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first-order differentiability properties of a class
of equality constrained optimal value functions

with applications

Kevin Sturm∗

Abstract In this paper we study the right dierentiability of a parametric inmum function over a
parametric set dened by equality constraints. We present a new theorem with sucient conditions
for the right dierentiability with respect to the parameter. Target applications are nonconvex
objective functions with equality constraints arising in optimal control and shape optimisation.
The theorem makes use of the averaged adjoint approach in conjunction with the variational
approach of Kunisch, Ito and Peichl. We provide two examples of our abstract result: (a) a shape
optimisation problem involving a semilinear partial dierential equation which exhibits innitely
many solutions, (b) a nite dimensional quadratic function subject to a nonlinear equation.

1 introduction

Let a normed space 𝑋 , a vector space 𝑌 and 𝜏 > 0 be given. In this paper we study the one-sided
dierentiability in 𝑡 = 0+ of the optimal value-function

(1.1) 𝑡 ↦→ 𝑔(𝑡) := inf
𝑢∈𝐸 (𝑡 )

𝑓 (𝑡,𝑢),

where 𝑓 : [0, 𝜏] × 𝑋 → R is a given function. The 𝐸 (𝑡) denotes the set of states given by

(1.2) 𝐸 (𝑡) = {𝑢𝑡 ∈ 𝑋 : 𝑒 (𝑡,𝑢𝑡 , 𝜑) = 0 for all 𝜑 ∈ 𝑌 },

where 𝑒 : [0, 𝜏] × 𝑋 × 𝑌 → R is a function that is linear with respect to the last argument. The
Lagrangian (𝑡,𝑢, 𝑝) ↦→ 𝐺 (𝑡,𝑢, 𝑝) : [0, 𝜏] × 𝑋 × 𝑌 → R associated with (1.1) is dened by

(1.3) 𝐺 (𝑡,𝑢, 𝑞) = 𝑓 (𝑡,𝑢) + 𝑒 (𝑡,𝑢, 𝑞) .

With this Lagrangian the set 𝐸 (𝑡) can be expressed in terms of the Lagrangian 𝐺 as follows

(1.4) 𝐸 (𝑡) = {𝑢𝑡 ∈ 𝑋 : 𝜕𝑝𝐺 (𝑡,𝑢𝑡 , 0) (𝜑) = 0 for all 𝜑 ∈ 𝑌 }

and 𝑔 can be written as a minimax (see [14])

(1.5) 𝑔(𝑡) = inf
𝜑 ∈𝑋

sup
𝜓 ∈𝑌

𝐺 (𝑡, 𝜑,𝜓 ) = inf
𝜑 ∈𝐸 (𝑡 )

𝐺 (𝑡, 𝜑, 0) .

We will provide new conditions (see Hypothesis (H3)) under which the function 𝑔 is right dierentiable.
The pertinence of the result is illustrated by applying it to a nite dimensional problem and a shape
optimisation problem.
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The problem of nding the right derivative of (1.1) arises naturally when deriving optimality condi-
tions appearing in equality constrained nite and innite dimensional control and shape optimisation
problems. Accordingly it has been studied by many authors before and sucient conditions, even
with inequality constraints are known; see, e.g., the review article [4]. Often for inequality constrained
problems suitable constraint qualications (e.g. Robinson’s constraint qualication [32]) are required
which impose a certain regularity on minimisers; see [24, 38, 29]. In [30] the right dierentiability is
examined in innite dimensions under the assumption that the elements of 𝐸 (𝑡) arise from convex
optimisation problems; see also [33] and [2, 3] for results in innite dimension.

In case 𝐸 (𝑡) is independent of 𝑡 let us mention the early work of J. M. Danskin [8, 7] where amaximum
function with respect to a parameter was studied. When the solution of the maximum problem (and
similarly minimum problem) is not unique, then a natural non-dierentiability arises. In this case only
directional derivatives or sub-dierentials are computable. We also refer to the monographs [17, 20, 31]
and references therein. In the review article [4] and also the book chapters [5, Chap. 4] and [22, Chap.
2] several conditions for right dierentiability of 𝑔 are given (see also references therein). In particular
rst and second order expansions of value functions are studied using second order conditions.
As mentioned before second order analysis can be used to obtain dierentiability of the optimal

solution𝑢𝑡 and hence dierentiability of the value function 𝑔. Let us mention [21] where the dierentia-
bility of the value function with respect to Dirichlet data of a tracking-type cost function constrained
by a semilinear parabolic PDE is studied. A key ingredient is a Hölder estimate of order 1/2 of the
optimal control with respect to the Dirichlet data.
The dierentiability of parametric minimax functions under saddle point assumptions has been

studied in [6] by Correa and Seeger and was subsequently extended and applied to shape optimisation
problems by Delfour and Zolésio in [15]. For nonlinear equality constraints this saddle point assumption
is unfortunately often not satised.
In [35, 34] an approach to the dierentiability of a minimax without a saddle point assumption

for the Lagrangian was presented. An extension to the multivalued case can be found in [14, Thm.
4.1] and [12, Thm. 2 and Thm. 3]. In addition in [14, Thm. 3.1] and [12, Thm. 1] also the singleton
case was revisited and extended by introducing an extra term. For applications to the single valued
case of this approach we refer to [35] and also [25] and [36]. In this context let us also mention the
approaches of [34, p.54, Thm. 4.6] and [10, Thm. 3.3] (see also [11]), where a Lagrangian approach using
an unperturbed adjoint variable is proposed for the single-valued case. The adjoint method [10, Thm.
3.3] has also been recently used in [19] and [18] to compute topological derivatives and, in addition,
also a thorough comparison with the averaged adjoint method is provided. From this it appears, at
least in the context of computing topological derivatives, that the averaged adjoint method seems
favorable, since a larger class of cost functionals could be treated. This may be rooted in the innite
dimensionality of the problem.
The key idea of the averaged adjoint approach is to replace the perturbed standard adjoint by the

so-called averaged adjoint state equation. This allows to deal with non-convex objective functions
and non-linear state equations. Let us also mention the variational approach of [23] where another
approach is proposed to show the dierentiability of a minimax by using some sort of second order
expansion. Both approaches have in common that they bypass the computation of the derivative of the
control-to-state operator. Although both approaches are from its nature very dierent we will show in
this paper how they can eectively be combined to establish yet another even more powerful new
theorem on the dierentiability of the minimax.

Our result gives new easy to check conditions and generalises results in [14]. The target applications
of our theorem are the shape sensitivity analysis yet the result can also be applied to optimal control
problems in general.

Sturm First-order dierentiability properties of a class of equality . . .
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notation

Let 𝑓 : [0, 𝜏] × U1 × U2 → R be a function dened on the Cartesian product of the interval [0, 𝜏],
𝜏 > 0 and the open subsets U1 ⊂ 𝑋 and U2 ⊂ 𝑌 of normed spaces. Then we dene for (𝑡,𝑢, 𝑝) ∈
[0, 𝜏) × U1 ×U2 and 𝑣 ∈ 𝑋 and𝑤 ∈ 𝑌 the following one sided directional derivatives

𝜕𝑡 𝑓 (𝑡,𝑢, 𝑝) := lim
ℎ↘0

𝑓 (𝑡 + ℎ,𝑢, 𝑝) − 𝑓 (𝑡,𝑢, 𝑝)
ℎ

,

𝜕𝑢 𝑓 (𝑡,𝑢, 𝑝) (𝑣) := lim
ℎ↘0

𝑓 (𝑡,𝑢 + ℎ𝑣, 𝑝) − 𝑓 (𝑡,𝑢, 𝑝)
ℎ

,

𝜕𝑝 𝑓 (𝑡,𝑢, 𝑝) (𝑤) := lim
ℎ↘0

𝑓 (𝑡,𝑢, 𝑝 + ℎ𝑤) − 𝑓 (𝑡,𝑢, 𝑝)
ℎ

,

(1.6)

provided the limits on the right hand side exist, respectively. The notation ℎ ↘ 0 indicates that ℎ → 0
under the condition ℎ > 0.

We equip R𝑑 with the Euclidean norm ‖ · ‖ and denote by ‖𝐴‖ the corresponding operator norm for
𝐴 ∈ R𝑑×𝑑 .

Throughout the paper, we will use the terminology state equation and adjoint state equation.

2 minimax theorem via the averaged adjoint equation

2.1 averaged adjoint equation

Let 𝑋,𝑌 and 𝐺 be as in the introduction. We will henceforth assume that 𝑔(𝑡) is nite for all 𝑡 ∈ [0, 𝜏].
Definition 2.1. We introduce for 𝑡 ∈ [0, 𝜏] the set of minimisers

(2.1) 𝑋 (𝑡) := {𝑢𝑡 ∈ 𝐸 (𝑡) : inf
𝑢∈𝐸 (𝑡 )

𝑓 (𝑡,𝑢) = 𝑓 (𝑡,𝑢𝑡 )}.

Notice that 𝑋 (𝑡) ⊂ 𝐸 (𝑡) and that 𝑋 (𝑡) = 𝐸 (𝑡) whenever 𝐸 (𝑡) is a singleton. However, in general
𝑋 (𝑡) and 𝐸 (𝑡) do not need to coincide. The denition of the averaged adjoint equation requires that
the set of states is not empty:
Assumption (H0). For all 𝑡 ∈ [0, 𝜏] we have 𝑋 (𝑡) ≠ ∅.

Before we can introduce the averaged adjoint equation we need the following hypothesis.
Assumption (H1). For all 𝑡 ∈ [0, 𝜏] and (𝑢0, 𝑢𝑡 ) ∈ 𝑋 (0) × 𝐸 (𝑡) we assume:

(i) For all 𝑝 ∈ 𝑌 , the mapping 𝑠 ↦→ 𝐺 (𝑡, 𝑠𝑢𝑡 + (1 − 𝑠)𝑢0), 𝑝) : [0, 1] → R is absolutely continuous.

(ii) For all (𝜑,𝑞) ∈ 𝑋 × 𝑌 and almost all 𝑠 ∈ (0, 1) the function

(2.2) 𝑠 ↦→ 𝜕𝑢𝐺 (𝑡, 𝑠𝑢𝑡 + (1 − 𝑠)𝑢0, 𝑝) (𝜑) : [0, 1] → R

is well-dened and belongs to 𝐿1(0, 1).

Remark 2.2. Notice that item (i) implies that for all 𝑡 ∈ [0, 𝜏], (𝑢0, 𝑢𝑡 ) ∈ 𝑋 (0) × 𝐸 (𝑡) and 𝑝 ∈ 𝑌 ,

(2.3) 𝐺 (𝑡,𝑢𝑡 , 𝑝) = 𝐺 (𝑡,𝑢0, 𝑝) +
∫ 1

0
𝜕𝑢𝐺 (𝑡, 𝑠𝑢𝑡 + (1 − 𝑠)𝑢0, 𝑝) (𝑢𝑡 − 𝑢0) 𝑑𝑠.

This follows at once by applying the fundamental theorem of calculus to 𝑠 ↦→ 𝐺 (𝑡, 𝑠𝑢𝑡 + (1 − 𝑠)𝑢0, 𝑝)
on [0, 1].

The following gives the denition of the adjoint and averaged adjoint equation; see [35].

Sturm First-order dierentiability properties of a class of equality . . .
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Definition 2.3 (Averaged adjoint equation). Let �̃� ⊂ 𝑋 be a linear subspace. Given 𝑡 ∈ [0, 𝜏] and
(𝑢0, 𝑢𝑡 ) ∈ 𝐸 (0) × 𝐸 (𝑡), the averaged adjoint state equation is dened as follows: nd 𝑞𝑡 ∈ 𝑌 , such that

(2.4)
∫ 1

0
𝜕𝑢𝐺 (𝑡, 𝑠𝑢𝑡 + (1 − 𝑠)𝑢0, 𝑞𝑡 ) (𝜑) 𝑑𝑠 = 0 for all 𝜑 ∈ �̃� .

For every triplet (𝑡,𝑢0, 𝑢𝑡 ) the set of solutions to (2.4) is denoted by 𝑌 (𝑡,𝑢0, 𝑢𝑡 ).
Definition 2.4. The standard adjoint 𝑝𝑡 ∈ 𝑋 is dened by 𝜕𝑢𝐺 (𝑡,𝑢𝑡 , 𝑝𝑡 ) (𝜑) = 0 for all 𝜑 ∈ �̃� and the set
of adjoints associated with (𝑡,𝑢𝑡 ) is denoted 𝑌 (𝑡,𝑢𝑡 ).

Notice that 𝑌 (0, 𝑢0) = 𝑌 (0, 𝑢0, 𝑢0) for all 𝑢0 ∈ 𝐸 (0), that is, the averaged adjoint equation reduces to
the usual adjoint equation. The averaged adjoint equation allows us to express the Lagrangian at time
𝑡 solely through the Lagrangian evaluated at (𝑡,𝑢0, 𝑞𝑡 ).
Lemma 2.5. Let 𝑡 ∈ (0, 𝜏]. Then for all (𝑢0, 𝑢𝑡 ) ∈ 𝐸 (0) × 𝐸 (𝑡) with 𝑢𝑡 − 𝑢0 ∈ �̃� , and 𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0, 𝑢𝑡 ), we
have

(2.5) 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) = 𝐺 (𝑡,𝑢0, 𝑞𝑡 ).

Proof. This follows directly from Remark 2.2 noting that 𝑢𝑡 − 𝑢0 ∈ �̃� is an admissible test function in
(2.4) and hence the last term in (2.3) vanishes. �

Remark 2.6. Notice that (2.5) holds for all 𝑡 > 0, but not necessarily at 𝑡 = 0. The reason behind this
is a discontinuity at 𝑡 = 0. Let 𝑢𝑡 ∈ 𝐸 (𝑡) and 𝑢0 ∈ 𝐸 (0) with 𝑢0 ≠ 𝑢0 and let 𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0, 𝑢𝑡 ). Set
𝑓1(𝑡) := 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) and 𝑓2(𝑡) := 𝐺 (𝑡,𝑢0, 𝑞𝑡 ) for 𝑡 ∈ [0, 𝜏]. Then from (2.5) we obtain

(2.6) 𝑓1(𝑡) = 𝑓2(𝑡) for all 𝑡 > 0,

but 𝑓1 and 𝑓2 do not coincide at 𝑡 = 0 unless 𝑓1(0) = 𝑓 (0, 𝑢0) = 𝑓 (0, 𝑢0) = 𝑓2(0). However, if we
also let 𝑢0𝑡 ∈ 𝐸 (0), such that 𝑢00 = 𝑢0, then the functions 𝑓1(𝑡) := 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) and 𝑓2(𝑡) := 𝐺 (𝑡,𝑢0𝑡 , 𝑞𝑡 )
will coincide at 𝑡 = 0. This observation is important for our main theorem (Theorem 2.10); see also
Hypothesis (H3).
Corollary 2.7. For all 𝑡 ∈ (0, 𝜏], (𝑢0, 𝑢𝑡 ) ∈ 𝐸 (0) ×𝑋 (𝑡) with 𝑢𝑡 − 𝑢0 ∈ �̃� , and for all 𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0, 𝑢𝑡 ), we
have

(2.7) 𝑔(𝑡) = 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) = 𝐺 (𝑡,𝑢0, 𝑞𝑡 ) .

Proof. Let 𝑡 ∈ (0, 𝜏], (𝑢0, 𝑢𝑡 ) ∈ 𝐸 (0) × 𝑋 (𝑡), and 𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0, 𝑢𝑡 ) be given. Since 𝑢𝑡 ∈ 𝑋 (𝑡) we obtain
by denition

(2.8) 𝑔(𝑡) = inf
𝑢∈𝐸 (𝑡 )

𝐺 (𝑡,𝑢, 0) = 𝐺 (𝑡,𝑢𝑡 , 0) .

On the other hand since 𝑋 (𝑡) ⊂ 𝐸 (𝑡), we have 𝑢𝑡 ∈ 𝐸 (𝑡) and thus 𝐺 (𝑡,𝑢𝑡 , 0) = 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ). Now we
can apply Lemma 2.5 to obtain

(2.9) 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) = 𝐺 (𝑡,𝑢0, 𝑞𝑡 ).

Finally (2.8) and (2.9) together imply (2.7). �

Remark 2.8. Notice that in our setting the test space of the adjoint and averaged adjoint equation might
be smaller than the space of denition of the parametrised Lagrangian, that is, �̃� ≠ 𝑋 in general. This
is for instance the case when solving the Dirichlet Laplacian where the test space would be 𝐻 1

0 and the
trial space 𝐻 1. We refer to the last section for an example.
Remark 2.9. Let𝐺 : [0, 𝜏] ×𝑋 ×𝑌 → R be a Lagrangian and 𝑢 ∈ 𝑋 . Assume that 𝜕𝑡𝐺 (0, 𝑢, 𝑝) exists for
all 𝑝 ∈ 𝑌 . Then 𝑝 ↦→ 𝜕𝑡𝐺 (0, 𝑢, 𝑝) : 𝑌 → R is ane.
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2.2 a new minimax theorem for lagrangians

The next theorem gives new sucient conditions for 𝑔 to be right dierentiable at 𝑡 = 0. Our theorem
extends [6] and complements [14, Theorem 4.1] for functions 𝐺 that are Lagrangians. We will give a
new theorem which provides new sucient conditions for which the limit

(2.10) 𝑑𝑔(0) := lim
𝑡↘0

𝑔(𝑡) − 𝑔(0)
𝑡

exists, where 𝑔 is given by (1.1).
Theorem 2.10. Let𝐺 be a Lagrangian and suppose that Hypotheses (H0)–(H1) and the following conditions
are satised.

(H2) For all 𝑢 ∈ 𝑋 (0) and all 𝑝 ∈ 𝑌 (0, 𝑢), 𝜕𝑡𝐺 (0, 𝑢, 𝑝) exists;

(H3) For every null-sequence (𝑡𝑛), 𝑡𝑛 ∈ (0, 𝜏], there exist 𝑢0 ∈ 𝑋 (0) and 𝑝0 ∈ 𝑌 (0, 𝑢0), a subsequence
(𝑡𝑛𝑘 ), elements (𝑢0𝑡𝑛𝑘 , 𝑢

𝑡𝑛𝑘 ) ∈ 𝐸 (0) × 𝑋 (𝑡𝑛𝑘 ), 𝑢𝑡𝑛𝑘 − 𝑢0𝑡𝑛𝑘
∈ �̃� and 𝑞𝑡𝑛𝑘 ∈ 𝑌 (𝑡𝑛𝑘 , 𝑢0𝑡𝑛𝑘 , 𝑢

𝑡𝑛𝑘 ), such
that

lim inf
𝑘→∞

𝐺 (𝑡𝑛𝑘 , 𝑢0𝑡𝑛𝑘 , 𝑞
𝑡𝑛𝑘 ) −𝐺 (0, 𝑢0𝑡𝑛𝑘 , 𝑞

𝑡𝑛𝑘 )
𝑡𝑛𝑘

≥ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0).

(H4) For every𝑢0 ∈ 𝑋 (0) there is a suboptimal path 𝑡 ↦→ 𝑢𝑡 : [0, 𝜏] → 𝑋 satisfying,𝑢0 = 𝑢0,𝑢𝑡 −𝑢0 ∈ �̃� ,
𝑢𝑡 ∈ 𝐸 (𝑡) and

lim
𝑡↘0

‖𝑢𝑡 − 𝑢0‖𝑋
𝑡 1/2

= 0

and for all 𝑝0 ∈ 𝑌 (0, 𝑢0),

(2.11) lim sup
𝑡↘0

𝐺 (𝑡,𝑢𝑡 , 𝑝0) −𝐺 (0, 𝑢𝑡 , 𝑝0)
𝑡

≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0) .

(H5) For every 𝑢0 ∈ 𝑋 (0) and every 𝑝0 ∈ 𝑌 (0, 𝑢0),

(2.12) |𝐺 (0, 𝑢, 𝑝0) −𝐺 (0, 𝑢0, 𝑝0) − 𝜕𝑢𝐺 (0, 𝑢0, 𝑝0) (𝑢 − 𝑢0) | = O(‖𝑢 − 𝑢0‖2𝑋 ) .

Then the one sided derivative 𝑑𝑔(0) exists and we nd 𝑢0 ∈ 𝑋 (0) and 𝑝0 ∈ 𝑌 (0, 𝑢0), such that

(2.13) 𝑑𝑔(0) = 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0)

and we have the bound

(2.14) inf
𝑢∈𝑋 (0)

inf
𝑝∈𝑌 (0,𝑢)

𝜕𝑡𝐺 (0, 𝑢, 𝑝) ≤ 𝑑𝑔(0) ≤ inf
𝑢∈𝑋 (0)

sup
𝑝∈𝑌 (0,𝑢)

𝜕𝑡𝐺 (0, 𝑢, 𝑝) .

If, in addition, for all 𝑢 ∈ 𝑋 (0) the set 𝑌 (0, 𝑢) = {𝑝0(𝑢)} is a singleton, then

(2.15) 𝑑𝑔(0) = inf
𝑢∈𝑋 (0)

𝜕𝑡𝐺 (0, 𝑢, 𝑝0(𝑢)) = 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0) .

Before we turn our attention to the proof of this theorem let us make a few remarks.
Remark 2.11. Let us give a guideline on how Hypothesis (H3) can be veried in practice. Let a null-
sequence (𝑡𝑛) and (𝑢𝑡𝑛 ) ∈ 𝑋 (𝑡𝑛) be given. Typically one can use compactness arguments to nd
𝑢0 ∈ 𝑋 (0) and a subsequence (denoted the same) such that 𝑢𝑡𝑛 → 𝑢0 in some topology on 𝑋 (e.g. weak
or strong). Then one constructs 𝑢𝑡𝑛0 ∈ 𝐸 (0), such that 𝑢𝑡𝑛0 → 𝑢0 and 𝑌 (𝑡𝑛, 𝑢𝑡𝑛0 , 𝑢𝑡𝑛 ) ≠ ∅. Then it only
remains to verify that there is a sequence 𝑞𝑡𝑛 ∈ 𝑌 (𝑡𝑛, 𝑢𝑡𝑛0 , 𝑢𝑡𝑛 ) of averaged adjoints that converges to
some element 𝑞0 ∈ 𝑌 (0, 𝑢0).
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Remark 2.12. • In contrast to previous theorems (see, e.g., [14, 12]) we allow the points𝑢0𝑡 ∈ 𝐸 (0) to
change when 𝑡 approaches zero. The idea is to choose 𝑢𝑡0 in such a way that the averaged adjoint
variable 𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0𝑡 , 𝑢𝑡 ) exists. We will illustrate this with a nonconvex example in Section 3.

• Assumption (H3) extends Hypothesis (H3) of [14, Thm. 4.1] by perturbing the elements𝑢0 ∈ 𝑋 (0).
This allows us to treat examples where the original averaged adjoint variable is not well-dened;
see Section 3.4.

• Assumptions (H4) and (H5) in Theorem 2.10 follow ideas used in [23] (see also their follow
up work [27, 26]) and replace Hypothesis (H4) of [14, Thm. 4.1]. The main motivation and
advantage is that we do not need to assume that we nd for all 𝑢0 ∈ 𝑋 (0) a continuous path
[0, 𝜏] → R𝑑 : 𝑡 ↦→ 𝑢𝑡 with 𝑢𝑡 ∈ 𝑋 (𝑡), which might be dicult to check or might be even false
(see the example in Section 3.4). We also refer to [23] for an example where 𝑡 ↦→ 𝑢𝑡 is in fact not
dierentiable, but where (H4),(H5) are satised. We also note that the other recent articles such
as [14, Thm. 4.1.], [10, Thm. 4.1.],[11, Thm. 6.1 and Thm. 6.2] always work with optimal paths.
Therefore the replacement of this condition with the present one is crucial.

• Let us mention other results related to ours. In [4, Thm. 4.4] the dierentiability of 𝑡 ↦→ 𝑔(𝑡) is
proved under the assumption that the minimisation problem (1.1) is convex and that there is an
𝑜 (𝑡) optimal path 𝑢𝑡 , such that ‖𝑢𝑡 − 𝑢0‖𝑋 = 𝑜 (𝑡). This latter condition is similar to condition
(H3), however, we only require the existence of 𝑢𝑡 ∈ 𝐸 (𝑡) with 1/2 Hölder continuity. However,
the result [4, Thm. 4.4] also includes inequality constraints; see also [33] and [2, 3].

We split the proof of this theorem in two lemmas in which we prove upper and lower bounds for
the following liminf and limsup of the dierential quotients of 𝑔:

𝑑𝑔(0) := lim inf
𝑡↘0

𝑔(𝑡) − 𝑔(0)
𝑡

and 𝑑𝑔(0) := lim sup
𝑡↘0

𝑔(𝑡) − 𝑔(0)
𝑡

.(2.16)

Lemma 2.13. Assume that 𝐺 satises Hypotheses (H0)–(H3). Then

(2.17) ∃𝑢0 ∈ 𝑋 (0), ∃𝑝0 ∈ 𝑌 (0, 𝑢0), 𝑑𝑔(0) ≥ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0) .

In particular, we have

(2.18) 𝑑𝑔(0) ≥ inf
𝑢∈𝑋 (0)

inf
𝑞∈𝑌 (0,𝑢)

𝜕𝑡𝐺 (0, 𝑢, 𝑞) .

Proof. Let (𝑡𝑛), 𝑡𝑛 > 0 be a null-sequence, such that

lim
𝑛→∞

𝑔(𝑡𝑛) − 𝑔(0)
𝑡𝑛

= 𝑑𝑔(0).

From Corollary 2.7 we get for all 𝑡 ∈ (0, 𝜏], (𝑢0, 𝑢𝑡 ) ∈ 𝐸 (0) × 𝑋 (𝑡) with 𝑢𝑡 − 𝑢0 ∈ �̃� , and for all
𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0, 𝑢𝑡 ),

(2.19) 𝑔(𝑡) = 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) = 𝐺 (𝑡,𝑢0, 𝑞𝑡 ) .

In addition, from the denition of 𝑋 (0), we have for every 𝑝 ∈ 𝑌 ,

(2.20) 𝑔(0) ≤ 𝐺 (0, 𝑢0, 0) = 𝐺 (0, 𝑢0, 𝑝) .

Equations (2.19) and (2.20) together yield: for all 𝑡 ∈ (0, 𝜏], (𝑢0, 𝑢𝑡 ) ∈ 𝐸 (0) × 𝑋 (𝑡) and 𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0, 𝑢𝑡 ),

(2.21) 𝑔(𝑡) − 𝑔(0)
𝑡

≥ 𝐺 (𝑡,𝑢0, 𝑞𝑡 ) −𝐺 (0, 𝑢0, 𝑞𝑡 )
𝑡

.
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From Assumption (H3): for every null-sequence (𝑡𝑛) there exist 𝑢0 ∈ 𝑋 (0) and 𝑝0 ∈ 𝑌 (0, 𝑢0), such that
there is a subsequence (𝑡𝑛), indexed the same, (𝑢0𝑡𝑛 , 𝑢

𝑡𝑛 ) ∈ 𝐸 (0) × 𝑋 (𝑡𝑛) and 𝑞𝑡𝑛 ∈ 𝑌 (𝑡𝑛, 𝑢0𝑡𝑛 , 𝑢
𝑡𝑛 ), such

that

lim
𝑛→∞

𝑔(𝑡𝑛) − 𝑔(0)
𝑡𝑛

(2.21)
≥ lim inf

𝑛→∞

𝐺 (𝑡𝑛, 𝑢0𝑡𝑛 , 𝑞
𝑡𝑛 ) −𝐺 (0, 𝑢0𝑡𝑛 , 𝑞

𝑡𝑛 )
𝑡𝑛

≥ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0)

which is precisely (2.17). �

Remark 2.14. The lower bound obtained in (2.18) is weaker than the one of e.g. [33, Prop. 2.3]. In fact,
there it is proven that

(2.22) inf
𝑢∈𝑋 (0)

sup
𝑝0∈𝑌 (0,𝑢)

𝜕𝑡𝐺 (0, 𝑢, 𝑝0) ≤ 𝑑𝑔(0) .

However, in this proposition it is assumed that the optimisation problem appearing in the denition
of 𝑔(𝑡) is a convex optimisation problem, which together with assumptions on 𝑋 (0) leads to a lower
bound for 𝑑𝑔(0). Nevertheless our bound together with the bound proved in the following lemma will
still lead to the right dierentiability of 𝑔. The price we have to pay here is that the nal expression of
the derivative is not a minmax anymore and thus contains less information.
Lemma 2.15. Assume that 𝐺 satises Hypotheses (H0)–(H2) and (H4)–(H5). Then

(2.23) ∀𝑢0 ∈ 𝑋 (0), ∀𝑝0 ∈ 𝑌 (0, 𝑢0), 𝑑𝑔(0) ≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0).

In particular,

(2.24) 𝑑𝑔(0) ≤ inf
𝑢∈𝑋 (0)

sup
𝑞∈𝑌 (0,𝑢)

𝜕𝑡𝐺 (0, 𝑢, 𝑞) .

Proof. Let (𝑡𝑛), 𝑡𝑛 > 0 be a null-sequence, such that

lim
𝑛→∞

𝑔(𝑡𝑛) − 𝑔(0)
𝑡𝑛

= 𝑑𝑔(0).

We have for all 𝑡 ∈ [0, 𝜏], 𝑢𝑡 ∈ 𝐸 (𝑡) and all 𝑝 ∈ 𝑌 ,

(2.25) 𝑔(𝑡) = inf
𝑢∈𝐸 (𝑡 )

𝐺 (𝑡,𝑢, 0) ≤ 𝐺 (𝑡,𝑢𝑡 , 0) = 𝐺 (𝑡,𝑢𝑡 , 𝑝).

As a result for all 𝑡 ∈ (0, 𝜏], (𝑢0, 𝑢𝑡 ) ∈ 𝑋 (0) × 𝐸 (𝑡), and all 𝑝 ∈ 𝑌 ,

(2.26) 𝑔(𝑡) − 𝑔(0)
𝑡

(2.25)
≤ 𝐺 (𝑡,𝑢𝑡 , 𝑝) −𝐺 (0, 𝑢0, 𝑝)

𝑡

=
𝐺 (𝑡,𝑢𝑡 , 𝑝) −𝐺 (0, 𝑢𝑡 , 𝑝)

𝑡
+ 𝐺 (0, 𝑢𝑡 , 𝑝) −𝐺 (0, 𝑢0, 𝑝)

𝑡
.

To further estimate the right hand side note that it follows from Assumption (H5): For every 𝑢0 ∈ 𝑋 (0)
and every 𝑝0 ∈ 𝑌 (0, 𝑢0),

(2.27) |𝐺 (0, 𝑢, 𝑝0) −𝐺 (0, 𝑢0, 𝑝0) − 𝜕𝑢𝐺 (0, 𝑢0, 𝑝0) (𝑢 − 𝑢0) | = O(‖𝑢 − 𝑢0‖2𝑋 ).

On the other hand by denition of the adjoint state 𝑝0 ∈ 𝑌 (0, 𝑢0),

(2.28) 𝜕𝑢𝐺 (0, 𝑢0, 𝑝0) (𝜑) = 0 for all 𝜑 ∈ �̃� .

Moreover thanks to Assumption (H4) we nd 𝑡 ↦→ 𝑢𝑡 : [0, 𝜏] → 𝑋 , such that 𝑢0 = 𝑢0, 𝑢𝑡 − 𝑢0 ∈ �̃� ,
𝑢𝑡 ∈ 𝐸 (𝑡) and ‖𝑢𝑡 − 𝑢0‖𝑋 = 𝑜 (𝑡 1/2). Hence combining (2.27) and (2.28) gives that for every 𝑢0 ∈ 𝑋 (0)
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and every 𝑝0 ∈ 𝑌 (0, 𝑢0) there is a constant 𝐶 (depending on 𝑢0 and 𝑝0) such that for all small 𝑡 , we
have

(2.29) |𝐺 (0, 𝑢𝑡 , 𝑝0) −𝐺 (0, 𝑢0, 𝑝0) | (2.28)= |𝐺 (0, 𝑢𝑡 , 𝑝0) −𝐺 (0, 𝑢0, 𝑝0) − 𝜕𝑢𝐺 (0, 𝑢0, 𝑝) (𝑢𝑡 − 𝑢0) |
(2.27)
≤ 𝐶 ‖𝑢𝑡 − 𝑢0‖2𝑋 .

As a result

(2.30)

�����lim sup
𝑡↘0

𝐺 (0, 𝑢𝑡 , 𝑝0) −𝐺 (0, 𝑢0, 𝑝0)
𝑡

����� ≤ lim sup
𝑡↘0

|𝐺 (0, 𝑢𝑡 , 𝑝0) −𝐺 (0, 𝑢0, 𝑝0) |
𝑡

(2.29)
≤ 𝐶 lim sup

𝑡↘0

‖𝑢𝑡 − 𝑢0‖2
𝑋

𝑡

(2.11)
= 0.

Therefore from (2.26) for every 𝑢0 ∈ 𝑋 (0), there is 𝑡 ↦→ 𝑢𝑡 as before such that, for all 𝑝0 ∈ 𝑌 (0, 𝑢0),

(2.31) 𝑑𝑔(0) ≤ lim sup
𝑡↘0

𝐺 (𝑡,𝑢𝑡 , 𝑝0) −𝐺 (0, 𝑢𝑡 , 𝑝0)
𝑡

+ lim sup
𝑡↘0

𝐺 (0, 𝑢𝑡 , 𝑝0) −𝐺 (0, 𝑢0, 𝑝0)
𝑡

≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0)

which is precisely (2.23). �

Remark 2.16. A sucient condition in the convex case to derive an upper bound for 𝑑𝑔(0) (even with
inequality constraints) as in the previous lemma is the assumption that every point in 𝑋 (0) satises
the Robinson constraint qualication (see [22, p. 5] and [32] for a denition). We refer to [33, Prop. 2.1]
which is due to [30].

Proof of Theorem 2.10 Let Hypotheses (H0)–(H5) hold true. Combining (2.17) and (2.23) shows there
exist 𝑢0 ∈ 𝑋 (0) and 𝑝0 ∈ 𝑌 (0, 𝑢0), such that

(2.32) 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0) ≤ 𝑑𝑔(0) ≤ 𝑑𝑔(0) ≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0),

which implies that 𝑑𝑔(0) exists and is equal to 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0). If for all 𝑢0 ∈ 𝑋 (0) the set 𝑌 (0, 𝑢0) =
{𝑝0(𝑢0)} is a singleton, then we obtain from (2.17) and (2.32), that for all �̃� ∈ 𝑋 (0),

(2.33) inf
𝑢∈𝑋 (0)

𝜕𝑡𝐺 (0, 𝑢, 𝑝0(𝑢)) ≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0) ≤ 𝑑𝑔(0) ≤ 𝜕𝑡𝐺 (0, �̃�, 𝑝0(�̃�)) .

Taking the inmum over �̃� in 𝑋 (0) yields (2.15).

Alternative upper bound Let us nish this section with an upper bound for 𝑑𝑔(0), which can be
derived by replacing Hypotheses (H4),(H5) by the following relaxed Hypothesis (H4’). Its advantage
over (H4),(H5) is that no Hölder continuity of 𝑢𝑡 is needed, but only convergence. However, the bound
is weaker than the one of Lemma 2.13. Compare also with the general result [4, Thm. 4.5].
Assumption (H4’). For every null-sequence (𝑡𝑛), 𝑡𝑛 > 0 and every 𝑢0 ∈ 𝑋 (0), there exist 𝑝0 ∈ 𝑌 (0, 𝑢0),
a subsequence (𝑡𝑛𝑘 ) of (𝑡𝑛), 𝑢𝑡𝑛𝑘 ∈ 𝐸 (𝑡𝑛𝑘 ), and 𝑞𝑡𝑛𝑘 ∈ 𝑌 (𝑡𝑛𝑘 , 𝑢0, 𝑢𝑡𝑛𝑘 ), such that

lim sup
𝑘→∞

𝐺 (𝑡,𝑢0, 𝑞𝑡𝑛𝑘 ) −𝐺 (0, 𝑢0, 𝑞𝑡𝑛𝑘 )
𝑡𝑛𝑘

≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0) .
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Lemma 2.17. Let Hypotheses (H0)–(H3) and (H4’) be satised. Then

(2.34) ∀𝑢0 ∈ 𝑋 (0), ∃𝑝0 ∈ 𝑌 (0, 𝑢0), 𝑑𝑔(0) ≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0) .

In particular,

(2.35) 𝑑𝑔(0) ≤ inf
𝑢∈𝑋 (0)

sup
𝑝∈𝑌 (0,𝑢)

𝜕𝑡𝐺 (0, 𝑢, 𝑝) .

Proof. Let (𝑡𝑛), 𝑡𝑛 > 0 be a null-sequence, such that

lim
𝑛→∞

𝑔(𝑡𝑛) − 𝑔(0)
𝑡𝑛

= 𝑑𝑔(0).

By denition we have for all 𝑡 > 0, 𝑢𝑡 ∈ 𝐸 (𝑡), 𝑢0 ∈ 𝑋 (0) and 𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0, 𝑢𝑡 ):

(2.36) 𝑔(𝑡) ≤ 𝐺 (𝑡,𝑢𝑡 , 0) = 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) = 𝐺 (𝑡,𝑢0, 𝑞𝑡 ),

where in the last step we used Corollary 2.7. Hence we obtain from Hypothesis (H4’) that we nd (𝑡𝑛)
and 𝑢0 ∈ 𝑋 (0), a subsequence, denoted the same, an element 𝑝0 ∈ 𝑌 (0, 𝑢0), elements 𝑢𝑡𝑛 ∈ 𝐸 (𝑡𝑛) and
𝑞𝑡𝑛 ∈ 𝑌 (𝑡𝑛, 𝑢0, 𝑢𝑡𝑛 ), such that

𝑑𝑔(0) = lim
𝑛→∞

𝑔(𝑡𝑛) − 𝑔(0)
𝑡𝑛

≤ lim sup
𝑛→∞

𝐺 (𝑡𝑛, 𝑢0, 𝑞𝑡𝑛 ) −𝐺 (0, 𝑢0, 𝑞𝑡𝑛 )
𝑡𝑛

≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝑝0) .(2.37)

Hence in particular for every 𝑢0 ∈ 𝑋 (0)

(2.38) 𝑑𝑔(0) ≤ sup
𝑝∈𝑌 (0,𝑢0)

𝜕𝑡𝐺 (0, 𝑢0, 𝑝) .

Taking the inmum over 𝑢0 yields (2.35). �

As said before the statement of the previous lemma is weaker than the one of Lemma 2.15. However,
if for all 𝑢0 ∈ 𝑋 (0), the set 𝑌 (0, 𝑢0) is a singleton we obtain right dierentiability of 𝑔.
Corollary 2.18. Let Hypotheses (H0)–(H3) and (H4’) be satised. Assume that for all 𝑢 ∈ 𝑋 (0) the set
𝑌 (0, 𝑢) = {𝑝0(𝑢)} is a singleton. Then 𝑔 is right dierentiable and

(2.39) 𝑑𝑔(0) = inf
𝑢∈𝑋 (0)

𝜕𝑡𝐺 (0, 𝑢, 𝑝0(𝑢)) .

Proof. This directly follows from the proof of Lemma 2.17 (equation (2.37)) and Lemma 2.13. �

3 application to a finite dimensional problem

In this section we study a simple nite dimensional minimisation problem for which we can apply
Theorem 2.10. The following example is a generalisation of the one considered [11, Sec. 6.3]; see also [9,
p.143]. We also refer to [28], where existence of an optimisation problem with a quadratic cost function
and quadratic separable inequality constraints is studied.
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3.1 problem formulation

Given two symmetric matrices 𝐴,𝑄 ∈ R𝑑×𝑑 we dene

(3.1) 𝑓 (𝑢) := 𝑄𝑢 · 𝑢, 𝐸 := {𝑢 ∈ R𝑑 : 𝐴𝑢 · 𝑢 = 1}

and consider the minimisation problem

(3.2) inf
𝑢∈𝐸

𝑓 (𝑢) .

The following assumption guarantees that (3.2) admits at least one solution.
Assumption 3.1.We assume that the pair of symmetric matrices (𝑄,𝐴) satises one of the following
two conditions:

(a) 𝑄 is positive denite and there is 𝑢 ∈ R𝑑 with 𝐴𝑢 · 𝑢 > 0.

(b) 𝑄 is arbitrary and 𝐴 positive denite.

Remark 3.2.We note that the case of nonsymmetric 𝐴 and 𝑄 can be reduced to the symmetric case.
Indeed suppose (𝑄,𝐴) are nonsymmetric. Then 𝐴 := 1

2 (𝐴 +𝐴>) and �̂� := 1
2 (𝑄 +𝑄>) satisfy (a) (resp.

(b)) if and only if (𝑄,𝐴) satisfy (a) (resp. (b)). Hence we could work with (�̂�, 𝐴) instead.
Lemma 3.3. Let (𝑄,𝐴) satisfy Assumption 3.1(a) or (b). Then the minimisation problem (3.2) admits a
solution.

Proof. If 𝐴 is positive denite, then it is readily checked that 𝐸 is compact. If 𝐴 is indenite, then 𝐸

need not to be bounded, but in this case 𝑄 is positive denite. Hence in either cases (3.2) is nite and a
minimiser exists. �

Remark 3.4.We note that if Assumption 3.1(a) or (b) is satised, then the set 𝐸 is a 𝑑 − 1 dimensional
embedded 𝐶∞-submanifold of R𝑑 . This is a consequence of the regular value theorem; see [1, Thm.9.3,
p.243]. In fact, setting 𝑓 (𝑢) := 𝐴𝑢 · 𝑢 − 1, then we have ∇𝑓 (𝑢) = 2𝐴𝑢 ≠ 0 for all 𝑢 ∈ 𝐸, so that 0 is a
regular value of the function 𝑓 .

Let us continue with a few examples of matrices that satisfy (a) or (b).
Example 3.5. (i) A pair (𝑄,𝐴) satisfying (a) is

(3.3) 𝑄 =

(
1 0
0 1

)
, 𝐴 =

(
1 0
0 −1

)
.

In this case 𝐸 = {(𝑥, 𝑦)> : 𝑥2 − 𝑦2 = 1} is a hyperbola.

(ii) Another example of (𝑄,𝐴) satisfying (a) is

(3.4) 𝑄 =

(
1 0
0 1

)
, 𝐴 =

(
0 0
0 1

)
.

In this case 𝐸 = {(𝑥, 𝑦)> : 𝑦2 = 1} = R × {1,−1} are two lines parallel to the 𝑥-axis.

(iii) A pair (𝑄,𝐴) for which (b) is satised is given by

(3.5) 𝑄 =

(
1 0
0 0

)
, 𝐴 =

(
2 0
0 1

)
.

In this case 𝐸 = {(𝑥, 𝑦)> : 2𝑥2 + 𝑦2 = 1} is an ellipse.
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Figure 1: Ellipse converging to the two blue lines

If (a) or (b) are satised, then (3.2) admits at least one minimiser 𝑢 ∈ 𝐸. The Lagrange multiplier rule
shows that we nd 𝑝 ∈ R, such that

(3.6) 𝑄𝑢 + 𝑝𝐴𝑢 = 0.

So 𝜆 := −𝑝 is a generalised eigenvalue for the matrices (𝑄,𝐴). It also follows from (3.6) and 𝐴𝑢 · 𝑢 = 1
that

(3.7) 𝜆 = −𝑝 = 𝑄𝑢 · 𝑢.

From this it follows that if (a) holds, then 0 < 𝑄𝑢 · 𝑢 = −𝑝 , so 𝑝 ≠ 0. If (b) holds, then 𝑝 = 0 is possible.

3.2 perturbation and lagrangian

We now consider the following perturbation of (3.1)

(3.8) 𝑓 (𝑡,𝑢) := 𝑄 (𝑡)𝑢 · 𝑢, 𝐸 (𝑡) := {𝑢𝑡 ∈ R𝑑 : 𝐴(𝑡)𝑢𝑡 · 𝑢𝑡 = 1},

where 𝑄,𝐴 : [0, 𝜏] → R𝑑×𝑑 are matrix functions satisfying the following assumption.
Assumption 3.6. Let 𝑄,𝐴 : [0, 𝜏] → R𝑑×𝑑 be continuously dierentiable functions, such that 𝑄 (𝑡) and
𝐴(𝑡) are symmetric for all 𝑡 ∈ [0, 𝜏] and the pair (𝑄 (0), 𝐴(0)) satises Assumption 3.1, (a) or (b).
Example 3.7. A pair (𝑄,𝐴) satisfying the previous assumption is given by

(3.9) 𝑄 (𝑡) =
(
1 0
0 1

)
, 𝐴(𝑡) =

(
𝑡 0
0 1

)
.

In this case 𝐸 (𝑡) = {(𝑥, 𝑦)> : 𝑡𝑥2 + 𝑦2 = 1} is an ellipse for 𝑡 > 0, but 𝐸 (0) = {(𝑥,±1)> : 𝑥 ∈ R}
consists of two lines parallel to the 𝑥-axis. We illustrate the set 𝐸 (𝑡) for various 𝑡 > 0 in Figure 1.

We will show that if Assumption 3.6 holds true, then

(3.10) 𝑔(𝑡) := inf
𝑢∈𝐸 (𝑡 )

𝑄 (𝑡)𝑢 · 𝑢

is right dierentiable at 𝑡 = 0+ by applying Theorem 2.10.
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The Lagrangian 𝐺 : [0, 𝜏] × R𝑑 × R → R associated with the minimisation problem (3.10) reads

(3.11) 𝐺 (𝑡,𝑢, 𝑝) := 𝑄 (𝑡)𝑢 · 𝑢 + 𝑝 (𝐴(𝑡)𝑢 · 𝑢 − 1) .

By the Lagrangian multiplier rule we nd for every minimiser 𝑢𝑡 ∈ 𝑋 (𝑡) a number 𝑝𝑡 ∈ R, such that

(3.12) 𝑄 (𝑡)𝑢𝑡 + 𝑝𝑡𝐴(𝑡)𝑢𝑡 = 0.

It also follows from (3.12) and 𝐴(𝑡)𝑢𝑡 · 𝑢𝑡 = 1, that

(3.13) 𝑔(𝑡) = 𝑄 (𝑡)𝑢𝑡 · 𝑢𝑡 = −𝑝𝑡 .

This shows that the set 𝑌 (𝑡,𝑢𝑡 ) = {𝑝𝑡 } is a singleton and also

(3.14) 𝑋 (𝑡) = {𝑢𝑡 ∈ R𝑑 : 𝑄 (𝑡)𝑢𝑡 + 𝑝𝑡 (𝑡)𝐴(𝑡)𝑢𝑡 = 0, 𝐴(𝑡)𝑢𝑡 · 𝑢𝑡 = 1}.

The averaged adjoint equation associated with two states (𝑢0, 𝑢𝑡 ) ∈ 𝐸 (0) ×𝐸 (𝑡) reads: nd 𝑞𝑡 ∈ R such
that

(3.15) 𝑄 (𝑡) (𝑢𝑡 + 𝑢0) + 𝑞𝑡𝐴(𝑡) (𝑢𝑡 + 𝑢0) = 0.

The existence of 𝑞𝑡 can not be guaranteed for all pairs (𝑢0, 𝑢𝑡 ); see Section 3.4 for a counter example.
However, Theorem 2.10 only requires the existence of the averaged adjoint variable for certain pairs of
states.
Remark 3.8. We note that if Assumption 3.1, (b) is satised we have

(3.16) 𝑔(𝑡) = inf
𝑢∈𝐸 (𝑡 )

𝑓 (𝑡,𝑢) = inf
𝑢∈R𝑑
𝑢≠0

𝑄 (𝑡)𝑢 · 𝑢
𝐴(𝑡)𝑢 · 𝑢 .

Therefore in this case we can also apply Danskin’s theorem (see, e.g., [16, p. 524, Thm. 2.1], [9, p.140,
Thm.5.1] or [4, Thm. 4.1]) to prove the right dierentiability of 𝑔 at 𝑡 = 0 (in fact, one could even
consider a more general 𝑓 (𝑡,𝑢) in this case). Assumption 3.1, (a) does not allow this simplication since
𝐴 is not necessarily positive denite in this case. Indeed consider the pair (𝑄,𝐴) from Example 3.5, (i)
(which satises (a)):

(3.17) inf
𝑢∈R2
𝑢≠0

𝑄𝑢 · 𝑢
𝐴𝑢 · 𝑢 = inf

𝑢∈R2
𝑢≠0

𝑥2 + 𝑦2

𝑥2 − 𝑦2
= −∞,

while argmin𝑢∈𝐸 𝑥2 + 𝑦2 = {(−1, 0)>, (1, 0)>} and hence min𝑢∈𝐸 𝑄𝑢 · 𝑢 = min𝑢∈𝐸 𝑥2 + 𝑦2 = 1 is nite.

3.3 verification of the hypotheses

We now verify Hypotheses (H0)–(H5) for the Lagrangian 𝐺 in (3.11) with �̃� = 𝑋 = R𝑑 and 𝑌 = R
and a real number 𝜏 > 0 which has to be chosen suciently small. In view of Assumption 3.1 it is
clear that Hypothesis (H0) is satised. Hypotheses (H1) and (H2) are also obvious since 𝐴 and 𝑄 are
dierentiable.

Verification of Hypothesis (H3) To this end, we rst prove the following lemma.
Lemma 3.9. (i) For suciently small 𝜏 the set 𝑆𝜏 := ∪𝑡 ∈[0,𝜏 ]𝑋 (𝑡) is bounded.

(ii) For every null-sequence (𝑡𝑛) and 𝑢𝑡𝑛 ∈ 𝑋 (𝑡𝑛), there is a subsequence still indexed the same, and
𝑢0 ∈ 𝑋 (0), such that 𝑢𝑡𝑛 → 𝑢0 as 𝑛 → ∞.
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Proof. We rst show the boundedness of 𝑆𝜏 for 𝜏 small if either (a) or (b) of Assumption 3.1 hold. First
suppose that Assumption 3.1, (a) is satised. Notice that𝑄 (𝑡) is uniformly positive denite for all small
𝑡 . Then by denition of 𝑢𝑡 ∈ 𝑋 (𝑡), we have for all 𝑡 ∈ [0, 𝜏],

(3.18) 𝛼 ‖𝑢𝑡 ‖2 ≤ 𝑄 (𝑡)𝑢𝑡 · 𝑢𝑡 ≤ 𝑄 (𝑡)𝑢 · 𝑢 for all 𝑢 ∈ R𝑑 , 𝐴(𝑡)𝑢 · 𝑢 = 1

for some 𝛼 > 0. Now pick any 𝑢0 ∈ R𝑑 with 𝐴(0)𝑢0 · 𝑢0 = 1. By continuity we nd 𝜏 > 0 and 𝑐 > 0
such that 𝐴(𝑡)𝑢0 · 𝑢0 ≥ 𝑐 > 0 for all 𝑡 ∈ [0, 𝜏] and hence 𝑢𝑡 := 𝑢0/

√︁
𝐴(𝑡)𝑢0 · 𝑢0 satises 𝐴(𝑡)𝑢𝑡 · 𝑢𝑡 = 1

and thus 𝑢𝑡 ∈ 𝐸 (𝑡). Then plugging 𝑢𝑡 into (3.18) we obtain

(3.19) 𝛼 ‖𝑢𝑡 ‖2 ≤ 𝑄 (𝑡)𝑢0 · 𝑢0
𝐴(𝑡)𝑢0 · 𝑢0 ≤ 𝑐−1 max

𝑡 ∈[0,𝜏 ]
‖𝑄 (𝑡)‖‖𝑢0‖2.

Thus 𝑆𝜏 is bounded.
Now suppose that Assumption 3.1, (b) holds. Since 𝐴(0) is positive denite and since 𝐴(·) is continu-

ous also𝐴(𝑡) is positive denite provided 𝑡 is small enough. Sowe nd𝛼 > 0, such that𝛼 ‖𝑢‖2 ≤ 𝐴(𝑡)𝑢 ·𝑢
for all 𝑢 ∈ R𝑑 and all small 𝑡 . Therefore for all 𝑢𝑡 ∈ 𝐸 (𝑡) we have 𝛼 ‖𝑢𝑡 ‖2 ≤ 𝐴(𝑡)𝑢𝑡 · 𝑢𝑡 = 1 which
implies that 𝑆𝜏 is bounded.

The proof of (𝑖𝑖) follows by standard arguments and hence is omitted. �

Lemma 3.10. For every null-sequence (𝑡𝑛), we nd 𝑢0 ∈ 𝑋 (0) and 𝑝0 ∈ 𝑌 (0, 𝑢0), and a subsequence
(denoted the same), elements (𝑢0𝑡𝑛 , 𝑢

𝑡𝑛 ) ∈ 𝐸 (0) × 𝑋 (𝑡𝑛) and 𝑞𝑡𝑛 ∈ 𝑌 (𝑡𝑛, 𝑢0𝑡𝑛 , 𝑢
𝑡𝑛 ), such that

𝑞𝑡𝑛 → 𝑝0 as 𝑛 → ∞,(3.20)
𝑢0𝑡𝑛 → 𝑢0 as 𝑛 → ∞.(3.21)

Proof. Let (𝑡𝑛) be an arbitrary null-sequence and let (𝑢𝑡𝑛 ),𝑢𝑡𝑛 ∈ 𝑋 (𝑡𝑛) be given. Thanks to the previous
Lemma 3.9 we nd 𝑢0 ∈ 𝑋 (0) and a subsequence of (𝑡𝑛), still indexed the same, such that 𝑢𝑡𝑛 → 𝑢0 as
𝑛 → ∞. By the Lagrange multiplier rule we nd 𝑝0 ∈ 𝑌 (0, 𝑢0), such that

(3.22) 𝑄 (0)𝑢0 + 𝑝0𝐴(0)𝑢0 = 0, 𝐴(0)𝑢0 · 𝑢0 = 1.

Since 𝐴(0)𝑢0 · 𝑢0 = 1, we have 𝐴(0)𝑢𝑡𝑛 · 𝑢𝑡𝑛 > 0 for 𝑛 large enough; therefore

(3.23) 𝑢0𝑡𝑛 := 1√︁
𝐴(0)𝑢𝑡𝑛 · 𝑢𝑡𝑛

𝑢𝑡𝑛 ∈ 𝐸 (0),

is well-dened. It is clear that 𝑢0𝑡𝑛 → 𝑢0 as 𝑛 → ∞. By construction 𝑢0𝑡𝑛 and 𝑢𝑡𝑛 are linearly dependent.
Since 𝑢𝑡𝑛 ∈ 𝑋 (𝑡𝑛) the Lagrange multiplier rule shows 𝑄 (𝑡𝑛)𝑢𝑡𝑛 + 𝑞𝑡𝑛𝐴(𝑡𝑛)𝑢𝑡𝑛 = 0 for some 𝑞𝑡𝑛 ∈ R,
and thus also

(3.24) 𝑄 (𝑡𝑛) (𝑢0𝑡𝑛 + 𝑢𝑡𝑛 ) + 𝑞𝑡𝑛𝐴(𝑡𝑛) (𝑢0𝑡𝑛 + 𝑢𝑡𝑛 ) = 0,

which is the averaged adjoint equation (3.15) associatedwith the pair (𝑢0𝑡𝑛 , 𝑢
𝑡𝑛 ). Since𝐴(𝑡𝑛) (𝑢0𝑡𝑛+𝑢

𝑡𝑛 ) ≠ 0
for 𝑛 large, it follows from (3.24) that

(3.25) 𝑞𝑡𝑛 = −
𝑄 (𝑡𝑛) (𝑢𝑡𝑛 + 𝑢0𝑡𝑛 ) · (𝑢

𝑡𝑛 + 𝑢0𝑡𝑛 )
𝐴(𝑡𝑛) (𝑢𝑡𝑛 + 𝑢0𝑡𝑛 ) · (𝑢𝑡𝑛 + 𝑢0𝑡𝑛 )

→ −𝑄 (0)𝑢0 · 𝑢0
𝐴(0)𝑢0 · 𝑢0 = 𝑝0.

This shows Hypothesis (H3) and nishes the proof. �
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Verification of Hypothesis (H4) The verication of Hypothesis (H4) is a simple application of the
inverse function theorem.
Lemma 3.11. For every 𝑢0 ∈ 𝐸 (0) we nd a dierentiable function 𝑡 ↦→ 𝑢𝑡 : [0, 𝜏] → R𝑑 with 𝑢𝑡 ∈ 𝐸 (𝑡)
for all 𝑡 ∈ (0, 𝜏].

Proof. We argue similarly as in Lemma 3.10. Let 𝑢0 ∈ R𝑑 with 𝐴(0)𝑢0 · 𝑢0 = 1 be given. Again by
continuity we nd 𝜏 > 0 and 𝑐 > 0, such that 𝐴(𝑡)𝑢0 · 𝑢0 ≥ 𝑐 for all 𝑡 ∈ [0, 𝜏]. Now

(3.26) 𝑢𝑡 := 1√︁
𝐴(𝑡)𝑢0 · 𝑢0

belongs to 𝐸 (𝑡) and is right dierentiable at 𝑡 = 0. �

Verification of Hypothesis (H5) To check Hypothesis (H5) we compute for all 𝑢 ∈ R𝑑 and 𝑞 ∈ R,

(3.27) 𝜕𝑢𝐺 (0, 𝑢, 𝑝) = (𝑄 (0) + 𝑝𝐴(0))𝑢.

Hence by the fundamental theorem of calculus and (3.27) we obtain for all 𝑢0 ∈ 𝑋 (0), 𝑢 ∈ R𝑑 and
𝑝0 ∈ 𝑌 (0, 𝑢0),

|𝐺 (0, 𝑢, 𝑝0) −𝐺 (0, 𝑢0, 𝑝0) − 𝜕𝑢𝐺 (0, 𝑢0, 𝑝0) (𝑢 − 𝑢0) |

= |
∫ 1

0
𝜕𝑢𝐺 (0, 𝑠𝑢 + (1 − 𝑠)𝑢0, 𝑝0) (𝑢 − 𝑢0) − 𝜕𝑢𝐺 (0, 𝑢0, 𝑝0) (𝑢 − 𝑢0) 𝑑𝑠 |

≤ |𝑢 − 𝑢0 |22‖𝑄 (0) + 𝑝0𝐴(0)‖

(3.28)

and this veries Hypothesis (H5).

Application of Theorem 2.10 Now we have veried all the Hypotheses of Theorem 2.10 and we obtain
the following theorem.
Theorem 3.12. Let 𝑄,𝐴 : [0, 𝜏] → R𝑑×𝑑 be two continuously dierentiable functions satisfying Assump-
tion 3.6. Then the function 𝑔 is right dierentiable at 𝑡 = 0 and we nd 𝑢0 ∈ 𝑋 (0), such that

(3.29) 𝑑𝑔(0) = inf
𝑢∈𝑋 (0)

(𝑄 ′(0) + 𝑝0𝐴′(0))𝑢 · 𝑢 = (𝑄 ′(0) + 𝑝0𝐴′(0))𝑢0 · 𝑢0,

where (𝑢0, 𝑝0) ∈ R𝑑 × R satises:

𝑄 (0)𝑢0 + 𝑝0𝐴(0)𝑢0 = 0, 𝑝0 = −𝑄 (0)𝑢0 · 𝑢0,
𝐴(0)𝑢0 · 𝑢0 = 1.

We can even obtain more using the dierentiability of the suboptimal paths 𝑢𝑡 of Lemma 3.11 and
the arguments of Lemma 2.13. In contrast to the previous theorem the following lemma holds for all
elements 𝑢0 ∈ 𝑋 (0).
Lemma 3.13. Let 𝑢0 ∈ 𝑋 (0). Let 𝑣 ∈ R𝑑 be any vector, such that there is (𝑢𝑡 ) with 𝑢𝑡 ∈ 𝐸 (𝑡) satisfying

(3.30) 𝑣 = lim
𝑡↘0

𝑢𝑡 − 𝑢0

𝑡
and 𝐴′(0)𝑢0 · 𝑢0 ≠ 0.

Then we have

(3.31) 𝑑𝑔(0) ≤ 𝜕𝑡𝐺 (0, 𝑢0, 𝜇) = (𝑄 ′(0) + 𝜇𝐴′(0))𝑢0 · 𝑢0,

where 𝜇 is given by

(3.32) 𝜇 := −𝑄 (0)𝑢0 · 𝑣
𝐴(0)𝑢0 · 𝑣 .
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Proof. Let 𝑢0 ∈ 𝑋 (0) and let 𝑢𝑡 be a dierentiable path with 𝑣 := lim𝑡↘0(𝑢𝑡 − 𝑢0)/𝑡 . By denition
𝐴(𝑡)𝑢𝑡 · 𝑢𝑡 = 1 and hence 𝐴′(0)𝑢0 · 𝑢0 + 2𝐴(0)𝑢0 · 𝑣 = 0. In view of 𝐴′(0)𝑢0 · 𝑢0 ≠ 0, we conclude

(3.33) 𝐴(0)𝑢0 · 𝑣 ≠ 0.

Now we choose 𝑞𝑡 ∈ R such that∫ 1

0
𝜕𝑢𝐺 (𝑡, 𝑠𝑢𝑡 + (1 − 𝑠)𝑢0, 𝑞𝑡 ) (𝑢𝑡 − 𝑢0)

= 2(𝑄 (𝑡) + 𝑞𝑡𝐴(𝑡)) (𝑢𝑡 − 𝑢0) = 0.
(3.34)

It is readily checked using (3.33) that𝐴(𝑡) (𝑢𝑡 +𝑢0) · (𝑢𝑡−𝑢0

𝑡
) ≠ 0 for all 𝑡 small and thus we obtain from

(3.34),

𝑞𝑡 = −
𝑄 (𝑡) (𝑢𝑡 + 𝑢0) · (𝑢𝑡−𝑢0

𝑡
)

𝐴(𝑡) (𝑢𝑡 + 𝑢0) · (𝑢𝑡−𝑢0
𝑡

)
→ −𝑄 (0)𝑢0 · 𝑣

𝐴(0)𝑢0 · 𝑣 =: 𝜇.(3.35)

Now we apply the mean value theorem to obtain

(3.36) 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) −𝐺 (𝑡,𝑢0, 𝑞𝑡 ) =
∫ 1

0
𝜕𝑢𝐺 (𝑡, 𝑠𝑢𝑡 + (1 − 𝑠)𝑢0, 𝑞𝑡 ) (𝑢𝑡 − 𝑢0) 𝑑𝑠 = 0,

where the last equality follows from the denition of 𝑞𝑡 . Hence we obtain that for every null-sequence
𝑡 ↘ 0 and every 𝑢0 ∈ 𝑋 (0), we nd 𝑢𝑡 ∈ 𝐸 (𝑡) and 𝑞𝑡 ∈ R, such that

(3.37) 𝐺 (𝑡,𝑢𝑡 , 𝑞𝑡 ) = 𝐺 (𝑡,𝑢0, 𝑞𝑡 ).

Hence we can use the same arguments as in Lemma 2.13 to conclude 𝑑𝑔(0) ≥ 𝜕𝑡𝐺 (0, 𝑢0, 𝜇).
�

3.4 on the condition (h3) and non-existence of averaged adjoints

Let us give an explicit example where for all suciently small 𝑡 > 0 and any pair (𝑢0, 𝑢𝑡 ) ∈ 𝑋 (0) ×𝑋 (𝑡)
the set of averaged adjoints 𝑌 (𝑡,𝑢0, 𝑢𝑡 ) = ∅ is empty. However, for every 𝑢𝑡 ∈ 𝑋 (𝑡), we nd 𝑢0 ∈ 𝑋 (0)
and 𝑢𝑡0 ∈ 𝐸 (0), such that 𝑢𝑡0 → 𝑢0 and 𝑌 (𝑡,𝑢𝑡0, 𝑢𝑡 ) ≠ ∅. Therefore Hypothesis (H3) is necessary in some
cases and can not be simplied.

Consider again 𝑔 dened by (3.10) with

𝐸 (𝑡) = {𝑢 = (𝑥, 𝑦)> ∈ R2 : 𝐴(𝑡)𝑢 · 𝑢 = 1},(3.38)

𝐴(𝑡) :=
(
1 𝑡

𝑡 1

)
, 𝑄 =

(
1 0
0 2

)
.(3.39)

Clearly Assumption 3.6 is satised for this example and hence 𝑔 is right dierentiable thanks to
Theorem 3.12. At 𝑡 = 0 we have

𝐸 (0) = {(𝑥, 𝑦)> ∈ R2 : 𝑥2 + 𝑦2 = 1}, 𝑋 (0) = {(±1, 0)>}, 𝑌 (0, (±1, 0)>) = {1}(3.40)

and for 𝑡 > 0 and 𝑢𝑡 ∈ 𝑋 (𝑡) we nd 𝑝𝑡 ∈ 𝑌 (𝑡,𝑢𝑡 ) solving

(3.41) 𝑄𝑢𝑡 + 𝑝𝑡𝐴(𝑡)𝑢𝑡 = 0 ⇔ 𝐴(𝑡)−1𝑄𝑢𝑡 + 𝑝𝑡𝑢𝑡 = 0.
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We compute

(3.42) 𝐴(𝑡)−1𝑄 =
1

1 − 𝑡2

(
1 −2𝑡
−𝑡 2

)
︸       ︷︷       ︸

=:�̃�(𝑡 )

.

The eigenvalues of �̃�(𝑡) are given by

(3.43) 𝜆±(𝑡) = 1
2

(
3 ±

√
1 + 8𝑡2

)
and therefore { 1

1−𝑡2𝜆
−(𝑡), 1

1−𝑡2𝜆
+(𝑡)} are the eigenvalues of𝐴(𝑡)−1𝑄 and the eigenspaces are one dimen-

sional. Moreover,𝑔(𝑡) = 1
1−𝑡2𝜆

−(𝑡). For small 𝑡 > 0we have 𝜆+(𝑡) > 2 and 𝜆−(𝑡) < 1. The corresponding
eigenvalue equations lead to

𝑥 (𝜆± − 1) = −2𝑡𝑦,(3.44)
𝑦 (𝜆± − 2) = −𝑡𝑥 .(3.45)

So for 𝜆+ we obtain as eigenvector for 𝑡 > 0,

(3.46) 𝑢𝑡+ =

(
𝑎𝑡

1

)
, 𝑎𝑡 =

−2𝑡
𝜆+(𝑡) − 1 < 0,

and 𝑎𝑡 → 0 for 𝑡 ↘ 0. Similarly, for 𝜆− we obtain

(3.47) 𝑢𝑡− =

(
1
𝑏𝑡

)
, 𝑏𝑡 =

−𝑡
𝜆−(𝑡) − 2 > 0,

and 𝑏𝑡 → 0 for 𝑡 ↘ 0. It follows that

(3.48) 𝑋 (𝑡) = {𝑢𝑡−,−𝑢𝑡−}, 𝑢𝑡− := 1√︁
𝐴(𝑡)𝑢𝑡− · 𝑢𝑡−

𝑢𝑡−.

Now let us check that the averaged adjoint equation is not solvable.
Lemma 3.14. For 𝑡 > 0 small and for (𝑢𝑡−,±𝑢0) with 𝑢0 = (1, 0)>, there is no 𝑞𝑡 ∈ R, such that

(3.49) 𝑄 (𝑢𝑡− ± 𝑢0) + 𝑞𝑡𝐴(𝑡) (𝑢𝑡− ± 𝑢0) = 0.

In particular 𝑌 (𝑡,𝑢0, 𝑢𝑡−) = 𝑌 (𝑡,−𝑢0, 𝑢𝑡−) = ∅ and no averaged adjoint state for such pairs exists.

Proof. Suppose 𝑞𝑡 ∈ 𝑌 (𝑡,𝑢0, 𝑢𝑡−) exists. Then in view of the denition (3.49), this means that 𝑞𝑡 ∈
{− 1

1−𝑡2𝜆
−(𝑡),− 1

1−𝑡2𝜆
+(𝑡)} and in view of (3.49)

𝑢𝑡− + 𝑢0 = 1√︁
𝐴(𝑡)𝑢𝑡− · 𝑢𝑡−

(
1
𝑏𝑡

)
+
(
1
0

)
(3.50)

must be an eigenvector of 𝐴(𝑡)−1𝑄 . Since the eigenspaces are one dimensional, we must have one of
the two cases:

(3.51a) 𝑢𝑡− + 𝑢0 = 𝛼𝑢𝑡−,

(3.51b) 𝑢𝑡− + 𝑢0 = 𝛼𝑢𝑡+,
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for some 𝛼 ∈ R. By comparing the last component of the vectors of (3.51a), we see that equality in
(3.51a) can only happen for 𝛼 = 1√

𝐴(𝑡 )𝑢𝑡− ·𝑢𝑡−
, which gives

(3.52) 𝑢𝑡− + 𝑢0 = 𝑢𝑡− ⇒ 𝑢0 = 0

and thus a contradiction. Similarly for (3.51b), we compare the last component and see that equality
can only be true for 𝛼 = 𝑏𝑡√

𝐴(𝑡 )𝑢𝑡− ·𝑢𝑡−
, which leads to

(3.53) 𝑢𝑡− + 𝑢0 = 𝑏𝑡√︁
𝐴(𝑡)𝑢𝑡− · 𝑢𝑡−

(
𝑎𝑡

1

)
which is also impossible since 𝑎𝑡 → 0 and 𝑏𝑡 → 0 and hence the right vector goes to zero as 𝑡 ↘ 0,
however, the left hand side goes to 2𝑢0 ≠ 0. Therefore (3.49) is not solvable and 𝑌 (𝑡,𝑢0, 𝑢𝑡−) = ∅. The
same arguments show that 𝑌 (𝑡,−𝑢0, 𝑢𝑡−) = ∅. �

Despite this negative result, we can dene for every 𝑢𝑡 ∈ 𝑋 (𝑡) the element
𝑢0𝑡 := 𝑢𝑡/

√︁
𝐴(0)𝑢𝑡 · 𝑢𝑡 ∈ 𝐸 (0), which is linearly dependent on 𝑢𝑡 and hence 𝑌 (𝑡,𝑢0𝑡 , 𝑢𝑡 ) ≠ ∅. Moreover,

if 𝑢𝑡 converges, also 𝑢0𝑡 converges.

3.5 second order sufficient conditions

Let us nish this section by making some remarks on second order analysis results. We notice that in
[5, Sec. 4.9.1., p. 365] equality constraints are treated using second order analysis. However, for our
problem this is not applicable. In fact in [5, Thm. 4.125, p. 365] the following problem is studied

(3.54) 𝑔(𝑡) = inf
𝑢∈𝐸 (𝑡 )

𝑓 (𝑡,𝑢), 𝐸 (𝑡) = {𝑢𝑡 ∈ 𝑋 : 𝑒 (𝑡,𝑢𝑡 ) = 0},

where 𝑓 : [0, 𝜏] × 𝑋 → R and 𝑒 : [0, 𝜏] × 𝑋 → 𝑌 are two times dierentiable functions. Introduce the
associated Lagrangian

(3.55) 𝐺 (𝑡,𝑢, 𝑝) := 𝑓 (𝑡,𝑢) + 〈𝑝, 𝑒 (𝑡,𝑢)〉𝑌 ∗,𝑌 , 𝑡 ∈ [0, 𝜏], 𝑢 ∈ 𝑋, 𝑝 ∈ 𝑌 ∗.

Suppose that 𝜕𝑢𝑒 (0, 𝑢0) : 𝑋 → 𝑌 is surjective, such that the Lagrange multiplier 𝑞0 ∈ 𝑌 (0, 𝑢0) for
every 𝑢0 ∈ 𝑋 (0) is unique. Then in [5, Thm. 4.125, p. 365] it is proved that for given 𝑢0 ∈ 𝑋 (0) and
𝑞0 ∈ 𝑌 (0, 𝑢0), there exist locally unique solutions (𝑢𝑡 , 𝑝𝑡 ) of

𝜕𝑢𝐺 (𝑡,𝑢𝑡 , 𝑝𝑡 ) = 𝜕𝑢 𝑓 (𝑡,𝑢𝑡 ) + 〈𝑝𝑡 , 𝜕𝑢𝑒 (𝑡,𝑢𝑡 )〉𝑌 ∗,𝑌 = 0,(3.56)
𝑒 (𝑡,𝑢𝑡 ) = 0,(3.57)

provided the second order condition holds:

(3.58) ∃𝛼 > 0, 𝜕2𝑢𝐺 (0, 𝑢0, 𝑝0) (𝑣) (𝑣) ≥ 𝛼 ‖𝑣 ‖2𝑋 for all 𝑣 ∈ kern(𝜕𝑢𝑒 (0, 𝑢0)) .
This is a consequence of the implicit function theorem. However, this does not work in our setting
in general since the second order condition for (3.8) reads with 𝑋 = R𝑑 equipped with the Euclidean
norm ‖ · ‖, 𝑌 = R, 𝑒 (𝑡,𝑢) = 𝐴(𝑡)𝑢 · 𝑢 − 1 and 𝑓 (𝑡,𝑢) := 𝑄 (𝑡)𝑢 · 𝑢:
(3.59) ∃𝛼 > 0, (𝑄 (0) + 𝑝0𝐴(0))𝑣 · 𝑣 ≥ 𝛼 ‖𝑣 ‖2 for all 𝑣 ∈ (𝐴(0)𝑢0)⊥.
Then (3.56) would read:

(3.60) (𝑄 (𝑡) + 𝑝𝑡𝐴(𝑡))𝑢𝑡 = 0, 𝐴(𝑡)𝑢𝑡 · 𝑢𝑡 = 1.

However, it is readily seen that (3.59) cannot hold when the eigenvalue −𝑝0 of (𝑄 (0), 𝐴(0)) is not
simple. Take for instance 𝐴(0) = 𝐼 , 𝑄 (0) = 𝑄 (0)>, and assume −𝑝0 is not geometrically simple (i.e.,
the eigenspace has dimension ≥ 2) eigenvalue of 𝑄 (0). Then (3.59) cannot hold, since kern(𝐴(0)𝑢0) =
(𝑢0)⊥ = {𝑣 ∈ R𝑑 : 𝑣 · 𝑢0 = 0} contains another eigenvector 𝑣 ∈ (𝑢0)⊥ associated with −𝑝0 and thus
𝑄 (0)𝑣 · 𝑣 + 𝑝0‖𝑣 ‖2 = 0.
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4 application to a shape optimisation problem

In this section we present another example where Theorem 2.10 is applicable. In contrast to the previous
section this example is innite dimensional.

4.1 shape optimisation problem

For every bounded Lipschitz domain Ω ⊂ R𝑑 , 𝑑 ∈ {2, 3}, we consider

(4.1) 𝐽 (Ω) := inf
𝑢∈𝐸 (Ω)

𝑓 (Ω, 𝑢),

where

(4.2) 𝑓 (Ω, 𝑢) :=
∫
Ω
|𝑢 − 𝑢𝑟 |2 𝑑𝑥 + 𝛾

∫
Ω
|∇𝑢 |2 𝑑𝑥, 𝛾 > 0, 𝑢𝑟 ∈ 𝐻 1(R𝑑 ),

and 𝐸 (Ω) comprises the set of solutions 𝑢 = 𝑢Ω ∈ 𝐻 1(Ω) to the semilinear problem:

(4.3)
∫
Ω
∇𝑢 · ∇𝜑 + 𝜚 (𝑢)𝜑 𝑑𝑥 =

∫
Ω
𝑓 𝜑 𝑑𝑥

for all 𝜑 ∈ 𝐻 1
0(Ω). We make the following assumption.

Assumption 4.1.We assume that 𝜚 : R → R is a two times dierentiable, Lipschitz continuous and
strongly monotone function satisfying 𝜚 (0) = 0. We also assume 𝑓 ∈ 𝐻 1(R𝑑 ).
Equation (4.3) cannot be uniquely solvable since no Dirichlet boundary conditions are prescribed.

Given a function 𝑢𝑟 the cost 𝐽 (Ω) measures the best solution to (4.3) which is closest to 𝑢𝑟 . The set
𝐸 (Ω) contains innitely many elements and is nonconvex (unless 𝜚 is linear).
Lemma 4.2. There exists a minimiser to the problem (4.1).

Proof. It is clear that 𝐽 (Ω) is nite. Let (𝑢𝑛) be a minimising sequence in 𝐻 1(Ω), so that

(4.4) 𝐽 (Ω) = lim
𝑛→∞

(∫
Ω
|𝑢𝑛 − 𝑢𝑟 |2 𝑑𝑥 + 𝛾

∫
Ω
|∇𝑢𝑛 |2 𝑑𝑥

)
.

From this it immediately follows that (𝑢𝑛) is bounded in 𝐻 1(Ω). Hence due to Rellich’s compactness
theorem we nd 𝑢 ∈ 𝐻 1(Ω) and a subsequence, which is denoted the same, such that ∇𝑢𝑛 ⇀ ∇𝑢
weakly in 𝐿2(Ω)𝑑 and 𝑢𝑛 → 𝑢 strongly in 𝐿2(Ω). Hence we can pass to the limit 𝑛 → ∞ in

(4.5)
∫
Ω
∇𝑢𝑛 · ∇𝜑 + 𝜚 (𝑢𝑛)𝜑 𝑑𝑥 =

∫
Ω
𝑓 𝜑 𝑑𝑥 for all 𝜑 ∈ 𝐻 1

0(Ω)

to conclude 𝑢 ∈ 𝐸 (Ω). In addition we infer from (4.4)

(4.6)
∫
Ω
|𝑢 − 𝑢𝑟 |2 𝑑𝑥 + 𝛾

∫
Ω
|∇𝑢 |2 𝑑𝑥 ≤ 𝐽 (Ω) .

This shows that 𝑢 is a minimiser and nishes the proof. �

Our goal is now to use Theorem 2.10 to show that the directional shape derivative of 𝐽 exists.
Definition 4.3. The directional shape derivative of 𝐽 at Ω in direction 𝑋 ∈ 𝐶0,1(R𝑑 )𝑑 is dened by

(4.7) 𝑑 𝐽 (Ω) (𝑋 ) := lim
𝑡↘0

𝐽 ((Id + 𝑡𝑋 ) (Ω)) − 𝐽 (Ω)
𝑡

.
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Notice that the mapping 𝑇𝑡 := id + 𝑡𝑋 : R𝑑 → R𝑑 is a bi-Lipschitz mapping for all |𝑡 | < 1/𝐿(𝑋 ),
where 𝐿(𝑋 ) denotes the Lipschitz constant of 𝑋 .

Let us introduce the Lagrangian 𝐺 : 𝐻 1(Ω) × 𝐻 1
0(Ω) → R by

(4.8) 𝐺 (𝜑,𝜓 ) :=
∫
Ω
|𝜑 − 𝑢𝑟 |2 𝑑𝑥 + 𝛾

∫
Ω
|∇𝜑 |2 𝑑𝑥 +

∫
Ω
∇𝜑 · ∇𝜓 + 𝜚 (𝜑)𝜓 𝑑𝑥 −

∫
Ω
𝑓𝜓 𝑑𝑥 .

Lemma 4.2 guarantees that the set

(4.9) 𝑋 (Ω) := {𝑢 ∈ 𝐸 (Ω) : inf
𝜑 ∈𝐸 (Ω)

𝐺 (𝜑, 0) = 𝐺 (𝑢, 0)}

is not empty. In the next paragraph we consider the perturbed versions of 𝐸 (Ω) and 𝑋 (Ω).

4.2 analysis of the perturbed problems

We will show by applying Theorem 2.10 that for a bounded Lipschitz domain Ω ⊂ R𝑑 the directional
shape derivative of 𝐽 exists. At rst we consider any solution 𝑢𝑡 ∈ 𝐻 1(Ω𝑡 ) dened on the perturbed
domain Ω𝑡 := 𝑇𝑡 (Ω) of

(4.10)
∫
Ω𝑡

∇𝑢𝑡 · ∇𝜑 + 𝜚 (𝑢)𝜑 𝑑𝑥 =

∫
Ω𝑡

𝑓 𝜑 𝑑𝑥 for all 𝜑 ∈ 𝐻 1
0(Ω𝑡 ) .

Now since 𝜑 ∈ 𝐻 1(𝑇𝑡 (Ω)) (resp. 𝜑 ∈ 𝐻 1
0(𝑇𝑡 (Ω))) if and only if 𝜑 ◦𝑇𝑡 ∈ 𝐻 1(Ω) (resp. 𝜑 ◦𝑇𝑡 ∈ 𝐻 1

0(Ω))
(see [37, Thm. 2.2.2, p.52]) changing variables in (4.10) shows that 𝑢𝑡 := 𝑢𝑡 ◦𝑇𝑡 ∈ 𝐻 1(Ω) solves

(4.11)
∫
Ω
𝐴(𝑡)∇𝑢𝑡 · ∇𝜑 + | det(𝜕𝑇𝑡 ) |𝜚 (𝑢𝑡 )𝜑 𝑑𝑥 =

∫
Ω
𝑓 𝑡𝜑 𝑑𝑥 for all 𝜑 ∈ 𝐻 1

0(Ω),

where

(4.12) 𝐴(𝑡) := det(𝜕𝑇𝑡 )𝜕𝑇 −1
𝑡 𝜕𝑇 −>

𝑡 , 𝑓 𝑡 := det(𝜕𝑇𝑡 ) 𝑓 ◦𝑇𝑡 .

Therefore 𝑢𝑡 ∈ 𝐸 (𝑇𝑡 (Ω)) if and only if 𝑢𝑡 := 𝑢𝑡 ◦𝑇𝑡 is in

(4.13) 𝐸 (𝑡) :=
{
𝑢𝑡 ∈ 𝐻 1(Ω) : 𝑢𝑡 solves (4.11)

}
.

As a result we get for 𝑡 small

(4.14) 𝑔(𝑡) := 𝐽 (𝑇𝑡 (Ω)) = inf
𝑢∈𝐸 (𝑡 )

𝑓 (𝑡,𝑢),

where

(4.15) 𝑓 (𝑡,𝑢) :=
∫
Ω
det(𝜕𝑇𝑡 ) (𝑢 − 𝑢𝑡𝑟 )2 𝑑𝑥 + 𝛾

∫
Ω
𝐴(𝑡)∇𝑢𝑡 · ∇𝑢𝑡 𝑑𝑥,

where 𝑢𝑡𝑟 := 𝑢𝑟 ◦𝑇𝑡 . This problem falls into the framework of Theorem 2.10.
We recall the following proposition; see, e.g., [34].

Proposition 4.4. Let D ⊂ R𝑑 be a bounded and open set. Let 𝑋 : R𝑑 → R𝑑 be a Lipschitz vector eld. Then
for 𝑇𝑡 := 𝑖𝑑 + 𝑡𝑋 there holds:

(i) We have

𝜕𝑇𝑡 − 𝐼

𝑡
→𝜕𝑋 strongly in 𝐶 (D,R𝑑,𝑑 )

𝜕𝑇 −1
𝑡 − 𝐼

𝑡
→− 𝜕𝑋 strongly in 𝐶 (D,R𝑑,𝑑 )

det(𝜕𝑇𝑡 ) − 1
𝑡

→ div(𝑋 ) strongly in 𝐶 (D) .
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(ii) For all open sets Ω ⊂ D and all 𝜑 ∈ 𝐻 1(R𝑑 ), we have

𝜑 ◦𝑇𝑡 − 𝜑

𝑡
→∇𝜑 · 𝑋 strongly in 𝐿2(Ω).(4.16)

Lemma 4.5. Let 𝑢0 ∈ 𝐸 (0) be given. Then we nd a path 𝑡 ↦→ 𝑢𝑡 : [0, 𝜏] → 𝐻 1(Ω) with 𝑢𝑡 ∈ 𝐸 (𝑡),
𝑢𝑡 − 𝑢0 ∈ 𝐻 1

0(Ω), and a constant 𝑐 , such that

(4.17) ‖𝑢𝑡 − 𝑢0‖𝐻 1 ≤ 𝑐𝑡 for all 𝑡 ∈ [0, 𝜏] .

Proof. Let 𝑢0 ∈ 𝐸 (0) be given. By denition 𝑢0 ∈ 𝐻 1(Ω) solves:

(4.18)
∫
Ω
∇𝑢0 · ∇𝜑 + 𝜚 (𝑢0)𝜑 𝑑𝑥 =

∫
Ω
𝑓 𝜑 𝑑𝑥 for all 𝜑 ∈ 𝐻 1

0(Ω) .

Set 𝑔0 := 𝑢0 |𝜕Ω and consider for every 𝑡 ∈ [0, 𝜏]: nd 𝑢𝑡 ∈ 𝐻 1(Ω), such that 𝑢𝑡 = 𝑔0 on 𝜕Ω and

(4.19)
∫
Ω
𝐴(𝑡)∇𝑢𝑡 · ∇𝜑 + det(𝜕𝑇𝑡 )𝜚 (𝑢𝑡 )𝜑 𝑑𝑥 =

∫
Ω
𝑓 𝑡𝜑 𝑑𝑥 for all 𝜑 ∈ 𝐻 1

0(Ω) .

By construction 𝑢𝑡 is uniquely determined, 𝑢𝑡 ∈ 𝐸 (𝑡), 𝑢𝑡 −𝑢0 = 0 on 𝜕Ω for all 𝑡 . We obtain from (4.19):

(4.20)
∫
Ω
𝐴(𝑡)∇(𝑢𝑡 − 𝑢0) · ∇𝜑 𝑑𝑥 +

∫
Ω
det(𝜕𝑇𝑡 ) (𝜚 (𝑢𝑡 ) − 𝜚 (𝑢0))𝜑 𝑑𝑥

= −
∫
Ω
det(𝜕𝑇𝑡 )𝜚 (𝑢0)𝜑 − 𝑓 𝑡𝜑 +𝐴(𝑡)∇𝑢0 · ∇𝜑 𝑑𝑥

= −
∫
Ω
(det(𝜕𝑇𝑡 ) − 1)𝜚 (𝑢0)𝜑 − (𝑓 𝑡 − 𝑓 )𝜑 + (𝐴(𝑡) − 𝐼 )∇𝑢0 · ∇𝜑 𝑑𝑥

for all 𝜑 ∈ 𝐻 1
0(Ω). Since 𝜑 := 𝑢𝑡 −𝑢0 is zero on 𝜕Ω we may use it as test function in (4.20). Hence using

Hölder’s inequality, the uniform monotonicity of 𝐴 and the monotonicity (𝜚 (𝑥) − 𝜚 (𝑦)) (𝑥 − 𝑦) ≥ 0
for all 𝑥, 𝑦 ∈ R gives

(4.21)
∫
Ω
(𝑢𝑡 − 𝑢0)2 + |∇(𝑢𝑡 − 𝑢0) |2 𝑑𝑥

≤ 𝑐 (‖ 𝑓 𝑡 − 𝑓 ‖
𝐶 (Ω) + ‖𝐴(𝑡) − 𝐼 ‖

𝐶 (Ω)𝑑×𝑑 ‖𝑢
0‖𝐻 1 (Ω) + ‖ det(𝜕𝑇𝑡 ) − 1‖

𝐶 (Ω) ‖𝜚 (𝑢0)‖𝐶 (Ω) )

and therefore it follows from Proposition 4.4,

(4.22) ‖𝑢𝑡 − 𝑢0‖𝐻 1 (Ω) ≤ 𝑐𝑡 for all 𝑡 ∈ [0, 𝜏] .

�

Parametrised Lagrangian and averaged adjoint We set �̃� = 𝑌 := 𝐻 1
0(Ω) and 𝑋 := 𝐻 1(Ω). The

parametrised Lagrangian 𝐺 : [0, 𝜏] × 𝑋 × 𝑌 → R is given by

(4.23) 𝐺 (𝑡,𝑢, 𝑝) =
∫
Ω
det(𝜕𝑇𝑡 ) (𝑢 − 𝑢𝑡𝑟 )2 𝑑𝑥 + 𝛾

∫
Ω
𝐴(𝑡)∇𝑢 · ∇𝑢 𝑑𝑥

+
∫
Ω
𝐴(𝑡)∇𝑢 · ∇𝑝 + det(𝜕𝑇𝑡 )𝜚 (𝑢)𝑝 − 𝑓 𝑡𝑝 𝑑𝑥,
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where we recall 𝐴(𝑡) = det(𝜕𝑇𝑡 )𝜕𝑋−1𝜕𝑋−>, 𝑢𝑡𝑟 = 𝑢𝑟 ◦𝑇𝑡 and 𝑓 𝑡 = det(𝜕𝑇𝑡 ) 𝑓 ◦𝑇𝑡 . It is noteworthy that
in this example we have �̃� ≠ 𝑋 . Using Proposition 4.4 we see that 𝐴(𝑡) and 𝑓 𝑡 are dierentiable and
we readily check for all 𝑢, 𝑝 ∈ 𝐻 1(Ω):

(4.24) 𝜕𝑡𝐺 (0, 𝑢, 𝑝) =
∫
Ω
div(𝑋 ) (𝑢 − 𝑢𝑟 )2 − (𝑢 − 𝑢𝑟 )∇𝑢𝑟 · 𝑋 + 𝛾𝐴′(0)∇𝑢 · ∇𝑢 𝑑𝑥

+
∫
Ω
𝐴′(0)∇𝑢 · ∇𝑝 + div(𝑋 )𝜚 (𝑢)𝑝 − 𝑓 ′𝑝 𝑑𝑥,

where𝐴′(0) = div(𝑋 )𝐼−𝜕𝑋−𝜕𝑋> and 𝑓 ′ = div(𝑋 ) 𝑓 +∇𝑓 ·𝑋 . It is also readily checked that assumptions
(H0)–(H3) are satised. Moreover, since 𝜚 is Lipschitz continuous we also readily check Hypothesis
(H5).

The averaged adjoint associated with 𝑢𝑡 ∈ 𝐸 (𝑡) and 𝑢0 ∈ 𝐸 (0) reads: nd 𝑞𝑡 ∈ 𝐻 1
0(Ω), such that,

(4.25)
∫
Ω
𝐴(𝑡)∇𝑞𝑡 · ∇𝜑 +

∫ 1

0
det(𝜕𝑇𝑡 )𝜚 ′(𝑠𝑢𝑡 + (1 − 𝑠)𝑢0)𝑞𝑡 𝑑𝑠𝜑 𝑑𝑥

= −
∫
Ω
det(𝜕𝑇𝑡 ) (2𝑢𝑡𝑟 − (𝑢𝑡 + 𝑢0))𝜑 𝑑𝑥 −

∫
Ω
det(𝜕𝑇𝑡 )𝐴(𝑡)∇(𝑢𝑡 + 𝑢0) · ∇𝜑 𝑑𝑥

for all 𝜑 ∈ 𝐻 1
0(Ω). It follows from the theorem of Lax-Milgram and the uniform coercivity of 𝐴 and

det(𝜕𝑇𝑡 ) that (4.25) admits a unique solution.
Lemma 4.6. For every null-sequence (𝑡𝑛) and (𝑢𝑡𝑛 ),𝑢𝑡𝑛 ∈ 𝑋 (𝑡𝑛) there is a subsequence (𝑡𝑛𝑘 ) and𝑢0 ∈ 𝑋 (0),
such that

(4.26) 𝑢𝑡𝑛𝑘 ⇀ 𝑢0 in 𝐻 1(Ω) as 𝑘 → ∞.

Proof. Let (𝑡𝑛) be a null-sequence and 𝑢𝑡𝑛 ∈ 𝑋 (𝑡𝑛). By denition we have for all 𝑛 ≥ 1

(4.27) 𝐽 (𝑇𝑡𝑛 (Ω)) ≤
∫
Ω
det(𝜕𝑇𝑡𝑛 ) (𝑢 − 𝑢𝑡𝑛𝑟 )2 𝑑𝑥 + 𝛾

∫
Ω
𝐴(𝑡𝑛)∇𝑢 · ∇𝑢 𝑑𝑥 for all 𝑢 ∈ 𝐸 (𝑡𝑛).

Now x 𝑢0 ∈ 𝐸 (0) and let (𝑢𝑡 ) ∈ 𝐸 (𝑡) be as in Lemma 4.5, such that 𝑢𝑡 → 𝑢0 in 𝐻 1(Ω). Plugging 𝑢𝑡𝑛
into (4.27) and using Proposition 4.4, we nd 𝐶 > 0, such that

(4.28) 𝐽 (𝑇𝑡𝑛 (Ω)) ≤ 𝐶 for all 𝑛 ≥ 1.

It follows in particular, since

(4.29) 𝐽 (𝑇𝑡𝑛 (Ω)) =
∫
Ω
det(𝜕𝑇𝑡𝑛 ) (𝑢𝑡𝑛 − 𝑢𝑡𝑛𝑟 )2 𝑑𝑥 + 𝛾

∫
Ω
𝐴(𝑡𝑛)∇𝑢𝑡𝑛 · ∇𝑢𝑡𝑛 𝑑𝑥,

that (𝑢𝑡𝑛 ) is bounded. Hence there is a subsequence (denoted the same) and 𝑢0 ∈ 𝐻 1(Ω), such that
𝑢𝑡𝑛 ⇀ 𝑢0 weakly in 𝐻 1(Ω) and 𝑢𝑡𝑛 → 𝑢0 strongly in 𝐿2(Ω). It is readily checked that by passing to
the limit 𝑛 → ∞ that 𝑢0 ∈ 𝑋 (0), which nishes the proof. �

Corollary 4.7. For every null-sequence (𝑡𝑛) and 𝑢𝑡𝑛 ∈ 𝑋 (𝑡𝑛), we nd 𝑢0 ∈ 𝑋 (0) and 𝑝0 ∈ 𝑌 (0, 𝑢0), and
a subsequence (denoted the same), elements (𝑢𝑡𝑛0 , 𝑢𝑡𝑛 ) ∈ 𝐸 (0) × 𝑋 (𝑡𝑛) and 𝑞𝑡𝑛 ∈ 𝑌 (𝑡,𝑢𝑡𝑛0 , 𝑢𝑡𝑛 ), such that
𝑢𝑡𝑛 − 𝑢0,𝑡𝑛 ∈ 𝐻 1

0(Ω) and

𝑢0𝑡𝑛 ⇀ 𝑢0 in 𝐻 1(Ω) as 𝑛 → ∞,(4.30)
𝑞0𝑡𝑛 ⇀ 𝑞0 in 𝐻 1

0(Ω) as 𝑛 → ∞.(4.31)
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Proof. Thanks to Lemma 4.6 we nd for every null-sequence (𝑡𝑛) and 𝑢𝑡𝑛 ∈ 𝑋 (𝑡𝑛) a subsequence
(denoted the same) and 𝑢0 ∈ 𝑋 (0), such that 𝑢𝑡𝑛 ⇀ 𝑢0 weakly in 𝐻 1(Ω). Set 𝑔𝑛 := 𝑢𝑡𝑛 |𝜕Ω and consider:
nd 𝑢0𝑡𝑛 ∈ 𝐻 1(Ω) with 𝑢0𝑡𝑛 = 𝑔𝑛 on 𝜕Ω, such that

(4.32)
∫
Ω
∇𝑢0𝑡𝑛 · ∇𝜑 + 𝜚 (𝑢0𝑡𝑛 )𝜑 𝑑𝑥 =

∫
Ω
𝑓 𝜑 𝑑𝑥 for all 𝜑 ∈ 𝐻 1

0(Ω) .

By construction 𝑢0𝑡𝑛 is uniquely determined and 𝑢0𝑡𝑛 ∈ 𝐸 (0). If we introduce �̃�𝑛 := 𝑢𝑡𝑛 − 𝑢0𝑡𝑛 , then
�̃�𝑛 ∈ 𝐻 1

0(Ω) and

(4.33)
∫
Ω
∇�̃�𝑛 · ∇𝜑 + (𝜚 (𝑢𝑡𝑛 ) − 𝜚 (𝑢0𝑡𝑛 ))𝜑 𝑑𝑥

=

∫
Ω
(𝐼 −𝐴(𝑡𝑛))∇𝑢𝑡𝑛 · ∇𝜑 + (1 − det(𝜕𝑇𝑡 ))𝜚 (𝑢𝑡𝑛 )𝜑 + (𝑓 𝑡 − 𝑓 )𝜑 𝑑𝑥

for all 𝜑 ∈ 𝐻 1
0(Ω). So testing (4.33) with 𝜑 = �̃�𝑛 and using Hölder’s inequality yields

(4.34) ‖�̃�𝑛 ‖𝐻 1 ≤ 𝑐 (‖𝐴(𝑡𝑛) − 𝐼 ‖
𝐶 (Ω,R𝑑,𝑑 ) + ‖1 − det(𝜕𝑇𝑡 )‖𝐶 (Ω) ‖𝑢

𝑡𝑛 ‖𝐻 1 (Ω) + ‖ 𝑓 𝑡 − 𝑓 ‖𝐿2)‖𝑢𝑡𝑛 ‖𝐻 1

and since (𝑢𝑡𝑛 ) is bounded in𝐻 1(Ω) the result follows from Proposition 4.4. It follows that𝑢𝑡𝑛−𝑢0,𝑡𝑛 ⇀ 0
in 𝐻 1(Ω) and since 𝑢𝑡𝑛 ⇀ 𝑢0 in 𝐻 1(Ω) we also conclude that 𝑢0,𝑡𝑛 converges weakly to 𝑢0 in 𝐻 1(Ω).
From this and (4.25) it is also readily seen that the averaged adjoint 𝑞𝑡𝑛 for (𝑢𝑡𝑛0 , 𝑢𝑡𝑛 ) exists and that
𝑞𝑡𝑛 ⇀ 𝑞0 weakly in 𝐻 1(Ω) as 𝑛 → ∞. �

Application of Theorem 2.10 We have veried that assumptions (H0)–(H5) of Theorem 2.10 are
satised for 𝐺 dened in (4.23) with 𝑌 = �̃� = 𝐻 1

0(Ω) and 𝑋 = 𝐻 1(Ω). Therefore we obtain the
following theorem.
Theorem 4.8. The right derivative of 𝑔 at 𝑡 = 0+ exists and

(4.35) 𝑑𝑔(0) = inf
𝑢∈𝑋 (0)

𝜕𝑡𝐺 (0, 𝑢, 𝑝0(𝑢)),

where 𝑝0(𝑢) ∈ 𝐻 1
0(Ω) solves

(4.36)
∫
Ω
∇𝑝0(𝑢) · ∇𝜑 + 𝜚 ′(𝑢)𝑝0(𝑢)𝜑 𝑑𝑥 = −

∫
Ω
2(𝑢 − 𝑢𝑟 )𝜑 + 2𝛾∇𝑢 · ∇𝜑 𝑑𝑥

for all 𝜑 ∈ 𝐻 1
0(Ω) and 𝜕𝑡𝐺 (0, 𝑢, 𝑝0(𝑢)) is given by (4.24).

conclusion

In this paper we discussed a new minimax theorem and presented two examples. In both examples we
could establish right dierentiability of the corresponding value function.
In a future work it would be interesting to apply our result to optimal control problems with non-

unique solution. Also to nd an example where for the state 𝑢0 ∈ 𝑋 (0) the adjoint 𝑌 (0, 𝑢0) is not a
singleton is still an open question.
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