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relations between abs-normal nlps and mpccs.
part 2: weak constraint qualifications

L.C. Hegerhorst-Schultchen∗ C. Kirches† M.C. Steinbach‡

Abstract This work continues an ongoing eort to compare non-smooth optimization problems
in abs-normal form to Mathematical Programs with Complementarity Constraints (MPCCs). We
study general Nonlinear Programs with equality and inequality constraints in abs-normal form,
so-called Abs-Normal NLPs, and their relation to equivalent MPCC reformulations. We introduce
the concepts of Abadie’s and Guignard’s kink qualication and prove relations to MPCC-ACQ
and MPCC-GCQ for the counterpart MPCC formulations. Due to non-uniqueness of a specic
slack reformulation suggested in [10], the relations are non-trivial. It turns out that constraint
qualications of Abadie type are preserved. We also prove the weaker result that equivalence
of Guginard’s (and Abadie’s) constraint qualications for all branch problems hold, while the
question of GCQ preservation remains open. Finally,we introduceM-stationarity and B-stationarity
concepts for abs-normal NLPs and prove rst order optimality conditions corresponding to MPCC
counterpart formulations.

1 introduction

Non-smooth nonlinear optimization problems of the form

(NLP) min
𝑥

𝑓 (𝑥) s.t. 𝑔(𝑥) = 0, ℎ(𝑥) ≥ 0,

where 𝐷𝑥 ⊆ ℝ𝑛 is open, the objective 𝑓 ∈ 𝐶𝑑 (𝐷𝑥 ,ℝ) is a smooth function and the equality and
inequality constraints 𝑔 ∈ 𝐶𝑑

abs(𝐷
𝑥 ,ℝ𝑚1) and ℎ ∈ 𝐶𝑑

abs(𝐷
𝑥 ,ℝ𝑚2) are level-1 non-smooth functions that

can be written in abs-normal form [3] have been considered by the authors in [10]. In this problem
class, the non-smoothness is caused by nitely many occurrences of the absolute value function,
the branches of which we represent by signature matrices Σ = diag(𝜎) with 𝜎 ∈ {−1, 0, 1}𝑠 . We nd
functions 𝑐E ∈ 𝐶𝑑 (𝐷𝑥, |𝑧 |,ℝ𝑚1), 𝑐I ∈ 𝐶𝑑 (𝐷𝑥, |𝑧 |,ℝ𝑚2) and 𝑐Z ∈ 𝐶𝑑 (𝐷𝑥, |𝑧 |,ℝ𝑠) with 𝐷𝑥, |𝑧 | = 𝐷𝑥 × 𝐷 |𝑧 | ,
𝐷 |𝑧 | ⊆ ℝ𝑠 open and symmetric (i.e., 𝑧 ∈ 𝐷 |𝑧 | implies Σ𝑧 ∈ 𝐷 |𝑧 | for every signature matrix Σ) such that

𝑔(𝑥) = 𝑐E (𝑥, |𝑧 |),
ℎ(𝑥) = 𝑐I (𝑥, |𝑧 |),(ANF)

𝑧 = 𝑐Z (𝑥, |𝑧 |) with 𝜕2𝑐Z (𝑥, |𝑧 |) strictly lower triangular.
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Here we use a single joint switching constraint 𝑐Z for both 𝑔 and ℎ, and reuse switching variables 𝑧𝑖 if
the same argument repeats as an absolute value argument in 𝑔 or ℎ. Due to the strictly lower triangular
form of 𝜕2𝑐Z (𝑥, |𝑧 |), component 𝑧 𝑗 of 𝑧 can be computed from 𝑥 and the components 𝑧𝑖 , 𝑖 < 𝑗 . Hence,
the variable 𝑧 is implicitly dened by 𝑧 = 𝑐Z (𝑥, |𝑧 |), and to denote this dependence explicitly, we write
𝑧 (𝑥) in the following. Whenever we address questions of solvability of this system, we make use of
the reformulation |𝑧𝑖 | = sign(𝑧𝑖)𝑧𝑖 .
Definition 1.1 (Signature of 𝑧). Let 𝑥 ∈ 𝐷𝑥 . We dene the signature 𝜎 (𝑥) and the associated signature
matrix Σ(𝑥) as

𝜎 (𝑥) := sign(𝑧 (𝑥)) ∈ {−1, 0, 1}𝑠 and Σ(𝑥) := diag(𝜎 (𝑥)) .

A signature vector 𝜎 (𝑥) ∈ {−1, 1}𝑠 is called denite, otherwise indenite.
For signatures 𝜎, �̂� ∈ {−1, 0, 1}𝑠 , it is convenient to use the partial order

�̂� � 𝜎 ⇐⇒ �̂�𝑖𝜎𝑖 ≥ 𝜎2
𝑖 for 𝑖 = 1, . . . , 𝑠,

i.e., �̂�𝑖 is arbitrary if 𝜎𝑖 = 0 and �̂�𝑖 = 𝜎𝑖 otherwise. Thus, we may write |𝑧 (𝑥) | = Σ𝑧 (𝑥) for every
𝜎 � 𝜎 (𝑥). Further, we may consider the system 𝑧 = 𝑐Z (𝑥, Σ𝑧) for xed signature Σ = Σ(𝑥) around a
point of interest 𝑥 . By the implicit function theorem, the system has a locally unique solution 𝑧 (𝑥) for
xed signature Σ, and the associated Jacobian at 𝑥 reads

𝜕𝑥𝑧 (𝑥) = [𝐼 − 𝜕2𝑐Z (𝑥, |𝑧 (𝑥) |)Σ]−1𝜕1𝑐Z (𝑥, |𝑧 (𝑥) |) ∈ ℝ𝑠×𝑛 .

Definition 1.2 (Active Switching Set).We call the switching variable 𝑧𝑖 active if 𝑧𝑖 (𝑥) = 0. The active
switching set 𝛼 consists of all indices of active switching variables,

𝛼 (𝑥) := {1 ≤ 𝑖 ≤ 𝑠 : 𝑧𝑖 (𝑥) = 0}.

The numbers of active and inactive switching variables are |𝛼 (𝑥) | and |𝜎 (𝑥) | := 𝑠 − |𝛼 (𝑥) |.

literature

Griewank and Walther have developed a class of unconstrained abs-normal problems in [3, 4]. These
problems oer particularly attractive theoretical features when generalizing KKT theory and stationar-
ity concepts to non-smooth problems. Under certain regularity conditions, they are computationally
tractable by active-set type algorithms with guaranteed convergence based on piecewise linearizations
and using algorithmic dierentiation techniques [5, 6].
Another important class of non-smooth optimization problems are Mathematical Programs with

Complementarity (or Equilibrium) Constraints (MPCCs, MPECs); an overview can be found in the
book [12]. Since standard theory for smooth optimization problems cannot be applied, new constraint
qualications and corresponding optimality conditions were introduced. By now, there is a large body
of literature on MPCCs, and we refer to [16] for an overview of the basic concepts and theory. In this
paper, constraint qualications for MPCCs in the sense of Abadie and Guignard and corresponding
stationarity concepts (in particular M-stationarity and MPCC-linearized B-stationarity) are considered.
Details can be found in [14], [12] and [1].

In [8] we have shown that unconstrained abs-normal problems constitute a subclass of MPCCs. In
addition, we have studied regularity concepts of linear independence and of Mangasarian-Fromovitz
type. As a direct generalization of unconstrained abs-normal problems we have considered NLPs with
abs-normal constraints, which turned out to be equivalent to the class of MPCCs. In [10] we have
extended optimality conditions of unconstrained abs-normal problems to general abs-normal NLPs
under the linear independence kink qualication using a reformulation of inequalities with absolute
value slacks. We have compared these optimality conditions to concepts of MPCCs in [9]. We have
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also shown that the above slack reformulation preserves kink qualications of linear independece type
but not of Mangasarian-Fromovitz type. More details and additional information about these results as
well as about the results in this paper can be found in [7].

contributions.

In the present article we extend our detailed comparative study of general abs-normal NLPs andMPECs,
considering constraint qualications of Abadie andGuignard type both for the standard formulation and
for the reformulation with absolute value slacks. In particular, we show that constraint qualications
of Abadie type are equivalent for abs-normal NLPs and MPCCs and that they are preserved under
the slack reformulation. For constraint qualications of Guignard type we cannot prove equivalence
but only certain implications. However, when considering branch problems of abs-normal NLPs and
MPCCs, we again obtain equivalence of constraint qualications of Abadie and Guignard type, even
under the slack reformulation. Finally we introduce Mordukhovich and Bouligand stationarity concepts
for abs-normal NLPs and prove rst order optimality conditions using the corresponding concepts for
MPCCs.

structure.

The remainder of this article is structured as follows. In Section 2 we state the general abs-normal
NLP and its reformulation with absolute value slacks that permits to dispose of inequalities. We
also present the branch structure of both formulations and introduce appropriate denitions of the
tangent cone and the linearized cone. Using these tools, we introduce kink qualications in the sense
of Abadie and Guignard. In terms of these two kink qualications, we then compare the regularity of
the equality-constrained form of an abs-normal NLP to the inequality-constrained one. In Section 3 we
introduce counterpart MPCCs for the two formulations of abs-normal NLPs and discuss the associated
MPCC-constraint qualications, namely MPCC-ACQ and MPCC-GCQ. In Section 4 we investigate
the interrelation of the regularity concepts for abs-normal NLPs and MPECs and nd the situation
to be more intricate than under LICQ and MFCQ discussed in [10]. Finally, in Section 5 we introduce
abs-normal variants of M-stationarity and B-stationarity as rst order necessary optimality conditions
for abs-normal NLPs and prove equivalence relations for the respective MPCC stationarity conditions.
We conclude with Section 6.

2 inequality and equality constrained formulations

In this section we consider two dierent treatments of inequality constraints for non-smooth NLPs in
abs-normal form.

2.1 general abs-normal nlps

Substituting the representation (ANF) of constraints in abs-normal form into the general problem
(NLP), we obtain a general abs-normal NLP. Here, we use the variables (𝑡, 𝑧𝑡 ) instead of (𝑥, 𝑧) and
analogously 𝜎𝑡 (𝑡) and 𝛼𝑡 (𝑡) instead of 𝜎 (𝑥) and 𝛼 (𝑥).
Definition 2.1 (Abs-Normal NLP). Let 𝐷𝑡 be an open subset of ℝ𝑛𝑡 . A non-smooth NLP is called
an abs-normal NLP if functions 𝑓 ∈ 𝐶𝑑 (𝐷𝑡 ,ℝ), 𝑐E ∈ 𝐶𝑑 (𝐷𝑡, |𝑧𝑡 |,ℝ𝑚1), 𝑐I ∈ 𝐶𝑑 (𝐷𝑡, |𝑧𝑡 |,ℝ𝑚2), and
𝑐Z ∈ 𝐶𝑑 (𝐷𝑡, |𝑧𝑡 |,ℝ𝑠𝑡 ) with 𝑑 ≥ 1 exist such that it reads

(I-NLP) min
𝑡,𝑧𝑡

𝑓 (𝑡) s.t. 𝑐E (𝑡, |𝑧𝑡 |) = 0, 𝑐I (𝑡, |𝑧𝑡 |) ≥ 0, 𝑐Z (𝑡, |𝑧𝑡 |) − 𝑧𝑡 = 0,
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where 𝐷 |𝑧𝑡 | is open and symmetric and 𝜕2𝑐Z (𝑥, |𝑧𝑡 |) is strictly lower triangular. The feasible set of
(I-NLP) is Fabs := {(𝑡, 𝑧𝑡 ) : 𝑐E (𝑡, |𝑧𝑡 |) = 0, 𝑐I (𝑡, |𝑧𝑡 |) ≥ 0, 𝑐Z (𝑡, |𝑧𝑡 |) = 𝑧𝑡 }.
Definition 2.2 (Active Inequality Set). Let (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs. We call the inequality constraint 𝑖 ∈ I
active if 𝑐𝑖 (𝑡, |𝑧𝑡 (𝑡) |) = 0. The active set A(𝑡) consists of all indices of active inequality constraints,
A(𝑡) = {𝑖 ∈ I : 𝑐𝑖 (𝑡, |𝑧𝑡 (𝑡) |) = 0}. We set 𝑐A := [𝑐𝑖]𝑖∈A(𝑡 ) and denote the number of active inequality
constraints by |A(𝑡) |.

With the goal of considering kink qualications in the spirit of Abadie and Guignard, we dene the
tangent cone and the abs-normal-linearized cone.
Definition 2.3 (Tangent Cone and Abs-Normal-Linearized Cone for (I-NLP)). Consider a feasible point
(𝑡, 𝑧𝑡 ) of (I-NLP). The tangent cone to Fabs at (𝑡, 𝑧𝑡 ) is

Tabs(𝑡, 𝑧𝑡 ) :=
{
(𝛿𝑡, 𝛿𝑧𝑡 )

����� ∃𝜏𝑘 ↘ 0, Fabs 3 (𝑡𝑘 , 𝑧𝑡𝑘 ) → (𝑡, 𝑧𝑡 ):
𝜏−1
𝑘
(𝑡𝑘 − 𝑡, 𝑧𝑡

𝑘
− 𝑧𝑡 ) → (𝛿𝑡, 𝛿𝑧𝑡 )

}
.

With 𝛿𝜁𝑖 := |𝛿𝑧𝑡𝑖 | if 𝑖 ∈ 𝛼𝑡 (𝑡) and 𝛿𝜁𝑖 := 𝜎𝑡𝑖 (𝑡)𝛿𝑧𝑡𝑖 if 𝑖 ∉ 𝛼𝑡 (𝑡), the abs-normal-linearized cone is

T lin
abs (𝑡, 𝑧

𝑡 ) :=

 (𝛿𝑡, 𝛿𝑧𝑡 )

�������
𝜕1𝑐E (𝑡, |𝑧𝑡 |)𝛿𝑡 + 𝜕2𝑐E (𝑡, |𝑧𝑡 |)𝛿𝜁 = 0,
𝜕1𝑐A (𝑡, |𝑧𝑡 |)𝛿𝑡 + 𝜕2𝑐A (𝑡, |𝑧𝑡 |)𝛿𝜁 ≥ 0,
𝜕1𝑐Z (𝑡, |𝑧𝑡 |)𝛿𝑡 + 𝜕2𝑐Z (𝑡, |𝑧𝑡 |)𝛿𝜁 = 𝛿𝑧𝑡

 .

To prove that the tangent cone is a subset of the abs-normal-linearized cone, we follow an idea from
[1], where an analogous result for MPCCs was obtained. First, we need the denition of the smooth
branch NLPs for (I-NLP) with their standard tangent cones and linearized cones.
Definition 2.4 (Branch NLPs for (I-NLP)). Consider a feasible point (𝑡, 𝑧𝑡 ) of (I-NLP). Choose 𝜎𝑡 ∈
{−1, 1}𝑠𝑡 with 𝜎𝑡 � 𝜎𝑡 (𝑡) and set Σ𝑡 = diag(𝜎𝑡 ). The branch problem NLP(Σ𝑡 ) is dened as

min
𝑡,𝑧𝑡

𝑓 (𝑡) s.t. 𝑐E (𝑡, Σ𝑡𝑧𝑡 ) = 0, 𝑐I (𝑡, Σ𝑡𝑧𝑡 ) ≥ 0,
𝑐Z (𝑡, Σ𝑡𝑧𝑡 ) − 𝑧𝑡 = 0, Σ𝑡𝑧𝑡 ≥ 0.(NLP(Σ𝑡 ))

The feasible set of (NLP(Σ𝑡 )), which always contains (𝑡, 𝑧𝑡 ), is denoted by FΣ𝑡 .
Definition 2.5 (Tangent Cone and Linearized Cone for (NLP(Σ𝑡 ))). Given (NLP(Σ𝑡 )), consider a feasible
point (𝑡, 𝑧𝑡 ). The tangent cone to FΣ𝑡 at (𝑡, 𝑧𝑡 ) is

TΣ𝑡 (𝑡, 𝑧𝑡 ) :=
{
(𝛿𝑡, 𝛿𝑧𝑡 )

����� ∃𝜏𝑘 ↘ 0, FΣ𝑡 3 (𝑡𝑘 , 𝑧𝑡𝑘 ) → (𝑡, 𝑧𝑡 ):
𝜏−1
𝑘
(𝑡𝑘 − 𝑡, 𝑧𝑡

𝑘
− 𝑧𝑡 ) → (𝛿𝑡, 𝛿𝑧𝑡 )

}
.

The linearized cone is

T lin
Σ𝑡 (𝑡, 𝑧𝑡 ) :=


(𝛿𝑡, 𝛿𝑧𝑡 )

���������
𝜕1𝑐E (𝑡, Σ𝑡𝑧𝑡 )𝛿𝑡 + 𝜕2𝑐E (𝑡, Σ𝑡𝑧𝑡 )Σ𝑡𝛿𝑧𝑡 = 0,
𝜕1𝑐A (𝑡, Σ𝑡𝑧𝑡 )𝛿𝑡 + 𝜕2𝑐A (𝑡, Σ𝑡𝑧𝑡 )Σ𝑡𝛿𝑧𝑡 ≥ 0,
𝜕1𝑐Z (𝑡, Σ𝑡𝑧𝑡 )𝛿𝑡 + 𝜕2𝑐Z (𝑡, Σ𝑡𝑧𝑡 )Σ𝑡𝛿𝑧𝑡 = 𝛿𝑧𝑡 ,

𝜎𝑡𝑖 𝛿𝑧
𝑡
𝑖 ≥ 0, 𝑖 ∈ 𝛼𝑡 (𝑡)


.

Remark 2.6. Observe that |𝑧𝑡 | = Σ𝑡𝑧𝑡 in Denition 2.4 and Denition 2.5, and for every Σ𝑡 we have
FΣ𝑡 ⊆ Fabs, TΣ𝑡 (𝑡, 𝑧𝑡 ) ⊆ Tabs(𝑡, 𝑧𝑡 ), and T lin

Σ𝑡
(𝑡, 𝑧𝑡 ) ⊆ T lin

abs (𝑡, 𝑧
𝑡 ).

Lemma 2.7. Consider a feasible point (𝑡, 𝑧𝑡 ) of (I-NLP) with associated branch problems (NLP(Σ𝑡 )). Then,
the following decompositions of the tangent cone and of the abs-normal-linearized cone of (I-NLP) hold:

Tabs(𝑡, 𝑧𝑡 ) =
⋃
Σ𝑡

TΣ𝑡 (𝑡, 𝑧𝑡 ) and T lin
abs (𝑡, 𝑧

𝑡 ) =
⋃
Σ𝑡

T lin
Σ𝑡 (𝑡, 𝑧𝑡 ).
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Proof. We rst consider the tangent cones and show that a neighborhood N of (𝑡, 𝑧𝑡 ) exists such that

Fabs ∩ N =
⋃
Σ𝑡

(FΣ𝑡 ∩ N) .

The inclusion ⊇ holds for every neighborhood N since FΣ𝑡 ⊆ Fabs for all Σ𝑡 . To show the inclusion ⊆
we consider an index 𝑖 ∉ 𝛼𝑡 (𝑡). Then, by continuity, 𝜖𝑖 > 0 exists with 𝜎𝑡𝑖 (𝑡) = 𝜎𝑡𝑖 (𝑡) ∈ {−1, +1} for all
𝑡 ∈ 𝐵𝜖𝑖 (𝑡). Now set 𝜖 := min𝑖∉𝛼𝑡 (𝑡 ) 𝜖𝑖 , N := 𝐵𝜖 ×ℝ𝑛𝑡 , and consider (𝑡, 𝑧𝑡 ) ∈ N ∩ Fabs. With the choice
𝜎𝑡𝑖 = 𝜎𝑡𝑖 (𝑡) for 𝑖 ∉ 𝛼𝑡 (𝑡) and 𝜎𝑡𝑖 = 1 for 𝑖 ∈ 𝛼𝑡 (𝑡) we nd Σ𝑡 = diag(𝜎𝑡 ) such that (𝑡, 𝑧𝑡 ) ∈ N ∩FΣ𝑡 since
𝛼𝑡 (𝑡) ⊆ 𝛼𝑡 (𝑡). Thus,

Fabs ∩ N =
⋃
Σ𝑡

(FΣ𝑡 ∩ N) .

Now, let T (𝑡, 𝑧𝑡 ;F ) generically denote the tangent cone to F at (𝑡, 𝑧𝑡 ). Then,

Tabs(𝑡, 𝑧𝑡 ) = T (𝑡, 𝑧𝑡 ;Fabs) = T (𝑡, 𝑧𝑡 ;Fabs ∩ N) = T (𝑡, 𝑧𝑡 ;⋃Σ𝑡 (FΣ𝑡 ∩ N))
=
⋃
Σ𝑡

T (𝑡, 𝑧𝑡 ;FΣ𝑡 ∩ N) =
⋃
Σ𝑡

T (𝑡, 𝑧𝑡 ;FΣ𝑡 ) =
⋃
Σ𝑡

TΣ𝑡 (𝑡, 𝑧𝑡 ) .

Here the fourth equality holds since the number of branch problems is nite. The decomposition of
T lin
abs follows directly by comparing denitions of T lin

abs and T lin
Σ𝑡

. �

Lemma 2.8. Let (𝑡, 𝑧𝑡 ) be feasible for (I-NLP). Then,

Tabs(𝑡, 𝑧𝑡 ) ⊆ T lin
abs (𝑡, 𝑧

𝑡 ) and Tabs(𝑡, 𝑧𝑡 )∗ ⊇ T lin
abs (𝑡, 𝑧

𝑡 )∗.

Proof. The branch NLPs are smooth, hence the inclusion TΣ𝑡 (𝑡, 𝑧𝑡 ) ⊆ T lin
Σ𝑡

(𝑡, 𝑧𝑡 ) holds by standard NLP
theory. Then, the rst inclusion follows directly from Lemma 2.7 and the second inclusion follows by
dualization of the cones. �

In general, the reverse inclusions do not hold. This leads to the following denitions.
Definition 2.9 (Abadie’s and Guignard’s Kink alifications for (I-NLP)). Consider a feasible point
(𝑡, 𝑧𝑡 (𝑡)) of (I-NLP). We say that Abadie’s Kink Qualication (AKQ) holds at 𝑡 if we have Tabs(𝑡, 𝑧𝑡 (𝑡)) =
T lin
abs (𝑡, 𝑧

𝑡 (𝑡)), and that Guignard’s Kink Qualication (GKQ) holds at 𝑡 if Tabs(𝑡, 𝑧𝑡 (𝑡))∗ = T lin
abs (𝑡, 𝑧

𝑡 (𝑡))∗.
The decomposition of cones in Lemma 2.7 and its dualization immediately lead to the next theorem.

Theorem 2.10 (ACQ/GCQ for all (NLP(Σ𝑡 )) implies AKQ/GKQ for (I-NLP)). Consider a feasible point
(𝑡, 𝑧𝑡 (𝑡)) of (I-NLP) with associated branch problems (NLP(Σ𝑡 )). Then, AKQ respectively GKQ holds for
(I-NLP) at 𝑡 if ACQ respectively GCQ holds for all (NLP(Σ𝑡 )) at (𝑡, 𝑧𝑡 (𝑡)).

2.2 abs-normal nlps with inequality slacks

Here, we use absolute values of slack variables to get rid of the inequality constraints. This idea is
due to Griewank. It has been introduced in [10] and has been further investigated in [9]. With slack
variables𝑤 ∈ ℝ𝑚2 , we reformulate (NLP) as follows:

min
𝑡,𝑤

𝑓 (𝑡) s.t. 𝑔(𝑡) = 0, ℎ(𝑡) − |𝑤 | = 0.

Then, we express 𝑔 and ℎ in abs-normal form as in (ANF) and introduce additional switching variables
𝑧𝑤 to handle |𝑤 |. We obtain a class of purely equality-constrained abs-normal NLPs.
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Definition 2.11 (Abs-Normal NLP with Inequality Slacks). An abs-normal NLP posed in the following
form is called an abs-normal NLP with inequality slacks:

min
𝑡,𝑤,𝑧𝑡 ,𝑧𝑤

𝑓 (𝑡) s.t. 𝑐E (𝑡, |𝑧𝑡 |) = 0, 𝑐I (𝑡, |𝑧𝑡 |) − |𝑧𝑤 | = 0,
𝑐Z (𝑡, |𝑧𝑡 |) = 𝑧𝑡 , 𝑤 = 𝑧𝑤,(E-NLP)

where 𝐷 |𝑧𝑡 | is open and symmetric and 𝜕2𝑐Z (𝑡, |𝑧𝑡 |) is strictly lower triangular. The feasible set of
(E-NLP) is denoted by Fe-abs and is a lifting of Fabs.
Remark 2.12. Introducing |𝑤 | converts inequalities to pure equalities without a nonnegativity condition
for the slack variables𝑤 . In [10] we have used this formulation to simplify the presentation of rst
and second order conditions for the general abs-normal NLP under the linear independence kink
qualication (LIKQ). Later we will see that constraint qualications of Abadie type are preserved
under reformulation. Nevertheless, this representation causes some problems. In [9] we have shown
that, in contrast to LIKQ, constraint qualications of Mangasarian-Fromovitz type are not preserved.
Moreover, we cannot prove compatibility of constraint qualications of Guignard type. Also, note that
the equation 𝑤 − 𝑧𝑤 = 0 (and hence 𝑤 ) cannot be eliminated as this would destroy the abs-normal
form. Finally, the signs of nonzero components𝑤𝑖 can be chosen arbitrarily and thus the slack𝑤 is
not uniquely determined. This needs to be taken into account when formulationg kink qualications
(KQ) for (E-NLP).

We are now interested in deriving Abadie’s and Guignard’s KQ for (E-NLP). To this end, we observe
that the formulation (E-NLP) can be seen as a special case of (I-NLP): Let 𝑥 = (𝑡,𝑤), 𝑧 = (𝑧𝑡 , 𝑧𝑤),
𝑓 (𝑥) = 𝑓 (𝑡), 𝑐E (𝑥, |𝑧 |) = (𝑐E (𝑡, |𝑧𝑡 |), 𝑐I (𝑡, |𝑧𝑡 |) − |𝑧𝑤 |), and 𝑐Z (𝑥, |𝑧 |) = (𝑐Z (𝑡, |𝑧𝑡 |),𝑤). Then, we can
rewrite (E-NLP) as

min
𝑥,𝑧

𝑓 (𝑥) s.t. 𝑐E (𝑥, |𝑧 |) = 0, 𝑐Z (𝑥, |𝑧 |) − 𝑧 = 0.

Hence, the following material is readily obtained by specializing the denitions and results in the
previous section.

With 𝛿 = (𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡 , 𝛿𝑧𝑤), Denition 2.3 and𝑤 = 𝑧𝑤 give the tangent cone to Fe-abs at (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤)
as

Te-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) =
{
𝛿

����� ∃𝜏𝑘 ↘ 0, Fe-abs 3 (𝑡𝑘 ,𝑤𝑘 , 𝑧
𝑡
𝑘
, 𝑧𝑤

𝑘
) → (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤):

𝜏−1
𝑘
(𝑡𝑘 − 𝑡,𝑤𝑘 −𝑤, 𝑧𝑡

𝑘
− 𝑧𝑡 ) → (𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡 ), 𝛿𝑧𝑤 = 𝛿𝑤

}
,

and the abs-normal-linearized cone reads

T lin
e-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) =

{
𝛿

����� 𝜕1𝑐I (𝑡, |𝑧𝑡 |)𝛿𝑡 + 𝜕2𝑐I (𝑡, |𝑧𝑡 |)𝛿𝜁 = 𝛿𝜔,

(𝛿𝑡, 𝛿𝑧𝑡 ) ∈ T lin
abs (𝑡, 𝑧

𝑡 ), 𝛿𝑧𝑤 = 𝛿𝑤

}
,

where 𝛼 = (𝛼𝑡 , 𝛼𝑤) and

𝛿𝜁𝑖 =

{
𝜎𝑡𝑖 (𝑡)𝛿𝑧𝑡𝑖 , 𝑖 ∉ 𝛼𝑡 (𝑡)
|𝛿𝑧𝑡𝑖 |, 𝑖 ∈ 𝛼𝑡 (𝑡)

}
, 𝛿𝜔𝑖 =

{
𝜎𝑤
𝑖
(𝑤)𝛿𝑧𝑤

𝑖
, 𝑖 ∉ 𝛼𝑤 (𝑤)

|𝛿𝑧𝑤
𝑖
|, 𝑖 ∈ 𝛼𝑤 (𝑤)

}
.

In Denition 2.4, consider a feasible point (𝑡, �̂�, 𝑧𝑡 , 𝑧𝑤) of (E-NLP). Choose 𝜎𝑡 ∈ {−1, 1}𝑠𝑡 with 𝜎𝑡 �
𝜎𝑡 (𝑡) and 𝜎𝑤 ∈ {−1, 1}𝑚2 with 𝜎𝑤 � 𝜎𝑤 (�̂�). Set Σ𝑡 = diag(𝜎𝑡 ) and Σ𝑤 = diag(𝜎𝑤). Then, the branch
problem NLP(Σ𝑡,𝑤) for Σ𝑡,𝑤 := diag(Σ𝑡 , Σ𝑤) reads

min
𝑡,𝑤,𝑧𝑡 ,𝑧𝑤

𝑓 (𝑡) s.t. 𝑐E (𝑡, Σ𝑡𝑧𝑡 ) = 0, 𝑐I (𝑡, Σ𝑡𝑧𝑡 ) − Σ𝑤𝑧𝑤 = 0,
𝑐Z (𝑡, Σ𝑡𝑧𝑡 ) − 𝑧𝑡 = 0, 𝑤 − 𝑧𝑤 = 0,(NLP(Σ𝑡,𝑤))
Σ𝑡𝑧𝑡 ≥ 0, Σ𝑤𝑧𝑤 ≥ 0.
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The feasible set of (NLP(Σ𝑡,𝑤)), which always contains (𝑡, �̂�, 𝑧𝑡 , 𝑧𝑤), is denoted by FΣ𝑡,𝑤 and is a lifting
of FΣ𝑡 . By Denition 2.5, the tangent cone to FΣ𝑡,𝑤 at (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) reads

TΣ𝑡,𝑤 (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) =
{
𝛿

����� ∃𝜏𝑘 ↘ 0, FΣ𝑡,𝑤 3 (𝑡𝑘 ,𝑤𝑘 , 𝑧
𝑡
𝑘
, 𝑧𝑤

𝑘
) → (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤):

𝜏−1
𝑘
(𝑡𝑘 − 𝑡,𝑤𝑘 −𝑤, 𝑧𝑡

𝑘
− 𝑧𝑡 ) → (𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡 ), 𝛿𝑧𝑤 = 𝛿𝑤

}
with 𝛿 = (𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡 , 𝛿𝑧𝑤). The linearized cone reads

T lin
Σ𝑡,𝑤 (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) =

{
𝛿

����� 𝜕1𝑐I𝛿𝑡 + 𝜕2𝑐IΣ
𝑡𝛿𝑧𝑡 − Σ𝑤𝛿𝑧𝑤 = 0, 𝛿𝑧𝑤 = 𝛿𝑤,

(𝛿𝑡, 𝛿𝑧𝑡 ) ∈ T lin
Σ𝑡

(𝑡, 𝑧𝑡 ), 𝜎𝑤
𝑖
𝛿𝑧𝑤

𝑖
≥ 0, 𝑖 ∈ 𝛼𝑤 (𝑤)

}
.

Here, all partial derivatives are evaluated at (𝑡, Σ𝑡𝑧𝑡 ).
Moreover, we obtain the following decompositions by applying Lemma 2.7 to (E-NLP) at 𝑦 =

(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) with associated branch problems (NLP(Σ𝑡,𝑤)):

Te-abs(𝑦) =
⋃
Σ𝑡,𝑤

TΣ𝑡,𝑤 (𝑦) and T lin
e-abs(𝑦) =

⋃
Σ𝑡,𝑤

T lin
Σ𝑡,𝑤 (𝑦).

As before, the tangent cone is a subset of the linearized cone and the reverse inclusion holds for the
dual cones:

Te-abs(𝑦) ⊆ T lin
e-abs(𝑦) and Te-abs(𝑦)∗ ⊇ T lin

e-abs(𝑦)
∗.

This follows directly by applying Lemma 2.8 to (E-NLP). Again, equality does not hold in general, and
we consider Abadie’s Kink Qualication (AKQ) and Guignard’s Kink Qualication (GKQ) for (E-NLP).

Given a feasible point 𝑦 = (𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤)) of (E-NLP), Denition 2.9 gives AKQ and GKQ at
(𝑡,𝑤), respectively, as

Te-abs(𝑦) = T lin
e-abs(𝑦) and Te-abs(𝑦)∗ = T lin

e-abs(𝑦)
∗.

Remark 2.13. The possible slack values𝑤 ∈𝑊 (𝑡) := {𝑤 : |𝑤 | = 𝑐I (𝑡, |𝑧𝑡 (𝑡) |)} just dier by the signs of
components𝑤𝑖 for 𝑖 ∈ A(𝑡). Thus, neither AKQ nor GKQ depends on the particular choice of𝑤 , and
both conditions are well-dened for (E-NLP).

Now Theorem 2.10 takes the following form.
Theorem 2.14 (ACQ/GCQ for all (NLP(Σ𝑡,𝑤)) implies AKQ/GKQ for (E-NLP)). Consider a feasible point
𝑦 = (𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤)) of (E-NLP) with associated branch problems (NLP(Σ𝑡,𝑤)). Then, AKQ respectively
GKQ for (E-NLP) holds at (𝑡,𝑤) if ACQ respectively GCQ holds for all (NLP(Σ𝑡,𝑤)) at 𝑦 .

2.3 relations of kink qualifications for abs-normal nlps

In this paragraph we discuss the relations of kink qualications for the two dierent formulations
introduced above. Here, equality of the cones and of the dual cones just needs to be considered for one
element of the set𝑊 (𝑡) = {𝑤 : |𝑤 | = 𝑐I (𝑡, |𝑧𝑡 (𝑡) |)}. Then, it holds directly for all other elements by
Remark 2.13.
Theorem 2.15. AKQ for (I-NLP) holds at (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs if and only if AKQ for (E-NLP) holds at
(𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤)) ∈ Fe-abs for any (and hence all)𝑤 ∈𝑊 (𝑡).

Proof. As Tabs(𝑡, 𝑧𝑡 ) ⊆ T lin
abs (𝑡, 𝑧

𝑡 ) and Te-abs(𝑡, 𝑧𝑡 ) ⊆ T lin
e-abs(𝑡, 𝑧

𝑡 ) always hold, we just need to prove

Tabs(𝑡, 𝑧𝑡 ) ⊇ T lin
abs (𝑡, 𝑧

𝑡 ) ⇐⇒ Te-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) ⊇ T lin
e-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤).

Hegerhorst-Schultchen, Kirches, Steinbach Relations Between Abs-Normal NLPs and MPCCs. Part 2: . . .



J. Nonsmooth Anal. Optim. 2 (2021), 6673 page 8 of 22

We start with the implication “⇒”. Let 𝛿 = (𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡 , 𝛿𝑧𝑤) ∈ T lin
e-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤). Then, we have

𝛿 = (𝛿𝑡, 𝛿𝑧𝑡 ) ∈ T lin
abs (𝑡, 𝑧

𝑡 ) = Tabs(𝑡, 𝑧𝑡 ). Hence, there exist sequences (𝑡𝑘 , 𝑧𝑡𝑘 ) ∈ Fabs and 𝜏𝑘 ↘ 0 with
(𝑡𝑘 , 𝑧𝑡𝑘 ) → (𝑡, 𝑧𝑡 ) and 𝜏−1

𝑘
(𝑡𝑘 − 𝑡, 𝑧𝑡

𝑘
− 𝑧𝑡 ) → (𝛿𝑡, 𝛿𝑧𝑡 ). Now, dene

Σ𝑤 = diag(𝜎) with 𝜎𝑖 =

{
𝜎𝑤 (𝑤𝑖), 𝑖 ∉ 𝛼𝑤 (𝑤),
sign(𝛿𝑧𝑤

𝑖
), 𝑖 ∈ 𝛼𝑤 (𝑤),

and set 𝑧𝑤
𝑘
:= 𝑤𝑘 := Σ𝑤𝑐I (𝑡𝑘 , |𝑧𝑡𝑘 |). Then, we have 𝑧

𝑤 = 𝑤 = Σ𝑤𝑐I (𝑡, |𝑧𝑡 |) and obtain

𝑧𝑤
𝑘
− 𝑧𝑤 = Σ𝑤 [𝑐I (𝑡𝑘 , |𝑧𝑡𝑘 |) − 𝑐I (𝑡, |𝑧𝑡 |)]

= Σ𝑤 [𝜕1𝑐I (𝑡, |𝑧𝑡 |) (𝑡𝑘 − 𝑡) + 𝜕2𝑐I (𝑡, |𝑧𝑡 |) ( |𝑧𝑡𝑘 | − |𝑧𝑡 |) + 𝑜 (‖(𝑡𝑘 − 𝑡, |𝑧𝑡
𝑘
| − |𝑧𝑡 |) ‖)] .

Further, for 𝑘 large enough we have |𝑧𝑡
𝑘
| − |𝑧𝑡 | = Σ𝑡

𝑘
𝑧𝑡
𝑘
− Σ𝑡𝑧𝑡 using Σ𝑡

𝑘
= diag(𝜎𝑡

𝑘
) with 𝜎𝑡

𝑘
= 𝜎 (𝑡𝑘 ) and

Σ𝑡 = diag(𝜎𝑡 ) with 𝜎𝑡 = 𝜎 (𝑡). Then, we obtain for 𝑧𝑡𝑖 ≠ 0

𝜏−1
𝑘
( | (𝑧𝑡

𝑘
)𝑖 | − |𝑧𝑡𝑖 |) = 𝜏−1

𝑘
𝜎𝑡𝑖 ((𝑧𝑡𝑘 )𝑖 − 𝑧𝑡𝑖 ) → 𝜎𝑡𝑖 𝛿𝑧

𝑡
𝑖 .

For 𝑧𝑡𝑖 = 0 we have 𝜏−1
𝑘
(𝑧𝑡

𝑘
)𝑖 → 𝛿𝑧𝑡𝑖 and hence

𝜏−1
𝑘
( | (𝑧𝑡

𝑘
)𝑖 | − |𝑧𝑡𝑖 |) = 𝜏−1

𝑘
| (𝑧𝑡

𝑘
)𝑖 | → |𝛿𝑧𝑡𝑖 |.

Thus, 𝜏−1
𝑘
( | (𝑧𝑡

𝑘
) | − |𝑧𝑡 |) → 𝛿𝜁 holds, and in total

𝜏−1
𝑘
(𝑧𝑤

𝑘
− 𝑧𝑤) → Σ𝑤 [𝜕1𝑐I (𝑡, |𝑧𝑡 |)𝛿𝑡 + 𝜕2𝑐I (𝑡, |𝑧𝑡 |)𝛿𝜁 ] = Σ𝑤𝛿𝜁 = 𝛿𝑧𝑤 .

Additionally, we obtain 𝜏−1
𝑘
(𝑤𝑘 −𝑤) → 𝛿𝑤 and nally 𝑑 ∈ Te-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤). To prove the implication

“⇐”, consider 𝛿 = (𝛿𝑡, 𝛿𝑧𝑡 ) ∈ T lin
abs (𝑡, 𝑧

𝑡 ). We dene

Σ𝑤 = diag(𝜎) with 𝜎𝑖 =

{
±1, 𝑖 ∈ A(𝑡),
sign( [𝜕1𝑐I (𝑡, |𝑧𝑡 |)𝛿𝑡 + 𝜕2𝑐I (𝑡, |𝑧𝑡 |)𝛿𝜁 ]𝑖), 𝑖 ∉ A(𝑡),

and set 𝛿𝑤 = 𝛿𝑧𝑤 = Σ𝑤 [𝜕1𝑐I (𝑡, |𝑧𝑡 |)𝛿𝑡 + 𝜕2𝑐I (𝑡, |𝑧𝑡 |)𝛿𝜁 ]. Then we have 𝛿 = (𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡 , 𝛿𝑧𝑤) ∈
T lin
e-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) for 𝑤 = 𝑧𝑤 = Σ𝑤𝑐I (𝑡, |𝑧𝑡 |). By assumption, 𝛿 ∈ Te-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) holds, and this
directly implies 𝛿 = (𝛿𝑡, 𝛿𝑧𝑡 ) ∈ Tabs(𝑡, 𝑧𝑡 ). �

Theorem 2.16. GKQ for (I-NLP) holds at (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs if GKQ for (E-NLP) holds at (𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤)) ∈
Fe-abs for any (and hence all)𝑤 ∈𝑊 (𝑡).

Proof. The inclusion Tabs(𝑡, 𝑧𝑡 )∗ ⊇ T lin
abs (𝑡, 𝑧

𝑡 )∗ is always satised. Thus, we just have to show

Tabs(𝑡, 𝑧𝑡 )∗ ⊆ T lin
abs (𝑡, 𝑧

𝑡 )∗.

Let 𝜔 = (𝜔𝑡,𝜔𝑧𝑡 ) ∈ Tabs(𝑡, 𝑧𝑡 )∗, i.e. 𝜔𝑇𝛿 ≥ 0 for all 𝛿 = (𝛿𝑡, 𝛿𝑧𝑡 ) ∈ Tabs(𝑡, 𝑧𝑡 ). Then, set �̃� =

(𝜔𝑡, 0, 𝜔𝑧𝑡 , 0) and obtain �̃�𝑇𝛿 = 𝜔𝑇𝛿 ≥ 0 for all 𝛿 ∈ Te-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) where 𝑤 ∈ 𝑊 (𝑡) is arbi-
trary. By assumption, then �̃�𝑇𝛿 ≥ 0 for all 𝛿 ∈ T lin

e-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) holds. This implies 𝜔𝑇𝛿 = �̃�𝑇𝛿 ≥ 0
for all 𝛿 ∈ T lin

abs (𝑡, 𝑧
𝑡 ). �

The converse is unlikely to hold, but we are, at the same time, not aware of a counterexample. Next,
we consider the branch problems and relations of ACQ and GCQ for all branch problems. Here, we can
exploit sign information to show equivalence of GCQ for the branch problems of (I-NLP) and (E-NLP).
Theorem 2.17. ACQ for (NLP(Σ𝑡 )) holds at (𝑡, 𝑧𝑡 (𝑡)) ∈ FΣ𝑡 if and only if ACQ for (NLP(Σ𝑡,𝑤)) holds at
(𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑡 (𝑤)) ∈ FΣ𝑡,𝑤 for any (and hence all)𝑤 ∈𝑊 (𝑡).
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Proof. The proof proceeds as in Theorem 2.15. �

Theorem 2.18. GCQ for (NLP(Σ𝑡 )) holds at (𝑡, 𝑧𝑡 (𝑡)) ∈ FΣ𝑡 if and only if GCQ for (NLP(Σ𝑡,𝑤)) holds at
(𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑡 (𝑤)) ∈ FΣ𝑡,𝑤 for any (and hence all)𝑤 ∈𝑊 (𝑡).

Proof. The inclusions TΣ𝑡 (𝑡, 𝑧𝑡 )∗ ⊇ T lin
Σ𝑡

(𝑡, 𝑧𝑡 )∗ and TΣ𝑡,𝑤 (𝑡, 𝑧𝑡 )∗ ⊇ T lin
Σ𝑡,𝑤

(𝑡, 𝑧𝑡 )∗ are always satised.
Thus, we just need to prove

TΣ𝑡 (𝑡, 𝑧𝑡 )∗ ⊆ T lin
Σ𝑡 (𝑡, 𝑧𝑡 )∗ ⇐⇒ TΣ𝑡,𝑤 (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤)∗ ⊆ T lin

Σ𝑡,𝑤 (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤)∗.

We start with the implication “⇒”. Let 𝜔 = (𝜔𝑡, 𝜔𝑤,𝜔𝑧𝑡 , 𝜔𝑧𝑤) ∈ TΣ𝑡,𝑤 (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤)∗, i.e. 𝜔𝑇𝛿 ≥ 0 for
all 𝛿 = (𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡𝛿𝑧𝑤) ∈ TΣ𝑡,𝑤 (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤). Set

�̃� = (�̃�𝑡, �̃�𝑧𝑡 ) = (𝜔𝑡,𝜔𝑧𝑡 ) + (𝜔𝑤 + 𝜔𝑧𝑤)Σ𝑤 (𝜕1𝑐I (𝑡, Σ𝑡𝑧𝑡 ), 𝜕2𝑐I (𝑡, Σ𝑡𝑧𝑡 )Σ𝑡 ).

Then, we have �̃�𝑇𝛿 = 𝜔𝑇𝛿 ≥ 0 for all 𝛿 = (𝛿𝑡, 𝛿𝑧𝑡 ) ∈ TΣ𝑡 (𝑡, 𝑧𝑡 ) and thus �̃� ∈ T lin
Σ𝑡

(𝑡, 𝑧𝑡 ). Then,𝜔𝑇𝛿 ≥ 0
for all 𝛿 = (𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡𝛿𝑧𝑤) ∈ T lin

Σ𝑡,𝑤
(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) as 𝜔𝑇𝛿 = �̃�𝑇𝛿 holds. The reverse implication may be

proved as shown in Theorem 2.16. �

3 counterpart mpccs

In this section we restate the MPCC counterpart problems for the two formulations (I-NLP) and (E-NLP)
and we present the relations between them.

3.1 counterpart mpcc for the general abs-normal nlp

To reformulate (I-NLP) as an MPCC, we split 𝑧𝑡 into its nonnegative part and the modulus of its non-
positive part, 𝑢𝑡 := [𝑧𝑡 ]+ := max(𝑧𝑡 , 0) and 𝑣𝑡 := [𝑧𝑡 ]− := max(−𝑧𝑡 , 0). Then, we add complementarity
of these two variables to replace |𝑧𝑡 | by 𝑢𝑡 + 𝑣𝑡 and 𝑧𝑡 itself by 𝑢𝑡 − 𝑣𝑡 .
Definition 3.1 (Counterpart MPCC of (I-NLP)). The counterpart MPCC of the non-smooth NLP (I-NLP)
reads

min
𝑡,𝑢𝑡 ,𝑣𝑡

𝑓 (𝑡) s.t. 𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 0, 𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) ≥ 0,
𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑡 − 𝑣𝑡 ) = 0,(I-MPCC)
0 ≤ 𝑢𝑡 ⊥ 𝑣𝑡 ≥ 0,

where 𝑢𝑡 , 𝑣𝑡 ∈ ℝ𝑠𝑡 . The feasible set of (I-MPCC) is denoted by Fmpcc.
Given an abs-normal NLP (I-NLP) and its counterpart MPCC (I-MPCC), the mapping 𝜙 : Fmpcc →

Fabs dened by
𝜙 (𝑡,𝑢𝑡 , 𝑣𝑡 ) = (𝑡,𝑢𝑡 − 𝑣𝑡 ) and 𝜙−1(𝑡, 𝑧𝑡 ) = (𝑡, [𝑧𝑡 ]+, [𝑧𝑡 ]−)

is a homeomorphism. This result was obtained in [9, Lemma 31].
Corresponding to the active switching set in the previous section, we introduce index sets for

MPCCs.
Definition 3.2 (Index Sets).We denote by U𝑡

0 := {𝑖 ∈ {1, . . . , 𝑠𝑡 } : 𝑢𝑡𝑖 = 0} the set of indices of active
inequalities 𝑢𝑡𝑖 ≥ 0, and by U𝑡

+ := {𝑖 ∈ {1, . . . , 𝑠𝑡 } : 𝑢𝑡𝑖 > 0} the set of indices of inactive inequalities
𝑢𝑡𝑖 ≥ 0. Analogous denitions hold ofV𝑡

0 andV𝑡
+ . ByD𝑡 := U𝑡

0∩V𝑡
0 we denote the set of indices of non-

strict (degenerate) complementarity pairs. Thus we have the partitioning {1, . . . , 𝑠𝑡 } = U𝑡
+ ∪V𝑡

+ ∪ D𝑡 .
In order to dene MPCC-CQs in the spirit of Abadie and Guignard, we introduce the tangent cone,

the complementarity cone, and the MPCC-linearized cone.
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Definition 3.3 (Tangent Cone and MPCC-Linearized Cone for (I-MPCC), see [1]). Consider a feasible
point (𝑡,𝑢𝑡 , 𝑣𝑡 ) of (I-MPCC) with associated index setsU𝑡

+,V𝑡
+ and D𝑡 . The tangent cone to Fmpcc at

(𝑡,𝑢𝑡 , 𝑣𝑡 ) is

Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) :=
{
(𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 )

����� ∃𝜏𝑘 ↘ 0, Fmpcc 3 (𝑡𝑘 , 𝑢𝑡𝑘 , 𝑣
𝑡
𝑘
) → (𝑡,𝑢𝑡 , 𝑣𝑡 ):

𝜏−1
𝑘
(𝑡𝑘 − 𝑡,𝑢𝑡

𝑘
− 𝑢𝑡 , 𝑣𝑡

𝑘
− 𝑣𝑡 ) → (𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 )

}
.

The MPCC-linearized cone at (𝑡,𝑢𝑡 , 𝑣𝑡 ) is

T lin
mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) :=


©«
𝛿𝑡

𝛿𝑢𝑡

𝛿𝑣𝑡

ª®¬
���������

𝜕1𝑐E𝛿𝑡 + 𝜕2𝑐E (𝛿𝑢𝑡 + 𝛿𝑣𝑡 ) = 0,
𝜕1𝑐A𝛿𝑡 + 𝜕2𝑐A (𝛿𝑢𝑡 + 𝛿𝑣𝑡 ) ≥ 0,
𝜕1𝑐Z𝛿𝑡 + 𝜕2𝑐Z (𝛿𝑢𝑡 + 𝛿𝑣𝑡 ) = 𝛿𝑢𝑡 − 𝛿𝑣𝑡 ,

(𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) ∈ T⊥(𝑢𝑡 , 𝑣𝑡 )


with complementarity cone

T⊥(𝑢𝑡 , 𝑣𝑡 ) :=
{
(𝛿𝑢𝑡 , 𝛿𝑣𝑡 )

����� 𝛿𝑢𝑡𝑖 = 0, 𝑖 ∈ V𝑡
+ , 𝛿𝑣

𝑡
𝑖 = 0, 𝑖 ∈ U𝑡

+,

0 ≤ 𝛿𝑢𝑡𝑖 ⊥ 𝛿𝑣𝑡𝑖 ≥ 0, 𝑖 ∈ D𝑡

}
.

Here, all partial derivatives are evaluated at (𝑡,𝑢𝑡 + 𝑣𝑡 ).
Note that the MPCC-linearized cone was originally stated in [11] and [14], but was not further

investigated there. Moreover, we modied the denition in [1] by introducing the complementarity
cone which is studied in the next lemma.
Lemma 3.4. The complementarity cone T⊥(𝑢𝑡 , 𝑣𝑡 ) is the tangent cone and also the linearized cone to the
complementarity set {(𝑢𝑡 , 𝑣𝑡 ) : 0 ≤ 𝑢𝑡 ⊥ 𝑣𝑡 ≥ 0} at (𝑢𝑡 , 𝑣𝑡 ).

Proof. Given a tangent vector (𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) = lim𝜏−1
𝑘
(𝑢𝑡

𝑘
−𝑢𝑡 , 𝑣𝑡

𝑘
− 𝑣𝑡 ) where 0 ≤ 𝑢𝑡

𝑘
⊥ 𝑣𝑡

𝑘
≥ 0 and 𝜏𝑘 ↘ 0,

we have for 𝑘 large enough:

𝑢𝑡
𝑘𝑖

> 0, 𝑣𝑡
𝑘𝑖

= 0, 𝑖 ∈ U𝑡
+ (𝑢𝑡𝑖 > 0, 𝑣𝑡𝑖 = 0),

𝑢𝑡
𝑘𝑖

= 0, 𝑣𝑡
𝑘𝑖

> 0, 𝑖 ∈ V𝑡
+ (𝑢𝑡𝑖 = 0, 𝑣𝑡𝑖 > 0),

0 ≤ 𝑢𝑡
𝑘𝑖

⊥ 𝑣𝑡
𝑘𝑖

≥ 0, 𝑖 ∈ D𝑡 (𝑢𝑡𝑖 = 0, 𝑣𝑡𝑖 = 0) .

This implies (𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) ∈ T⊥(𝑢𝑡 , 𝑣𝑡 ). Conversely, every (𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) ∈ T⊥(𝑢𝑡 , 𝑣𝑡 ) is a tangent vector
generated by the sequence (𝑢𝑡

𝑘
, 𝑣𝑘 ) = (𝑢𝑡 , 𝑣𝑡 ) +𝜏𝑘 (𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) with 𝜏𝑘 = 1/𝑘 , 𝑘 ∈ ℕ>0. The linearized cone

clearly coincides with the tangent cone. �

Lemma 3.5. Given (I-NLP) with counterpart MPCC (I-MPCC), consider (𝑡, 𝑧𝑡 ) ∈ Fabs with 𝜎𝑡 = 𝜎𝑡 (𝑡) and
(𝑡,𝑢𝑡 , 𝑣𝑡 ) = 𝜙−1(𝑡, 𝑧𝑡 ) ∈ Fmpcc with associated index sets U𝑡

+, V𝑡
+ and D𝑡 . Dene 𝜓 : Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) →

Tabs(𝑡, 𝑧𝑡 ) and𝜓 : T lin
mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) → T lin

abs (𝑡, 𝑧
𝑡 ) as

𝜓 (𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) = (𝛿𝑡, 𝛿𝑢𝑡 − 𝛿𝑣𝑡 ) and 𝜓−1(𝛿𝑡, 𝛿𝑧𝑡 ) = (𝛿𝑡, 〈𝛿𝑧𝑡 〉+, 〈𝛿𝑧𝑡 〉−) .

Here, 〈𝛿𝑧𝑡 〉+, 〈𝛿𝑧𝑡 〉− map 𝛿𝑧𝑡 into the complementarity cone via

〈𝛿𝑧𝑡𝑖 〉+ =


+𝛿𝑧𝑡𝑖 , 𝑖 ∈ U𝑡

+ (𝜎𝑡𝑖 > 0)
0, 𝑖 ∈ V𝑡

+ (𝜎𝑡𝑖 < 0)
[𝛿𝑧𝑡𝑖 ]+, 𝑖 ∈ D𝑡 (𝜎𝑡𝑖 = 0)

 , 〈𝛿𝑧𝑡𝑖 〉− =


0, 𝑖 ∈ U𝑡

+ (𝜎𝑡𝑖 > 0)
−𝛿𝑧𝑡𝑖 , 𝑖 ∈ V𝑡

+ (𝜎𝑡𝑖 < 0)
[𝛿𝑧𝑡𝑖 ]−, 𝑖 ∈ D𝑡 (𝜎𝑡𝑖 = 0)

 .

Then, both functions𝜓 are homeomorphisms.
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Proof. First, consider𝜓 : Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) → Tabs(𝑡, 𝑧𝑡 ): Given a vector (𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) = lim𝜏−1
𝑘
(𝑡𝑘 − 𝑡,𝑢𝑡𝑘 −

𝑢𝑡 , 𝑣𝑡
𝑘
− 𝑣𝑡 ) ∈ Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ), set (𝑡𝑘 , 𝑧𝑡𝑘 ) = 𝜙 (𝑡𝑘 , 𝑢𝑡𝑘 , 𝑣

𝑡
𝑘
) = (𝑡𝑘 , 𝑢𝑡𝑘 − 𝑣𝑡

𝑘
) ∈ Fabs to obtain

lim
𝑧𝑡
𝑘
− 𝑧𝑡

𝜏𝑘
= lim

(𝑢𝑡
𝑘
− 𝑢𝑡 ) − (𝑣𝑡

𝑘
− 𝑣𝑡 )

𝜏𝑘
= 𝛿𝑢𝑡 − 𝛿𝑣𝑡 =⇒ (𝛿𝑡, 𝛿𝑢𝑡 − 𝛿𝑣𝑡 ) ∈ Tabs(𝑡, 𝑧𝑡 ) .

Conversely, given a vector (𝛿𝑡, 𝛿𝑧𝑡 ) = lim𝜏−1
𝑘
(𝑡𝑘−𝑡, 𝑧𝑡𝑘−𝑧

𝑡 ) ∈ Tabs(𝑡, 𝑧𝑡 ), dene (𝑡𝑘 , 𝑢𝑡𝑘 , 𝑣
𝑡
𝑘
) = 𝜙−1(𝑡𝑘 , 𝑧𝑡𝑘 ) =

(𝑡𝑘 , [𝑧𝑡𝑘 ]
+, [𝑧𝑡

𝑘
]−) ∈ Fmpcc. Then, 𝜏−1𝑘

((𝑢𝑘 −𝑢) − (𝑣𝑘 − 𝑣)) → 〈𝛿𝑧𝑡 〉+ − 〈𝛿𝑧𝑡 〉− holds. Thus, it remains to
show 𝜏−1

𝑘
(𝑢𝑘 − 𝑢, 𝑣𝑘 − 𝑣) → (〈𝛿𝑧𝑡 〉+, 〈𝛿𝑧𝑡 〉−) which is done componentwise:

• 𝑖 ∈ U𝑡
+: 𝑣𝑡𝑖 = 0 holds by feasibility and 〈𝛿𝑧𝑡 〉− = 0 by denition. Thus, (𝑢𝑡

𝑘
)𝑖 > 0 holds for 𝑘 large

enough and by complementarity (𝑣𝑡
𝑘
)𝑖 = 0 holds. Then, 𝜏−1

𝑘
((𝑢𝑡

𝑘
)𝑖 − 𝑢𝑡𝑖 ) → 〈𝛿𝑧𝑡 〉+𝑖 follows.

• 𝑖 ∈ V𝑡
+ : 𝜏−1𝑘

((𝑣𝑡
𝑘
)𝑖 − 𝑣𝑡𝑖 ) → 〈𝛿𝑧𝑡 〉−𝑖 follows as in the previous case.

• 𝑖 ∈ D𝑡 and 〈𝛿𝑧𝑡 〉+𝑖 > 0: 〈𝛿𝑧𝑡 〉−𝑖 = 0 holds by complementarity and so 𝜏−1
𝑘
((𝑢𝑡𝑖 )𝑘 − (𝑣𝑡𝑖 )𝑘 ) → 〈𝛿𝑧𝑡 〉+𝑖 .

Then, 𝜏−1
𝑘
(𝑢𝑡𝑖 )𝑘 → 〈𝛿𝑧𝑡 〉+𝑖 and 𝜏−1

𝑘
(𝑣𝑡𝑖 )𝑘 → 0 because of sign constraints.

• 𝑖 ∈ D𝑡 and 〈𝛿𝑧𝑡 〉−𝑖 > 0: 𝜏−1
𝑘
(𝑢𝑡𝑖 )𝑘 → 0 and 𝜏−1

𝑘
(𝑣𝑡𝑖 )𝑘 → 〈𝛿𝑧𝑡 〉−𝑖 follow as in the previous case.

• 𝑖 ∈ D𝑡 and 〈𝛿𝑧𝑡 〉+𝑖 = 〈𝛿𝑧𝑡 〉−𝑖 = 0: Then, 𝜏−1
𝑘
((𝑢𝑡𝑖 )𝑘 − (𝑣𝑡𝑖 )𝑘 ) → 0 holds. Because of sign constraints

and complementarity, this can only hold if 𝜏−1
𝑘
(𝑢𝑡𝑖 )𝑘 → 0, 𝜏−1

𝑘
(𝑣𝑡𝑖 )𝑘 → 0.

Altogether, this implies

lim
(𝑡𝑘 − 𝑡,𝑢𝑡

𝑘
− 𝑢𝑡 , 𝑣𝑡

𝑘
− 𝑣𝑡 )

𝜏𝑘
= (𝛿𝑡, 〈𝛿𝑧𝑡 〉+, 〈𝛿𝑧𝑡 〉−) ∈ Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) .

By construction,𝜓 and𝜓−1 are both continuous and inverse to each other.
Second, consider 𝜓 : T lin

mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) → T lin
abs (𝑡, 𝑧

𝑡 ): Given (𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) ∈ T lin
mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ), the vectors

𝛿𝑧𝑡 = 𝛿𝑢𝑡 − 𝛿𝑣𝑡 and 𝛿𝜁 = 𝛿𝑢𝑡 + 𝛿𝑣𝑡 satisfy

𝛿𝑧𝑡𝑖 =


𝛿𝑢𝑡𝑖 , 𝑖 ∈ U𝑡

+
−𝛿𝑣𝑡𝑖 , 𝑖 ∈ V𝑡

+
𝛿𝑢𝑡𝑖 − 𝛿𝑣𝑡𝑖 , 𝑖 ∈ D𝑡

 , 𝛿𝜁𝑖 =


𝛿𝑢𝑡𝑖 = 𝜎𝑖𝛿𝑧

𝑡
𝑖 , 𝑖 ∈ U𝑡

+
𝛿𝑣𝑡𝑖 = 𝜎𝑡𝑖 𝛿𝑧

𝑡
𝑖 , 𝑖 ∈ V𝑡

+
𝛿𝑢𝑡𝑖 + 𝛿𝑣𝑡𝑖 = |𝛿𝑧𝑡𝑖 |, 𝑖 ∈ D𝑡

 .

Thus, (𝛿𝑡, 𝛿𝑧𝑡 ) = 𝜓 (𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) ∈ T lin
abs (𝑡, 𝑧

𝑡 ).
Conversely, the same case distinction yields (𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) = 𝜓−1(𝛿𝑡, 𝛿𝑧𝑡 ) ∈ T lin

mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) for every
(𝛿𝑡, 𝛿𝑧𝑡 ) ∈ T lin

abs (𝑡, 𝑧
𝑡 ). Again,𝜓 and𝜓−1 are both continuous and inverse to each other by construction.

�

Definition 3.6 (Branch NLPs for (I-MPCC), see [11]). Consider a feasible point (𝑡,𝑢𝑡 , 𝑣𝑡 ) of (I-MPCC)
with associated index setsU𝑡

+,V𝑡
+ , and D𝑡 and choose P𝑡 ⊆ D𝑡 with complement P̄𝑡 = D𝑡 \ P𝑡 . The

branch problem NLP(P𝑡 ) is dened as

min
𝑡,𝑢𝑡 ,𝑣𝑡

𝑓 (𝑡) s.t. 𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 0,
𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) ≥ 0,
𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑡 − 𝑣𝑡 ) = 0,(NLP(P𝑡 ))
0 = 𝑢𝑡𝑖 , 0 ≤ 𝑣𝑡𝑖 , 𝑖 ∈ V𝑡

+ ∪ P𝑡 ,

0 ≤ 𝑢𝑡𝑖 , 0 = 𝑣𝑡𝑖 , 𝑖 ∈ U𝑡
+ ∪ P̄𝑡 .

The feasible set of (NLP(P𝑡 )), which always contains (𝑡,𝑢𝑡 , 𝑣𝑡 ), is denoted by FP𝑡 .
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Clearly, the homeomorphism 𝜙 can be restricted to the branch problems (NLP(Σ𝑡 )) and (NLP(P𝑡 ))
where P𝑡 = {𝑖 ∈ 𝛼𝑡 (𝑡) : 𝜎𝑡𝑖 = −1}. Thus, the mapping 𝜙P𝑡 : FP𝑡 → FΣ𝑡 dened by

𝜙P𝑡 := 𝜙 |P𝑡 and 𝜙−1
P𝑡 := 𝜙−1 |Σ𝑡

is a homeomorphism. The tangent cone to FP𝑡 at (𝑡,𝑢𝑡 , 𝑣𝑡 ) is

TP𝑡 (𝑡,𝑢𝑡 , 𝑣𝑡 ) :=
{
(𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 )

����� ∃𝜏𝑘 ↘ 0, FP𝑡 3 (𝑡𝑘 , 𝑢𝑡𝑘 , 𝑣
𝑡
𝑘
) → (𝑡,𝑢𝑡 , 𝑣𝑡 ):

𝜏−1
𝑘
(𝑡𝑘 − 𝑡,𝑢𝑡

𝑘
− 𝑢𝑡 , 𝑣𝑡

𝑘
− 𝑣𝑡 ) → (𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 )

}
.

The linearized cone is

T lin
P𝑡 (𝑡,𝑢𝑡 , 𝑣𝑡 ) :=


©«
𝛿𝑡

𝛿𝑢𝑡

𝛿𝑣𝑡

ª®¬
�����������
𝜕1𝑐E𝛿𝑡 + 𝜕2𝑐E (𝛿𝑢𝑡 + 𝛿𝑣𝑡 ) = 0,
𝜕1𝑐A𝛿𝑡 + 𝜕2𝑐A (𝛿𝑢𝑡 + 𝛿𝑣𝑡 ) ≥ 0,
𝜕1𝑐Z𝛿𝑡 + 𝜕2𝑐Z (𝛿𝑢𝑡 + 𝛿𝑣𝑡 ) = 𝛿𝑢𝑡 − 𝛿𝑣𝑡 ,

0 = 𝛿𝑢𝑡𝑖 for 𝑖 ∈ V𝑡
+ ∪ P, 0 = 𝛿𝑣𝑡𝑖 for 𝑖 ∈ U𝑡

+ ∪ P̄,
0 ≤ 𝛿𝑢𝑡𝑖 for 𝑖 ∈ P̄, 0 ≤ 𝛿𝑣𝑡𝑖 for 𝑖 ∈ P


.

Here, all partial derivatives are evaluated at (𝑡,𝑢𝑡 + 𝑣𝑡 ).
Lemma 3.7. Given (NLP(Σ𝑡 )) and (NLP(P𝑡 )) with P𝑡 = {𝑖 ∈ 𝛼𝑡 (𝑡) : 𝜎𝑡𝑖 = −1}. Consider (𝑡, 𝑧𝑡 ) ∈ FΣ𝑡 and
(𝑡,𝑢𝑡 , 𝑣𝑡 ) = 𝜙−1

P𝑡 (𝑡, 𝑧𝑡 ). Dene𝜓P𝑡 := 𝜓 |TP𝑡 ,𝜓
−1
P𝑡 := 𝜓−1 |TΣ𝑡 and𝜓P𝑡 := 𝜓 |T lin

P𝑡
,𝜓−1

P𝑡 := 𝜓−1 |T lin
Σ𝑡
. Then,

𝜓P : TP𝑡 (𝑡,𝑢𝑡 , 𝑣𝑡 ) → TΣ𝑡 (𝑡, 𝑧𝑡 ) and 𝜓P : T lin
P𝑡 (𝑡,𝑢𝑡 , 𝑣𝑡 ) → T lin

Σ𝑡 (𝑡, 𝑧𝑡 )

are homeomorphisms.

Proof. By construction and since 𝛼𝑡 (𝑡) = D𝑡 , the following equalities of sets hold:

P𝑡 = {𝑖 ∈ 𝛼𝑡 (𝑡) : 𝜎𝑡𝑖 = −1}, V𝑡
+ = {𝑖 ∉ 𝛼𝑡 (𝑡) : 𝜎𝑡𝑖 = −1},

P̄𝑡 = {𝑖 ∈ 𝛼𝑡 (𝑡) : 𝜎𝑡𝑖 = +1}, U𝑡
+ = {𝑖 ∉ 𝛼𝑡 (𝑡) : 𝜎𝑡𝑖 = +1}.

Thus, the claim follows directly from Lemma 3.5. �

Consider a feasible point (𝑡,𝑢𝑡 , 𝑣𝑡 ) of (I-MPCC) with associated branch problems (NLP(P𝑡 )). Then,
the following decompositions of the tangent cone and of the abs-normal-linearized cone of (I-MPCC)
hold (for a proof see [1]):

(3.1) Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) =
⋃
P𝑡

TP𝑡 (𝑡,𝑢𝑡 , 𝑣𝑡 ) and T lin
mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) =

⋃
P𝑡

T lin
P𝑡 (𝑡,𝑢𝑡 , 𝑣𝑡 ) .

The following inclusions are also proved in [1]:

Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) ⊆ T lin
mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) and Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 )∗ ⊇ T lin

mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 )∗.

In general, the converses do not hold. This motivates the denition of MPCC-ACQ and MPCC-GCQ.
Definition 3.8 (Abadie’s and Guignard’s Constraint alifications for (I-MPCC), see [1]). Consider a
feasible point (𝑡,𝑢𝑡 , 𝑣𝑡 ) of (I-MPCC). We say that Abadie’s Constraint Qualication for MPCC (MPCC-
ACQ) holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) if Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) = T lin

mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ), and that Guignard’s Constraint Qualication
for MPCC (MPCC-GCQ) holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) if Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 )∗ = T lin

mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 )∗.
The decomposition (3.1) and its dualization imply that both MPCC-CQs hold if the corresponding

CQ holds for all branch problems.
Theorem 3.9 (ACQ/GCQ for all (NLP(P𝑡 )) implies MPCC-ACQ/MPCC-GCQ for (I-MPCC)). Consider
a feasible point (𝑡,𝑢𝑡 , 𝑣𝑡 ) of (I-MPCC). Then, MPCC-ACQ respectively MPCC-GCQ holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) if
ACQ respectively GCQ holds for all (NLP(P𝑡 )) at (𝑡,𝑢𝑡 , 𝑣𝑡 ).
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3.2 counterpart mpcc for the abs-normal nlp with inequality slacks

By Denition 3.1, the counterpart MPCC of the non-smooth NLP (E-NLP) reads:

min
𝑡,𝑤,𝑢𝑡 ,𝑣𝑡 ,𝑢𝑤 ,𝑣𝑤

𝑓 (𝑡) s.t. 𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 0,
𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑤 + 𝑣𝑤) = 0,
𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑡 − 𝑣𝑡 ) = 0,(E-MPCC)
𝑤 − (𝑢𝑤 − 𝑣𝑤) = 0,
0 ≤ 𝑢𝑡 ⊥ 𝑣𝑡 ≥ 0, 0 ≤ 𝑢𝑤 ⊥ 𝑣𝑤 ≥ 0,

where 𝑢𝑡 , 𝑣𝑡 ∈ ℝ𝑠𝑡 and 𝑢𝑤, 𝑣𝑤 ∈ ℝ𝑚2 . The feasible set is denoted by Fe-mpcc and is a lifting of Fmpcc.
Clearly, the homeomorphism between Fmpcc and Fabs extends to Fe-mpcc and Fe-abs. It is given by

𝜙 (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) = (𝑡,𝑤,𝑢𝑡 − 𝑣𝑡 , 𝑢𝑤 − 𝑣𝑤),
𝜙−1(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) = (𝑡,𝑤, [𝑧𝑡 ]+, [𝑧𝑡 ]−, [𝑧𝑤]+, [𝑧𝑤]−) .

Just like in the abs-normal case, problem (E-MPCC) is a special case of (I-MPCC). Hence, we obtain
the following material by specializing the denitions and results for (I-MPCC).

By Denition 3.3, the tangent cone to Fe-mpcc at 𝑦 reads

Te-mpcc(𝑦) =
{
𝛿

����� ∃𝜏𝑘 ↘ 0, Fe-mpcc 3 𝑦𝑘 = (𝑡𝑘 ,𝑤𝑘 , 𝑢
𝑡
𝑘
, 𝑣𝑡

𝑘
, 𝑢𝑤

𝑘
, 𝑣𝑤

𝑘
) → 𝑦 :

𝜏−1
𝑘
(𝑦𝑘 − 𝑦) → 𝛿 = (𝛿𝑡, 𝛿𝑤, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 , 𝛿𝑢𝑤, 𝛿𝑣𝑤)

}
.

The MPCC-linearized cone reads

T lin
e-mpcc(𝑦) =

{
𝛿

����� 𝜕1𝑐I𝛿𝑡 + 𝜕2𝑐I (𝛿𝑢𝑡 + 𝛿𝑣𝑡 ) = 𝛿𝑢𝑤 + 𝛿𝑣𝑤, 𝛿𝑤 = 𝛿𝑢𝑤 − 𝛿𝑣𝑤,

(𝛿𝑡, 𝛿𝑢𝑡𝛿𝑣𝑡 ) ∈ T lin
mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ), (𝛿𝑢𝑤, 𝛿𝑣𝑤) ∈ T⊥(𝑢𝑤, 𝑣𝑤)

}
.

Here, all partial derivatives are evaluated at (𝑡,𝑢𝑡 + 𝑣𝑡 ). The associated homeomorphisms of Lemma 3.5,

𝜓 : Te-mpcc(𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) → Te-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤),
𝜓 : T lin

e-mpcc(𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) → T lin
e-abs(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤),

now take the form

𝜓 (𝛿𝑡, 𝛿𝑤, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 , 𝛿𝑢𝑤, 𝛿𝑣𝑤) = (𝛿𝑡, 𝛿𝑤, 𝛿𝑢𝑡 − 𝛿𝑣𝑡 , 𝛿𝑢𝑤 − 𝛿𝑣𝑤),
𝜓−1(𝛿𝑡, 𝛿𝑤, 𝛿𝑧𝑡 , 𝛿𝑧𝑤) = (𝛿𝑡, 𝛿𝑤, 〈𝛿𝑧𝑡 〉+, 〈𝛿𝑧𝑡 〉−, 〈𝛿𝑧𝑤〉+, 〈𝛿𝑧𝑤〉−).

Given 𝑦 = (𝑡, �̂�,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤), a feasible point of (E-MPCC) with associated index sets U𝑡
+, V𝑡

+ , D𝑡 ,
U𝑤

+ ,V𝑤
+ , andD𝑤 , choose P𝑡 ⊆ D𝑡 as well as P𝑤 ⊆ D𝑤 and set P𝑡,𝑤 = P𝑡 ∪P𝑤 . The branch problem

NLP(P𝑡,𝑤) of Denition 3.6 then reads

min
𝑡,𝑤,𝑢𝑡 ,𝑣𝑡 ,𝑢𝑤 ,𝑣𝑤

𝑓 (𝑡) s.t. 𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 0, 𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑤 + 𝑣𝑤) = 0,
𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑡 − 𝑣𝑡 ) = 0, 𝑤 − (𝑢𝑤 − 𝑣𝑤) = 0,
0 = 𝑢𝑡𝑖 , 0 ≤ 𝑣𝑡𝑖 , 𝑖 ∈ V𝑡

+ ∪ P𝑡 ,

0 ≤ 𝑢𝑡𝑖 , 0 = 𝑣𝑡𝑖 , 𝑖 ∈ U𝑡
+ ∪ P̄𝑡 ,(NLP(P𝑡,𝑤))

0 = 𝑢𝑤
𝑖 , 0 ≤ 𝑣𝑤𝑖 , 𝑖 ∈ V𝑤

+ ∪ P𝑤,

0 ≤ 𝑢𝑤
𝑖 , 0 = 𝑣𝑤𝑖 , 𝑖 ∈ U𝑤

+ ∪ P̄𝑤 .

The feasible set of (NLP(P𝑡,𝑤)), which always contains 𝑦 , is denoted by FP𝑡,𝑤 and is a lifting of FP𝑡 .
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Again, the homeomorphism between feasible sets can be restricted to the respective branch problems
(NLP(Σ𝑡,𝑤)) and (NLP(P𝑡,𝑤)) where P𝑡 = {𝑖 ∈ 𝛼𝑡 (𝑡) : 𝜎𝑡𝑖 = −1} and P𝑤 = {𝑖 ∈ 𝛼𝑤 (�̂�) : 𝜎𝑤

𝑖
= −1}.

Thus, the mapping 𝜙P𝑡,𝑤 : FP𝑡,𝑤 → FΣ𝑡,𝑤 given as

𝜙P𝑡,𝑤 := 𝜙 |P𝑡,𝑤 and 𝜙−1
P𝑡,𝑤 := 𝜙−1 |Σ𝑡,𝑤

is a homeomorphism.
The tangent cone to FP𝑡,𝑤 at 𝑦 reads

TP𝑡,𝑤 (𝑦) =
{
𝛿

����� ∃𝜏𝑘 ↘ 0, FP𝑡,𝑤 3 (𝑡𝑘 ,𝑤𝑘 , 𝑢
𝑡
𝑘
, 𝑣𝑡

𝑘
, 𝑢𝑤

𝑘
, 𝑣𝑤

𝑘
) → (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤):

𝜏−1
𝑘
(𝑡𝑘 − 𝑡,𝑤𝑘 −𝑤,𝑢𝑡

𝑘
− 𝑢𝑡 , 𝑣𝑡

𝑘
− 𝑣𝑡 , 𝑢𝑤

𝑘
− 𝑢𝑤, 𝑣𝑤

𝑘
− 𝑣𝑤) → 𝛿

}
where 𝛿 = (𝛿𝑡, 𝛿𝑤, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 , 𝛿𝑢𝑤, 𝛿𝑣𝑤). The linearized cone reads

T lin
P𝑡,𝑤 (𝑦) =


𝛿

���������
(𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) ∈ T lin

P𝑡 ,

𝜕1𝑐I𝛿𝑡 + 𝜕2𝑐I (𝛿𝑢𝑡 + 𝛿𝑣𝑡 ) = 𝛿𝑢𝑤 + 𝛿𝑣𝑤, 𝛿𝑤 = 𝛿𝑢𝑤 − 𝛿𝑣𝑤,

0 = 𝛿𝑢𝑤
𝑖
for 𝑖 ∈ V𝑤

+ ∪ P𝑤, 0 = 𝛿𝑣𝑤
𝑖
for 𝑖 ∈ U𝑤

+ ∪ P̄𝑤,

0 ≤ 𝛿𝑢𝑤
𝑖
for 𝑖 ∈ P̄𝑤, 0 ≤ 𝛿𝑣𝑤

𝑖
for 𝑖 ∈ P𝑤


.

Here, all partial derivatives are evaluated at (𝑡,𝑢𝑡 + 𝑣𝑡 ). The associated cone homeomorphisms of
Lemma 3.7 are now obtained as follows. Given (NLP(Σ𝑡,𝑤)) and (NLP(P𝑡,𝑤)) with P𝑡 = {𝑖 ∈ 𝛼𝑡 (𝑡) : 𝜎𝑡𝑖 =

−1} and P𝑤 = {𝑖 ∈ 𝛼𝑤 (�̂�) : 𝜎𝑤
𝑖

= −1}, consider (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) ∈ Fe-abs and (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) =

𝜙−1(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤). Dene 𝜓P𝑡,𝑤 := 𝜓 |TP𝑡,𝑤 , 𝜓
−1
P𝑡,𝑤 := 𝜓 |TΣ𝑡,𝑤 and 𝜓P𝑡,𝑤 := 𝜓 |T lin

P𝑡,𝑤
, 𝜓−1

P𝑡,𝑤 := 𝜓 |T lin
Σ𝑡,𝑤

. Then,
we have

𝜓P𝑡,𝑤 : TP𝑡,𝑤 (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) → TΣ𝑡,𝑤 (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤),
𝜓P𝑡,𝑤 : T lin

P𝑡,𝑤 (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) → T lin
Σ𝑡,𝑤 (𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤).

By applying (3.1) to (E-MPCC) with associated branch problems (NLP(P𝑡,𝑤)), we obtain the following
decomposition of cones at 𝑦 = (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤):

Te-mpcc(𝑦) =
⋃
P𝑡,𝑤

TP𝑡,𝑤 (𝑦) and T lin
e-mpcc(𝑦) =

⋃
P𝑡,𝑤

T lin
P𝑡,𝑤 (𝑦).

Moreover, the tangent cone is contained in the linearized cone and the converse holds for the dual
cones:

Te-mpcc(𝑦) ⊆ T lin
e-mpcc(𝑦) and Te-mpcc(𝑦)∗ ⊇ T lin

e-mpcc(𝑦)∗.
Once again, the converses do not hold in general and we consider Abadie’s and Guignard’s Constraint
Qualications for (E-MPCC) at 𝑦 = (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤). Recalling Denition 3.8, MPCC-ACQ and
MPCC-GCQ simply read

Te-mpcc(𝑦) = T lin
e-mpcc(𝑦) and Te-mpcc(𝑦)∗ = T lin

e-mpcc(𝑦)∗.

Remark 3.10. Let

𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ) = {(𝑤,𝑢𝑤, 𝑣𝑤) : |𝑤 | = 𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ), 𝑢𝑤 = [𝑤]+, 𝑣𝑤 = [𝑤]−}.

Due to symmetry, the above equality of cones (respectively dual cones) clearly holds for all elements
(𝑤,𝑢𝑤, 𝑣𝑤) ∈𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ) if it holds for any element.
Now Theorem 3.9 reads as follows.

Theorem 3.11 (ACQ/GCQ for all (NLP(P𝑡,𝑤)) impliesMPCC-ACQ/MPCC-GCQ for (E-MPCC)). Consider
a feasible point 𝑦 = (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) of (E-MPCC) with branch problems (NLP(P𝑡,𝑤)). Then, MPCC-
ACQ respectively MPCC-GCQ holds for (E-MPCC) at 𝑦 if ACQ respectively GCQ holds for all (NLP(P𝑡,𝑤))
at 𝑦 .
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3.3 relations of mpcc-cqs for different formulations

In this paragraphwe prove relations between constraint qualications for the two dierent formulations
(I-MPCC) and (E-MPCC). Some relations follow from the results in the previous section and in the two
following sections.
Theorem 3.12. MPCC-ACQ for (I-MPCC) holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) ∈ Fmpcc if and only if MPCC-ACQ for
(E-MPCC) holds at (𝑡,𝑤,𝑢𝑡 , 𝑢𝑤, 𝑣𝑡 , 𝑣𝑤) ∈ Fe-mpcc for any (and hence all) (𝑤,𝑢𝑤, 𝑣𝑤) ∈𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ).

Proof. This follows immediately from Theorem 2.15, Theorem 4.1 and Theorem 4.5. �

Theorem 3.13. MPCC-GCQ for (I-MPCC) holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) ∈ Fmpcc if MPCC-GCQ for (E-MPCC) holds
at (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) ∈ Fe-mpcc for any (and hence all) (𝑤,𝑢𝑤, 𝑣𝑤) ∈𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ).

Proof. The inclusion Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 )∗ ⊇ T lin
mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 )∗ holds always. Thus, it is left to show that

Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 )∗ ⊆ T lin
mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 )∗.

Let 𝜔 = (𝜔𝑡,𝜔𝑢𝑡 , 𝜔𝑣𝑡 ) ∈ Tmpcc(𝑡, , 𝑢𝑡 , 𝑣𝑡 )∗, i.e. 𝜔𝑇𝛿 ≥ 0 for all 𝛿 = (𝛿𝑡, 𝛿𝑢𝑡 , 𝛿𝑣𝑡 ) ∈ Tmpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ). Then,
let �̃� = (𝜔𝑡, 0, 𝜔𝑢𝑡 , 𝜔𝑣𝑡 , 0, 0) to obtain �̃�𝑇𝛿 = 𝜔𝑇𝛿 ≥ 0 for all 𝛿 ∈ Te-mpcc(𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) where
𝑤 ∈𝑊 (𝑡) is arbitrary. By assumption, we have �̃�𝑇𝛿 ≥ 0 for all 𝛿 ∈ T lin

e-mpcc(𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) which
implies 𝜔𝑇𝛿 = �̃�𝑇𝛿 ≥ 0 for all 𝛿 ∈ T lin

mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ). �

The converse of the previous theorem is unlikely to hold, but we do not know how to construct a
counterexample. However, equivalence of ACQ or GCQ for corresponding branch problems holds.
Theorem 3.14. ACQ for (NLP(P𝑡 )) holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) ∈ FP𝑡 if and only if ACQ for (NLP(P𝑡,𝑤)) holds at
(𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) ∈ FP𝑡,𝑤 for any (and hence all) (𝑤,𝑢𝑤, 𝑣𝑤) ∈𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ).

Proof. This follows immediately from Theorem 2.17, Theorem 4.3 and Theorem 4.7. �

Theorem 3.15. GCQ for (NLP(P𝑡 )) holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) ∈ FP𝑡 if and only if GCQ for (NLP(P𝑡,𝑤)) holds at
(𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) ∈ FP𝑡,𝑤 for any (and hence all) (𝑤,𝑢𝑤, 𝑣𝑤) ∈𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ).

Proof. This follows immediately from Theorem 2.18, Theorem 4.4 and Theorem 4.8. �

4 kink qualifications and mpcc constraint qualifications

In this section we show relations between abs-normal NLPs and counterpart MPCCs. Here, we consider
both treatments of inequality constraints.

4.1 relations of general abs-normal nlp and mpcc

In the following the variables 𝑥 and 𝑧 instead of 𝑡 and 𝑧𝑡 are used. Thus, the abs-normal NLP (I-NLP)
reads:

min
𝑥,𝑧

𝑓 (𝑥) s.t. 𝑐E (𝑥, |𝑧 |) = 0, 𝑐I (𝑥, |𝑧 |) ≥ 0, 𝑐Z (𝑥, |𝑧 |) − 𝑧 = 0.

The counterpart MPCC (I-MPCC) becomes:

min
𝑥,𝑢,𝑣

𝑓 (𝑥) s.t. 𝑐E (𝑥,𝑢 + 𝑣) = 0, 𝑐I (𝑥,𝑢 + 𝑣) ≥ 0,
𝑐Z (𝑥,𝑢 + 𝑣) − (𝑢 − 𝑣) = 0, 0 ≤ 𝑢 ⊥ 𝑣 ≥ 0.

Then, the subsequent relations of kink qualications and MPCC constraint qualications can be
shown.
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Theorem 4.1 (AKQ for (I-NLP) ⇐⇒ MPCC-ACQ for (I-MPCC)). AKQ for (I-NLP) holds at (𝑥, 𝑧 (𝑥)) ∈
Fabs if and only if MPCC-ACQ for (I-MPCC) holds at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ Fmpcc.

Proof. We need to show

Tabs(𝑥, 𝑧) = T lin
abs (𝑥, 𝑧) ⇐⇒ Tmpcc(𝑥,𝑢, 𝑣) = T lin

mpcc(𝑥,𝑢, 𝑣) .

This is obvious from the homeomorphisms𝜓 in Lemma 3.5. �

Theorem 4.2 (MPCC-GCQ for (I-MPCC) implies GKQ for (I-NLP)). GKQ for (I-NLP) holds at (𝑥, 𝑧 (𝑥)) ∈
Fabs if MPCC-GCQ for (I-MPCC) holds at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ Fmpcc.

Proof. The inclusion T lin
abs (𝑥, 𝑧)

∗ ⊆ Tabs(𝑥, 𝑧)∗ hold always by Lemma 2.8. Thus, we just have to show

Tabs(𝑥, 𝑧)∗ ⊆ T lin
abs (𝑥, 𝑧)

∗.

Consider𝜔 = (𝜔𝑥,𝜔𝑧) ∈ Tabs(𝑥, 𝑧)∗, i.e.𝜔𝑇𝛿 ≥ 0 for all𝛿 = (𝛿𝑥, 𝛿𝑧) ∈ Tabs(𝑥, 𝑧). Set �̃� = (𝜔𝑥,𝜔𝑧,−𝜔𝑧).
For every 𝛿 ∈ Tabs(𝑥, 𝑧) we then have

�̃�𝑇𝜓−1(𝛿) = 𝜔𝑥𝑇𝛿𝑥 + 𝜔𝑧𝑇 〈𝛿𝑧〉+ − 𝜔𝑧𝑇 〈𝛿𝑧〉− = 𝜔𝑥𝑇𝛿𝑥 + 𝜔𝑧𝑇𝛿𝑧 = 𝜔𝑇𝛿 ≥ 0.

This means �̃� ∈ Tmpcc(𝑥,𝑢, 𝑣)∗ and hence, by assumption, �̃� ∈ T lin
mpcc(𝑥,𝑢, 𝑣)∗. We thus have 𝜔𝑇𝛿 =

�̃�𝑇𝜓−1(𝛿) ≥ 0 for every 𝛿 ∈ T lin
abs (𝑥, 𝑧), which means 𝜔 ∈ T lin

abs (𝑥, 𝑧)
∗. �

The converse is unlikely to hold, although we are not, at this time, aware of a counterexample. Once
again, moving to the branch problems allows to exploit additional sign information.
Theorem 4.3 (ACQ for (NLP(Σ𝑡 )) ⇐⇒ ACQ for (NLP(P𝑡 ))). ACQ for (NLP(Σ𝑡 )) holds at (𝑥, 𝑧 (𝑥)) ∈ FΣ𝑡

if and only if ACQ for the corresponding (NLP(P𝑡 )) holds at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ FP𝑡 .

Proof. We need to show

TΣ𝑡 (𝑥, 𝑧) = T lin
Σ𝑡 (𝑥, 𝑧) ⇐⇒ TP𝑡 (𝑥,𝑢, 𝑣) = T lin

P𝑡 (𝑥,𝑢, 𝑣) .

This is obvious from the homeomorphisms𝜓P in Lemma 3.7. �

Theorem 4.4 (GCQ for (NLP(Σ𝑡 )) ⇐⇒ GCQ for (NLP(P𝑡 ))). GCQ for (NLP(Σ𝑡 )) holds at (𝑥, 𝑧 (𝑥)) ∈ FΣ𝑡

if and only if GCQ for the corresponding (NLP(P𝑡 )) holds at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ FP𝑡 .

Proof. The inclusions T lin
P𝑡 (𝑥,𝑢, 𝑣)∗ ⊆ TP𝑡 (𝑥,𝑢, 𝑣)∗ and T lin

Σ𝑡
(𝑥, 𝑧)∗ ⊆ TΣ𝑡 (𝑥, 𝑧)∗ hold always. Thus, we

just have to show

TΣ𝑡 (𝑥, 𝑧)∗ ⊇ T lin
Σ𝑡 (𝑥, 𝑧)∗ ⇐⇒ TP𝑡 (𝑥,𝑢, 𝑣)∗ ⊇ T lin

P𝑡 (𝑥,𝑢, 𝑣)∗.

First, we show the implication “⇒”. Consider 𝜔 = (𝜔𝑥,𝜔𝑢,𝜔𝑣) ∈ TP𝑡 (𝑥,𝑢, 𝑣)∗, i.e. 𝜔𝑇𝛿 ≥ 0 for all
𝛿 = (𝛿𝑥, 𝛿𝑢, 𝛿𝑣) ∈ TP𝑡 (𝑥,𝑢, 𝑣). Set �̃� = (𝜔𝑥,𝜔𝑧) with

𝜔𝑧𝑖 =

{
+𝜔𝑢𝑖 , 𝑖 ∈ U+ ∪ P,
−𝜔𝑣𝑖 , 𝑖 ∈ V+ ∪ P̄ .

This leads to

�̃�𝑇𝜓P (𝛿) = 𝜔𝑥𝑇𝛿𝑥 + 𝜔𝑧𝑇 (𝛿𝑢 − 𝛿𝑣) = 𝜔𝑥𝑇𝛿𝑥 + 𝜔𝑢𝑇𝛿𝑢 + 𝜔𝑣𝑇𝛿𝑣 = 𝜔𝑇𝛿 ≥ 0

for every 𝛿 ∈ TP𝑡 (𝑥,𝑢, 𝑣), i.e. �̃� ∈ TΣ𝑡 (𝑥, 𝑧)∗. Then, the assumption yields �̃� ∈ T lin
Σ𝑡

(𝑥, 𝑧)∗. As we have
𝜔𝑇𝛿 = �̃�𝑇𝜓P (𝛿) ≥ 0 for every 𝛿 ∈ T lin

P𝑡 (𝑥,𝑢, 𝑣), we obtain 𝜔 ∈ T lin
P𝑡 (𝑥,𝑢, 𝑣)∗. The reverse implication

follows as in Theorem 4.2. �
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4.2 relations of abs-normal nlp and mpcc with inequality slacks

Now, the relations for the slack reformulations are stated. These are special cases of the general problem
formulations, hence we obtain the following four theorems that correspond to Theorems 4.1 to 4.4.
Theorem 4.5 (AKQ for (E-NLP) ⇐⇒ MPCC-ACQ for (E-MPCC)). AKQ for (E-NLP) holds at (𝑥, 𝑧 (𝑥)) ∈
Fe-abs if and only if MPCC-ACQ for (E-MPCC) holds at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ Fe-mpcc.

Theorem 4.6 (MPCC-GCQ for (E-MPCC) implies GKQ for (E-NLP)). GKQ for (E-NLP) holds at (𝑥, 𝑧 (𝑥)) ∈
Fe-abs if MPCC-GCQ for (E-MPCC) holds at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ Fe-mpcc.

The converse is unlikely to hold, but to date we are not aware of a counterexample.
Theorem 4.7 (ACQ for (NLP(Σ𝑡,𝑤)) ⇐⇒ ACQ for (NLP(P𝑡,𝑤))). ACQ for (NLP(Σ𝑡,𝑤)) at (𝑥, 𝑧 (𝑥)) ∈
FΣ𝑡,𝑤 is equivalent to ACQ for the corresponding (NLP(P𝑡,𝑤)) at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ FP𝑡,𝑤 .

Theorem 4.8 (GCQ for (NLP(Σ𝑡,𝑤)) ⇐⇒ GCQ for (NLP(P𝑡,𝑤))). GCQ for (NLP(Σ𝑡,𝑤)) at (𝑥, 𝑧 (𝑥))FΣ𝑡,𝑤

is equivalent to GCQ for the corresponding (NLP(P𝑡,𝑤)) at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ FP𝑡,𝑤 .

All the relations discussed in Sections 2 to 4 are illustrated in Figure 1. In the inner square (containing
(I-NLP) and (E-NLP) as well as the counterpart MPCCs (I-MPCC) and (E-MPCC)) there are four single-
headed arrows, which indicate that only one direction has been proved and we do not know if the
converses hold as well. Therefore we considered the branch problems given on the outer right and
left in the gure. Since ACQ respectively GCQ for all branch problems imply the corresponding kink
qualication or MPCC-constraint qualication, there are further single-headed arrows pointing to the
inner square. Results that follow directly from other equivalences have arrows with the label (implied).

5 first order stationarity concepts

In this section, we introduce denitions of Mordukhovich stationarity and Bouligand stationarity for
abs-normal NLPs and compare these denitions to M-stationarity and B-stationarity for MPCCs. We
give proofs based on the general formulation.

5.1 mordukhovich stationarity

In this paragraph we have a closer look at M-stationarity [13], which is a necessary optimality condition
for MPCCs under MPCC-ACQ [2].
Definition 5.1 (M-Stationarity for (I-MPCC), see [13]). Consider a feasible point (𝑥∗, 𝑢∗, 𝑣∗) of (I-MPCC)
with associated index sets U+, V+ and D. It is an M-stationary point if there exist multipliers 𝜆 =

(𝜆E, 𝜆I, 𝜆Z) and 𝜇 = (𝜇𝑢, 𝜇𝑣) such that the following conditions are satised:

𝜕𝑥,𝑢,𝑣L⊥(𝑥∗, 𝑢∗, 𝑣∗, 𝜆, 𝜇) = 0,(5.1a)
((𝜇𝑢)𝑖 > 0, (𝜇𝑣)𝑖 > 0) ∨ (𝜇𝑢)𝑖 (𝜇𝑣)𝑖 = 0, 𝑖 ∈ D(5.1b)

(𝜇𝑢)𝑖 = 0, 𝑖 ∈ U+,(5.1c)
(𝜇𝑣)𝑖 = 0, 𝑖 ∈ V+,(5.1d)
𝜆I ≥ 0,(5.1e)

𝜆𝑇I𝑐I (𝑥
∗, 𝑢∗, 𝑣∗) = 0.(5.1f)

Herein, L⊥ is the MPCC-Lagrangian function

L⊥(𝑥,𝑢, 𝑣, 𝜆, 𝜇) := 𝑓 (𝑥) + 𝜆𝑇E𝑐E (𝑥,𝑢 + 𝑣) − 𝜆𝑇I𝑐I (𝑥,𝑢 + 𝑣)
+ 𝜆𝑇Z [𝑐Z (𝑥,𝑢 + 𝑣) − (𝑢 − 𝑣)] − 𝜇𝑇𝑢𝑢

𝑡 − 𝜇𝑇𝑣 𝑣
𝑡 .
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Local minimizers of (I-MPCC) are M-stationary points under MPCC-ACQ, as shown in [1, 2].
The name M-stationarity was introduced by Scholtes in [15] and was moti-
vated by the fact that the sign restrictions on the multipliers in (5.1) in fact
model the Mordukhovich normal cone. The inset on the right illustrates the
feasible set of multiplier values for a pair ((𝜇𝑢)𝑖 , (𝜇𝑣)𝑖), 𝑖 ∈ D. M-stationarity
is a weaker stationarity concept than strong stationarity, but is at the same
time the strongest necessary optimality condition known to hold in absence
of a strong constraint qualication like MPCC-MFCQ.

(𝜇𝑢)𝑖

(𝜇𝑣)𝑖

Definition 5.2 (M-Stationarity for (I-NLP)). Consider a feasible point (𝑥∗, 𝑧∗) of (I-NLP). It is an M-
stationary point if there exist multipliers 𝜆 = (𝜆E, 𝜆I, 𝜆Z) such that the following conditions are
satised:

𝑓 ′(𝑥∗) + 𝜆𝑇E𝜕1𝑐E − 𝜆𝑇I𝜕1𝑐I + 𝜆𝑇Z𝜕1𝑐Z = 0,(5.2a)
[𝜆𝑇E𝜕2𝑐E − 𝜆𝑇I𝜕2𝑐I + 𝜆𝑇Z𝜕2𝑐Z]𝑖 = (𝜆Z)𝑖𝜎∗

𝑖 , 𝑖 ∉ 𝛼 (𝑥∗),(5.2b)
(𝜇−𝑖 ) (𝜇+𝑖 ) = 0 ∨ [𝜆𝑇E𝜕2𝑐E − 𝜆𝑇I𝜕2𝑐I + 𝜆𝑇Z𝜕2𝑐Z]𝑖 > | (𝜆Z)𝑖 |, 𝑖 ∈ 𝛼 (𝑥∗),(5.2c)

𝜆I ≥ 0,(5.2d)
𝜆𝑇I𝑐I = 0.(5.2e)

Here we use the notation

𝜇+𝑖 :=
[
𝜆𝑇E𝜕2𝑐E − 𝜆𝑇I𝜕2𝑐I + 𝜆𝑇Z [𝜕2𝑐Z − 𝐼 ]

]
𝑖
,

𝜇−𝑖 :=
[
𝜆𝑇E𝜕2𝑐E − 𝜆𝑇I𝜕2𝑐I + 𝜆𝑇Z [𝜕2𝑐Z + 𝐼 ]

]
𝑖
,

and the constraints and the partial derivatives are evaluated at (𝑥∗, |𝑧∗ |).
Theorem 5.3 (M-Stationarity for (I-MPCC) is M-Stationarity for (I-NLP)). A feasible point (𝑥∗, 𝑧∗) of
(I-NLP) is M-stationary if and only if (𝑥∗, 𝑢∗, 𝑣∗) = (𝑥∗, [𝑧∗]+, [𝑧∗]−) of (I-MPCC) is M-stationary.

Proof. For indices that satisfy the rst condition in (5.1b), the equivalence with the second condition in
(5.2c) was shown in [9, Theorem 33]. Thus, we just need to consider the alternative conditions. For
(I-MPCC) we have the relations[

𝜆𝑇E𝜕2𝑐E − 𝜆𝑇I𝜕2𝑐I + 𝜆𝑇Z [𝜕2𝑐Z − 𝐼 ]
]
𝑖
= (𝜇𝑢)𝑖 , 𝑖 ∈ D,[

𝜆𝑇E𝜕2𝑐E − 𝜆𝑇I𝜕2𝑐I + 𝜆𝑇Z [𝜕2𝑐Z + 𝐼 ]
]
𝑖
= (𝜇𝑣)𝑖 , 𝑖 ∈ D,

whichwas also shown in [9, Theorem 33]. These are exactly the denitions of 𝜇+𝑖 and 𝜇−𝑖 in the denition
of M-Stationarity for (I-NLP). �

Consequently, we may now rephrase the result by [1, 2] in the language of abs-normal forms.
Theorem 5.4 (Minimizers and M-Stationarity for (I-NLP)). Assume that (𝑥∗, 𝑧∗) is a local minimizer of
(I-NLP) and that AKQ holds at 𝑥∗. Then, (𝑥∗, 𝑧∗) is M-stationary for (I-NLP).

Proof. First, note that (𝑥∗, 𝑧∗) is a localminimizer of (I-NLP) if and only if (𝑥∗, 𝑢∗, 𝑣∗) = (𝑥∗, [𝑧∗]+, [𝑧∗]−)
is a local minimizer of (I-MPCC). Then, the point (𝑥∗, 𝑢∗, 𝑣∗) is a local minimizer of the counterpart
MPCC, and MPCC-ACQ holds by Theorem 4.1. Thus, (𝑥∗, 𝑢∗, 𝑣∗) is M-stationary for (I-MPCC) and
Theorem 5.3 implies that (𝑥∗, 𝑧∗) is M-stationary for (I-NLP). �
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5.2 mpcc-linearized bouligand stationarity

Finally,we introduceMPCC-linearized Bouligand stationarity,which is dened via smooth subproblems.
Definition 5.5 (MPCC-linearized B-Stationarity for (I-MPCC), see [14]). Consider a feasible point
(𝑥∗, 𝑢∗, 𝑣∗) of (I-MPCC) with associated index sets U+, V+ and D. It is a B-stationary point if it is a
stationary point of all branch problems (NLP(P𝑡 )) for P𝑡 = P ⊆ D. Here, P̄ denotes the complement
of P in D(𝑥∗).
Note that there exist dierent names for the variant of B-stationarity just introduced. It is simply

called B-stationarity in [14], but we prefer here the name MPCC-linearized B-stationarity suggested
in [1] to prevent confusion with the denition of B-stationarity in the smooth case. The concept of
B-stationarity is the most intuitive among stationarity concepts in simply requiring that, no matter how
degenerate pairs of complementarities are resolved, no rst order descent direction may be revealed.
Moreover, it may be brought into agreement with the concept of local minimizers already under
very weak assumptions regarding constraint qualications. The downside however is that verifying
B-stationarity inherently requires exponential runtime eort, as the number of branch problems is
exponential in the number of degenerate pairs in D.
Theorem 5.6. If GCQ holds for all (NLP(P𝑡 )), then all local minimizers of (I-MPCC) are MPCC-linearized
B-stationary points.

Proof. This follows directly by KKT theory for smooth optimization problems. �

Definition 5.7 (Abs-Normal-Linearized B-Stationarity for (I-NLP)). Consider a feasible point (𝑥∗, 𝑧∗)
of (I-NLP). It is an abs-normal-linearized B-stationary point if it is a stationary point of the branch
problems (NLP(Σ𝑡 )) for Σ𝑡 = diag(𝜎) with 𝜎 � 𝜎 (𝑥).
Theorem 5.8 (MPCC-linearized B-stationarity for (I-MPCC) is abs-normal-linearized B-stationarity
for (I-NLP)). A feasible point (𝑥∗, 𝑧∗) of (I-NLP) is abs-normal-linearized B-stationary if and only if
(𝑥∗, 𝑢∗, 𝑣∗) = (𝑥∗, [𝑧∗]+, [𝑧∗]−) of (I-MPCC) is MPCC-linearized B-stationary.

Proof. Every branch problem (NLP(Σ𝑡 )) is smooth and thus stationarity is equivalent to the condition
𝑓 ′(𝑥∗)𝑇𝑑 ≥ 0 for all 𝑑 ∈ T lin

Σ𝑡
(𝑥∗, 𝑧∗). Analogously, stationarity for every branch problem (NLP(P𝑡 ))

is equivalent to the condition 𝑓 ′(𝑥∗)𝑇𝑑 ≥ 0 for all 𝑑 ∈ T lin
P𝑡 (𝑥∗, [𝑧∗]+, [𝑧∗]−). Then, the equivalence

follows as both branch problems are homeomorphic and both linearization cones are homeomorphic
by Lemma 3.7. �

Theorem 5.9 (Minimizers and abs-normal-linearized B-Stationarity for (I-NLP)). Assume that (𝑥∗, 𝑧∗)
is a local minimizer of (I-NLP) and that GCQ holds at (𝑥∗, 𝑧∗) for all (NLP(Σ𝑡 )). Then, (𝑥∗, 𝑧∗) is abs-
normal-linearized B-stationary for (I-NLP).

Proof. The point (𝑥∗, 𝑧∗) is a local minimizer of (I-NLP) if and only if (𝑥∗, 𝑢∗, 𝑣∗) = (𝑥∗, [𝑧∗]+, [𝑧∗]−)
is a local minimizer of (I-MPCC). Moreover, GCQ for all (NLP(Σ𝑡 )) and GCQ for all (NLP(P𝑡 )) are
equivalent by Theorem 4.4. Thus, (𝑥∗, 𝑢∗, 𝑣∗) is a local minimizer of the counterpart MPCC and GCQ
holds for all (NLP(P𝑡 )). Then, it is MPCC-linearized B-stationary by Theorem 5.6 and nally (𝑥∗, 𝑧∗) is
abs-normal-linearized B-stationary by Theorem 5.8. �

Remark 5.10. In [6], Griewank and Walther have presented a stationarity concept that holds without
any kink qualication for minimizers of the unconstrained abs-normal NLP

(5.3) min
𝑥

𝑓 (𝑥), 𝑓 ∈ 𝐶𝑑
abs(𝐷

𝑥 ,ℝ) .

Indeed, this concept is precisely abs-normal-linearized Bouligand stationarity: it requires the conditions
of Denition 5.7 specialized to (5.3). Now, the question arises why no regularity assumption is needed.
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The answer is that the abs-normal form provides a certain degree of built-in regularity: we have shown
in [8] that MPCC-ACQ is always satised for the counterpart MPCC of (5.3) (and thus every local
minimizer is an M-stationary point). Analogously one can show that ACQ for all branch problems
(NLP(P𝑡 )) is always satised for (5.3). Now, ACQ for all branch problems (NLP(P𝑡 )) is equivalent to
ACQ for all branch problems (NLP(Σ𝑡 )) by Theorem 4.3, which in turn implies GCQ for all branch
problems (NLP(Σ𝑡 )). Thus, GCQ for all branch problems (NLP(Σ𝑡 )) is always satised for (5.3) and
Theorem 5.9 holds.

6 conclusions

We have shown that general abs-normal NLPs are essentially the same problem class as MPCCs. The
two problem classes permit the denition of corresponding constraint qualications, and optimality
conditions of rst order under weak constraint qualications. We have also shown that the slack
reformulation from [10] preserves constraint qualications of Abadie type, whereas for Guginard type
we could only prove some implications. Here, one subtle drawback is the non-uniqueness of slack
variables. Thus, we have introduced branch formulations of general abs-normal NLPs and counterpart
MPCCs. Then, constraint qualications of Abadie and Guignard type are preserved.
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