
J. Nonsmooth Anal. Optim. 2 (2021), 6672, doi: 10.46298/jnsao-2021-6672
Submied: 2020-07-30, accepted: 2021-02-12

page 1 of 21
© the authors, cc-by-sa 4.0

relations between abs-normal nlps and mpccs.
part 1: strong constraint qualifications

L.C. Hegerhorst-Schultchen∗ C. Kirches† M.C. Steinbach‡

Abstract This work is part of an ongoing eort of comparing non-smooth optimization problems
in abs-normal form to MPCCs. We study the general abs-normal NLP with equality and inequality
constraints in relation to an equivalent MPCC reformulation. We show that kink qualications and
MPCC constraint qualications of linear independence type and Mangasarian-Fromovitz type are
equivalent. Then we consider strong stationarity concepts with rst and second order optimality
conditions, which again turn out to be equivalent for the two problem classes. Throughout we also
consider specic slack reformulations suggested in [9], which preserve constraint qualications of
linear independence type but not of Mangasarian-Fromovitz type.

1 introduction

Nonsmoothness arises frequently in practical optimization problems from various areas. In nite
dimensions, certain nonsmooth functions like ℓ1 and ℓ∞ norms can be avoided by smooth remodeling,
but models that involve (possibly nested) absolute value, maximum, and minimum functions, models
with piecewise denitions and models with equilibrium conditions or complementarity conditions lead
to genuine nonsmoothness. An important sub-class of such nonsmooth nite-dimensional optimization
problems is essentially characterized as “NLPs with nitely many kinks”, which gives rise to more
general standard problem classes like MPCCs [10] and optimization problems in abs-normal form [2].

The latter are non-smooth nonlinear optimization problems of the form

min
𝑥

𝑓 (𝑥) s.t. 𝑔(𝑥) = 0,(NLP)
ℎ(𝑥) ≥ 0,

where 𝐷𝑥 ⊆ ℝ𝑛 is open, the objective 𝑓 ∈ 𝐶𝑑 (𝐷𝑥 ,ℝ) is a smooth function (𝑑 ≥ 1) and the equality
and inequality constraints 𝑔 ∈ 𝐶𝑑

abs(𝐷
𝑥 ,ℝ𝑚1) and ℎ ∈ 𝐶𝑑

abs(𝐷
𝑥 ,ℝ𝑚2) are non-smooth functions with

the non-smoothness exposed in abs-normal form [2]. Thus, there exist functions 𝑐E ∈ 𝐶𝑑 (𝐷𝑥, |𝑧 |,ℝ𝑚1),
𝑐I ∈ 𝐶𝑑 (𝐷𝑥, |𝑧 |,ℝ𝑚2) and 𝑐Z ∈ 𝐶𝑑 (𝐷𝑥, |𝑧 |,ℝ𝑠) with 𝐷𝑥, |𝑧 | = 𝐷𝑥 × 𝐷 |𝑧 | , 𝐷 |𝑧 | ⊆ ℝ𝑠 open and symmetric
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(i.e., 𝑧 ∈ 𝐷 |𝑧 | implies Σ𝑧 ∈ 𝐷 |𝑧 | for every signature matrix Σ, see Denition 1.1) such that

𝑔(𝑥) = 𝑐E (𝑥, |𝑧 |),
ℎ(𝑥) = 𝑐I (𝑥, |𝑧 |),(ANF)

𝑧 = 𝑐Z (𝑥, |𝑧 |) with 𝜕2𝑐Z (𝑥, |𝑧 |) strictly lower triangular.

Note that we introduce one joint switching constraint 𝑐Z for 𝑔 and ℎ and reuse switching variables 𝑧𝑖 if
the same argument occurs inside an absolute value in 𝑔 and ℎ. Here, components of 𝑧 can be computed
one by one from 𝑥 and 𝑧𝑖 , 𝑖 < 𝑗 , since 𝜕2𝑐Z (𝑥, |𝑧 |) is strictly lower triangular. In the following we
write 𝑧 (𝑥) to denote this dependence explicitly. However, 𝑧 is implicitly dened by 𝑧 = 𝑐Z (𝑥, |𝑧 |). To
consider solvability of this system, we use the reformulation |𝑧𝑖 | = sign(𝑧𝑖)𝑧𝑖 .
Definition 1.1 (Signature of 𝑧). Let 𝑥 ∈ 𝐷𝑥 . We dene the signature 𝜎 (𝑥) and the associated signature
matrix Σ(𝑥) as

𝜎 (𝑥) := sign(𝑧 (𝑥)) ∈ {−1, 0, 1}𝑠 , Σ(𝑥) := diag(𝜎 (𝑥)) .

A signature vector 𝜎 (𝑥) ∈ {−1, 1}𝑠 is called denite, otherwise indenite.
With Denition 1.1, we can write |𝑧 (𝑥) | = Σ(𝑥)𝑧 (𝑥) and consider the system 𝑧 = 𝑐Z (𝑥, Σ𝑧), which

for any xed signature Σ = Σ(𝑥) becomes a dierentiable system. Then, application of the implicit
function theorem yields the existence of a locally unique solution 𝑧 (𝑥) with Jacobian

𝜕𝑥𝑧 (𝑥) = [𝐼 − 𝜕2𝑐Z (𝑥, |𝑧 (𝑥) |)Σ]−1𝜕1𝑐Z (𝑥, |𝑧 (𝑥) |) ∈ ℝ𝑠×𝑛 .

Definition 1.2 (Active Switching Set).We call the switching variable 𝑧𝑖 active if 𝑧𝑖 (𝑥) = 0. The active
switching set 𝛼 consists of all indices of active switching variables, i.e.

𝛼 (𝑥) := {𝑖 ∈ {1, . . . , 𝑠} : 𝑧𝑖 (𝑥) = 0}.

We denote the number of active switching variables by |𝛼 (𝑥) | and the number of inactive ones by
|𝜎 (𝑥) | := 𝑠 − |𝛼 (𝑥) |.
Unconstrained optimization problems in abs-normal form have recently been introduced by [3], and

have been shown to come with favorable theoretical properties that lead to globally convergent solution
methods based on piecewise linearizations that can be generated by algorithmic dierentiation [5, 6].
When nonsmooth equality and inequality constraints are added, the resulting abs-normal NLPs can be
compared to MPCCs, for which a well-established theoretical framework has been developed over
the past decades [10]. Comparing the two classes of nonsmooth optimization problems, the authors
reported in [8] that they basically form the same problem class, although with a dierent representation
of nonsmoothness and not necessarily with the same regularity properties.

literature

The abs-normal NLPs considered here are a direct generalization of unconstrained abs-normal problems
developed by Griewank and Walther [2, 3]. These problems oer particularly attractive theoretical fea-
tures when generalizing KKT theory and stationarity concepts, and they are tractable by sophisticated
algorithms with guaranteed convergence based on piecewise linearizations and using algorithmic
dierentiation techniques [5, 6].
Another important class of nonsmooth optimization problems are Mathematical Programs with

Complementarity (or Equilibrium) Constraints (MPCCs, MPECs); an overview can be found in the
book [10]. Since standard theory for smooth optimization problems cannot be applied, new constraint
qualications and corresponding optimality conditions were introduced. By now, there is a large body
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of literature on MPCCs, and we refer to [12] for an overview of the basic concepts and theory. In
this paper, constraint qualications for MPCCs in the sense of linear independence and Mangasarian
Fromowitz are considered. Further, the corresponding stationarity concept (S-stationarity) as well as
rst and second order optimality conditions are studied. Details can be found in [11], [10] and [1].

In [8] we have shown that unconstrained optimization problems in abs-normal form are a subclass of
MPCCs and we have studied regularity concepts of linear independence type, Mangasarian-Fromovitz
type andAbadie type. We have also shown that abs-normalNLPswith general constraints are equivalent
to the class of MPCCs. In [9] we have generalized optimality conditions of unconstrained abs-normal
problems to the case with equality and inequality constraints under the linear independence kink
qualication. More details and additional information about these results as well as about the results
in this paper can be found in [7].

contributions

We develop a deeper understanding of the commonalities of these problem classes of NLPs in abs-
normal form on the one hand, and MPCCs on the other. We provide a detailed comparative study of
general abs-normal NLPs and MPCCs, considering constraint qualications of linear independence
type and Mangasarian Fromovitz type for the standard formulation and for a reformulation with
absolute value slacks that was suggested in [9]. In particular, we show that corresponding constraint
qualications of abs-normal NLPs and MPCCs are equivalent and that the linear independence type
constraint qualications are preserved by the slack reformulation while this is not the case for a
Mangasarian-Fromovitz type constraint qualication. We then compare optimality conditions of rst
and second order for abs-normal NLPs and MPCCs under the respective linear independence type
constraint qualications. We show equivalence of the respective rst order necessary conditions, kink
stationarity and strong stationarity. We also show how second order conditions for MPCCs can be
carried over to abs-normal NLPs. Under suitable additional assumptions, we prove equivalence of
positive (semi-)deniteness of the associated reduced Hessians, which gives correspondences of second
order necessary and sucient conditions.

We expect that our theoretical results will contribute to the understanding and further development
of rigorous solution algorithms for abs-normal NLPs. We also expect the results to facilitate a possible
transferral of active-signature methods for abs-normal forms, such as SALMIN [5], to MPCCs.

structure

The remainder of this article is structured as follows. In Section 2 we present the general abs-normal
NLP and its slack reformulation, and we formulate the associated kink qualications and compare
them. In Section 3 we introduce counterpart MPCCs for the two formulations of abs-normal NLPs and
compare the associated MPCC-constraint qualications. Then, we show equivalence of the regularity
concepts for abs-normal NLPs and MPCCs in Section 4. Finally, in Section 5 we state optimality
conditions of rst and second-order for abs-normal NLPs and MPCCs and prove equivalence relations
between them. We conclude in Section 6 and give a brief outlook.

2 abs-normal nlps

In this section we consider two formulations for non-smooth NLPs in abs-normal form that dier in
the treatment of inequality constraints.
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2.1 general abs-normal nlps

In this paragraphwe consider abs-normalNLPswith equalities and inequalities, obtained by substituting
the constraints representation in abs-normal form (ANF) into the general non-smooth problem (NLP).
Note that we use the variables (𝑡, 𝑧𝑡 ) instead of (𝑥, 𝑧).
Definition 2.1 (Abs-Normal NLP). Let 𝐷𝑡 be an open subset of ℝ𝑛𝑡 . A non-smooth NLP is called
an abs-normal NLP if functions 𝑓 ∈ 𝐶𝑑 (𝐷𝑡 ,ℝ), 𝑐E ∈ 𝐶𝑑 (𝐷𝑡, |𝑧𝑡 |,ℝ𝑚1), 𝑐I ∈ 𝐶𝑑 (𝐷𝑡, |𝑧𝑡 |,ℝ𝑚2), and
𝑐Z ∈ 𝐶𝑑 (𝐷𝑡, |𝑧𝑡 |,ℝ𝑠𝑡 ) with 𝑑 ≥ 1 exist such that the NLP reads

min
𝑡,𝑧𝑡

𝑓 (𝑡) s.t. 𝑐E (𝑡, |𝑧𝑡 |) = 0,
𝑐I (𝑡, |𝑧𝑡 |) ≥ 0,(I-NLP)
𝑐Z (𝑡, |𝑧𝑡 |) − 𝑧𝑡 = 0,

where 𝐷 |𝑧𝑡 | is open and symmetric and 𝜕2𝑐Z (𝑥, |𝑧𝑡 |) is strictly lower triangular.
The feasible set of (I-NLP) is denoted by

Fabs :=
{
(𝑡, 𝑧𝑡 )

����� 𝑐E (𝑡, |𝑧𝑡 |) = 0, 𝑐I (𝑡, |𝑧𝑡 |) ≥ 0,
𝑐Z (𝑡, |𝑧𝑡 |) − 𝑧𝑡 = 0

}
= {(𝑡, 𝑧𝑡 (𝑡)) : 𝑡 ∈ 𝐷𝑡 , 𝑐E (𝑡, |𝑧𝑡 (𝑡) |) = 0, 𝑐I (𝑡, |𝑧𝑡 (𝑡) |) ≥ 0}.

In contrast to standard NLP theory, we do not count equalities as active constraints.
Definition 2.2 (Active Inequality Set). Let (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs. We call the constraint 𝑖 ∈ I active if
𝑐𝑖 (𝑡, |𝑧𝑡 (𝑡) |) = 0. The active set A(𝑡) consists of all indices of active constraints,

A(𝑡) = {𝑖 ∈ I : 𝑐𝑖 (𝑡, |𝑧𝑡 (𝑡) |) = 0}.

We denote the number of active inequality constraints by |A(𝑡) |.
To dene the linear independence kink qualication as well as the interior direction kink qualication

for (I-NLP) we need its Jacobians.
Definition 2.3 (Jacobians). Consider the abs-normal NLP (I-NLP). For (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs set A = A(𝑡),
𝛼 = 𝛼 (𝑡), 𝜎 = 𝜎 (𝑡), Σ = diag(𝜎), and 𝑐A = [𝑐𝑖]𝑖∈A . The equality-constraints Jacobian is

𝐽E (𝑡) := 𝜕𝑡𝑐E (𝑡, Σ𝑧𝑡 (𝑡)) = 𝜕1𝑐E (𝑡, Σ𝑧𝑡 (𝑡)) + 𝜕2𝑐E (𝑡, Σ𝑧𝑡 (𝑡))Σ𝜕𝑡𝑧𝑡 (𝑡)
= 𝜕1𝑐E (𝑡, |𝑧𝑡 (𝑡) |) + 𝜕2𝑐E (𝑡, |𝑧𝑡 (𝑡) |)Σ𝜕𝑡𝑧𝑡 (𝑡),

the active inequality Jacobian is

𝐽A (𝑡) := 𝜕𝑡𝑐A (𝑡, Σ𝑧𝑡 (𝑡)) = 𝜕1𝑐A (𝑡, Σ𝑧𝑡 (𝑡)) + 𝜕2𝑐A (𝑡, Σ𝑧𝑡 (𝑡))Σ𝜕𝑡𝑧𝑡 (𝑡)
= 𝜕1𝑐A (𝑡, |𝑧𝑡 (𝑡) |) + 𝜕2𝑐A (𝑡, |𝑧𝑡 (𝑡) |)Σ𝜕𝑡𝑧𝑡 (𝑡),

and the active switching Jacobian is

𝐽𝛼 (𝑡) :=
[
𝑒𝑇𝑖 𝜕𝑡𝑧

𝑡 (𝑡)
]
𝑖∈𝛼 =

[
𝑒𝑇𝑖 [𝐼 − 𝜕2𝑐Z (𝑡, |𝑧𝑡 (𝑡) |)Σ]−1𝜕1𝑐Z (𝑡, |𝑧𝑡 (𝑡) |)

]
𝑖∈𝛼 .

Definition 2.4 (Linear Independence Kinkalification). Let (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs. We say that the linear
independence kink qualication (LIKQ) holds for (I-NLP) at 𝑡 if

𝐽abs(𝑡) =

𝐽E (𝑡)
𝐽A (𝑡)
𝐽𝛼 (𝑡)

 =

𝜕𝑡𝑐E (𝑡, |𝑧𝑡 (𝑡) |)
𝜕𝑡𝑐A (𝑡, |𝑧𝑡 (𝑡) |)
[𝑒𝑇𝑖 𝜕𝑡𝑧𝑡 (𝑡)]𝑖∈𝛼

 ∈ ℝ (𝑚1+|A |+|𝛼 |)×𝑛𝑡

has full row rank𝑚1 + |A| + |𝛼 |.
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Definition 2.5 (Interior Direction Kink alification). Let (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs. We say that the interior
direction kink qualication (IDKQ) holds for (I-NLP) at 𝑡 if[

𝐽E (𝑡)
𝐽𝛼 (𝑡)

]
=

[
𝜕𝑡𝑐E (𝑡, |𝑧𝑡 (𝑡) |)
[𝑒𝑇𝑖 𝜕𝑡𝑧𝑡 (𝑡)]𝑖∈𝛼

]
∈ ℝ (𝑚1+|𝛼 |)×𝑛𝑡

has full row rank𝑚1 + |𝛼 | and if there exists a vector 𝑑 ∈ ℝ𝑛𝑡 such that

𝐽E (𝑡)𝑑 = 0, 𝐽𝛼 (𝑡)𝑑 = 0, and 𝐽A (𝑡)𝑑 > 0.

For the general abs-normal NLP (I-NLP) considered here, IDKQ actually generalizes MFCQ from the
smooth case and corresponds to MPCC-MFCQ, as we will show below. We cannot use the canonical
nameMFKQ,however, since Griewank andWalther have already denedMFKQ as a dierentweakening
of LIKQ in [4]. We believe that other possible names like “Abs-normal MFKQ” or “Constrained MFKQ”
would produce confusion rather than clarication and hence suggest the descriptive name “Interior
Direction KQ”.

The following example from [11] (converted from MPCC form to abs-normal NLP form) shows that
IDKQ is weaker than LIKQ in the presence of inequality constraints.
Example 2.6 (IDKQ is weaker than LIKQ). Consider the problem

min
𝑡 ∈ℝ3,𝑧𝑡 ∈ℝ

𝑡1 + 𝑡2 − 𝑡3 s.t. 𝑡1 + 𝑡2 − |𝑧𝑡 | = 0,
4𝑡1 − 𝑡3 ≥ 0,
4𝑡2 − 𝑡3 ≥ 0,
𝑡1 − 𝑡2 − 𝑧𝑡 = 0,

with solution 𝑡∗ = (0, 0, 0) and (𝑧𝑡 )∗ = 0. We compute

𝐽A (𝑡∗) =
[
4 0 −1
0 4 −1

]
, 𝐽E (𝑡∗) =

[
1 1 0

]
, and 𝐽𝛼 (𝑡∗) =

[
1 −1 0

]
.

Here, LIKQ is not satised but IDKQ is satised with 𝑑 = (0, 0,−1).

2.2 abs-normal nlps with inequality slacks

In this paragraph we consider abs-normal NLPs with slack variables introduced for all inequalities. We
make use of the absolute value of a slack variable, an idea due to Griewank. This results in a class of
purely equality-constrained abs-normal NLPs, which simplies the derivation of optimality conditions
under the LIKQ, see [9] and Section 5.

Using slack variables𝑤 ∈ ℝ𝑚2 , we obtain the following reformulation of (NLP):

min
𝑡,𝑤

𝑓 (𝑡) s.t. 𝑔(𝑡) = 0,
ℎ(𝑡) − |𝑤 | = 0.

Then, we express 𝑔 and ℎ in abs-normal form as in (ANF) and introduce additional switching variables
𝑧𝑤 to handle |𝑤 |. This approach leads to the next denition.
Definition 2.7 (Abs-Normal NLP with Inequality Slacks). An abs-normal NLP posed in the following
form is called an abs-normal NLP with inequality slacks:

min
𝑡,𝑤,𝑧𝑡 ,𝑧𝑤

𝑓 (𝑡) s.t. 𝑐E (𝑡, |𝑧𝑡 |) = 0,
𝑐I (𝑡, |𝑧𝑡 |) − |𝑧𝑤 | = 0,(E-NLP)
𝑐Z (𝑡, |𝑧𝑡 |) − 𝑧𝑡 = 0,
𝑤 − 𝑧𝑤 = 0,

where 𝐷 |𝑧𝑡 | is open and symmetric and 𝜕2𝑐Z (𝑥, |𝑧𝑡 |) is strictly lower triangular.
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The feasible set of (E-NLP) is a lifting of Fabs,

Fe-abs :=
{
(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤)

����� 𝑐E (𝑡, |𝑧𝑡 |) = 0, 𝑐I (𝑡, |𝑧𝑡 |) − |𝑧𝑤 | = 0,
𝑐Z (𝑡, |𝑧𝑡 |) − 𝑧𝑡 = 0, 𝑤 − 𝑧𝑤 = 0

}
=
{
(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) : (𝑡, 𝑧𝑡 ) ∈ Fabs, 𝑤 = 𝑧𝑤, |𝑧𝑤 | = 𝑐I (𝑡, |𝑧𝑡 |)

}
.

Using the dependence of 𝑧𝑡 and 𝑧𝑤 of 𝑡 and𝑤 , the feasible set can be written as

Fe-abs =

{
(𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤))

����� 𝑡 ∈ 𝐷𝑡 , 𝑐E (𝑡, |𝑧𝑡 (𝑡) |) = 0,
𝑐I (𝑡, |𝑧𝑡 (𝑡) |) − |𝑧𝑤 (𝑤) | = 0, 𝑤 − 𝑧𝑤 (𝑤) = 0

}
=
{
(𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤)) : (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs, 𝑤 = 𝑧𝑤 (𝑤), |𝑧𝑤 (𝑤) | = 𝑐I (𝑡, |𝑧𝑡 (𝑡) |)

}
.

We split the active switching set into subsets for variables 𝑡 and𝑤 as 𝛼 = (𝛼𝑡 , 𝛼𝑤).
Remark 2.8. Note that introducing |𝑤 | converts inequalities to pure equalities without a nonnegativity
condition for the slack variables𝑤 . However, the slack reformulation has some subtle issues. Subse-
quently we will show that, in contrast to LIKQ, IDKQ is not preserved. Moreover, one cannot eliminate
the equation 𝑤 − 𝑧𝑤 = 0 (and hence 𝑧𝑤 or 𝑤 ) in (E-NLP) since this would destroy the abs-normal
form. Finally, the slack𝑤 is not uniquely determined since the signs of nonzero components𝑤𝑖 can be
chosen arbitrarily, yielding a set of 2𝑚2−|𝛼𝑤 | choices,𝑊 (𝑡) := {𝑤 : |𝑤 | = 𝑐I (𝑡, |𝑧𝑡 (𝑡) |)}.
Lemma 2.9. Consider (𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤)) ∈ Fe-abs. Then, LIKQ for (E-NLP) at (𝑡,𝑤) is full row rank of

𝐽e-abs(𝑡,𝑤) =


𝜕𝑡𝑐E (𝑡, |𝑧𝑡 (𝑡) |) 0
𝜕𝑡𝑐I (𝑡, |𝑧𝑡 (𝑡) |) −Σ𝑤

[𝑒𝑇𝑖 𝜕𝑡𝑧𝑡 (𝑡)]𝑖∈𝛼𝑡 0
0 [𝑒𝑇𝑖 𝐼 ]𝑖∈𝛼𝑤

 ∈ ℝ (𝑚1+𝑚2+|𝛼𝑡 |+ |𝛼𝑤 |)×(𝑛𝑡+𝑚2) .

Proof. Set 𝑥 = (𝑡,𝑤), 𝑧 = (𝑧𝑡 , 𝑧𝑤), 𝑓 (𝑥) = 𝑓 (𝑡), 𝑐E (𝑥, |𝑧 |) = (𝑐E (𝑡, |𝑧𝑡 |), 𝑐I (𝑡, |𝑧𝑡 |) − |𝑧𝑤 |), and
𝑐Z (𝑥, |𝑧 |) = (𝑐Z (𝑡, |𝑧𝑡 |),𝑤). Then, we can write (E-NLP) compactly as

min
𝑥,𝑧

𝑓 (𝑥) s.t. 𝑐E (𝑥, |𝑧 |) = 0,(E-NLP)
𝑐Z (𝑥, |𝑧 |) − 𝑧 = 0,

and compute 𝐽E and 𝐽𝛼 from Denition 2.3 using the special structure of (E-NLP). The resulting matrix
𝐽e-abs(𝑥) =

[
𝐽E (𝑥)𝑇 𝐽𝛼 (𝑥)𝑇

]𝑇 in Denition 2.4 has the form above. �

Remark 2.10. Clearly, the rank of 𝐽e-abs does not depend on the signs of ±1 entries in Σ𝑤 but only on
their positions. Hence, LIKQ does not depend on the particular choice of𝑤 . Otherwise it would not
make sense to consider (E-NLP).

Note that, since the abs-normal NLP (E-NLP) does not contain any inequalities, the concept of IDKQ
is equivalent to LIKQ here. This is in contrast to the standard reformulation of smooth NLP inequalities
as equalities with nonnegative slacks where the validity of LICQ and MFCQ are both unaected.

2.3 relations of kink qualifications for abs-normal nlps

In this paragraph we discuss the relations of kink qualications for the two dierent formulations of
abs-normal NLPs. We use the set𝑊 (𝑡) from above.
Theorem 2.11. LIKQ for (I-NLP) holds at (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs if and only if LIKQ for (E-NLP) holds at
(𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤)) ∈ Fe-abs for any (and hence all)𝑤 ∈𝑊 (𝑡).
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Proof. This follows immediately by comparison of 𝐽abs and 𝐽e-abs using that

𝛼𝑤 (𝑤) = {𝑖 ∈ I : 𝑤𝑖 = 0} = {𝑖 ∈ I : 𝑐𝑖 (𝑡, 𝑧𝑡 (𝑡)) = 0} = A(𝑡)

and

Σ𝑤 = diag(𝜎𝑤) with 𝜎𝑤
𝑖 = sign(𝑤𝑖) =

{
0, 𝑖 ∈ A(𝑡),
±1, 𝑖 ∉ A(𝑡).

�

Theorem 2.12. IDKQ for (I-NLP) holds at (𝑡, 𝑧𝑡 (𝑡)) ∈ Fabs if IDKQ for (E-NLP) holds at the lifted point
(𝑡,𝑤, 𝑧𝑡 (𝑡), 𝑧𝑤 (𝑤)) ∈ Fe-abs for any (and hence all)𝑤 ∈𝑊 (𝑡). The converse is not true.

Proof. Since (E-NLP) has no inequalities, the concepts of IDKQ and LIKQ coincide. LIKQ for (E-NLP)
is equivalent to LIKQ for (I-NLP) by Theorem 2.11, and LIKQ for (I-NLP) implies IDKQ for (I-NLP).
The converse does not hold since LIKQ for (I-NLP) is stronger then IDKQ as we have shown in
Example 2.6. �

3 counterpart mpccs

In this section we introduce MPCC counterpart problems for the two formulations (I-NLP) and (E-NLP).
Then, we have a quick look at relations between them.

3.1 counterpart mpcc for the general abs-normal nlp

To reformulate (I-NLP) as an MPCC, we partition 𝑧𝑡 into its nonnegative part and the modulus of
its nonpositive part, 𝑢𝑡 := [𝑧𝑡 ]+ := max(𝑧𝑡 , 0) and 𝑣𝑡 := [𝑧𝑡 ]− := max(−𝑧𝑡 , 0). Then, we require
complementarity of these two variables to replace |𝑧𝑡 | by 𝑢𝑡 + 𝑣𝑡 and 𝑧𝑡 itself by 𝑢𝑡 − 𝑣𝑡 .
Definition 3.1 (Counterpart MPCC of (I-NLP)). The counterpart MPCC of the abs-normal NLP (I-NLP)
reads

min
𝑡,𝑢𝑡 ,𝑣𝑡

𝑓 (𝑡) s.t. 𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 0,
𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) ≥ 0,(I-MPCC)
𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑡 − 𝑣𝑡 ) = 0,
0 ≤ 𝑢𝑡 ⊥ 𝑣𝑡 ≥ 0,

where 𝑢𝑡 , 𝑣𝑡 ∈ ℝ𝑠𝑡 .
The feasible set of (I-MPCC) is denoted by

Fmpcc :=
{
(𝑡,𝑢𝑡 , 𝑣𝑡 )

����� 𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 0, 𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) ≥ 0,
𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 𝑢𝑡 − 𝑣𝑡 , 0 ≤ 𝑢𝑡 ⊥ 𝑣𝑡 ≥ 0

}
.

Lemma 3.2. Given an abs-normal NLP (I-NLP) and its counterpart MPCC (I-MPCC), we have a homeo-
morphism 𝜙 : Fmpcc → Fabs dened as

𝜙 (𝑡,𝑢𝑡 , 𝑣𝑡 ) = (𝑡,𝑢𝑡 − 𝑣𝑡 ), 𝜙−1(𝑡, 𝑧𝑡 ) = (𝑡, [𝑧𝑡 ]+, [𝑧𝑡 ]−) .

Proof. Obvious. �
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Just like the active switching set of the abs-normal NLP, we dene index sets of the counterpart
MPCC.
Definition 3.3 (Index Sets).We denote by U𝑡

0 := {𝑖 ∈ {1, . . . , 𝑠𝑡 } : 𝑢𝑡𝑖 = 0} the set of indices of active
inequalities 𝑢𝑡𝑖 ≥ 0, and by U𝑡

+ := {𝑖 ∈ {1, . . . , 𝑠𝑡 } : 𝑢𝑡𝑖 > 0} the set of indices of inactive inequalities
𝑢𝑡𝑖 ≥ 0. Analogous denitions hold ofV𝑡

0 andV𝑡
+ . ByD𝑡 := U𝑡

0∩V𝑡
0 we denote the set of indices of non-

strict (degenerate) complementarity pairs. Thus we have the partitioning {1, . . . , 𝑠𝑡 } = U𝑡
+ ∪V𝑡

+ ∪ D𝑡 .
In the following we dene constraint qualications for the counterpart MPCC. The standard de-

nitions say that MPCC-LICQ and MPCC-MFCQ are LICQ and MFCQ, respectively, for the so-called
tightened NLP (see [11]) with associated Jacobian

𝐽 (𝑡,𝑢𝑡 , 𝑣𝑡 ) =



𝜕1𝑐E 𝜕2𝑐E𝑃𝑇U𝑡
+

𝜕2𝑐E𝑃𝑇U𝑡
0

𝜕2𝑐E𝑃𝑇V𝑡
+

𝜕2𝑐E𝑃𝑇V𝑡
0

𝜕1𝑐A 𝜕2𝑐A𝑃𝑇U𝑡
+

𝜕2𝑐A𝑃𝑇U𝑡
0

𝜕2𝑐A𝑃𝑇V𝑡
+

𝜕2𝑐A𝑃𝑇V𝑡
0

𝜕1𝑐Z [𝜕2𝑐Z − 𝐼 ]𝑃𝑇U𝑡
+

[𝜕2𝑐Z − 𝐼 ]𝑃𝑇U𝑡
0

[𝜕2𝑐Z + 𝐼 ]𝑃𝑇V𝑡
+

[𝜕2𝑐Z + 𝐼 ]𝑃𝑇V𝑡
0

0 0 𝐼 0 0
0 0 0 0 𝐼


,

where 𝑃S ∈ ℝ |S |×𝑠𝑡 denotes the projector onto the subspace dened by S ⊆ {1, . . . , 𝑠𝑡 } and all partial
darivatives are evaluated at (𝑡,𝑢𝑡 + 𝑣𝑡 ). This Jacobian will be needed in Section 5.2 to formulate second
order conditions. Here we exploit the two unit blocks to state constraint qualications in a more
compact form as in [8].
Definition 3.4 (MPCC-LICQ for (I-MPCC), see [11]).We say that the MPCC-LICQ holds for (I-MPCC)
at a feasible point (𝑡,𝑢𝑡 , 𝑣𝑡 ) if

𝐽mpcc(𝑡,𝑢𝑡 , 𝑣𝑡 ) =


𝜕1𝑐E 𝜕2𝑐E𝑃𝑇U𝑡

+
𝜕2𝑐E𝑃𝑇V𝑡

+

𝜕1𝑐A 𝜕2𝑐A𝑃𝑇U𝑡
+

𝜕2𝑐A𝑃𝑇V𝑡
+

𝜕1𝑐Z [𝜕2𝑐Z − 𝐼 ]𝑃𝑇U𝑡
+

[𝜕2𝑐Z + 𝐼 ]𝑃𝑇V𝑡
+


∈ ℝ (𝑚1+|A |+𝑠𝑡 )×(𝑛𝑡+|U𝑡

+ |+ |V𝑡
+ |)

has full row rank𝑚1 + |A| + 𝑠𝑡 . Here all partial derivatives are evaluated at (𝑡,𝑢𝑡 + 𝑣𝑡 ).
Definition 3.5 (MPCC-MFCQ for (I-MPCC), see [11]). We say that theMPCC-MFCQ holds for (I-MPCC)
at a feasible point (𝑡,𝑢𝑡 , 𝑣𝑡 ) if

𝜕1𝑐E 𝜕2𝑐E𝑃𝑇U𝑡
+

𝜕2𝑐E𝑃𝑇V𝑡
+

𝜕1𝑐Z [𝜕2𝑐Z − 𝐼 ]𝑃𝑇U𝑡
+

[𝜕2𝑐Z + 𝐼 ]𝑃𝑇V𝑡
+

 ∈ ℝ (𝑚1+𝑠𝑡 )×(𝑛𝑡+|U𝑡
+ |+ |V𝑡

+ |)

has full row rank𝑚1 + 𝑠𝑡 and if there exists a vector 𝑑 ∈ ℝ𝑛𝑡+|U𝑡
+ |+ |V𝑡

+ | such that
𝜕1𝑐E 𝜕2𝑐E𝑃𝑇U𝑡

+
𝜕2𝑐E𝑃𝑇V𝑡

+

𝜕1𝑐Z [𝜕2𝑐Z − 𝐼 ]𝑃𝑇U𝑡
+

[𝜕2𝑐Z + 𝐼 ]𝑃𝑇V𝑡
+

 𝑑 = 0,[
𝜕1𝑐A 𝜕2𝑐A𝑃𝑇U𝑡

+
𝜕2𝑐A𝑃𝑇V𝑡

+

]
𝑑 > 0.

Again all partial derivatives are evaluated at (𝑡,𝑢𝑡 + 𝑣𝑡 ).
As with LIKQ and IDKQ for (I-NLP), MPCC-MFCQ is weaker then MPCC-LICQ for the counterpart

MPCC of (I-NLP). The latter fact is well known, and can also be seen easily by rewriting Example 2.6
as the counterpart MPCC and checking the above conditions.
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3.2 counterpart mpcc for the abs-normal nlp with inequality slacks

Using the same approach as in the preceding paragraph, we formulate the counterpart MPCC of
(E-NLP).
Definition 3.6 (Counterpart MPCC of (E-NLP)). The counterpart MPCC of the abs-normal NLP (E-NLP)
reads:

min
𝑡,𝑤,𝑢𝑡 ,𝑣𝑡 ,𝑢𝑤 ,𝑣𝑤

𝑓 (𝑡) s.t. 𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 0,
𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑤 + 𝑣𝑤) = 0,
𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑡 − 𝑣𝑡 ) = 0,(E-MPCC)
𝑤 − (𝑢𝑤 − 𝑣𝑤) = 0,
0 ≤ 𝑢𝑡 ⊥ 𝑣𝑡 ≥ 0,
0 ≤ 𝑢𝑤 ⊥ 𝑣𝑤 ≥ 0,

where 𝑢𝑡 , 𝑣𝑡 ∈ ℝ𝑠𝑡 and 𝑢𝑤, 𝑣𝑤 ∈ ℝ𝑚2 .
The feasible set of (E-MPCC) is a lifting of Fmpcc:

Fe-mpcc :=

 (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤)

�������
𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 0, 𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 𝑢𝑤 + 𝑣𝑤,

𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 𝑢𝑡 − 𝑣𝑡 , 𝑤 = 𝑢𝑤 − 𝑣𝑤,

0 ≤ 𝑢𝑡 ⊥ 𝑣𝑡 ≥ 0, 0 ≤ 𝑢𝑤 ⊥ 𝑣𝑤 ≥ 0


=

{
(𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤)

����� (𝑡,𝑢𝑡 , 𝑣𝑡 ) ∈ Fmpcc, 𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) = 𝑢𝑤 + 𝑣𝑤,

𝑤 = 𝑢𝑤 − 𝑣𝑤, 0 ≤ 𝑢𝑤 ⊥ 𝑣𝑤 ≥ 0

}
.

Clearly, the homeomorphism between Fmpcc and Fabs extends to Fe-mpcc and Fe-abs.
Lemma 3.7. Given an abs-normal NLP (E-NLP) and its counterpart MPCC (E-MPCC), we have a homeo-
morphism 𝜙 : Fe-mpcc → Fe-abs dened as

𝜙 (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) = (𝑡,𝑤,𝑢𝑡 − 𝑣𝑡 , 𝑢𝑤 − 𝑣𝑤),
𝜙−1(𝑡,𝑤, 𝑧𝑡 , 𝑧𝑤) = (𝑡,𝑤, [𝑧𝑡 ]+, [𝑧𝑡 ]−, [𝑧𝑤]+, [𝑧𝑤]−) .

Proof. Obvious. �

Lemma 3.8. MPCC-LICQ for (E-MPCC) at a feasible point 𝑦 = (𝑡,𝑤,𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤) is full row rank of

𝐽e-mpcc(𝑦) =



𝜕1𝑐E 0 𝜕2𝑐E𝑃𝑇U𝑡
+

𝜕2𝑐E𝑃𝑇V𝑡
+

0 0

𝜕1𝑐I 0 𝜕2𝑐I𝑃
𝑇

U𝑡
+

𝜕2𝑐I𝑃
𝑇

V𝑡
+

−𝑃𝑇U𝑤
+

−𝑃𝑇V𝑤
+

𝜕1𝑐Z 0 [𝜕2𝑐Z − 𝐼 ]𝑃𝑇U𝑡
+

[𝜕2𝑐Z + 𝐼 ]𝑃𝑇V𝑡
+

0 0

0 𝐼 0 0 −𝑃𝑇U𝑤
+

+𝑃𝑇V𝑤
+


∈ ℝ (𝑚1+𝑚2+𝑠𝑡+𝑚2)×(𝑛𝑡+𝑚2+|U𝑡

+ |+ |V𝑡
+ |+ |U𝑤

+ |+ |V𝑤
+ |) ,

where all partial derivatives are evaluated at (𝑡,𝑢𝑡 + 𝑣𝑡 ).

Proof. We set 𝑥 = (𝑡,𝑤), 𝑢 = (𝑢𝑡 , 𝑢𝑤), 𝑣 = (𝑣𝑡 , 𝑣𝑤) as well as 𝑓 (𝑥) = 𝑓 (𝑡),

𝑐E (𝑥,𝑢 + 𝑣) =
(

𝑐E (𝑡,𝑢𝑡 + 𝑣𝑡 )
𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑤 + 𝑣𝑤))

)
, 𝑐Z (𝑥,𝑢 + 𝑣) =

(
𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 )

𝑤

)
.
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Then, (E-MPCC) becomes

min
𝑥,𝑢,𝑣

𝑓 (𝑥) s.t. 𝑐E (𝑥,𝑢 + 𝑣) = 0,
𝑐Z (𝑥,𝑢 + 𝑣) − (𝑢 − 𝑣) = 0,(E-MPCC)
0 ≤ 𝑢 ⊥ 𝑣 ≥ 0,

and we can compute the Jacobian from Denition 3.4 using the special structure of (E-MPCC). The
resulting matrix has the stated form, except that the last four columns belong to variables (𝑢𝑡 , 𝑣𝑡 , 𝑢𝑤, 𝑣𝑤)
rather than (𝑢, 𝑣) = (𝑢𝑡 , 𝑢𝑤, 𝑣𝑡 , 𝑣𝑤). �

Like LIKQ for (E-NLP), MPCC-LICQ for (E-MPCC) does not depend on the particular choice of𝑤 ,
and like IDKQ for (E-NLP), the concept of MPCC-MFCQ for (E-MPCC) is equivalent to MPCC-LICQ
since no inequalities are present besides the complementarities.

3.3 relations of mpcc constraint qualifications

In this paragraph we state the relations of constraint qualications for the two dierent formulations
introduced in the previous paragraphs. They follow from the results in the previous section and in the
two following sections. For an illustration see Figure 1 below. We set𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ) := {(𝑤,𝑢𝑤, 𝑣𝑤) : |𝑤 | =
𝑐I (𝑡,𝑢𝑡 + 𝑣𝑡 ), 𝑢𝑤 = [𝑤]+, 𝑣𝑤 = [𝑤]−}.
Theorem 3.9. MPCC-LICQ for (I-MPCC) holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) ∈ Fmpcc if and only if MPCC-LICQ for
(E-MPCC) holds at (𝑡,𝑤,𝑢𝑡 , 𝑢𝑤, 𝑣𝑡 , 𝑣𝑤) ∈ Fe-mpcc for any (and hence all) (𝑤,𝑢𝑤, 𝑣𝑤) ∈𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ).

Proof. This follows directly from Theorem 2.11, Theorem 4.1 and Theorem 4.3. �

Theorem 3.10. MPCC-MFCQ for (I-MPCC) holds at (𝑡,𝑢𝑡 , 𝑣𝑡 ) ∈ Fmpcc if MPCC-MFCQ for (E-MPCC)
holds at (𝑡,𝑤,𝑢𝑡 , 𝑢𝑤, 𝑣𝑡 , 𝑣𝑤) ∈ Fe-mpcc for any (and hence all) (𝑤,𝑢𝑤, 𝑣𝑤) ∈𝑊 (𝑡,𝑢𝑡 , 𝑣𝑡 ). The converse is
not true.

Proof. This follows directly from Theorem 2.12, Theorem 4.2 and Corollary 4.4. �

4 kink qualifications and mpcc constraint qualifications

In this section we have a closer look at relations between abs-normal NLPs and counterpart MPCCs in
both formulations.

4.1 relations of general abs-normal nlp and mpcc

Here we use the variables 𝑥 and 𝑧 instead of 𝑡 and 𝑧𝑡 to shorten notation because we do not consider
inequality slacks. Then the general abs-normal NLP (I-NLP) becomes:

min
𝑥,𝑧

𝑓 (𝑥) s.t. 𝑐E (𝑥, |𝑧 |) = 0,
𝑐I (𝑥, |𝑧 |) ≥ 0,
𝑐Z (𝑥, |𝑧 |) − 𝑧 = 0.

The counterpart MPCC (I-MPCC) reads:

min
𝑥,𝑢,𝑣

𝑓 (𝑥) s.t. 𝑐E (𝑥,𝑢 + 𝑣) = 0,
𝑐I (𝑥,𝑢 + 𝑣) ≥ 0,
𝑐Z (𝑥,𝑢 + 𝑣) − (𝑢 − 𝑣) = 0,
0 ≤ 𝑢 ⊥ 𝑣 ≥ 0.
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We obtain the following relations of kink qualications and MPCC constraint qualications.
Theorem 4.1 (LIKQ ⇐⇒ MPCC-LICQ). LIKQ for (I-NLP) at 𝑥 ∈ Fabs is equivalent to MPCC-LICQ for
(I-MPCC) at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ Fmpcc.

Proof. Setting 𝑦 := (𝑥,𝑢 + 𝑣) and 𝑟 :=𝑚1 + |A| + 𝑠 , MPCC-LICQ for the counterpart MPCC is

rank


𝜕1𝑐E (𝑦) 𝜕2𝑐E (𝑦)𝑃𝑇U+

𝜕2𝑐E (𝑦)𝑃𝑇V+

𝜕1𝑐A (𝑦) 𝜕2𝑐A (𝑦)𝑃𝑇U+
𝜕2𝑐A (𝑦)𝑃𝑇V+

𝜕1𝑐Z (𝑦) [𝜕2𝑐Z (𝑦) − 𝐼 ]𝑃𝑇U+
[𝜕2𝑐Z (𝑦) + 𝐼 ]𝑃𝑇V+

 = 𝑟 .

By negating the second column and combining it with the third column, this is equivalent to

rank


𝜕1𝑐E (𝑦) −𝜕2𝑐E (𝑦)Σ𝑃𝑇U+∪V+

𝜕1𝑐A (𝑦) −𝜕2𝑐A (𝑦)Σ𝑃𝑇U+∪V+

𝜕1𝑐Z (𝑦) [𝐼 − 𝜕2𝑐Z (𝑦)Σ]𝑃𝑇U+∪V+

 = 𝑟

and, by non-singularity of 𝐼 − 𝜕2𝑐Z (𝑦)Σ, to

rank


𝜕1𝑐E (𝑦) −𝜕2𝑐E (𝑦)Σ𝑃𝑇U+∪V+

𝜕1𝑐A (𝑦) −𝜕2𝑐A (𝑦)Σ𝑃𝑇U+∪V+

[𝐼 − 𝜕2𝑐Z (𝑦)Σ]−1𝜕1𝑐Z (𝑦) 𝑃𝑇U+∪V+

 = 𝑟 .

Next, we use the third row to eliminate the entries above 𝑃𝑇U+∪V+
to obtain

rank

𝜕1𝑐E (𝑦) + 𝜕2𝑐E (𝑦)Σ[𝐼 − 𝜕2𝑐Z (𝑦)Σ]−1𝜕1𝑐Z (𝑦) 0
𝜕1𝑐A (𝑦) + 𝜕2𝑐A (𝑦)Σ[𝐼 − 𝜕2𝑐Z (𝑦)Σ]−1𝜕1𝑐Z (𝑦) 0

[𝐼 − 𝜕2𝑐Z (𝑦)Σ]−1𝜕1𝑐Z (𝑦) 𝑃𝑇U+∪V+

 = 𝑟,

which we can write with 𝑢 + 𝑣 = |𝑧 | = |𝑧 (𝑥) | as

rank

𝜕𝑥𝑐E (𝑥, |𝑧 (𝑥) |) 0
𝜕𝑥𝑐A (𝑥, |𝑧 (𝑥) |) 0

𝜕𝑥𝑧 (𝑥) 𝑃𝑇U+∪V+

 = 𝑟 .

Finally, since 𝛼 = D is the complement ofU+ ∪V+, this is equivalent to

rank

𝜕𝑥𝑐E (𝑥, |𝑧 (𝑥) |)
𝜕𝑥𝑐A (𝑥, |𝑧 (𝑥) |)
[𝑒𝑇𝑖 𝜕𝑥𝑧 (𝑥)]𝑖∈𝛼

 =𝑚1 + |A| + |𝛼 |,

which is LIKQ for the abs-normal NLP. �

Theorem 4.2 (IDKQ ⇐⇒ MPCC-MFCQ). IDKQ for (I-NLP) at 𝑥 ∈ Fabs is equivalent to MPCC-MFCQ
for (I-MPCC) at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ Fmpcc.

Proof. Again with 𝑦 := (𝑥,𝑢 + 𝑣), MPCC-MFCQ for the counterpart MPCC is
1. full row rank of[

𝜕1𝑐E (𝑦) 𝜕2𝑐E (𝑦)𝑃𝑇U+
𝜕2𝑐E (𝑦)𝑃𝑇V+

𝜕1𝑐Z (𝑦) [𝜕2𝑐Z (𝑦) − 𝐼 ]𝑃𝑇U+
[𝜕2𝑐Z (𝑦) + 𝐼 ]𝑃𝑇V+

]
∈ ℝ (𝑚1+𝑠)×(𝑛+|U+∪V+ |) .

As in the proof of Theorem 4.1, this is seen to be full row rank of[
𝜕𝑥𝑐E (𝑥, |𝑧 (𝑥) |)
[𝑒𝑇𝑖 𝜕𝑥𝑧 (𝑥)]𝑖∈𝛼

]
∈ ℝ (𝑚1+|𝛼 |)×𝑛 .
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2. the existence of a vector 𝑑 = (𝑑𝑥 , 𝑑𝑢, 𝑑𝑣) ∈ ℝ𝑛+|U+∪V+ | such that[
𝜕1𝑐E (𝑦) 𝜕2𝑐E (𝑦)𝑃𝑇U+

𝜕2𝑐E (𝑦)𝑃𝑇V+

𝜕1𝑐Z (𝑦) [𝜕2𝑐Z (𝑦) − 𝐼 ]𝑃𝑇U+
[𝜕2𝑐Z (𝑦) + 𝐼 ]𝑃𝑇V+

]
𝑑 = 0,[

𝜕1𝑐A (𝑦) 𝜕2𝑐A (𝑦)𝑃𝑇U+
𝜕2𝑐A (𝑦)𝑃𝑇V+

]
𝑑 > 0.

We combine 𝑑𝑢 and −𝑑𝑣 to 𝑑𝑢𝑣 ∈ ℝ |U+∪V+ | . Then this is equivalent to

𝜕1𝑐E (𝑦)𝑑𝑥 + 𝜕2𝑐E (𝑦)Σ𝑃𝑇U+∪V+
𝑑𝑢𝑣 = 0,

𝜕1𝑐Z (𝑦)𝑑𝑥 − [𝐼 − 𝜕2𝑐Z (𝑦)Σ]𝑃𝑇U+∪V+
𝑑𝑢𝑣 = 0,

𝜕1𝑐A (𝑦)𝑑𝑥 + 𝜕2𝑐A (𝑦)Σ𝑃𝑇U+∪V+
𝑑𝑢𝑣 > 0.

The second condition can be written as

(4.1) [𝐼 − 𝜕2𝑐Z (𝑦)Σ]−1𝜕1𝑐Z (𝑦)𝑑𝑥 = 𝑃𝑇U+∪V+
𝑑𝑢𝑣 .

Multiplying this by 𝑃𝑇D = 𝑃𝑇𝛼 yields[
𝑒𝑇𝑖 [𝐼 − 𝜕2𝑐Z (𝑦)Σ]−1𝜕1𝑐Z (𝑦)

]
𝑖∈𝛼 𝑑𝑥 = [𝑒𝑇𝑖 𝜕𝑥𝑧 (𝑥)]𝑖∈𝛼𝑑𝑥 = 0.

With 𝑢 + 𝑣 = |𝑧 | = |𝑧 (𝑥) |, substituting the right-hand side of (4.1) into the rst and third condition
nally gives

𝜕𝑥𝑐E (𝑥, |𝑧 (𝑥) |)𝑑𝑥 = 0,
[𝑒𝑇𝑖 𝜕𝑥𝑧 (𝑥)]𝑖∈𝛼𝑑𝑥 = 0,
𝜕𝑥𝑐A (𝑥, |𝑧 (𝑥) |)𝑑𝑥 > 0,

which is IDKQ for the abs-normal NLP. �

4.2 relations of abs-normal nlp and mpcc with inequality slacks

As the reformulation with inequality slacks is just a specialization of the general case, we do without
proofs and give remarks where dierences occur.

Using the short notation (E-NLP) for (E-NLP) (see proof of Lemma 2.9) and similarly (E-MPCC) for
the counterpart MPCC (E-MPCC) (see proof of Lemma 3.8), we obtain the same relation between LIKQ
and MPCC-LICQ as in the previous paragraph.
Theorem 4.3 (LIKQ ⇐⇒ MPCC-LICQ). LIKQ for (E-NLP) at 𝑥 ∈ Fe-abs is equivalent to MPCC-LICQ
for (E-MPCC) at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ Fe-mpcc.

Proof. This follows as in the proof of Theorem 4.1. �

Note that this directly implies the next result since LIKQ and IDKQ as well as MPCC-LICQ and
MPCC-MFCQ coincide in the purely equality constrained setting.
Corollary 4.4 (IDKQ ⇐⇒ MPCC-MFCQ). IDKQ for (E-NLP) at 𝑥 ∈ Fe-abs is equivalent to MPCC-MFCQ
for (E-MPCC) at (𝑥,𝑢, 𝑣) = (𝑥, [𝑧 (𝑥)]+, [𝑧 (𝑥)]−) ∈ Fe-mpcc.
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Figure 1: Solid arrows: relations between LIKQ and MPCC-LICQ; dashed arrows: relations between
IDKQ and MPCC-MFCQ.

5 optimality conditions

In this section we consider rst and second order optimality conditions for (I-MPCC) underMPCC-LICQ
and for (I-NLP) under LIKQ, respectively, and discuss their relations. Since both regularity conditions
are invariant under the slack reformulation by Theorem 2.11 and Theorem 3.9, the results hold also for
(E-MPCC) and (E-NLP). Conditions for general MPCCs can be found in the literature; in case of rst
order conditions for example in [10, 11]. Second order conditions stated in [10, 11] however have to be
adapted to our dierent setting. For the abs-normal NLP (E-NLP) we have derived rst and second
order conditions in [9]. Since LIKQ is preserved under the slack reformulation by Theorem 2.11, we
can transfer these results directly to (I-NLP).

5.1 first order optimality conditions

In this paragraph, we compare stationarity concepts and rst order optimality conditions for (I-MPCC)
and (I-NLP). First, we dene strong stationarity for (I-MPCC) and state the corresponding rst order
conditions.
Definition 5.1 (Strong Stationarity, see [10, §3.3], [11, Thm. 2]). A feasible point 𝑦∗ = (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗) of
(I-MPCC) is strongly stationary (S-stationary) if there exist multipliers _ = (_E, _I, _Z) and ` = (`𝑢, `𝑣)
such that the following conditions are satised:

𝜕𝑦L⊥(𝑦∗, _, `) = 0,(5.1a)
(`𝑢)𝑖 ≥ 0, (`𝑣)𝑖 ≥ 0, 𝑖 ∈ D𝑡 (𝑡∗),(5.1b)

(`𝑢)𝑖 = 0, 𝑖 ∈ U𝑡
+(𝑡∗),(5.1c)

(`𝑣)𝑖 = 0, 𝑖 ∈ V𝑡
+ (𝑡∗),(5.1d)

_I ≥ 0,(5.1e)
_𝑇I𝑐I (𝑡

∗, (𝑢𝑡 )∗ + (𝑣𝑡 )∗) = 0.(5.1f)

Herein, L⊥ is the MPCC-Lagrangian function associated with (I-MPCC):

L⊥(𝑦, _, `) := 𝑓 (𝑡) + _𝑇E𝑐E (𝑡,𝑢
𝑡 + 𝑣𝑡 ) − _𝑇I𝑐I (𝑡,𝑢

𝑡 + 𝑣𝑡 )
+ _𝑇Z [𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑡 − 𝑣𝑡 )] − `𝑇𝑢𝑢

𝑡 − `𝑇𝑣 𝑣
𝑡 .
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Theorem 5.2 (First Order Optimality Conditions for (I-MPCC)). Assume that (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗) is a local
minimizer of (I-MPCC) and that MPCC-LICQ holds at (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗). Then, (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗) is an
S-stationary point.

Proof. The proof is due to [10, §3.3] and is presented in [11, Thm. 2] in the form used here. �

Now, kink stationarity is dened and the corresponding rst order optimality conditions are formu-
lated.
Definition 5.3 (Kink Stationarity, see [9]). A feasible point (𝑡∗, (𝑧𝑡 )∗) of (I-NLP) is kink stationary if
there exist multipliers _ = (_E, _I, _Z) such that the following conditions are satised:

𝑓 ′(𝑡∗) + _𝑇E𝜕1𝑐E − _𝑇I𝜕1𝑐I + _𝑇Z𝜕1𝑐Z = 0,(5.2a)
[_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z𝜕2𝑐Z]𝑖 ≥ |(_Z)𝑖 |, 𝑖 ∈ 𝛼𝑡 (𝑡∗),(5.2b)
[_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z𝜕2𝑐Z]𝑖 = (_Z)𝑖 (𝜎𝑡 )∗𝑖 , 𝑖 ∉ 𝛼𝑡 (𝑡∗),(5.2c)

_I ≥ 0,(5.2d)
_𝑇I𝑐I = 0.(5.2e)

Here, the constraints and the partial derivatives are evaluated at (𝑡∗, | (𝑧𝑡 )∗ |).
Theorem 5.4 (First Order Conditions for (I-NLP)). Assume that (𝑡∗, (𝑧𝑡 )∗) is a local minimizer of (I-NLP)
and that LIKQ holds at 𝑡∗. Then, (𝑡∗, (𝑧𝑡 )∗) is a kink stationary point.

Proof. By Theorem 2.11 we may consider the slack reformulation (E-NLP) instead of (I-NLP). In [9,
Theorem 5.10], conditions (5.2) were proven for (E-NLP) using a splitting of the switching variables 𝑧
and the switching constraints 𝑐Z . Without the splitting they read:

𝑓 ′(𝑥∗) + _̄𝑇E𝜕1𝑐E (𝑥
∗, |𝑧∗ |) + _̄𝑇Z𝜕1𝑐Z (𝑥∗, |𝑧∗ |) = 0,

[_̄𝑇E𝜕2𝑐E (𝑥
∗, |𝑧∗ |) + _̄𝑇Z𝜕2𝑐Z (𝑥∗, |𝑧∗ |)]𝑖 ≥ |(_̄Z)𝑖 |, 𝑖 ∈ 𝛼 (𝑥∗),

[_̄𝑇E𝜕2𝑐E (𝑥
∗, |𝑧∗ |) + _̄𝑇Z𝜕2𝑐Z (𝑥∗, |𝑧∗ |)]𝑖 = (_̄Z)𝑖𝜎∗

𝑖 , 𝑖 ∉ 𝛼 (𝑥∗) .

We rewrite these conditions in the original notation of (E-NLP) with _̄E = (_E,−_I) and _̄Z =

(_Z, _𝑤Z), where all derivatives are evaluated at (𝑡∗, | (𝑧𝑡 )∗ |):

𝑓 ′(𝑡∗) + _𝑇E𝜕1𝑐E − _𝑇I𝜕1𝑐I + _𝑇Z𝜕1𝑐Z = 0,
(_𝑤Z)

𝑇 = 0,
[_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z𝜕2𝑐Z]𝑖 ≥ |(_Z)𝑖 |, 𝑖 ∈ 𝛼𝑡 (𝑡∗),
[_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z𝜕2𝑐Z]𝑖 = (_Z)𝑖 (𝜎𝑡 )∗𝑖 , 𝑖 ∉ 𝛼𝑡 (𝑡∗),

_I ≥ |(_𝑤Z)𝑖 |, 𝑖 ∈ 𝛼𝑤 (𝑤∗),
_I = (_𝑤Z)𝑖𝜎

∗
𝑖 , 𝑖 ∉ 𝛼𝑤 (𝑤∗) .

The claim follows by eliminating _𝑤Z = 0 and noting that 𝛼𝑤 (𝑤∗) = A(𝑡∗). �

The next theorem shows that the two stationarity concepts coincide.
Theorem 5.5 (S-Stationarity is Kink Stationarity). A feasible point (𝑡∗, (𝑧𝑡 )∗) of (I-NLP) is kink stationary
if and only if (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗) = (𝑡∗, [𝑧𝑡 (𝑡∗)]+, [𝑧𝑡 (𝑡∗)]−) of (I-MPCC) is S-stationary.
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Proof. Comparison of the stationarity conditions of (I-NLP) and (I-MPCC) shows directly that (5.1e)
and (5.2d) as well as (5.1f) and (5.2e) coincide. Thus, we have to compare the remaining conditions
(5.1a) to (5.1d) for (I-MPCC) with (5.2a) to (5.2c) for (I-NLP). Condition (5.1a) of (I-MPCC), where all
derivatives are evaluated at (𝑡∗, (𝑢𝑡 )∗ + (𝑣𝑡 )∗), is

𝑓 ′(𝑡∗) + _𝑇E𝜕1𝑐E − _𝑇I𝜕1𝑐I + _𝑇Z𝜕1𝑐Z = 0,
_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z [𝜕2𝑐Z − 𝐼 ] − `𝑇𝑢 = 0,
_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z [𝜕2𝑐Z + 𝐼 ] − `𝑇𝑣 = 0.

The rst condition coincides with (5.2a). We combine the second and the third condition with conditions
(5.1b) to (5.1d), yielding[

_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z𝜕2𝑐Z
]
𝑖
= +(_Z)𝑖 , 𝑖 ∈ U𝑡

+(𝑡∗),[
_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z𝜕2𝑐Z

]
𝑖
= −(_Z)𝑖 , 𝑖 ∈ V𝑡

+ (𝑡∗),[
_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z [𝜕2𝑐Z ± 𝐼 ]

]
𝑖
≥ 0, 𝑖 ∈ D𝑡 (𝑡∗).

These are precisely conditions (5.2b) and (5.2c) for (I-NLP) by denition of the index sets and of 𝜎∗. �

As LIKQ for (I-NLP) is equivalent to MPCC-LICQ for (I-MPCC), the previous theorem provides a
dierent perspective on Theorem 5.4 and Theorem 5.2: one can be obtained from the other directly via
Theorem 5.5 and vice versa.

5.2 second order conditions

In this paragraph, we compare second-order conditions for MPCCs and abs-normal NLPs.
First, we formulate them for (I-MPCC). This is based on material from [11] for MPCCs, but some

additional assumptions on the Lagrange multipliers need to be made. These are given in the next
denition.
Definition 5.6 (MPCC-Strict Complementarity). Consider a strongly stationary point (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗)
with Lagrange multipliers (_∗, `∗). We say that MPCC-strict complementarity holds if _∗𝑖 > 0 for all
𝑖 ∈ A as well as (`∗𝑢)𝑖 > 0 and (`∗𝑣)𝑖 > 0 for all 𝑖 ∈ D𝑡 .

We will show in the next lemma that under MPCC-LICQ and MPCC-strict complementarity the
critical cone reduces to the nullspace of the Jacobian of the tightened NLP (with columns reordered
according to the index setsU𝑡

+,U𝑡
0,V𝑡

+ ,V𝑡
0 ),

𝐽 (𝑦∗) =



𝜕1𝑐E 𝜕2𝑐E𝑃𝑇U𝑡
+

𝜕2𝑐E𝑃𝑇U𝑡
0

𝜕2𝑐E𝑃𝑇V𝑡
+

𝜕2𝑐E𝑃𝑇V𝑡
0

𝜕1𝑐A 𝜕2𝑐A𝑃𝑇U𝑡
+

𝜕2𝑐A𝑃𝑇U𝑡
0

𝜕2𝑐A𝑃𝑇V𝑡
+

𝜕2𝑐A𝑃𝑇V𝑡
0

𝜕1𝑐Z [𝜕2𝑐Z − 𝐼 ]𝑃𝑇U𝑡
+

[𝜕2𝑐Z − 𝐼 ]𝑃𝑇U𝑡
0

[𝜕2𝑐Z + 𝐼 ]𝑃𝑇V𝑡
+

[𝜕2𝑐Z + 𝐼 ]𝑃𝑇V𝑡
0

0 0 𝐼 0 0
0 0 0 0 𝐼


,

as introduced in Section 3.1. Here, all partial derivatives are evaluated at the point (𝑡∗, (𝑢𝑡 )∗ + (𝑣𝑡 )∗). It
is readily veried that the nullspace of 𝐽 (𝑦∗) is spanned by the matrix

(5.3) 𝑈mpcc(𝑦∗) =


𝐼

+𝑃U𝑡
+
(𝐼 − 𝜕2𝑐ZΣ𝑡 )−1𝜕1𝑐Z

0
−𝑃V𝑡

+
(𝐼 − 𝜕2𝑐ZΣ𝑡 )−1𝜕1𝑐Z

0


�̃� (𝑦∗)
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where �̃� (𝑦∗) spans the nullspace of

(5.4)

𝜕1𝑐E + 𝜕2𝑐EΣ𝑡 (𝐼 − 𝜕2𝑐Z Σ𝑡 )−1𝜕1𝑐Z
𝜕1𝑐A + 𝜕2𝑐AΣ𝑡 (𝐼 − 𝜕2𝑐Z Σ𝑡 )−1𝜕1𝑐Z

[𝑒𝑇𝑖 (𝐼 − 𝜕2𝑐ZΣ𝑡 )−1𝜕1𝑐Z]𝑖∈D𝑡

 .
Second order necessary and sucient conditions for a slightly more general class of MPCCs are

given in [11, Theorem 7] using the concept of critical directions. We rst specialize the denition from
[11] to our setting.
Definition 5.7 (Critical Direction). A vector 𝑑 = (𝑑𝑡, 𝑑𝑢𝑡 , 𝑑𝑣𝑡 ) ∈ ℝ𝑛𝑡 × ℝ𝑠𝑡 × ℝ𝑠𝑡 is called a critical
direction at a weakly stationary point 𝑦∗ of (I-MPCC) if

min(𝑑𝑢𝑡𝑖 , 𝑑𝑣𝑡𝑖 ) = 0, 𝑖 ∈ D𝑡 ,(5.5a)
𝑑𝑢𝑡𝑖 = 0, 𝑖 ∈ V𝑡

+ ,(5.5b)
𝑑𝑣𝑡𝑖 = 0, 𝑖 ∈ U𝑡

+,(5.5c)
𝜕1𝑐A𝑑𝑢

𝑡 + 𝜕2𝑐A (𝑑𝑢𝑡 + 𝑑𝑣𝑡 ) ≥ 0,(5.5d)
𝜕1𝑐E𝑑𝑢

𝑡 + 𝜕2𝑐E (𝑑𝑢𝑡 + 𝑑𝑣𝑡 ) = 0,(5.5e)
𝜕1𝑐Z𝑑𝑢

𝑡 + [𝜕2𝑐Z − 𝐼 ]𝑑𝑢𝑡 + [𝜕2𝑐Z + 𝐼 ]𝑑𝑣𝑡 = 0,(5.5f)
𝑓 ′(𝑡∗)𝑑𝑡 = 0,(5.5g)

where all constraint derivatives are evaluated at (𝑡∗, (𝑢𝑡 )∗ + (𝑣𝑡 )∗).
The set of critical directions is just the nullspace of 𝐽 (𝑦∗) under stronger assumptions.

Lemma 5.8. Assume that MPCC-LICQ and MPCC-strict complementarity hold at an S-stationary point
𝑦∗ = (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗) of (I-MPCC) with Lagrange multipliers (_∗, `∗). Then, the set of critical directions
is ker 𝐽 (𝑦∗).

Proof. First consider a critical direction 𝑑 = (𝑑𝑡, 𝑑𝑢𝑡 , 𝑑𝑣𝑡 ) at the strongly (hence weakly) stationary
point 𝑦∗. Then, (5.5e) and (5.5f) imply that rows one and three of 𝐽 (𝑦∗)𝑑 vanish, and by (5.1a) and (5.5g)
we further have

0 = 𝜕𝑡,𝑢𝑡 ,𝑣𝑡L⊥(𝑦∗, _∗, `∗)𝑑
= 𝑓 ′(𝑡∗)𝑑𝑡 + (_∗E)

𝑇 [𝜕1𝑐E𝑑𝑡 + 𝜕2𝑐E (𝑑𝑢𝑡 + 𝑑𝑣𝑡 )]
− (_∗I)

𝑇 [𝜕1𝑐I𝑑𝑡 + 𝜕2𝑐I (𝑑𝑢𝑡 + 𝑑𝑣𝑡 )]
+ (_∗Z)

𝑇 [𝜕1𝑐Z𝑑𝑡 + (𝜕2𝑐Z − 𝐼 )𝑑𝑢𝑡 + (𝜕2𝑐Z + 𝐼 )𝑑𝑣𝑡 ]
− (`∗𝑢)𝑇𝑑𝑢𝑡 − (`∗𝑣)𝑇𝑑𝑣𝑡

= −(_∗I)
𝑇 [𝜕1𝑐I𝑑𝑡 + 𝜕2𝑐I (𝑑𝑢𝑡 + 𝑑𝑣𝑡 )] − (`∗𝑢)𝑇𝑑𝑢𝑡 − (`∗𝑣)𝑇𝑑𝑣𝑡 .

With (_∗I)
𝑇𝑐I = 0 (5.1f), (`∗𝑢)𝑖 = 0 for 𝑖 ∈ U𝑡

+ (5.1c), (`∗𝑣)𝑖 = 0 for 𝑖 ∈ V𝑡
+ (5.1d), and (5.5b), (5.5c) we

obtain (_∗I)𝑖 = 0 for 𝑖 ∉ A and further

0 = (_∗A)𝑇 [𝜕1𝑐A𝑑𝑢𝑡 + 𝜕2𝑐A (𝑑𝑢𝑡 + 𝑑𝑣𝑡 )] +
∑︁
𝑖∈D𝑡

[(`∗𝑢)𝑖𝑑𝑢𝑡𝑖 + (`∗𝑣)𝑖𝑑𝑣𝑡𝑖 ] .

All factors in this sum of products are nonnegative by (5.1b), (5.1e), (5.5d), and (5.5a), which implies

0 = (_∗A)𝑇 [𝜕1𝑐A𝑑𝑢𝑡 + 𝜕2𝑐A (𝑑𝑢𝑡 + 𝑑𝑣𝑡 )],
0 = (`∗𝑢)𝑖𝑑𝑢𝑡𝑖 = (`∗𝑣)𝑖𝑑𝑣𝑡𝑖 , 𝑖 ∈ D𝑡 .
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Finally, by MPCC-strict complementarity we have

0 = 𝜕1𝑐A𝑑𝑢
𝑡 + 𝜕2𝑐A (𝑑𝑢𝑡 + 𝑑𝑣𝑡 ),

0 = 𝑑𝑢𝑡𝑖 = 𝑑𝑣𝑡𝑖 , 𝑖 ∈ D𝑡 ,

and 𝑑𝑢𝑡𝑖 = 0 for 𝑖 ∈ U𝑡
0 as well as 𝑑𝑣𝑡𝑖 = 0 for 𝑖 ∈ V𝑡

0 follow sinceU𝑡
0 = V𝑡

+ ∪ D𝑡 andV𝑡
0 = U𝑡

+ ∪ D𝑡 .
Thus 𝑑 is a nullspace vector of 𝐽 (𝑦∗).

Conversely, given any nullspace vector 𝑑 = (𝑑𝑡, 𝑑𝑢𝑡 , 𝑑𝑣𝑡 ), the rst three rows of 𝐽 (𝑦∗)𝑑 = 0 yield
conditions (5.5e), (5.5d), and (5.5f), with equality “= 0” in case of (5.5d). The last two rows yield 𝑑𝑢𝑡𝑖 = 0
for 𝑖 ∈ U𝑡

0 and 𝑑𝑣𝑡𝑖 = 0 for 𝑖 ∈ V𝑡
0 , hence (5.5b), (5.5c), and 𝑑𝑢𝑡𝑖 = 𝑑𝑣𝑡𝑖 = 0 for 𝑖 ∈ D𝑡 (5.5a). Moreover,

we have (`∗𝑢)𝑖 = 0 for 𝑖 ∈ U𝑡
+ (5.1c), (`∗𝑣)𝑖 = 0 for 𝑖 ∈ V𝑡

+ (5.1d), and (_∗I)𝑖 = 0 for 𝑖 ∉ A (5.1f), so that
(5.1a) becomes (5.5g):

0 = 𝜕𝑡,𝑢𝑡 ,𝑣𝑡L⊥(𝑦∗, _∗, `∗)𝑑 = 𝑓 ′(𝑡∗)𝑑𝑡 .

Thus 𝑑 is a critical direction. �

Nowwe use [11, Theorem 7] to prove second order necessary and sucient conditions for our setting.
Theorem 5.9 (Second Order Necessary Conditions for (I-MPCC)). Assume that 𝑦∗ = (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗) is
a local minimizer of (I-MPCC) and that MPCC-LICQ holds at 𝑦∗. Denote by (_∗, `∗) the unique Lagrange
multiplier vector and assume further that MPCC-strict complementarity holds. Then,

𝑈mpcc(𝑦∗)𝑇𝐻mpcc(𝑦∗, _∗)𝑈mpcc(𝑦∗) ≥ 0

where 𝐻mpcc(𝑦∗, _∗) = 𝜕2𝑦𝑦L⊥(𝑦∗, _∗, `∗). (Note that 𝜕2𝑦𝑦L⊥ does not depend on `∗.)

Proof. The rst part of Theorem 7 in [11] asserts that every critical direction 𝑑 satises the inequality
𝑑𝑇𝐻mpcc(𝑦∗, _∗)𝑑 ≥ 0 at a local minimizer 𝑦∗ if MPCC-SMFCQ (cf. [10]) holds at 𝑦∗. Since MPCC-LICQ
implies MPCC-SMFCQ and the set of critical directions is ker 𝐽 (𝑦∗) under our stronger assumptions,
the claim follows directly from [11, Theorem 7]. �

Remark 5.10. Here we have simplied the exposition by making the assumption of MPCC-strict
complementarity, so that we can directly rely on [11, Theorem 7]. However, the second order necessary
conditions can also be proved without MPCC-strict complementarity by considering branch problems
of (I-MPCC). The corresponding approach for (I-NLP) has been taken in [9], so that Theorem 5.12
below does not require strict complementarity.
Theorem 5.11 (Second Order Suicient Conditions for (I-MPCC)). Assume that 𝑦∗ = (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗)
is strongly stationary for (I-MPCC) with Lagrange multiplier vector (_∗, `∗) satisfying MPCC-strict
complementarity. Assume further that MPCC-LICQ holds at 𝑦∗, and that

𝑈mpcc(𝑦∗)𝑇𝐻mpcc(𝑦∗, _∗)𝑈mpcc(𝑦∗) > 0.

Then, 𝑦∗ is a strict local minimizer of (I-MPCC).

Proof. In the second part of [11, Theorem 7], our assertion is proved under the weaker assumption
that 𝑦∗ is strongly stationary and for every critical direction 𝑑 ≠ 0 there exists a Lagrange multiplier
vector (_∗, `∗) such that 𝑑𝑇𝐻mpcc(𝑦∗, _∗)𝑑 > 0. Under our additional assumptions of MPCC-LICQ and
MPCC-strict complementarity, the set of critical directions is spanned by the matrix 𝑈mpcc(𝑦∗), see
proof of the previous lemma. Thus, the claim follows directly from [11, Theorem 7]. �
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We proceed by formulating second-order conditions for (I-NLP). To this end, we denote by (𝛼𝑡 )𝑐
the complement of 𝛼𝑡 , and we need the Lagrangian

L(𝑡, |𝑧𝑡 |, _) = 𝑓 (𝑡) + _𝑇E𝑐E (𝑡, |𝑧
𝑡 |) − _𝑇I𝑐I (𝑡, |𝑧

𝑡 |) + _𝑇Z
(
𝑐Z (𝑡, |𝑧𝑡 |) − P𝑇

(𝛼𝑡 )𝑐P(𝛼𝑡 )𝑐Σ
𝑡 |𝑧𝑡 |

)
and the matrix

(5.6) 𝑈abs(𝑡) :=
[

𝑈 (𝑡)
[𝑒𝑇𝑖 Σ𝜕𝑡𝑧𝑡 (𝑡)𝑈 (𝑡)]𝑖∉𝛼𝑡

]
,

where𝑈 (𝑡) spans the nullspace of 𝐽abs(𝑡). We also use the Lagrangian

L̄(𝑥, |𝑧 |, _̄) = 𝑓 (𝑥) + _̄𝑇E𝑐E (𝑥, |𝑧 |) + _̄𝑇Z
(
𝑐Z (𝑥, |𝑧 |) − P𝑇

𝛼𝑐P𝛼𝑐Σ|𝑧 |
)
,

= 𝑓 (𝑡) + _𝑇E𝑐E (𝑡, |𝑧
𝑡 |) − _𝑇I

(
𝑐I (𝑡, |𝑧𝑡 |) − |𝑧𝑤 |

)
+ _𝑇Z

(
𝑐Z (𝑡, |𝑧𝑡 |) − P𝑇

(𝛼𝑡 )𝑐P(𝛼𝑡 )𝑐Σ
𝑡 |𝑧𝑡 |

)
+ (_𝑤Z)

𝑇
(
𝑤 − P𝑇

(𝛼𝑤 )𝑐P(𝛼𝑤 )𝑐Σ
𝑤 |𝑧𝑤 |

)
.

Theorem 5.12 (Second Order Necessary Conditions for (I-NLP)). Assume that 𝑦∗ = (𝑡∗, (𝑧𝑡 )∗) is a local
minimizer of (I-NLP) and that LIKQ holds at 𝑡∗. Denote by _∗ the unique Lagrange multiplier and set
𝛼𝑡 = 𝛼𝑡 (𝑡∗). Then,

𝑈abs(𝑡∗)𝑇𝐻abs(𝑦∗, _∗)𝑈abs(𝑡∗) ≥ 0

where 𝐻abs(𝑦∗, _∗) =
[
𝐼 0
0 𝑃 (𝛼𝑡 )𝑐

] [
𝜕11L(𝑦∗, _∗) 𝜕12L(𝑦∗, _∗)
𝜕21L(𝑦∗, _∗) 𝜕22L(𝑦∗, _∗)

] [
𝐼 0
0 𝑃𝑇(𝛼𝑡 )𝑐

]
.

Proof. As in Theorem 5.4, we can consider (E-NLP) instead of (I-NLP) by Theorem 2.11. In [9, Theorem
5.15] the second order necessary conditions for (E-NLP) have been derived using a variable splitting.
Without the splitting they read

𝑈e-abs(𝑥∗)𝑇𝐻e-abs(𝑦∗, _̄∗)𝑈e-abs(𝑥∗) ≥ 0

with 𝑦∗ = (𝑥∗, 𝑧∗), _̄E = (_E,−_I), _̄Z = (_Z, _𝑤Z), and the Hessian

𝐻e-abs(𝑦∗, _̄∗) =
[
𝐼 0
0 𝑃𝛼𝑐

] [
𝜕11L̄(𝑦∗, _̄∗) 𝜕12L̄(𝑦∗, _̄∗)
𝜕21L̄(𝑦∗, _̄∗) 𝜕22L̄(𝑦∗, _̄∗)

] [
𝐼 0
0 𝑃𝑇

𝛼𝑐

]
,

where 𝛼𝑐 is the complement of 𝛼 and the matrix𝑈e-abs is dened as

𝑈e-abs(𝑥∗) =
[

𝑈 (𝑥∗)
[𝑒𝑇𝑖 Σ∗𝜕𝑥𝑧 (𝑥∗)𝑈 (𝑥∗)]𝑖∉𝛼

]
with𝑈 (𝑥) spanning ker(𝐽e-abs(𝑥)). Using the special structure of (E-NLP) and comparing the derivatives
of L̄(𝑦∗, _̄∗) and L(𝑦∗, _∗), the Hessian becomes:

𝐻e-abs(𝑦∗, _̄∗) =


𝐼 0 0 0
0 𝐼 0 0
0 0 𝑃 (𝛼𝑡 )𝑐 0
0 0 0 𝑃 (𝛼𝑤 )𝑐



𝜕11L 0 𝜕12L 0
0 0 0 0

𝜕21L 0 𝜕22L 0
0 0 0 0



𝐼 0 0 0
0 𝐼 0 0
0 0 𝑃𝑇(𝛼𝑡 )𝑐 0
0 0 0 𝑃𝑇(𝛼𝑤 )𝑐


All partial derivatives of L are evaluated at (𝑦∗, _∗). Moreover, 𝐽e-abs(𝑥) = 𝐽e-abs(𝑡,𝑤) has the form
derived in Lemma 2.9, and thus its nullspace is spanned by

𝑈 (𝑥) =
[
𝑈 (𝑡)
Σ𝑤𝜕𝑡𝑐I

]
,
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where𝑈 (𝑡) spans the nullspace of 𝐽abs(𝑡) from Denition 2.4. Using this and 𝜕𝑡𝑧
𝑤 (𝑤) = 𝐼 , the matrix

𝑈e-abs reads

𝑈e-abs(𝑥) =


𝑈 (𝑡)
Σ𝑤𝜕𝑡𝑐I

[𝑒𝑇𝑖 Σ𝑡 𝜕𝑡𝑧𝑡 (𝑡)𝑈 (𝑡)]𝑖∉𝛼𝑡

[𝑒𝑇𝑖 𝜕𝑡𝑐I]𝑖∉𝛼𝑤

 .
Finally, we have

0 ≤ 𝑈e-abs(𝑥∗)𝑇𝐻e-abs(𝑦∗, _̄∗)𝑈e-abs(𝑥∗) = 𝑈abs(𝑡∗)𝑇𝐻abs(𝑦∗, _∗)𝑈abs(𝑡∗)

with𝑈abs(𝑡) from (5.6) and

𝐻abs(𝑦, _) =
[
𝐼 0
0 𝑃 (𝛼𝑡 )𝑐

] [
𝜕11L(𝑦, _) 𝜕12L(𝑦, _)
𝜕21L(𝑦, _) 𝜕22L(𝑦, _)

] [
𝐼 0
0 𝑃𝑇(𝛼𝑡 )𝑐

]
.

This proves the claim. �

Theorem 5.13 (Second Order Suicient Conditions for (I-NLP)). Assume that 𝑦∗ = (𝑡∗, (𝑧𝑡 )∗) is kink
stationary for (I-NLP) with a Lagrange multiplier vector _∗ that satises strict complementarity for _∗I
and strict normal growth,

[_𝑇E𝜕2𝑐E − _𝑇I𝜕2𝑐I + _𝑇Z𝜕2𝑐Z]𝑖 > | (_Z)𝑖 |, 𝑖 ∈ 𝛼𝑡 (𝑡∗) .

Assume further that LIKQ holds at 𝑡∗, and that

𝑈abs(𝑡∗)𝑇𝐻abs(𝑦∗, _∗)𝑈abs(𝑡∗) > 0.

Then, (𝑡∗, (𝑧𝑡 )∗) is a strict local minimizer of (I-NLP).

Proof. As before we consider the slack reformulation (E-NLP) of (I-NLP). The assumption of strict
complementarity for _∗I and strict normal growth for (I-NLP) implies strict normal growth for (E-NLP).
Moreover, the previous proof shows that the condition

𝑈abs(𝑡∗)𝑇𝐻abs(𝑦∗, _∗)𝑈abs(𝑡∗) > 0

is equivalent to

𝑈e-abs(𝑥∗)𝑇𝐻e-abs(𝑦∗, _̄∗)𝑈e-abs(𝑥∗) > 0,

which can be reformulated using the variable splitting of [9]. Then, [9, Theorem 5.19] can be applied,
which gives the assertion. �

Theorem 5.14. Assume that (𝑡∗, (𝑧𝑡 )∗) is kink stationary for (I-NLP) with Lagrange multiplier vector _∗

such that strict complementarity and strict normal growth are satised. Assume further that LIKQ holds
at 𝑡∗. Then,

𝑈mpcc(𝑦∗)𝑇𝐻mpcc(𝑦∗, _∗)𝑈mpcc(𝑦∗) ≥ 0 ⇐⇒ 𝑈abs(𝑡∗)𝑇𝐻abs(𝑡∗, (𝑧𝑡 )∗, _∗)𝑈abs(𝑥∗) ≥ 0,

where 𝑦∗ = (𝑡∗, (𝑢𝑡 )∗, (𝑣𝑡 )∗) = (𝑡∗, [(𝑧𝑡 )∗]+, [(𝑧𝑡 )∗]−). The equivalence holds also with strict inequalities.
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Proof. Using that 𝑢∗ + 𝑣∗ = | (𝑧𝑡 )∗ | and (𝑧𝑡 )∗ = 𝑧𝑡 (𝑡∗) the matrix𝑈mpcc(𝑦∗) in (5.3) reads

𝑈mpcc(𝑦∗) =


𝐼

+𝑃U𝑡
+
𝜕𝑡𝑧

𝑡 (𝑡∗)
0

−𝑃V𝑡
+
𝜕𝑡𝑧

𝑡 (𝑡∗)
0


�̃� (𝑦∗)

with �̃� (𝑦∗) dened in (5.4). The Lagrangians of (I-MPCC) and (I-NLP), respectively, are

L⊥(𝑦, _) = 𝑓 (𝑡) + _𝑇E𝑐E (𝑡,𝑢
𝑡 + 𝑣𝑡 ) − _𝑇I𝑐I (𝑡,𝑢

𝑡 + 𝑣𝑡 ) + _𝑇Z [𝑐Z (𝑡,𝑢𝑡 + 𝑣𝑡 ) − (𝑢𝑡 − 𝑣𝑡 )],
L(𝑡, |𝑧𝑡 |, _) = 𝑓 (𝑡) + _𝑇E𝑐E (𝑡, |𝑧

𝑡 |) − _𝑇I𝑐I (𝑡, |𝑧
𝑡 |) + _𝑇Z [𝑐Z (𝑡, |𝑧𝑡 |) − P𝑇

𝛼𝑐P𝛼𝑐Σ𝑡 |𝑧𝑡 |] .

Thus 𝑈mpcc(𝑦∗)𝑇𝐻mpcc(𝑦∗, _∗)𝑈mpcc(𝑦∗) = 𝑈mpcc(𝑦∗)𝑇∇𝑦𝑦L⊥(𝑦∗, _∗)𝑈mpcc(𝑦∗) can be written with
(𝑧𝑡 )∗ = (𝑢𝑡 )∗ − (𝑣𝑡 )∗ and using that �̃� (𝑦∗) = 𝑈 (𝑡∗), as


𝑈 (𝑦∗)

+𝑃U𝑡
+
𝜕𝑡𝑧

𝑡 (𝑡∗)𝑈 (𝑦∗)
−𝑃V𝑡

+
𝜕𝑡𝑧

𝑡 (𝑡∗)𝑈 (𝑦∗)


𝑇 

𝐻11 𝐻21𝑃
𝑇

U𝑡
+

𝐻21𝑃
𝑇

V𝑡
+

𝑃U𝑡
+
𝐻12 𝑃U𝑡

+
𝐻22𝑃

𝑇

U𝑡
+

𝑃U𝑡
+
𝐻22𝑃

𝑇

V𝑡
+

𝑃V𝑡
+
𝐻12 𝑃V𝑡

+
𝐻22𝑃

𝑇

U𝑡
+

𝑃V𝑡
+
𝐻22𝑃

𝑇

V𝑡
+




𝑈 (𝑦∗)
+𝑃U𝑡

+
𝜕𝑡𝑧

𝑡 (𝑡∗)𝑈 (𝑦∗)
−𝑃V𝑡

+
𝜕𝑡𝑧

𝑡 (𝑡∗)𝑈 (𝑦∗)


where 𝐻𝑖 𝑗 := 𝜕𝑖𝜕𝑗L(𝑡∗, (𝑧𝑡 )∗, _∗). Now, since U𝑡

+ ∪V𝑡
+ = (𝛼𝑡 )𝑐 , the left-hand inequality of the claim

reads [
𝑈 (𝑦∗)

𝑃 (𝛼𝑡 )𝑐Σ𝜕𝑡𝑧
𝑡 (𝑡∗)𝑈 (𝑦∗)

]𝑇 [
𝐻11 𝐻21𝑃

𝑇
(𝛼𝑡 )𝑐

𝑃 (𝛼𝑡 )𝑐𝐻12 𝑃 (𝛼𝑡 )𝑐𝐻22𝑃
𝑇
(𝛼𝑡 )𝑐

] [
𝑈 (𝑦∗)

𝑃 (𝛼𝑡 )𝑐Σ𝜕𝑡𝑧
𝑡 (𝑡∗)𝑈 (𝑦∗)

]
≥ 0.

This is𝑈abs(𝑡∗)𝑇𝐻abs(𝑡∗, (𝑧𝑡 )∗, _∗)𝑈abs(𝑡∗) ≥ 0. �

Note that the previous theorem can be used to transfer the second order conditions for (I-NLP) and
(I-MPCC) into each other. This follows from the equivalence of LIKQ and MPCC-LICQ by Theorem 4.1
and from the equivalence of stationarity concepts by Theorem 5.5.

6 conclusions and outlook

We have shown that general abs-normal NLPs are essentially the same problem class as MPCCs. The
two problem classes have corresponding constraint qualications, stationarity concepts, and optimality
conditions of rst and second order. We have also shown that the slack reformulation from [9], which is
useful to simplify derivations under LIKQ, does not preserve IDKQ and has other subtle drawbacks like
non-uniqueness of slack variables. We have not considered counterpart abs-normal NLPs of general
MPCCs as in [8]. This would provide a dierent perspective on the equivalence of the two problem
classes but no additional insight. It is hoped that the identities revealed may serve to transfer algorithms
for the solution of MPCCs to the young eld of abs-normal forms and abs-normal NLP. Vice versa,
active signature algorithms for abs-normal forms, such as SALMIN [5], may be applicable to MPCCs.
Relations between the two problem classes under weaker constraint qualications of Abadie type and
Guignard type are the subject of part two of this research and are put forward in a companion article.
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