other hand, given 𝑦 ∈ Ξ(𝑥, 𝑧), (4.5) holds if 𝑆2 is dierentiable at 𝑦 .

Proof. We show that if 𝑆2 is dierentiable at 𝑦 , (4.7) holds. Consider (𝑢, 𝑣,𝑤) with (𝑢, 𝑣) ∈ 𝑇gph𝑆1 (𝑥, 𝑦)
and𝑤 = ∇𝑆2(𝑦) (𝑣) and let 𝑡𝑘 ↓ 0, (𝑢𝑘 , 𝑣𝑘 ) → (𝑢, 𝑣) with 𝑦 + 𝑡𝑘𝑣𝑘 ∈ 𝑆1(𝑥 + 𝑡𝑘𝑢𝑘 ). We get 𝑆2(𝑦 + 𝑡𝑘𝑣𝑘 ) =
𝑆2(𝑦) +𝑡𝑘𝑤𝑘 for𝑤𝑘 = ∇𝑆2(𝑦)𝑣 +𝑜 (1) → 𝑤 . Thus (𝑥, 𝑧, 𝑦) +𝑡𝑘 (𝑢𝑘 ,𝑤𝑘 , 𝑣𝑘 ) ∈ gphΞ and (4.7) follows. �

Before we present the sum rule, we propose an auxiliary result, interesting on its own. Consider
two osc mappings 𝑆𝑖 : ℝ𝑛 ⇒ ℝ𝑚𝑖 for 𝑖 = 1, 2 and let P : ℝ𝑛 ⇒ ℝ𝑚1 × ℝ𝑚2 be given by P(𝑥) =
𝑆1(𝑥) × 𝑆2(𝑥). Note that P = 𝑆𝑜 ◦ 𝐹1 for 𝐹1 : 𝑥 → (𝑥, 𝑥) and 𝑆𝑜 : (𝑞1, 𝑞2) ⇒ 𝑆1(𝑞1) × 𝑆2(𝑞2) and x
(𝑥, 𝑦) = (𝑥, (𝑦1, 𝑦2)) ∈ gphP.
Proposition 4.8.We have

𝐷P(𝑥, 𝑦) ⊂ 𝐷𝑆1(𝑥, 𝑦1) × 𝐷𝑆2(𝑥, 𝑦2)

and the opposite inclusion holds if the mapping

(4.8) (𝑥, 𝑦, 𝑞) ⇒ ((𝑥, 𝑥) − (𝑞1, 𝑞2)) × (gph 𝑆1 − (𝑞1, 𝑦1)) × (gph 𝑆2 − (𝑞2, 𝑦2))
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is metrically subregular at
(
(𝑥, 𝑦, (𝑥, 𝑥)), (0, . . . , 0)

)
and we have

(4.9) 𝑇gph𝑆1×gph𝑆2 (𝑥, 𝑦1, 𝑥, 𝑦2) = 𝑇gph𝑆1 (𝑥, 𝑦1) ×𝑇gph𝑆2 (𝑥, 𝑦2) .

This is true, in particular, if one of the mappings 𝑆1, 𝑆2 is single-valued and dierentiable at 𝑥 .

Proof. Since 𝑥 → (𝑥, 𝑥) is dierentiable and

gph 𝑆0 = {(𝑞1, 𝑞2, 𝑦1, 𝑦2) | (𝑞1, 𝑦1) ∈ gph 𝑆1, (𝑞2, 𝑦2) ∈ gph 𝑆2} = 𝜎 (gph 𝑆1 × gph 𝑆2),

where 𝜎 merely permutes the variables, Corollary 4.6 readily yields the estimates.
If one of the maps is single-valued and dierentiable, (4.9) follows by the same arguments as used

in the proof of Corollary 4.6. Moreover, the subregularity of mapping (4.8) is implied by its metric
regularity, which reads

𝑥∗1 ∈ 𝐷∗𝑆1(𝑥, 𝑦1) (0), 𝑥∗2 ∈ 𝐷∗𝑆2(𝑥, 𝑦2) (0), 𝑥∗1 + 𝑥∗2 = 0 =⇒ 𝑥∗1 , 𝑥
∗
2 = 0,

see e.g. [4, page 737]. This is clearly true if one of the maps is single-valued and dierentiable. �

Mapping P naturally appears whenever one is dealing with a mapping given by some binary
operation, as we will see next. In order to state the sum rule, let 𝑆1, 𝑆2 be as before but with𝑚1 =𝑚2 =:𝑚
and consider 𝑆 = 𝑆1 + 𝑆2 and (𝑥, 𝑧) ∈ gph 𝑆 . Clearly 𝑆 can be written via P as 𝑆 = 𝐹2 ◦ P for
𝐹2 : (𝑦1, 𝑦2) → 𝑦1 +𝑦2. Thus, the following result follows from Proposition 4.8 and Corollary 4.7, where
the corresponding “intermediate” mapping Ξ : ℝ𝑛 ×ℝ𝑚 ⇒ ℝ𝑚 ×ℝ𝑚 is given by

Ξ(𝑥, 𝑧) := P(𝑥) ∩ 𝐹−12 (𝑧) = {𝑦 = (𝑦1, 𝑦2) ∈ ℝ𝑚 ×ℝ𝑚 | 𝑦1 ∈ 𝑆1(𝑥), 𝑦2 ∈ 𝑆2(𝑥), 𝑦1 + 𝑦2 = 𝑧}.

Theorem 4.9 (Sum rule for graphical derivatives). If Ξ is inner calm* at (𝑥, 𝑧) wrt domΞ in the fuzzy
sense, then

(4.10) 𝐷𝑆 (𝑥, 𝑧) ⊂
⋃

𝑦∈Ξ(𝑥,𝑧)
𝐷𝑆1(𝑥, 𝑦1) + 𝐷𝑆2(𝑥, 𝑦2).

Given 𝑦 ∈ Ξ(𝑥, 𝑧) such that the mapping (4.8) is metrically subregular at
(
(𝑥, 𝑦, (𝑥, 𝑥)), (0, . . . , 0)

)
and

(4.9) holds, we have

(4.11) 𝐷𝑆1(𝑥, 𝑦1) + 𝐷𝑆2(𝑥, 𝑦2) ⊂ 𝐷𝑆 (𝑥, 𝑧) .

In particular, if 𝑆1 is single-valued and dierentiable, we get

𝐷𝑆 (𝑥, 𝑧) = ∇𝑆1(𝑥) + 𝐷𝑆2(𝑥, 𝑧 − 𝑆1(𝑥)).

We conclude this section by another application of map P, namely a product rule, where 𝑆 = 𝑆1 · 𝑆2
for an osc mapping 𝑆2 : ℝ𝑛 ⇒ ℝ𝑚 and a single-valued and dierentiable 𝑆1 : ℝ𝑛 → (ℝ𝑚)𝑙 . More
precisely, 𝑆1(𝑥) is a matrix of𝑚 rows and 𝑙 columns and so

𝑆 (𝑥) =
⋃

𝑦∈𝑆2 (𝑥)
𝑆1(𝑥)𝑇 𝑦 =

⋃
𝑦∈𝑆2 (𝑥)

〈𝑦, 𝑆1〉(𝑥) = 𝐹3 ◦ P(𝑥)

for 𝐹3 : (ℝ𝑚)𝑙 ×ℝ𝑚 → ℝ𝑙 given by 𝐹 (𝐴, 𝑦) = 𝐴𝑇 𝑦 . Taking into account the single-valuedness of 𝑆1,
instead ofP(𝑥)∩𝐹−13 (𝑧),we can use the following simplied “intermediate” mapping Ξ̃ : ℝ𝑛×ℝ𝑙 ⇒ ℝ𝑚 ,
given by

(4.12) Ξ̃(𝑥, 𝑧) := {𝑦 ∈ 𝑆2(𝑥) | 𝑆1(𝑥)𝑇 𝑦 = 𝑧}.

Let (𝑥, 𝑧) ∈ gph 𝑆 and (𝑢,𝑤) ∈ ℝ𝑛 × ℝ𝑙 be a pair of directions. We also provide estimates for the
coderivatives, since they are new and, more importantly, we will use them in the next section.
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Theorem 4.10 (Product rule). If Ξ̃ is inner calm* at (𝑥, 𝑧) wrt dom Ξ̃ in the fuzzy sense, then

𝐷𝑆 (𝑥, 𝑧) (𝑢) =
⋃

𝑦∈Ξ̃(𝑥,𝑧)

∇〈𝑦, 𝑆1〉(𝑥)𝑢 + 𝑆1(𝑥)𝑇𝐷𝑆2(𝑥, 𝑦) (𝑢) .

Moreover, if Ξ̃ is inner calm* at (𝑥, 𝑧) in direction (𝑢,𝑤) wrt dom Ξ̃, then

𝐷∗𝑆 ((𝑥, 𝑧); (𝑢,𝑤)) (𝑧∗) ⊂
⋃

𝑦∈Ξ̃(𝑥,𝑧)

⋃
𝑣∈𝐷Ξ̃( (𝑥,𝑧),𝑦) (𝑢,𝑤)

∇〈𝑦, 𝑆1〉(𝑥)𝑇𝑧∗ + 𝐷∗𝑆2((𝑥, 𝑦); (𝑢, 𝑣)) (𝑆1(𝑥)𝑧∗)

holds for all 𝑧∗ ∈ ℝ𝑙 . Finally, under just the inner semicompactness of Ξ̃, we have

𝐷∗𝑆 (𝑥, 𝑧) (𝑧∗) ⊂
⋃

𝑦∈Ξ̃(𝑥,𝑧)

∇〈𝑦, 𝑆1〉(𝑥)𝑇𝑧∗ + 𝐷∗𝑆2(𝑥, 𝑦) (𝑆1(𝑥)𝑧∗) .

Proof. The statement about the graphical derivative again comes from Corollary 4.7 and Proposition
4.8, taking into account the simple structure of 𝐹3.

On the basis of Theorem 4.3, mimicking the approach from [4, Theorem 5.1], one can derive the
chain rule for the directional coderivatives based on inner calmness*, which looks like [4, formula (26)],
but without the additional union (see the dierence between the estimates in (i) and (ii) of Theorem
4.3). The proof then follows by applying [4, Corollary 5.1] and the corresponding inner calm* version
of [4, Corollary 5.2]. �

5 application: generalized derivatives of the normal cone mapping

In this section, we apply the proposed calculus rules to compute the graphical derivative of the normal
cone mapping and to estimate its directional limiting coderivative. We will show that our calculus-based
approach is very robust and easy to use in the case of simple constraints as well as in the parametrized
setting. We then use the estimates to derive some results regarding the semismoothness* of the normal
cone mapping.

5.1 simple constraints

Consider the simple constraint system 𝑔(𝑥) ∈ 𝐷 , where 𝐷 ⊂ ℝ𝑠 is a convex polyhedral set and
𝑔 : ℝ𝑛 → ℝ𝑠 is twice continuously dierentiable and denote

(5.1) Γ := 𝑔−1(𝐷) = {𝑥 ∈ ℝ𝑛 | 𝑔(𝑥) ∈ 𝐷}.

Moreover, x 𝑥 ∈ Γ and assume that the constraint map 𝑔(𝑥) − 𝐷 is metrically subregular at 𝑥 , which,
in turn, means that the subregularity holds at all 𝑥 near 𝑥 and thus

𝑁Γ (𝑥) = ∇𝑔(𝑥)𝑇𝑁𝐷 (𝑔(𝑥)) .

This shows that the normal cone mapping 𝑥 ′ ⇒ 𝑁Γ (𝑥 ′) can be written as the product of two maps,
the single-valued ∇𝑔 and the set-valued 𝑁𝐷 ◦ 𝑔.

Since the set-valued part contains a composition, let us rst address this issue. To this end, consider
the mapping 𝐹 : ℝ𝑛 ×ℝ𝑠 ⇒ ℝ𝑠 ×ℝ𝑠 given by

𝐹 (𝑥 ′, 𝜆′) := (𝑔(𝑥 ′), 𝜆′) − gph𝑁𝐷

and note that gph (𝑁𝐷 ◦ 𝑔) = 𝐹−1(0, 0).
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Lemma 5.1. Given 𝜆 ∈ 𝑁𝐷 (𝑔(𝑥)), we have

𝜂 ∈ 𝐷 (𝑁𝐷 ◦ 𝑔) (𝑥, 𝜆) (𝑢) =⇒ 𝜂 ∈ 𝐷𝑁𝐷 (𝑔(𝑥), 𝜆) (∇𝑔(𝑥)𝑢) .

If 𝐹 is metrically subregular at
(
(𝑥, 𝜆), (0, 0)

)
in direction (𝑢, 𝜂), the reverse implication holds true as well

and for every 𝜉∗ ∈ ℝ𝑠 we have

𝐷∗(𝑁𝐷 ◦ 𝑔) ((𝑥, 𝜆); (𝑢, 𝜂)) (𝜉∗) ⊂ ∇𝑔(𝑥)𝑇𝐷∗𝑁𝐷 ((𝑔(𝑥), 𝜆); (∇𝑔(𝑥)𝑢, 𝜂)) (𝜉∗) .

Proof. Since gph (𝑁𝐷 ◦ 𝑔) = 𝐹−1(0, 0), [23, Proposition 4.1] yields that

𝜂 ∈ 𝐷 (𝑁𝐷 ◦ 𝑔) (𝑥, 𝜆) (𝑢) =⇒ (0, 0) ∈ 𝐷𝐹 ((𝑥, 𝜆), (0, 0)) (𝑢, 𝜂)

always holds and that the reverse implication, as well as

𝐷∗(𝑁𝐷 ◦ 𝑔) ((𝑥, 𝜆); (𝑢, 𝜂)) (𝜉∗) ⊂ {𝜉 | ∃(𝑎, 𝑏) : (𝜉,−𝜉∗) ∈ 𝐷∗𝐹 (((𝑥, 𝜆), (0, 0)); ((𝑢, 𝜂), 0, 0)) (𝑎, 𝑏)},

hold if 𝐹 is metrically subregular at
(
(𝑥, 𝜆), (0, 0)

)
in direction (𝑢, 𝜂). The claims now follow from the

estimates of derivatives of 𝐹 . Indeed, employing the sum rule from Theorem 4.9 and [4, Corollary 5.3],
respectively, yields

(0, 0) ∈ 𝐷𝐹 ((𝑥, 𝜆), (0, 0)) (𝑢, 𝜂) = (∇𝑔(𝑥)𝑢, 𝜂) −𝑇gph𝑁𝐷
(𝑔(𝑥), 𝜆) ⇐⇒ 𝜂 ∈ 𝐷𝑁𝐷 (𝑔(𝑥), 𝜆) (∇𝑔(𝑥)𝑢)

and

(𝜉,−𝜉∗) ∈ 𝐷∗𝐹 (((𝑥, 𝜆), (0, 0)); ((𝑢, 𝜂), 0, 0)) (𝑎, 𝑏)
=⇒ 𝜉 ∈ ∇𝑔(𝑥)𝑇𝐷∗𝑁𝐷 ((𝑔(𝑥), 𝜆); (∇𝑔(𝑥)𝑢, 𝜂)) (𝜉∗) .

Here, we used the simple formulas for derivatives of the constant mapping (𝑥 ′, 𝜆′) ⇒ gph𝑁𝐷 with
the graph ℝ𝑛+𝑠 × gph𝑁𝐷 , see [4, Lemma 6.1] for more details. �

Now, we can proceed with the estimates for the normal cone mapping.
Theorem 5.2. Given 𝑥∗ ∈ 𝑁Γ (𝑥) for 𝑥 near 𝑥 , for all 𝑢 ∈ ℝ𝑛 we have

𝐷𝑁Γ (𝑥, 𝑥∗) (𝑢) ⊂
⋃

𝜆∈Λ(𝑥,𝑥∗)
∇2〈𝜆,𝑔〉(𝑥)𝑢 + ∇𝑔(𝑥)𝑇𝑁K𝐷 (𝑔 (𝑥),𝜆) (∇𝑔(𝑥)𝑢)

=
⋃

𝜆∈Λ(𝑥,𝑥∗)
∇2〈𝜆,𝑔〉(𝑥)𝑢 + 𝑁KΓ (𝑥,𝑥∗) (𝑢),

where
Λ(𝑥, 𝑥∗) = {𝜆 ∈ 𝑁𝐷 (𝑔(𝑥)) | ∇𝑔(𝑥)𝑇𝜆 = 𝑥∗}.

The opposite inclusion holds if 𝐹 is metrically subregular at
(
(𝑥, 𝜆), (0, 0)

)
for every 𝜆 ∈ Λ(𝑥, 𝑥∗) in

direction (𝑢, 𝜂) for every 𝜂 ∈ 𝑁K𝐷 (𝑔 (𝑥),𝜆) (∇𝑔(𝑥)𝑢). This is true, in particular, if the following non-
degeneracy condition in direction 𝑢

(5.2) ∇𝑔(𝑥)𝑇 𝜇 = 0, 𝜇 ∈ sp𝑁𝑇𝐷 (𝑔 (𝑥)) (∇𝑔(𝑥)𝑢) =⇒ 𝜇 = 0

holds. Then, however, for all𝑤∗ ∈ ℝ𝑛 and 𝑢∗ ∈ 𝐷𝑁Γ (𝑥, 𝑥∗) (𝑢), we also get

𝐷∗𝑁Γ ((𝑥, 𝑥∗); (𝑢,𝑢∗)) (𝑤∗)
⊂

⋃
𝜆∈Λ(𝑥,𝑥∗)

⋃
𝜂∈𝐷Λ( (𝑥,𝑥∗),𝜆) (𝑢,𝑢∗)

∇2〈𝜆,𝑔〉(𝑥)𝑤∗ + ∇𝑔(𝑥)𝑇𝐷∗𝑁𝐷 ((𝑔(𝑥), 𝜆); (∇𝑔(𝑥)𝑢, 𝜂)) (∇𝑔(𝑥)𝑤∗).
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Proof. Theorem 3.9 (ii) yields that the multiplier mapping Λ(𝑥, 𝑥∗) is inner calm* at (𝑥, 𝑥∗) wrt its
domain in the fuzzy sense. Noting thatΛ is precisely the “intermediate”mapping Ξ̃ from (4.12) appearing
in the product rule from Theorem 4.10, we obtain

(5.3) 𝐷𝑁Γ (𝑥, 𝑥∗) (𝑢) =
⋃

𝜆∈Λ(𝑥,𝑥∗)
∇2〈𝜆,𝑔〉(𝑥)𝑢 + ∇𝑔(𝑥)𝑇𝐷 (𝑁𝐷 ◦ 𝑔) (𝑥, 𝜆) (𝑢).

Next, Lemma 5.1 gives

(5.4) 𝐷 (𝑁𝐷 ◦ 𝑔) (𝑥, 𝜆) (𝑢) ⊂ 𝐷𝑁𝐷 (𝑔(𝑥), 𝜆) (∇𝑔(𝑥)𝑢) = 𝑁K𝐷 (𝑔 (𝑥),𝜆) (∇𝑔(𝑥)𝑢),

where the equality corresponds to an equivalent reformulation of the reduction lemma (3.4). Moreover,
for every 𝜆 ∈ Λ(𝑥, 𝑥∗) it holds that

KΓ (𝑥, 𝑥∗) = ∇𝑔(𝑥)−1K𝐷 (𝑔(𝑥), 𝜆).

Since𝑢 ⇒ ∇𝑔(𝑥)𝑢−K𝐷 (𝑔(𝑥), 𝜆) is a polyhedral map and hence metrically subregular by the Robinson’s
results [42, Proposition 1], we obtain

𝑁KΓ (𝑥,𝑥∗) (𝑢) = ∇𝑔(𝑥)𝑇𝑁K𝐷 (𝑔 (𝑥),𝜆) (∇𝑔(𝑥)𝑢)

and the rst claim follows.
The opposite inclusion follows from the opposite inclusion in (5.4), which holds true under the

subregularity assumption by Lemma 5.1.
The claim that the non-degeneracy condition implies the subregularity assumption was proven in [5,

Theorem 2.11]. Moreover, from Theorem 3.9 (iii) we get that the non-degeneracy also implies the inner
calmness* of Λ at (𝑥, 𝑥∗) in direction (𝑢,𝑢∗) wrt its domain. Theorem 4.10 thus gives the estimate

𝐷∗𝑁Γ ((𝑥, 𝑥∗); (𝑢,𝑢∗)) (𝑤∗)
⊂

⋃
𝜆∈Λ(𝑥,𝑥∗)

⋃
𝜂∈𝐷Λ( (𝑥,𝑥∗),𝜆) (𝑢,𝑢∗)

∇2〈𝜆,𝑔〉(𝑥)𝑤∗ + 𝐷∗(𝑁𝐷 ◦ 𝑔) ((𝑥, 𝜆); (𝑢, 𝜂)) (∇𝑔(𝑥)𝑤∗)

and using Lemma 5.1 again completes the proof. �

Note that the auxiliary formula (5.3) holds without additional assumptions. Moreover, Theorem 3.9
(i) yields that the analogous estimate for the standard limiting coderivative holds for any closed set 𝐷 ,
which is Clarke regular near 𝑔(𝑥), in particular for any closed convex set 𝐷 . Finally, note also that the
formula for the graphical derivative reveals that the reduction lemma for polyhedral set 𝐷 , see (5.4), is
carried over to set Γ with the additional curvature term ∪𝜆∈Λ(𝑥,𝑥∗)∇2〈𝜆,𝑔〉(𝑥)𝑢.

As a specic application we derive the following result regarding the semismoothness* of 𝑁Γ .
Corollary 5.3. If the non-degeneracy condition (5.2) is satised for some 𝑥,𝑢 ∈ ℝ𝑛 , then the normal cone
mapping 𝑥 ′ ⇒ 𝑁Γ (𝑥 ′) is semismooth* at (𝑥, 𝑥∗) in direction (𝑢,𝑢∗) for every 𝑥∗, 𝑢∗ ∈ ℝ𝑛 , i.e.,

〈𝑢,𝑤〉 = 〈𝑢∗,𝑤∗〉 ∀ (𝑤∗,𝑤) ∈ gph𝐷∗𝑁Γ ((𝑥, 𝑥∗); (𝑢,𝑢∗)).

Proof. Clearly, if 𝑥∗ ∉ 𝑁Γ (𝑥) or 𝑢∗ ∉ 𝐷𝑁Γ (𝑥, 𝑥∗) (𝑢), then 𝐷∗𝑁Γ ((𝑥, 𝑥∗); (𝑢,𝑢∗)) = ∅ and there is
nothing to prove. Hence, let𝑢∗ ∈ 𝐷𝑁Γ (𝑥, 𝑥∗) (𝑢) and consider𝑤 ∈ 𝐷∗𝑁Γ ((𝑥, 𝑥∗); (𝑢,𝑢∗)) (𝑤∗). Theorem
5.2 yields the existence of 𝜆 ∈ Λ(𝑥, 𝑥∗), 𝜂 ∈ 𝐷𝑁𝐷 (𝑔(𝑥), 𝜆) (∇𝑔(𝑥)𝑢) and

𝜁 ∈ 𝐷∗𝑁𝐷 ((𝑔(𝑥), 𝜆); (∇𝑔(𝑥)𝑢, 𝜂)) (∇𝑔(𝑥)𝑤∗)

such that
𝑢∗ = ∇2〈𝜆,𝑔〉(𝑥)𝑢 + ∇𝑔(𝑥)𝑇𝜂 and 𝑤 = ∇2〈𝜆,𝑔〉(𝑥)𝑤∗ + ∇𝑔(𝑥)𝑇 𝜁 .
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Since the polyhedral map (𝑦, 𝜆) ⇒ 𝑁𝐷 (𝑦, 𝜆) is semismooth* at every point of its graph, see [25, page
7], we obtain

〈𝑢,𝑤〉 = 〈𝑢,∇2〈𝜆,𝑔〉(𝑥)𝑤∗〉 + 〈𝑢,∇𝑔(𝑥)𝑇 𝜁 〉 = 〈∇2〈𝜆,𝑔〉(𝑥)𝑢,𝑤∗〉 + 〈∇𝑔(𝑥)𝑢, 𝜁 〉
= 〈∇2〈𝜆,𝑔〉(𝑥)𝑢,𝑤∗〉 + 〈𝜂,∇𝑔(𝑥)𝑤∗〉 = 〈∇2〈𝜆,𝑔〉(𝑥)𝑢 + ∇𝑔(𝑥)𝑇𝜂,𝑤∗〉 = 〈𝑢∗,𝑤∗〉.

�

Remark 5.4. In order to show the semismoothness* of the normal come mapping, we need to show
the semismoothness* in every direction (𝑢,𝑢∗). Clearly, the zero direction (𝑢,𝑢∗) = (0, 0) causes no
problem. In order to deal with direction (0, 𝑢∗) ≠ (0, 0), however, we require the non-degeneracy
condition to hold for the zero direction 𝑢 = 0, which is equivalent to the standard non-degeneracy,
see Remark 3.10. This, in turn, quite signicantly simplies the situation, in particular, it implies
uniqueness of 𝜆 and 𝜂, see [24]. This can be avoided if we assume that 𝑢∗ ∈ 𝐷𝑁Γ (𝑥, 𝑥∗) (0) implies
𝑢∗ = 0, which is equivalent with the isolated calmness of the normal cone mapping at (𝑥, 𝑥∗). In such
case we only need the non-degeneracy in all non-zero directions, which is strictly milder than the
standard non-degeneracy as demonstrated in Example 3.11.

5.2 constraints depending on the parameter and the solution

Given again a convex polyhedral set 𝐷 ⊂ ℝ𝑠 and a twice continuously dierentiable function 𝑔 :
ℝ𝑙 ×ℝ𝑛 ×ℝ𝑛 → ℝ𝑠 , consider the feasible set

(5.5) Γ(𝑝, 𝑥) := {𝑧 ∈ ℝ𝑛 | 𝑔(𝑝, 𝑥, 𝑧) ∈ 𝐷}

depending on the parameter 𝑝 as well as on the decision variable 𝑥 . Here, given a reference point
(𝑝, 𝑥) with 𝑔(𝑝, 𝑥, 𝑥) ∈ 𝐷 , we require the existence of 𝜅 > 0 such that for all (𝑝, 𝑥, 𝑧) belonging to a
neighbourhood of (𝑝, 𝑥, 𝑥) the metric inequality

(5.6) dist(𝑧, Γ(𝑝, 𝑥)) ≤ 𝜅dist(𝑔(𝑝, 𝑥, 𝑧), 𝐷)

holds. This yields, in particular, that for all (𝑝, 𝑥, 𝑧) ∈ gph Γ suciently close to (𝑝, 𝑥, 𝑥) the mapping
𝑔(𝑝, 𝑥, ·) − 𝐷 is metrically subregular at (𝑧, 0) with modulus 𝜅. Hence, the normal cone mapping
(𝑝, 𝑥) ⇒ 𝑁Γ (𝑝,𝑥) (𝑥) =: N Γ (𝑝, 𝑥) can be again written as the product

N Γ (𝑦) = 𝛽 (𝑦)𝑇𝑁𝐷 (𝑔(𝑦))

for 𝑔(𝑝, 𝑥) = 𝑔(𝑝, 𝑥, 𝑥), 𝛽 (𝑝, 𝑥) = ∇3𝑔(𝑝, 𝑥, 𝑥) and 𝑦 = (𝑝, 𝑥). Given 𝑥∗ ∈ N Γ (𝑦), we denote

Λ(𝑦, 𝑥∗) = {𝜆 ∈ 𝑁𝐷 (𝑔(𝑦)) | 𝛽 (𝑦)𝑇𝜆 = 𝑥∗}.

Since themodulus𝜅 of subregularity of𝑔(𝑝, 𝑥, ·)−𝐷 does not depend of 𝑝 and𝑥 , we infer the existence
of 𝜆 ∈ Λ(𝑦, 𝑥∗) with ‖𝜆‖ ≤ 𝜅‖𝑥∗‖ and the proof of Corollary 3.6 yields inner semicompactness of Λ at
(𝑦, 𝑥∗) wrt its domain. Moreover, Theorem 3.9 and Remark 3.10 (1.) then imply even inner calmness* of
Λ in the fuzzy sense. The same arguments as in the previous case thus yield the following estimates.
Theorem 5.5. For every 𝑣 ∈ ℝ𝑙 ×ℝ𝑛 we have

𝐷N Γ (𝑦, 𝑥∗) (𝑣) ⊂
⋃

𝜆∈Λ(𝑦,𝑥∗)
∇〈𝜆, 𝛽〉(𝑦)𝑣 + 𝛽 (𝑦)𝑇𝑁K𝐷 (𝑔 (𝑦),𝜆) (∇𝑔(𝑦)𝑣).

On the other hand, given 𝑣 ∈ ℝ𝑙 ×ℝ𝑛 , 𝜆 ∈ Λ(𝑦, 𝑥∗) and 𝜂 ∈ 𝑁K𝐷 (𝑔 (𝑦),𝜆) (∇𝑔(𝑦) (𝑣)), we have

∇〈𝜆, 𝛽〉(𝑦)𝑣 + 𝛽 (𝑦)𝑇𝜂 ∈ 𝐷N Γ (𝑦, 𝑥∗) (𝑣),
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provided the mapping (𝑦 ′, 𝜆′) ⇒
(
𝑔(𝑦 ′), 𝜆′

)
− gph𝑁𝐷 is metrically subregular at

(
(𝑦, 𝜆), (0, 0)

)
in

direction (𝑣, 𝜂), in particular, if

(5.7) ∇𝑔(𝑦)𝑇 𝜇 = 0, 𝜇 ∈ sp𝑁𝑇𝐷 (𝑔 (𝑦)) (∇𝑔(𝑦)𝑣) =⇒ 𝜇 = 0.

Moreover, if also

(5.8) 𝛽 (𝑦)𝑇 𝜇 = 0, 𝜇 ∈ sp𝑁𝑇𝐷 (𝑔 (𝑦)) (∇𝑔(𝑦)𝑣) =⇒ 𝜇 = 0

holds, then for 𝑢∗ ∈ 𝐷N Γ (𝑦, 𝑥∗) (𝑣) and arbitrary𝑤∗ ∈ ℝ𝑛 we get the estimate

𝐷∗N Γ ((𝑦, 𝑥∗); (𝑣,𝑢∗)) (𝑤∗)
⊂

⋃
𝜆∈Λ(𝑦,𝑥∗)

⋃
𝜂∈𝐷Λ( (𝑦,𝑥∗),𝜆) (𝑣,𝑢∗)

∇〈𝜆, 𝛽〉(𝑦)𝑇𝑤∗ + ∇𝑔(𝑦)𝑇𝐷∗𝑁𝐷 ((𝑔(𝑦), 𝜆); (∇𝑔(𝑦)𝑣, 𝜂)) (𝛽 (𝑦)𝑤∗) .

We point out that here we need to impose the two non-degeneracy conditions (5.8) and (5.7). In
general, these two conditions are mutually incomparable, as can be seen from

∇𝑔(𝑝, 𝑥) = (∇1𝑔(𝑝, 𝑥, 𝑥),∇2𝑔(𝑝, 𝑥, 𝑥) + 𝛽 (𝑝, 𝑥)) .

If, however, ∇2𝑔 = 0, in particular if the feasible set Γ depends only of 𝑝 but not on 𝑥 , we get ∇𝑔(𝑝, 𝑥) =
(∇1𝑔(𝑝, 𝑥, 𝑥), 𝛽 (𝑝, 𝑥)) and, in this case, (5.8) implies (5.7). Naturally, these conditions become equivalent
if also ∇1𝑔 = 0, which covers the previous case of non-parametrized constraints.
Let us add a few comments on existing results on the topic. This model was investigated already

in [40] by using the classical calculus of Mordukhovich. Recently, in [24], Gfrerer and Outrata also
computed the derivatives of the normal cone mapping (𝑝 ′, 𝑥 ′) ⇒ 𝑁Γ (𝑝′,𝑥′) (𝑥 ′). Instead of (5.6) or
(5.8), however, they imposed the standard non-degeneracy condition (5.8) for 𝑣 = 0, which guarantees
uniqueness of the multipliers 𝜆 and 𝜂. The reason was that they were in fact relying on inner calmness
when using calculus rules, see, e.g., [24, Lemmas 4.1 and 4.2].

On the other hand, in [5], we worked with the same assumption (5.6) and proved the same result
for the graphical derivative. The explicit estimation of the coderivative was, however, bypassed by
addressing the related stability issues directly, see [5, Theorem 6.1].

Let us also mention the paper [20] dealing with the constraints depending on 𝑝 , but not on 𝑥 . This
paper delivers stronger results even in a more general setting that goes beyond polyhedrality. In
particular, the formula for the graphical derivative is in fact valid without the additional subregularity
assumption, see [20, Theorem 3.3]. Naturally, the same applies to the non-parametrized setting.
We point out that in [5, 24] the formula for the graphical derivative is derived from [20, Theorem

5.3]. Our calculus-based approach seems to be a bit simpler and it is easily applicable regardless of
whether Γ is a xed set or it depends on 𝑝 and 𝑥 .

We conclude this section by the corresponding semismoothness* result.
Corollary 5.6. Under (5.7) and (5.8), the normal cone mapping (𝑝 ′, 𝑥 ′) ⇒ 𝑁Γ (𝑝′,𝑥′) (𝑥 ′) is semismooth* at
(𝑦, 𝑥∗) = (𝑝, 𝑥, 𝑥∗) in direction (𝑣,𝑢∗) = (𝑞,𝑢,𝑢∗) for every 𝑥∗, 𝑢∗ ∈ ℝ𝑛 .

Proof. The proof follows by the same arguments as the proof of Corollary 5.3. We only briey clarify
that the dierence between ∇𝑔 and 𝛽 causes no problem. Indeed, looking at the above theorem and
the proof of Corollary 5.3, we now get

𝜁 ∈ 𝐷∗𝑁𝐷 ((𝑔(𝑦), 𝜆); (∇𝑔(𝑦)𝑣, 𝜂)) (𝛽 (𝑦)𝑤∗)

such that
𝑢∗ = ∇〈𝜆, 𝛽〉(𝑦)𝑣 + 𝛽 (𝑦)𝑇𝜂 and 𝑤 = ∇〈𝜆, 𝛽〉(𝑦)𝑇𝑤∗ + ∇𝑔(𝑦)𝑇 𝜁 .
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The computation then goes as follows

〈𝑣,𝑤〉 = 〈𝑣,∇〈𝜆, 𝛽〉(𝑦)𝑇𝑤∗〉 + 〈𝑣,∇𝑔(𝑦)𝑇 𝜁 〉 = 〈∇〈𝜆, 𝛽〉(𝑦)𝑣,𝑤∗〉 + 〈∇𝑔(𝑦)𝑣, 𝜁 〉
= 〈∇〈𝜆, 𝛽〉(𝑦)𝑣,𝑤∗〉 + 〈𝜂, 𝛽 (𝑦)𝑤∗〉 = 〈∇〈𝜆, 𝛽〉(𝑦)𝑣 + 𝛽 (𝑦)𝑇𝜂,𝑤∗〉 = 〈𝑢∗,𝑤∗〉.

�

final remarks

Motivated by the recent success in the computation of the graphical derivative of the normal cone
mapping to sets with constraint structure, in this paper, we identied the role played by (fuzzy) inner
calmness* and the underlying calculus principles. We hope that it provides some helpful insights into
the matter. We also hope that the new notions will turn out useful also in other circumstances. We
believe that some reasonable topics for further study are readily available: Can isolated calmness be
eectively used as a sucient condition for inner calmness? Is fuzzy inner calmness* also necessary
for validity of the estimate (1.1)? Can the new formulas for tangent cones yield useful estimates for
regular normal cones by polarization and, in turn, enrich the theory of stationarity conditions? We
plan to address these issues in the forthcoming paper.
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