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asymptotic stationarity and regularity for
nonsmooth optimization problems

Patrick Mehlitz ∗

Abstract Based on the tools of limiting variational analysis, we derive a sequential necessary
optimality condition for nonsmooth mathematical programs which holds without any additional
assumptions. In order to ensure that stationary points in this new sense are already Mordukhovich-
stationary, the presence of a constraint qualication which we call AM-regularity is necessary.
We investigate the relationship between AM-regularity and other constraint qualications from
nonsmooth optimization like metric (sub-)regularity of the underlying feasibility mapping. Our
ndings are applied to optimization problems with geometric and, particularly, disjunctive con-
straints. This way, it is shown that AM-regularity recovers recently introduced cone-continuity-
type constraint qualications, sometimes referred to as AKKT-regularity, from standard nonlinear
and complementarity-constrained optimization. Finally, we discuss some consequences of AM-
regularity for the limiting variational calculus.
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1 introduction

Due to their inherent practical relevance in the context of solution algorithms for optimization problems,
sequential necessary optimality conditions and constraint qualications became quite popular during
the last decade. A suitable theory has been developed in the context of standard nonlinear programming,
see e.g. [1, 2, 5, 6, 7], complementarity-constrained programming, see [3, 35], and nonlinear semidenite
programming, see [4]. Recently, these concepts were generalized to optimization problems in Banach
spaces in [14]. The main idea behind the concept is that even when a local minimizer of a given
optimization problem is not stationary in classical sense (e.g., a Karush–Kuhn–Tucker point in standard
nonlinear programming), it might be asymptotically stationary along a sequence of points converging
to the point of interest without any constraint qualication. Now, the question arises which type of
qualication condition is necessary in order to guarantee that an asymptotically stationary point is
already stationary. This indeed leads to the concept of sequential constraint qualications. It has been
reported in [1, 3, 5, 14, 35] that such sequential constraint qualications are comparatively weak in
comparison with classical qualication conditions which makes them particularly interesting.
It is a nearby guess that sequential stationarity and regularity might be concepts which are quite

compatible with the popular tools of limiting variational analysis, see e.g. [31, 32, 38] and the references
therein. Indeed, this has been worked out for mathematical problems with complementarity constraints
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and the associated concept of Mordukhovich-stationarity (M-stationarity for short) in the recent
paper [35]. However, the ideas obviously will work for other classes of disjunctive programs like
mathematical programs with vanishing, switching, or cardinality constraints as well. It is the purpose
of this paper to show that the underlying concepts can be further generalized to a quite abstract class
of optimization problems which covers not only all the aforementioned settings but also conic as
well as cone-complementarity-constrained optimization problems and other mathematical programs
with equilibrium constraints which model amongst others that the feasible points need to solve
underlying (quasi-) variational inequalities. Thus, the theory is likely to possess some extensions to
bilevel programming as well.

In this paper, let us consider the mathematical program

𝑓 (𝑥) → min
0 ∈ Φ(𝑥)

(P)

where 𝑓 : ℝ𝑛 → ℝ is a locally Lipschitz continuous function and Φ : ℝ𝑛 ⇒ ℝ𝑚 is a set-valued mapping
whose graph is closed. Throughout the paper, let 𝑀 := {𝑥 ∈ ℝ𝑛 | 0 ∈ Φ(𝑥)} denote the feasible
set of (P). We assume that this set is nonempty. Let us point out that the theory of this paper stays
correct whenever ℝ𝑛 and ℝ𝑚 from above are replaced by nite-dimensional Banach spaces 𝑋 and 𝑌 .
Particularly, the results of this manuscript extend to instances of nonlinear semidenite programming
comprising optimization problems with semidenite cone complementarity constraints. Problems
of the general form (P) have been considered in e.g. [18], [31, Section 5.2.3], or [40, Section 3]. In all
these contributions, it has been pointed out that whenever 𝑥 ∈ 𝑀 is a local minimizer of (P) such
that the mapping Φ enjoys the metric subregularity property at (𝑥, 0), see Section 2.2 for a denition
and additional references to the literature, then 𝑥 is indeed an M-stationary point of this problem.
An easy approach to verify the presence of metric subregularity is given by checking validity of the
stronger metric regularity property since the latter can be carried out with the aid of the so-called
Mordukhovich criterion which is stated in terms of the limiting coderivative of Φ, see Section 2.3 for
details. The latter, however, might be too restrictive which is why several weaker sucient conditions
for metric subregularity have been worked out in particular problem settings during the last years, see
e.g. [9, 10, 21, 23, 25, 26] and the references therein.
As we will see, the sequential approach to necessary optimality conditions and constraint quali-

cations for (P) leads to a new regularity concept that we call asymptotic Mordukhovich-regularity
(AM-regularity for short). The latter is weaker than metric regularity of Φ and not related to the metric
subregularity of this map, see Examples 3.14 and 3.15. It, thus, puts some other light onto the previously
known landscape of constraint qualications which address (P). Furthermore, we will demonstrate that
this new regularity concept ensures validity of fundamental calculus rules from limiting variational
analysis like the pre-image and the intersection rule, see Theorem 3.16 and Section 5.3. Besides, we
show how AM-regularity species in exemplary problem settings. It will turn out that it covers several
sequential constraint qualications from the literature. Throughout the manuscript, simple examples
and counterexamples visualize applicability and limits of the obtained theory.

The paper is organized as follows: In Section 2, we present the notation exploited in this manuscript.
Furthermore, we review the necessary essentials of set-valued and variational analysis. Section 3 is
dedicated to the introduction of the asymptotic stationarity and regularity concepts of our interest.
We rst derive a sequential necessary optimality condition of M-stationarity-type in Section 3.1 via a
simple penalization argument. Based on that, we introduce the concept of AM-regularity in Section 3.2
and study its theoretical properties as well as its relationship to other constraint qualications. In
Section 4, we investigate the particular situation where the map Φ can be split in two parts where one
is, again, modeled with the aid of an abstract set-valued mapping while the other one just describes
that the variables need to belong to an abstract constraint set 𝐶 ⊂ ℝ𝑛 which, in practice, can be
imagined as a set of simple variational structure. We show that whenever the set-valued part of Φ
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possesses the Aubin property than a weaker constraint qualication than AM-regularity is sucient
for M-stationarity of local minimizers. We discuss some applications of our results in Section 5. First,
we apply the concept of AM-regularity to the broad class of mathematical problems with geometric
constraints in Section 5.1. The even more special class of disjunctive optimization problems, where the
denition of AM-regularity can be essentially simplied, is inspected in Section 5.2. In this context,
a comparison to sequential constraint qualications from the literature will be provided. Third, we
discuss some consequences of AM-regularity for the limiting variational calculus in Section 5.3. We
close the paper with some concluding remarks in Section 6.

2 notation and preliminaries

2.1 basic notation

Throughout the manuscript, we equip ℝ𝑛 with the Euclidean norm ‖·‖. For some point 𝑥 ∈ ℝ𝑛 and
a scalar 𝜀 > 0, 𝔹𝜀 (𝑥) := {𝑦 ∈ ℝ𝑛 | ‖𝑦 − 𝑥 ‖ ≤ 𝜀} represents the closed ball around 𝑥 of radius 𝜀. For
brevity, we exploit 𝔹 := 𝔹1(0). Let 𝐴 ⊂ ℝ𝑛 be a nonempty set. We use

dist(𝑥,𝐴) := inf
𝑦∈𝐴

‖𝑦 − 𝑥 ‖ Π(𝑥,𝐴) := argmin
𝑦∈𝐴

‖𝑦 − 𝑥 ‖

in order to denote the distance of 𝑥 to 𝐴 and the associated set of projections. For brevity, we make
use of 𝐴 + 𝑥 = 𝑥 +𝐴 := {𝑥 + 𝑦 ∈ ℝ𝑛 | 𝑦 ∈ 𝐴}. The set

𝐴◦ := {𝑧 ∈ ℝ𝑛 | ∀𝑦 ∈ 𝐴 : 𝑦>𝑧 ≤ 0}

is referred to as the polar cone of 𝐴. It is a nonempty, closed, convex cone. The derivative of a
dierentiable function 𝐹 : ℝ𝑛 → ℝ𝑚 at 𝑥 will be represented by 𝐹 ′(𝑥) ∈ ℝ𝑚×𝑛 while, in case𝑚 = 1,
we use ∇𝐹 (𝑥) ∈ ℝ𝑛 to denote its gradient at 𝑥 .

2.2 properties of set-valued mappings

Let Υ : ℝ𝑛 ⇒ ℝ𝑚 be a set-valued mapping. We exploit

dom Υ := {𝑥 ∈ ℝ𝑛 | Υ(𝑥) ≠ ∅}
gph Υ := {(𝑥, 𝑦) ∈ ℝ𝑛 ×ℝ𝑚 | 𝑦 ∈ Υ(𝑥)}
ker Υ := {𝑥 ∈ ℝ𝑛 | 0 ∈ Υ(𝑥)}

in order to represent the domain, the graph, and the kernel of Υ. Frequently, we will make use of the
sequential outer Painlevé–Kuratowski limit of Υ at some point of interest 𝑥 ∈ dom Υ given by

lim sup
𝑥→𝑥

Υ(𝑥) :=
{
𝑦 ∈ ℝ𝑚

�����∃{𝑥𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 ∃{𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 :
𝑥𝑘 → 𝑥, 𝑦𝑘 → 𝑦, 𝑦𝑘 ∈ Υ(𝑥𝑘 ) ∀𝑘 ∈ ℕ

}
.

For some closed set 𝐴 ⊂ ℝ𝑛 , we exploit the indicator map Δ𝐴 : ℝ𝑛 ⇒ ℝ𝑚 given by

∀𝑥 ∈ ℝ𝑛 : Δ𝐴 (𝑥) :=
{
{0} 𝑥 ∈ 𝐴
∅ 𝑥 ∉ 𝐴

where the dimension of the image space will be clear from the context.
In this manuscript, we will often deal with Lipschitzian properties of set-valued mappings. Recall

that Υ is said to be metrically regular at some point (𝑥, 𝑦) ∈ gph Υ whenever there are neighborhoods
𝑈 ⊂ ℝ𝑛 and 𝑉 ⊂ ℝ𝑚 of 𝑥 and 𝑦 , respectively, and some constant 𝜅 > 0 such that

∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑉 : dist(𝑥, Υ−1(𝑦)) ≤ 𝜅 dist(𝑦, Υ(𝑥))
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holds. Above, Υ−1 : ℝ𝑚 ⇒ ℝ𝑛 is the inverse set-valued mapping associated with Υ given by Υ−1(𝑦) :=
{𝑥 ∈ ℝ𝑛 | 𝑦 ∈ Υ(𝑥)} for all 𝑦 ∈ ℝ𝑚 . Fixing 𝑦 := 𝑦 in the denition of metric regularity, we obtain
the notion of metric subregularity, i.e., Υ is said to be metrically subregular at (𝑥, 𝑦) if there are a
neighborhood𝑈 ⊂ ℝ𝑛 of 𝑥 and a constant 𝜅 > 0 such that

∀𝑥 ∈ 𝑈 : dist(𝑥, Υ−1(𝑦)) ≤ 𝜅 dist(𝑦, Υ(𝑥))

is valid. The inmum over all such constants 𝜅 is referred to as the modulus of metric subregularity.
Let us recall that Υ is said to possess the Aubin property at (𝑥, 𝑦) if there are neighborhoods𝑈 ⊂ ℝ𝑛

and 𝑉 ⊂ ℝ𝑚 of 𝑥 and 𝑦 , respectively, as well as a constant 𝜅 > 0 such that the following estimate is
valid:

(2.1) ∀𝑥, 𝑥 ′ ∈ 𝑈 : Υ(𝑥) ∩𝑉 ⊂ Υ(𝑥 ′) + 𝜅 ‖𝑥 − 𝑥 ′‖ 𝔹.

It is well known that Υ possesses the Aubin property at (𝑥, 𝑦) if and only if Υ−1 is metrically regular at
(𝑦, 𝑥). In the literature, the Aubin property is often referred to as Lipschitz likeness. Fixing 𝑥 ′ := 𝑥
in the denition of the Aubin property yields the denition of calmness of Υ at (𝑥, 𝑦). The latter is
equivalent to metric subregularity of Υ−1 at (𝑦, 𝑥). We refer the interested reader to [27, 29, 31, 38] for
an overview of the theory and applications of metric regularity and the Aubin property. Background
information about metric subregularity and calmness can be found in [10, 16, 18, 21, 25, 26, 28]. We
would like to mention that polyhedral set-valued mappings, i.e., set-valued mappings whose graph
can be represented as the union of nitely many convex polyhedral sets, are calm at each point of
their graphs, see [36, Proposition 1]. Noting that the inverse of a polyhedral set-valued mapping is also
polyhedral, such set-valued mappings are also metrically subregular at each point of their graphs.

We nalize this paragraph with the following observation: Whenever Υ possesses the Aubin property
at (𝑥, 𝑦) ∈ gph Υ, then we nd 𝜅 > 0 such that for each sequence {𝑥𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 with 𝑥𝑘 → 𝑥 , we
have dist(𝑦, Υ(𝑥𝑘 )) ≤ 𝜅 ‖𝑥𝑘 − 𝑥 ‖ for suciently large 𝑘 ∈ ℕ from (2.1). Particularly, there exists a
sequence {𝑦𝑘 }𝑘∈ℕ satisfying 𝑦𝑘 → 𝑦 and 𝑦𝑘 ∈ Υ(𝑥𝑘 ) for suciently large 𝑘 ∈ ℕ. Thus, Υ is so-called
inner semicontinuous at (𝑥, 𝑦). Let us also mention that Υ is called inner semicompact at 𝑥 whenever
for each sequence {𝑥𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 with 𝑥𝑘 → 𝑥 , there is a bounded sequence {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that
𝑦𝑘 ∈ Υ(𝑥𝑘 ) holds for all suciently large 𝑘 ∈ ℕ.

2.3 variational analysis

The subsequently introduced tools of variational analysis can be found in the monographs [31, 32] or
[38].

For a closed set 𝐴 ⊂ ℝ𝑚 and a point 𝑥 ∈ 𝐴, we exploit

T𝐴 (𝑥) := lim sup
𝑡↘0

𝐴 − 𝑥
𝑡

N̂𝐴 (𝑥) := T𝐴 (𝑥)◦ N𝐴 (𝑥) := lim sup
𝑥→𝑥, 𝑥 ∈𝐴

N̂𝐴 (𝑥)

in order to denote the tangent (or Bouligand) cone as well as the regular (or Fréchet) and the limiting
(or Mordukhovich) normal cone to 𝐴 at 𝑥 . For each 𝑥 ∉ 𝐴, we stipulate T𝐴 (𝑥) := ∅, N̂𝐴 (𝑥) := ∅, and
N𝐴 (𝑥) := ∅. By denition of the limiting normal cone, it is robust in the sense that we even have

lim sup
𝑥→𝑥

N𝐴 (𝑥) = N𝐴 (𝑥),

see [38, Proposition 6.6]. We recall that whenever 𝐴 is convex, then the normal cones from above
coincide with the standard normal cone of convex analysis, i.e.,

N̂𝐴 (𝑥) = N𝐴 (𝑥) = {𝑣 ∈ ℝ𝑛 | ∀𝑥 ∈ 𝐴 : 𝑣>(𝑥 − 𝑥) ≤ 0}
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holds true in this situation.
For some extended real-valued, lower semicontinuous function 𝜑 : ℝ𝑛 → ℝ, we denote its epigraph

by epi𝜑 := {(𝑥, 𝛼) ∈ ℝ𝑛 × ℝ | 𝛼 ≥ 𝜑 (𝑥)}. Fixing 𝑥 ∈ ℝ𝑛 with |𝜑 (𝑥) | < ∞, we introduce the limiting
and singular subdierential of 𝜑 at 𝑥 , respectively, as

𝜕𝜑 (𝑥) :=
{
𝑣 ∈ ℝ𝑛

�� (𝑣,−1) ∈ Nepi𝜑 (𝑥, 𝜑 (𝑥))
}

𝜕∞𝜑 (𝑥) :=
{
𝑣 ∈ ℝ𝑛

�� (𝑣, 0) ∈ Nepi𝜑 (𝑥, 𝜑 (𝑥))
}
.

It is well known that 𝜑 is locally Lipschitz continuous at 𝑥 if and only if 𝜕∞𝜑 (𝑥) = {0} holds.
Next, for a set-valued mapping Υ : ℝ𝑛 ⇒ ℝ𝑚 with closed graph and some point (𝑥, 𝑦) ∈ gph Υ, we

dene the (limiting) coderivative 𝐷∗Υ(𝑥, 𝑦) : ℝ𝑚 ⇒ ℝ𝑛 of Υ at (𝑥, 𝑦) as stated below:

∀𝑦∗ ∈ ℝ𝑚 : 𝐷∗Υ(𝑥, 𝑦) (𝑦∗) :=
{
𝑥∗ ∈ ℝ𝑛

�� (𝑥∗,−𝑦∗) ∈ Ngph Υ (𝑥, 𝑦)
}
.

In case where 𝜐 : ℝ𝑛 → ℝ𝑚 is a single-valued mapping, we exploit 𝐷∗𝜐 (𝑥) (𝑦∗) := 𝐷∗𝜐 (𝑥,𝜐 (𝑥)) (𝑦∗) for
all 𝑦∗ ∈ ℝ𝑚 . If 𝜐 is continuously dierentiable at 𝑥 , 𝐷∗𝜐 (𝑥) (𝑦∗) = {𝜐 ′(𝑥)>𝑦∗} is valid for all 𝑦∗ ∈ ℝ𝑚 .

Using the concept of coderivatives, it is possible to characterize the presence of metric regularity or
the Aubin property for Υ at (𝑥, 𝑦) ∈ gph Υ. More precisely, Υ possesses the Aubin property at (𝑥, 𝑦) if
and only if

𝐷∗Υ(𝑥, 𝑦) (0) = {0}
holds, see [31, Theorem 4.10]. Noting that we have

Ngph Υ−1 (𝑦, 𝑥) =
{
(𝑦∗, 𝑥∗) ∈ ℝ𝑚 ×ℝ𝑛

�� (𝑥∗, 𝑦∗) ∈ Ngph Υ (𝑥, 𝑦)
}

from the change-or-coordinates formula of limiting normals, see [31, Theorem 1.17], while Υ is metrically
regular at (𝑥, 𝑦) if and only if Υ−1 possesses the Aubin property at (𝑦, 𝑥), the above result also implies
that Υ is metrically regular at (𝑥, 𝑦) if and only if the condition

ker𝐷∗Υ(𝑥, 𝑦) = {0}

holds. This result can be distilled from [31, Theorem 4.18] as well. Both criteria are referred to as
Mordukhovich criterion in the literature.
Below, we present a simple calculus rule for the coderivative of set-valued mappings of certain

product structure.
Lemma 2.1. Let Γ : ℝ𝑛 ⇒ ℝ𝑚 be a set-valued mapping with closed graph. Furthermore, let 𝐶 ⊂ ℝ𝑛 be a
nonempty, closed set. Let Ψ : ℝ𝑛 ⇒ ℝ𝑚 ×ℝ𝑛 be the set-valued mapping given by

∀𝑥 ∈ ℝ𝑛 : Ψ(𝑥) :=
(
Γ(𝑥)
𝑥 −𝐶

)
.

For a xed point (𝑥, (𝑦, 𝑧)) ∈ gphΨ, it holds

∀𝑦∗ ∈ ℝ𝑚 ∀𝑧∗ ∈ ℝ𝑛 : 𝐷∗Ψ(𝑥, (𝑦, 𝑧)) (𝑦∗, 𝑧∗) =
{
𝐷∗Γ(𝑥, 𝑦) (𝑦∗) + 𝑧∗ 𝑧∗ ∈ N𝐶 (𝑥 − 𝑧)
∅ otherwise.

Proof. Introducing a linear map𝜓 : ℝ𝑛 ×ℝ𝑚 ×ℝ𝑛 → ℝ𝑛 ×ℝ𝑚 ×ℝ𝑛 by𝜓 (𝑥, 𝑦, 𝑧) := (𝑥, 𝑦, 𝑥 − 𝑧) for
all 𝑥, 𝑧 ∈ ℝ𝑛 and 𝑦 ∈ ℝ𝑚 , we have

gphΨ = {(𝑥, 𝑦, 𝑧) |𝜓 (𝑥, 𝑦, 𝑧) ∈ gph Γ ×𝐶}.

Noting that the derivative of𝜓 is a constant invertible matrix, the desired result follows by elementary
calculations from the change-of-coordinates formula from [31, Theorem 1.17] and the product rule for
the computation of limiting normals, see [31, Proposition 1.2]. �
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2.4 generalized distance functions

In our analysis, we will make use of the distance function to a moving set. Therefore, let Γ : ℝ𝑛 ⇒ ℝ𝑚

be a set-valued mapping with closed graph and consider

∀𝑥 ∈ ℝ𝑛 ∀𝑦 ∈ ℝ𝑚 : 𝜌Γ (𝑥, 𝑦) := inf
𝑧∈Γ (𝑥)

‖𝑦 − 𝑧‖ .

The function 𝜌Γ : ℝ𝑛 ×ℝ𝑚 → ℝ has been studied in several dierent publications, see e.g. [33, 37, 39]
and the references therein. In contrast to the classical distance function, see [15, Section 2.4], 𝜌Γ is not
Lipschitz continuous in general. In fact, it does not even need to be continuous. However, as we will
show below, this function is lower semicontinuous since Γ possesses a closed graph.
Lemma 2.2. Let Γ : ℝ𝑛 ⇒ ℝ𝑚 be a set-valued mapping with closed graph. Then the associated function
𝜌Γ is lower semicontinuous.

Proof. Suppose that there exists a point (𝑥, 𝑦) ∈ ℝ𝑛 × ℝ𝑚 where Γ is not lower semicontinuous.
Then we nd sequences {𝑥𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 and {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 as well as 𝛼 ≥ 0 with 𝑥𝑘 → 𝑥 , 𝑦𝑘 → 𝑦 ,
and 𝜌Γ (𝑥𝑘 , 𝑦𝑘 ) → 𝛼 < 𝜌Γ (𝑥, 𝑦). Particularly, we can assume w.l.o.g. that Γ(𝑥𝑘 ) ≠ ∅ holds for all
𝑘 ∈ ℕ. Noting that Γ(𝑥𝑘 ) is closed for each 𝑘 ∈ ℕ, we nd points 𝑧𝑘 ∈ Π(𝑦𝑘 , Γ(𝑥𝑘 )). This yields
𝜌Γ (𝑥𝑘 , 𝑦𝑘 ) = ‖𝑦𝑘 − 𝑧𝑘 ‖ for all 𝑘 ∈ ℕ. Due to

‖𝑧𝑘 ‖ ≤ ‖𝑧𝑘 − 𝑦𝑘 ‖ + ‖𝑦𝑘 ‖ = 𝜌Γ (𝑥𝑘 , 𝑦𝑘 ) + ‖𝑦𝑘 ‖

and the boundedness of {𝜌Γ (𝑥𝑘 , 𝑦𝑘 )}𝑘∈ℕ and {𝑦𝑘 }𝑘∈ℕ, {𝑧𝑘 }𝑘∈ℕ is bounded as well and possesses an
accumulation point 𝑧. Due to 𝜌Γ (𝑥𝑘 , 𝑦𝑘 ) → 𝛼 , we have 𝛼 = ‖𝑦 − 𝑧‖. Observing that 𝑧𝑘 ∈ Γ(𝑥𝑘 ) holds
true for all 𝑘 ∈ ℕ, the closedness of gph Γ yields 𝑧 ∈ Γ(𝑥). Thus, we have 𝜌Γ (𝑥, 𝑦) ≤ ‖𝑦 − 𝑧‖ = 𝛼

which is a contradiction. �

Now, we want to identify situations where 𝜌Γ is a locally Lipschitz continuous function. Furthermore,
we aim for an upper estimate of the limiting subdierential of this function which holds at in-set points
from gph Γ but also at out-of-set points.
Lemma 2.3. Let Γ : ℝ𝑛 ⇒ ℝ𝑚 be a set-valued mapping with closed graph and x a point (𝑥, 𝑦) ∈ ℝ𝑛×ℝ𝑚
such that 𝑥 ∈ dom Γ. Then the following assertions hold.

(a) Assume that Γ possesses the Aubin property at all points (𝑥, 𝑦) satisfying 𝑦 ∈ Π(𝑦, Γ(𝑥)). Then 𝜌Γ
is locally Lipschitz continuous at (𝑥, 𝑦).

(b) The following upper estimate for the limiting subdierential does always hold:

𝜕𝜌Γ (𝑥, 𝑦) ⊂
⋃

𝑦∈Π (𝑦,Γ (𝑥))
Ngph Γ (𝑥, 𝑦) .

Proof. (a) First, assume that (𝑥, 𝑦) ∈ gph Γ holds. Then we clearly have Π(𝑦, Γ(𝑥)) = {𝑦}. Due to
the assumptions of the lemma, Γ possesses the Aubin property at (𝑥, 𝑦). Thus, we can invoke
[37, Theorem 2.3] in order to obtain the Lipschitz continuity of 𝜌Γ at (𝑥, 𝑦).
Next, we assume that (𝑥, 𝑦) ∉ gph Γ holds. In this case, [33, Theorem 4.9, Corollary 4.10]
guarantee validity of the estimate

𝜕∞𝜌Γ (𝑥, 𝑦) ⊂
⋃

𝑦∈Π (𝑦,Γ (𝑥))
{(𝜉, 0) | 𝜉 ∈ 𝐷∗Γ(𝑥, 𝑦) (0)}.

Noting that Γ possesses the Aubin property at all points (𝑥, 𝑦) with 𝑦 ∈ Π(𝑦, Γ(𝑥)), the Mor-
dukhovich criterion ensures 𝐷∗Γ(𝑥, 𝑦) (0) = {0} which is why we obtain 𝜕∞𝜌Γ (𝑥, 𝑦) = {(0, 0)}
from the above formula. Due to Lemma 2.2, we already know that 𝜌Γ is lower semicontinuous.
Combining these two properties, we obtain that 𝜌Γ is locally Lipschitz continuous at (𝑥, 𝑦).

P. Mehlitz Asymptotic regularity in optimization theory
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(b) If we have (𝑥, 𝑦) ∈ gph Γ, then [39, Proposition 2.7] guarantees

Ngph Γ (𝑥, 𝑦) =
⋃
𝛼≥0

𝛼𝜕𝜌Γ (𝑥, 𝑦).

On the other hand, in case (𝑥, 𝑦) ∉ gph Γ, [33, Theorem 4.9, Corollary 4.10] can be applied in
order to nd the estimate

𝜕𝜌Γ (𝑥, 𝑦) ⊂
⋃

𝑦∈Π (𝑦,Γ (𝑥))

{
(𝜉,𝜐) ∈ Ngph Γ (𝑥, 𝑦)

�� ‖𝜐‖ = 1
}
.

Taking both formulas together, we obtain the desired general estimate.
�

3 asymptotic m-stationarity conditions and asymptotic regularity

3.1 asymptotic m-stationary conditions

Let 𝑥 ∈ 𝑀 be a local minimizer of (P). Under suitable assumptions, so-called constraint qualications,
one can guarantee that this ensures the existence of a multiplier 𝜆 ∈ ℝ𝑚 such that

(3.1) 0 ∈ 𝜕𝑓 (𝑥) + 𝐷∗Φ(𝑥, 0) (𝜆)

holds, see e.g. [31, Theorem 5.48]. We will refer to this condition as the Mordukhovich-stationarity
condition (M-stationarity condition for short) of (P). Now, the question arises whether it is possible to
nd a milder condition which holds for each local minimizer of (P) even in the absence of a constraint
qualication. A potential candidate for such a condition could be an asymptotic version ofM-stationarity
which holds along a sequence of points {𝑥𝑘 }𝑘∈ℕ converging to the local minimizer of interest. However,
one has to specify what asymptotic means in this regard. The following denition provides a potential
and, as we will see later, reasonable answer to this question.
Definition 3.1. Let 𝑥 ∈ 𝑀 be a feasible point of (P). Then we call 𝑥 an asymptotically Mordukhovich-
stationary point (AM-stationary point) of (P) whenever there exist sequences {𝑥𝑘 }𝑘∈ℕ, {𝜀𝑘 }𝑘∈ℕ ⊂ ℝ𝑛

as well as {𝑦𝑘 }𝑘∈ℕ, {𝜆𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that

(3.2) ∀𝑘 ∈ ℕ : 𝜀𝑘 ∈ 𝜕𝑓 (𝑥𝑘 ) + 𝐷∗Φ(𝑥𝑘 , 𝑦𝑘 ) (𝜆𝑘 )

as well as 𝑥𝑘 → 𝑥 , 𝜀𝑘 → 0, and 𝑦𝑘 → 0 hold. This implicitly requires {(𝑥𝑘 , 𝑦𝑘 )}𝑘∈ℕ ⊂ gphΦ.
Observe that in the above denition, no convergence of the multiplier sequence {𝜆𝑘 }𝑘∈ℕ is postulated.

Indeed, if it would be bounded, then one could simply take the limit 𝑘 → ∞ along a subsequence in
(3.2) in order to recover the M-stationarity condition from (3.1), see Lemma 3.4 below.

Using a simple penalization argument, we obtain the following result which shows that each local
minimizer of (P) is an AM-stationary point without any additional assumptions.
Theorem 3.2. Let 𝑥 ∈ 𝑀 be a local minimizer of (P). Then 𝑥 is an AM-stationary point of (P).

Proof. Let 𝜀 > 0 be chosen such that 𝑓 (𝑥) ≥ 𝑓 (𝑥) holds for all 𝑥 ∈ 𝑀∩𝔹𝜀 (𝑥). Consider the optimization
problem

(P(𝑘))
𝑓 (𝑥) + 𝑘

2
‖𝑦 ‖2 + 1

2
‖𝑥 − 𝑥 ‖2 → min

𝑥,𝑦

(𝑥, 𝑦) ∈ gphΦ ∩ (𝔹𝜀 (𝑥) × 𝔹)

which depends on the parameter𝑘 ∈ ℕ. Observe that the objective function of this optimization problem
is locally Lipschitz continuous while its feasible set is nonempty and compact. Consequently, (P(𝑘))

P. Mehlitz Asymptotic regularity in optimization theory
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possesses a global minimizer (𝑥𝑘 , 𝑦𝑘 ) ∈ ℝ𝑛 ×ℝ𝑚 for each 𝑘 ∈ ℕ. Due to {(𝑥𝑘 , 𝑦𝑘 )}𝑘∈ℕ ⊂ 𝔹𝜀 (𝑥) × 𝔹,
this sequence is bounded. Choosing a subsequence (if necessary) without relabeling, we can guarantee
𝑥𝑘 → 𝑥 for some 𝑥 ∈ 𝔹𝜀 (𝑥) and 𝑦𝑘 → �̃� for some �̃� ∈ 𝔹. Noting that (𝑥, 0) ∈ gphΦ is feasible to
(P(𝑘)), we nd

(3.3) ∀𝑘 ∈ ℕ : 𝑓 (𝑥𝑘 ) +
𝑘

2
‖𝑦𝑘 ‖2 +

1
2
‖𝑥𝑘 − 𝑥 ‖2 ≤ 𝑓 (𝑥) .

By boundedness of {𝑓 (𝑥𝑘 )}𝑘∈ℕ, there is a constant 𝑐 ∈ ℝ such that ‖𝑦𝑘 ‖2 ≤ 2(𝑓 (𝑥) −𝑐)/𝑘 holds for all
𝑘 ∈ ℕ. Consequently, {𝑦𝑘 }𝑘∈ℕ converges to 0 as 𝑘 → ∞, i.e., we have �̃� = 0. The closedness of gphΦ
now yields (𝑥, 0) ∈ gphΦ. Particularly, we infer 𝑥 ∈ 𝑀 ∩ 𝔹𝜀 (𝑥). Now, (3.3) and the continuity of all
appearing functions yield

𝑓 (𝑥) + 1
2
‖𝑥 − 𝑥 ‖2 = lim

𝑘→∞

(
𝑓 (𝑥𝑘 ) +

1
2
‖𝑥𝑘 − 𝑥 ‖2

)
≤ lim
𝑘→∞

(
𝑓 (𝑥𝑘 ) +

𝑘

2
‖𝑦𝑘 ‖2 +

1
2
‖𝑥𝑘 − 𝑥 ‖2

)
≤ 𝑓 (𝑥) ≤ 𝑓 (𝑥),

and this implies 𝑥 = 𝑥 . Particularly, we have 𝑥𝑘 → 𝑥 .
Noting that (𝑥𝑘 , 𝑦𝑘 ) lies in the interior of 𝔹𝜀 (𝑥) × 𝔹 for suciently large 𝑘 ∈ ℕ, we can apply [31,

Proposition 5.3] and the subdierential sum rule from [31, Theorem 3.36] in order to obtain

(0, 0) ∈ 𝜕𝑓 (𝑥𝑘 ) × {0} + {(𝑥𝑘 − 𝑥, 𝑘𝑦𝑘 )} + NgphΦ(𝑥𝑘 , 𝑦𝑘 )

for large enough 𝑘 ∈ ℕ. Setting 𝜆𝑘 := 𝑘𝑦𝑘 and 𝜀𝑘 := 𝑥 − 𝑥𝑘 for any such 𝑘 ∈ ℕ, we have

𝜀𝑘 ∈ 𝜕𝑓 (𝑥𝑘 ) + 𝐷∗Φ(𝑥𝑘 , 𝑦𝑘 ) (𝜆𝑘 ),

and due to 𝜀𝑘 → 0, 𝑥𝑘 → 𝑥 , and 𝑦𝑘 → 0, 𝑥 is an AM-stationary point of (P). �

Note that in case where the objective function 𝑓 is dierentiable, one could exploit [31, Proposition 5.1]
in the above proof. This way, it would be possible to replace the limiting coderivative by the regular
one (i.e., one replaces the limiting normal cone to gphΦ by the regular normal cone to this set in the
denition of the coderivative) leading to a slightly stronger concept of asymptotic stationarity. We
are, however, interested in taking the limit 𝑘 → ∞ in (3.2), and by denition of the limiting normal
cone and its robustness, it does not matter which of these coderivative constructions is used in the
denition of AM-stationarity since after taking the limit, we obtain a condition in terms of the limiting
coderivative either way.
The above theorem states that in contrast to M-stationarity, AM-stationarity always provides a

necessary optimality condition for optimization problems of type (P). The subsequently stated example
visualizes this issue.
Example 3.3. Consider the setting

∀𝑥 ∈ ℝ : 𝑓 (𝑥) := 𝑥 Φ(𝑥) := [𝑥2,∞).

The uniquely determined feasible point 𝑥 := 0 must be the global minimizer of the associated program
(P). Exploiting

𝐷∗Φ(𝑥, 𝑦) (𝜆) =


{2𝜆𝑥} 𝑦 = 𝑥2, 𝜆 ≥ 0
{0} 𝑦 > 𝑥2, 𝜆 = 0
∅ otherwise

P. Mehlitz Asymptotic regularity in optimization theory



J. Nonsmooth Anal. Optim. 1 (2020), 6575 page 9 of 30

for all 𝑥, 𝑦, 𝜆 ∈ ℝ, one can easily check that 𝑥 is not an M-stationary point of this program. However,
we can set

𝑥𝑘 := − 1
𝑘

𝜀𝑘 := 0 𝑦𝑘 := 1
𝑘2

𝜆𝑘 := 𝑘
2

for all 𝑘 ∈ ℕ in order to see that 𝑥 is an AM-stationary point of the given optimization problem.
Observe that the multiplier sequence {𝜆𝑘 }𝑘∈ℕ from above is not bounded.

It has been shown in [18, Theorem 8] that whenever 𝑥 ∈ ℝ𝑛 is a local minimizer of (P), then, without
any additional assumptions, there exist multipliers (𝜆0, 𝜆) ∈ ℝ ×ℝ𝑚 which satisfy

(3.4) 0 ∈ 𝜆0𝜕𝑓 (𝑥) + 𝐷∗Φ(𝑥, 0) (𝜆) 𝜆0 ≥ 0 𝜆0 + ‖𝜆‖ > 0.

Due to the appearance of the leading multiplier 𝜆0, one might be tempted to call 𝑥 a Fritz–John–
Mordukhovich-stationary point (FJM-stationary point) of (P) in this case. Observe that whenever we
have 𝜆0 > 0 in (3.4), then 𝑥 is already M-stationary by positive homogeneity of the coderivative.
Lemma 3.4. Let 𝑥 ∈ ℝ𝑛 be an AM-stationary point of (P) such that the sequences {𝑥𝑘 }𝑘∈ℕ, {𝜀𝑘 }𝑘∈ℕ ⊂ ℝ𝑛

as well as {𝑦𝑘 }𝑘∈ℕ, {𝜆𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 satisfy (3.2), 𝑥𝑘 → 𝑥 , 𝜀𝑘 → 0, and 𝑦𝑘 → 0. Then the following
assertions hold.

(a) If {𝜆𝑘 }𝑘∈ℕ is bounded, then 𝑥 is an M-stationary point of (P).

(b) If {𝜆𝑘 }𝑘∈ℕ is not bounded, then we nd 𝜆 ∈ ℝ𝑚 with 𝜆 ≠ 0 and 0 ∈ 𝐷∗Φ(𝑥, 0) (𝜆).

Particularly, 𝑥 is an FJM-stationary point of (P).

Proof. First, we show the statements (a) and (b) separately.

(a) Due to (3.2), we nd a sequence {𝑥∗
𝑘
}𝑘∈ℕ ⊂ ℝ𝑛 such that

(3.5) ∀𝑘 ∈ ℕ : 𝜀𝑘 − 𝑥∗𝑘 ∈ 𝐷∗Φ(𝑥𝑘 , 𝑦𝑘 ) (𝜆𝑘 ) 𝑥∗
𝑘
∈ 𝜕𝑓 (𝑥𝑘 )

holds. Noting that the set 𝜕𝑓 (𝑥) is uniformly bounded in a neighborhood of 𝑥 by local Lipschitz
continuity of 𝑓 , see [31, Corollary 1.81], the sequence {𝑥∗

𝑘
}𝑘∈ℕ is bounded. Let us assume w.l.o.g.

that there are 𝑥∗ ∈ ℝ𝑛 and 𝜆 ∈ ℝ𝑚 such that the convergences 𝑥∗
𝑘
→ 𝑥∗ and 𝜆𝑘 → 𝜆 hold.

Exploiting the robustness of the limiting normal cone,we nd−𝑥∗ ∈ 𝐷∗Φ(𝑥, 0) (𝜆) and𝑥∗ ∈ 𝜕𝑓 (𝑥)
by taking the limit 𝑘 → ∞ in (3.5). Thus, 𝑥 is an M-stationary point of (P).

(b) Let us assume w.l.o.g. that ‖𝜆𝑘 ‖ → ∞ holds true. Similar to (a), we nd a bounded sequence
{𝑥∗
𝑘
}𝑘∈ℕ ⊂ ℝ𝑛 such that (3.5) holds. Dividing the rst term in (3.5) by ‖𝜆𝑘 ‖ and exploiting the

positive homogeneity of the coderivative, we nd

(3.6) ∀𝑘 ∈ ℕ :
𝜀𝑘 − 𝑥∗𝑘
‖𝜆𝑘 ‖

∈ 𝐷∗Φ(𝑥𝑘 , 𝑦𝑘 )
(
𝜆𝑘

‖𝜆𝑘 ‖

)
.

Clearly, {𝜆𝑘/‖𝜆𝑘 ‖}𝑘∈ℕ possesses a non-vanishing accumulation point 𝜆 ∈ ℝ𝑚 . Thus, we may
assume w.l.o.g. that 𝜆𝑘/‖𝜆𝑘 ‖ → 𝜆 holds. Taking the limit 𝑘 → ∞ in (3.6) and exploiting the
robustness of the limiting normal cone, we nd 0 ∈ 𝐷∗Φ(𝑥, 0) (𝜆). Due to 𝜆 ≠ 0, the claim
follows.

Finally, let us comment on FJM-stationarity of the AM-stationary point 𝑥 . In the case (a), 𝑥 is M- and,
thus, FJM-stationary with 𝜆0 := 1. In the setting (b), 𝑥 is FJM-stationary with 𝜆0 := 0. This completes
the proof. �

The example below shows that the concept ofAM-stationarity is indeed stronger than FJM-stationarity.

P. Mehlitz Asymptotic regularity in optimization theory
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Example 3.5. We consider the setting

∀𝑥 ∈ ℝ : 𝑓 (𝑥) := −|𝑥 | Φ(𝑥) := {0}

and investigate the point 𝑥 := 0. Clearly, we have gphΦ = ℝ × {0}. Furthermore, for arbitrary 𝑥 ∈ ℝ

and 𝜆 ∈ ℝ, we nd
𝜕𝑓 (𝑥) ⊂ {−1, 1} 𝐷∗Φ(𝑥, 0) (𝜆) = {0},

and this already shows that 𝑥 is FJM-stationary (with 𝜆0 := 0 and arbitrary 𝜆 ≠ 0) but not AM-stationary.
Let 𝑥 ∈ ℝ𝑛 be an FJM-stationary point of (P). In order to ensure that it is already an M-stationary

point, we need to exclude the case where the leading multiplier equals zero. This corresponds to
validity of the constraint qualication

0 ∈ 𝐷∗Φ(𝑥, 0) (𝜆) =⇒ 𝜆 = 0

which is equivalent to ker𝐷∗Φ(𝑥, 0) = {0} and, thus, metric regularity of Φ at (𝑥, 0). In the subsequent
section, we construct a reasonably mild condition, which will be called AM-regularity, ensuring that
a given AM-stationary point of (P) is already M-stationary. Noting that AM-stationarity is more
restrictive than FJM-stationarity, there is some justied hope that AM-regularity is weaker than metric
regularity of Φ, see Theorem 3.12 where this is actually proven. Foresightfully, we summarize our
results in Figure 1.

local minimizer

AM-stationarity

FJM-stationarity

M-stationarity

AM-regularity

metric regularity

Figure 1: Relations between the stationarity conditions addressing (P). Dashed relations hold under
validity of the mentioned qualication conditions, respectively.

3.2 asymptotic regularity

We now raise the question under which additional condition a given AM-stationary point of (P) is
already an M-stationary point. In order to deal with this issue, we make use of the set-valued mapping
M : ℝ𝑛 ×ℝ𝑚 ⇒ ℝ𝑛 given by

∀𝑥 ∈ ℝ𝑛 ∀𝑦 ∈ ℝ𝑚 : M(𝑥, 𝑦) :=
⋃
𝜆∈ℝ𝑚

𝐷∗Φ(𝑥, 𝑦) (𝜆) .

By denition, we have the following result.
Lemma 3.6. Let 𝑥 ∈ 𝑀 be a feasible point of (P). Then the following assertions hold.

(a) If 𝑥 is an AM-stationary point of (P), then we have

(3.7) 𝜕𝑓 (𝑥) ∩
(
− lim sup
𝑥→𝑥, 𝑦→0

M(𝑥, 𝑦)
)
≠ ∅.

P. Mehlitz Asymptotic regularity in optimization theory
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(b) If, on the other hand, 𝑓 is continuously dierentiable at 𝑥 while

−∇𝑓 (𝑥) ∈ lim sup
𝑥→𝑥, 𝑦→0

M(𝑥, 𝑦)

holds, then 𝑥 is an AM-stationary point of (P).

Proof. (a) Let 𝑥 be an AM-stationary point of (P). Then we nd {𝑥𝑘 }𝑘∈ℕ, {𝜀𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 , and
{𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that𝑥𝑘 → 𝑥 , 𝜀𝑘 → 0, 𝑦𝑘 → 0, as well as 𝑥∗

𝑘
∈ M(𝑥𝑘 , 𝑦𝑘 ) and 𝜀𝑘−𝑥∗𝑘 ∈ 𝜕𝑓 (𝑥𝑘 )

for all 𝑘 ∈ ℕ hold. Noting that the set-valued map 𝑥 ⇒ 𝜕𝑓 (𝑥) possesses uniformly bounded
image sets around 𝑥 by local Lipschitz continuity of 𝑓 , see [31, Corollary 1.81], the sequence
{𝑥∗
𝑘
}𝑘∈ℕ needs to be bounded as well and, thus, possesses an accumulation point 𝑥∗ ∈ ℝ𝑛 which,

by denition, belongs to lim sup𝑥→𝑥,𝑦→0M(𝑥, 𝑦). On the other hand, −𝑥∗ ∈ 𝜕𝑓 (𝑥) is also true
by robustness of the limiting normal cone to epi 𝑓 , i.e., by closedness of the graph associated
with the normal cone mapping of this set.

(b) From the assumptions, we nd {𝑥𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 , and {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that 𝑥𝑘 → 𝑥 ,
𝑦𝑘 → 0, and𝑥∗

𝑘
→ −∇𝑓 (𝑥) as well as 𝑥∗

𝑘
∈ M(𝑥𝑘 , 𝑦𝑘 ) for all𝑘 ∈ ℕ hold. Setting 𝜀𝑘 := ∇𝑓 (𝑥𝑘 )+𝑥∗𝑘

for each 𝑘 ∈ ℕ, we have 𝜀𝑘 → 0 by continuity of ∇𝑓 at 𝑥 . Thus, the denition of M shows that
𝑥 is an AM-stationary point of (P).

�

Observe that statement (b) of the above lemma cannot be generalized to situations where 𝑓 is
nonsmooth at the point of interest, i.e., condition (3.7) is not necessarily sucient for a feasible point
𝑥 ∈ 𝑀 of (P) to be AM-stationary.
Example 3.7. Let us consider the setting

∀𝑥 ∈ ℝ : 𝑓 (𝑥) := −|𝑥 | Φ(𝑥) := [−𝑥2,∞)

and x the feasible point 𝑥 := 0 of the associated problem (P). We obtain

𝜕𝑓 (𝑥) =


−1 𝑥 > 0
{−1, 1} 𝑥 = 0
1 𝑥 < 0

𝐷∗Φ(𝑥, 𝑦) (𝜆) =


{−2𝜆𝑥} 𝑦 = −𝑥2, 𝜆 ≥ 0
{0} 𝑦 > −𝑥2, 𝜆 = 0
∅ otherwise

for all 𝑥, 𝑦, 𝜆 ∈ ℝ. This yields

M(𝑥, 𝑦) =


ℝ− 𝑥 > 0, 𝑦 = −𝑥2

ℝ+ 𝑥 < 0, 𝑦 = −𝑥2

{0} 𝑦 > −𝑥2 or 𝑥 = 𝑦 = 0

for all 𝑥, 𝑦 ∈ ℝ, i.e., we nd
lim sup
𝑥→𝑥, 𝑦→0

M(𝑥, 𝑦) = ℝ

in the present situation, and this shows that (3.7) holds. On the other hand, we clearly have the inclusion
𝜕𝑓 (𝑥) +M(𝑥, 𝑦) ⊂ (−∞,−1] ∪ [1,∞) for all 𝑥, 𝑦 ∈ ℝ, and this claries that 𝑥 cannot be AM-stationary.
By denition ofM, a given feasible point 𝑥 ∈ 𝑀 of (P) is M-stationary if and only if

𝜕𝑓 (𝑥) ∩ (−M(𝑥, 0)) ≠ ∅

holds. Keeping statement (a) of Lemma 3.6 in mind, this motivates the subsequent denition.
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Definition 3.8. A feasible point 𝑥 ∈ 𝑀 of (P) is said to be asymptotically Mordukhovich-regular (AM-
regular for short) whenever

lim sup
𝑥→𝑥,𝑦→0

M(𝑥, 𝑦) ⊂ M(𝑥, 0)

is valid.
By denition, a feasible point 𝑥 ∈ 𝑀 of (P) is AM-regular if and only if the mapping M is so-called

outer (sometimes also referred to as upper) semicontinuous at (𝑥, 0) in the sense of set-valuedmappings,
see [8, 38].
Based on the above observations, the subsequent theorem follows immediately from Theorem 3.2

and Lemma 3.6. It basically says that AM-regularity is a constraint qualication for (P) ensuring
M-stationarity of local minimizers.
Theorem 3.9. Let 𝑥 ∈ 𝑀 be an AM-regular local minimizer of (P). Then 𝑥 is an M-stationary point of (P).

Next, we want to embed AM-regularity into the landscape of qualication conditions which address
(P). It is well known from [18, Theorem 3] or [31, Theorem 5.48] that metric subregularity of Φ at (𝑥, 0)
is enough to guarantee that a local minimizer 𝑥 ∈ 𝑀 of (P) is an M-stationary point of the latter. Using
the concept of directional metric subregularity, this statement can be weakened even more, see [18,
Corollary 2]. We know that polyhedral set-valued mappings are metrically subregular at all points of
their graphs, i.e., this property already serves as a constraint qualication for (P). Below, we show that
polyhedrality of Φ is also sucient for the validity of AM-regularity.
Theorem 3.10. Let Φ be a polyhedral set-valued mapping. Then each feasible point 𝑥 ∈ 𝑀 of (P) is
AM-regular.

Proof. Fix sequences {𝑥𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 and {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 with 𝑥𝑘 → 𝑥 , 𝑦𝑘 → 0, and 𝑥∗
𝑘
→ 𝑥∗

for some 𝑥∗ ∈ ℝ𝑛 such that 𝑥∗
𝑘
∈ M(𝑥𝑘 , 𝑦𝑘 ) holds for all 𝑘 ∈ ℕ. For each 𝑘 ∈ ℕ, we nd 𝜆𝑘 ∈ ℝ𝑚

such that (𝑥∗
𝑘
,−𝜆𝑘 ) ∈ NgphΦ(𝑥𝑘 , 𝑦𝑘 ) holds. Noting that gphΦ is the union of nitely many convex

polyhedral sets, there only exist nitely many regular and, thus, limiting normal cones to the set gphΦ.
Particularly, we nd a closed cone K ⊂ ℝ𝑛 × ℝ𝑚 such that (𝑥∗

𝑘
,−𝜆𝑘 ) ∈ K ⊂ NgphΦ(𝑥𝑘 , 𝑦𝑘 ) holds

along a subsequence (without relabeling). By polyhedrality of Φ, K can be represented as the union of
nitely many convex, polyhedral cones K1, . . . ,K𝑠 ⊂ ℝ𝑛 ×ℝ𝑚 . Again, along a subsequence (without
relabeling), we have (𝑥∗

𝑘
,−𝜆𝑘 ) ∈ K𝑖 for some 𝑖 ∈ {1, . . . , 𝑠}. Let 𝑃 : ℝ𝑛 ×ℝ𝑚 → ℝ𝑛 be the projection

operator given by 𝑃 (𝑥, 𝑦) := 𝑥 for all 𝑥 ∈ ℝ𝑛 and 𝑦 ∈ ℝ𝑚 . Then 𝑃K𝑖 is polyhedral and, thus, closed by
polyhedrality of K𝑖 , i.e., from {𝑥∗

𝑘
}𝑘∈ℕ ⊂ 𝑃K𝑖 we obtain 𝑥∗ ∈ 𝑃K𝑖 . This yields the existence of some

𝜆 ∈ ℝ𝑚 such that (𝑥∗,−𝜆) ∈ K𝑖 and, thus, (𝑥∗,−𝜆) ∈ K . The robustness of the limiting normal cone
implies K ⊂ NgphΦ(𝑥, 0) due to 𝑥𝑘 → 𝑥 and 𝑦𝑘 → 0. Particularly, we have 𝑥∗ ∈ 𝐷∗Φ(𝑥, 0) (𝜆), i.e.,
𝑥∗ ∈ M(𝑥, 0). This shows that 𝑥 is an AM-regular point of (P). �

A natural consequence of the denition of AM-regularity via the Painlevé–Kuratowski limit is
subsumed in the following lemma.
Lemma 3.11. Let 𝑥 ∈ 𝑀 be a feasible point of (P). Assume that for each sequences {𝑥𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 ,
and {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that 𝑥𝑘 → 𝑥 , 𝑦𝑘 → 0, 𝑥∗

𝑘
→ 𝑥∗ for some 𝑥∗ ∈ ℝ𝑛 , and 𝑥∗

𝑘
∈ M(𝑥𝑘 , 𝑦𝑘 ) for all

𝑘 ∈ ℕ hold, we nd a bounded sequence {𝜆𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that 𝑥∗
𝑘
∈ 𝐷∗Φ(𝑥𝑘 , 𝑦𝑘 ) (𝜆𝑘 ) holds for all

𝑘 ∈ ℕ. Then 𝑥 is AM-regular.

Proof. Let 𝑥∗ ∈ lim sup𝑥→𝑥,𝑦→0M(𝑥, 𝑦) be arbitrarily chosen. Then we nd {𝑥𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 ,
and {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that 𝑥𝑘 → 𝑥 , 𝑦𝑘 → 0, 𝑥∗

𝑘
→ 𝑥∗, and 𝑥∗

𝑘
∈ M(𝑥𝑘 , 𝑦𝑘 ) for all 𝑘 ∈ ℕ hold. By

assumption, there is a bounded sequence {𝜆𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 satisfying 𝑥∗
𝑘
∈ 𝐷∗Φ(𝑥𝑘 , 𝑦𝑘 ) (𝜆𝑘 ) for all 𝑘 ∈ ℕ.

Observing that {𝜆𝑘 }𝑘∈ℕ possesses an accumulation point 𝜆 ∈ ℝ𝑚 , 𝑥∗ ∈ 𝐷∗Φ(𝑥, 0) (𝜆) follows from
the robustness of the limiting normal cone and the denition of the coderivative. The latter, however,
yields 𝑥∗ ∈ M(𝑥, 0), i.e., 𝑥 is AM-regular. �
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Employing the neighborhood characterization of the metric regularity property, we now can state a
sucient condition for AM-regularity.
Theorem 3.12. Let 𝑥 ∈ 𝑀 be a feasible point of (P) such that Φ is metrically regular at (𝑥, 0). Then 𝑥 is
AM-regular.

Proof. Exploiting [31, Theorem 4.5] and the denition of the limiting coderivative, metric regularity of
Φ at (𝑥, 0) guarantees the existence of a constant 𝜅 > 0 and a neighborhood𝑈 of (𝑥, 0) such that

∀(𝑥, 𝑦) ∈ gphΦ ∩𝑈 ∀𝑥∗ ∈ ℝ𝑛 ∀𝜆 ∈ ℝ𝑚 : 𝑥∗ ∈ 𝐷∗Φ(𝑥, 𝑦) (𝜆) =⇒ ‖𝜆‖ ≤ 𝜅 ‖𝑥∗‖ .

Choose sequences {𝑥𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 and {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 as well as 𝑥∗ ∈ ℝ𝑛 such that 𝑥𝑘 → 𝑥 ,
𝑦𝑘 → 0, 𝑥∗

𝑘
→ 𝑥∗, and 𝑥∗

𝑘
∈ M(𝑥𝑘 , 𝑦𝑘 ) for all 𝑘 ∈ ℕ hold. By denition of M, we nd a sequence

{𝜆𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that 𝑥∗
𝑘
∈ 𝐷∗Φ(𝑥𝑘 , 𝑦𝑘 ) (𝜆𝑘 ) holds for all 𝑘 ∈ ℕ. The above considerations show that

the sequence {𝜆𝑘 }𝑘∈ℕ needs to be bounded since {𝑥∗
𝑘
}𝑘∈ℕ is bounded. Now, the theorem’s assertion

follows from Lemma 3.11. �

Recall that the Mordukhovich criterion provides a necessary and sucient condition for metric
regularity of Φ at arbitrary points of its graph. Thus, it can be used as a sucient condition for
AM-regularity as well.
Corollary 3.13. Let 𝑥 ∈ 𝑀 be a feasible point of (P) such that ker𝐷∗Φ(𝑥, 0) = {0}. Then 𝑥 is AM-regular.

Clearly, there exist polyhedral set-valued mappings which are not metrically regular at all points
of their graphs. In the light of Theorem 3.10, this shows that AM-regularity is generally weaker than
metric regularity.
It remains to investigate the relationship between AM-regularity and metric subregularity of Φ.

The subsequently stated example depicts that metric subregularity of Φ does not imply validity of
AM-regularity.
Example 3.14. We set

∀𝑥 ∈ ℝ2 : Φ(𝑥) := (−𝑥21 + 𝑥2,−𝑥2) −ℝ2
−

and consider the point 𝑥 := (0, 0).
Using the formulas from Section 5.1, we nd

𝐷∗Φ(𝑥, 𝑦) (𝜆) =
{
{(−2𝑥1𝜆1, 𝜆1 − 𝜆2)} 𝜆 ∈ Nℝ2− (−𝑥

2
1 + 𝑥2 − 𝑦1,−𝑥2 − 𝑦2)

∅ otherwise

for all 𝑥, 𝑦, 𝜆 ∈ ℝ2. This yieldsM(𝑥, (0, 0)) = {0} ×ℝ. Using the sequences given by

∀𝑘 ∈ ℕ : 𝑥𝑘,1 := − 1
𝑘

𝑥𝑘,2 := 0 𝑦𝑘,1 := − 1
𝑘2

𝑦𝑘,2 := 0,

we have 𝑥𝑘 → 𝑥 and 𝑦𝑘 → (0, 0) as well as (1, 0) ∈ M(𝑥𝑘 , 𝑦𝑘 ) for all𝑘 ∈ ℕ. Due to (1, 0) ∉ M(𝑥, (0, 0)),
𝑥 is not an AM-regular point of the associated constraint set𝑀 .

One can, however, check that Gfrerer’s second-order sucient condition for metric subregularity is
valid at 𝑥 , see [21, Corollary 1], which shows that Φ is metrically subregular at (𝑥, (0, 0)).

The next example depicts that validity of AM-regularity is not enough to ensure metric subregularity
of Φ. Particularly, these conditions are independent of each other.
Example 3.15. We x

∀𝑥 ∈ ℝ : Φ(𝑥) :=
{
ℝ 𝑥 ≤ 0
[𝑥2,∞) 𝑥 > 0.

In this case, we have𝑀 = (−∞, 0]. Let us consider the point 𝑥 := 0.
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Some calculations show

𝐷∗Φ(𝑥, 𝑦) (𝜆) =


{2𝑥𝜆} 𝑥 > 0, 𝑦 = 𝑥2, 𝜆 ≥ 0
ℝ+ 𝑥 = 0, 𝑦 ≤ 0, 𝜆 = 0
{0} 𝑥 = 𝑦 = 0, 𝜆 > 0 or 𝑥 < 0, 𝜆 = 0 or 𝑥 ≥ 0, 𝑦 > 𝑥2, 𝜆 = 0
∅ otherwise

for all 𝑥, 𝑦, 𝜆 ∈ ℝ. This yields M(𝑥, 0) = ℝ+, and since all other images of the coderivative are subsets
of ℝ+, we infer that 𝑥 is an AM-regular point of𝑀 .
Setting 𝑥𝑘 := 1/𝑘 for each 𝑘 ∈ ℕ, we nd dist(𝑥𝑘 , 𝑀) = 1/𝑘 and dist(0,Φ(𝑥𝑘 )) = 1/𝑘2. Thus, taking

the limit 𝑘 → ∞, it is clear that Φ is not metrically subregular at (𝑥, 0).
The proof of the upcoming result, which provides an upper estimate of the limiting normal cone

to the set 𝑀 at some AM-regular point in terms of initial problem data, is inspired by [14, proof of
Theorem 5.9].
Theorem 3.16. Let 𝑥 ∈ 𝑀 be a feasible AM-regular point of (P). Then we have N𝑀 (𝑥) ⊂ M(𝑥, 0).

Proof. Choose 𝑥∗ ∈ N𝑀 (𝑥) arbitrarily. Then we nd sequences {𝑥𝑘 }𝑘∈ℕ ⊂ 𝑀 and {𝑥∗
𝑘
} ⊂ ℝ𝑛 such that

𝑥𝑘 → 𝑥 , 𝑥∗
𝑘
→ 𝑥∗, and 𝑥∗

𝑘
∈ N̂𝑀 (𝑥𝑘 ) for all 𝑘 ∈ ℕ. Using the variational description of regular normals

from [31, Theorem 1.30(ii)], for each 𝑘 ∈ ℕ, we nd a dierentiable convex function ℎ𝑘 : ℝ𝑛 → ℝ which
achieves a global minimum at 𝑥𝑘 when restricted to𝑀 and which satises ∇ℎ𝑘 (𝑥𝑘 ) = −𝑥∗

𝑘
. Observe

that the properties of ℎ𝑘 already guarantee that this function is continuously dierentiable for each
𝑘 ∈ ℕ, see [34, Corollary of Proposition 2.8]. Applying Theorem 3.2 for xed 𝑘 ∈ ℕ, we nd that 𝑥𝑘
is an AM-stationary point of the optimization problem min{ℎ𝑘 (𝑥) | 𝑥 ∈ 𝑀}. Thus, we nd sequences
{𝑥𝑘,ℓ }ℓ∈ℕ, {𝜀𝑘,ℓ }ℓ∈ℕ ⊂ ℝ𝑛 and {𝑦𝑘,ℓ }ℓ∈ℕ ⊂ ℝ𝑚 such that 𝑥𝑘,ℓ → 𝑥𝑘 , 𝜀𝑘,ℓ → 0, 𝑦𝑘,ℓ → 0, as ℓ → ∞ and
𝜀𝑘,ℓ − ∇ℎ𝑘 (𝑥𝑘,ℓ ) ∈ M(𝑥𝑘,ℓ , 𝑦𝑘,ℓ ) for all ℓ ∈ ℕ hold. We set 𝑥∗

𝑘,ℓ
:= −∇ℎ𝑘 (𝑥𝑘,ℓ ) for all ℓ ∈ ℕ and obtain

𝑥∗
𝑘,ℓ

→ 𝑥∗
𝑘
as ℓ → ∞ by continuous dierentiability of ℎ𝑘 . Exploiting a standard diagonal sequence

argument, we, thus, nd sequences {𝑥𝑘 }𝑘∈ℕ, {𝜀𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 , and {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that
𝑥𝑘 → 𝑥 , 𝜀𝑘 → 0, 𝑥∗

𝑘
→ 𝑥∗, 𝑦𝑘 → 0, and 𝜀𝑘 +𝑥∗𝑘 ∈ M(𝑥𝑘 , 𝑦𝑘 ) for all 𝑘 ∈ ℕ hold. Taking the limit 𝑘 → ∞

and exploiting the fact that 𝑥 is AM-regular, we obtain 𝑥∗ ∈ M(𝑥, 0). �

Let us recall that the assertion of Theorem 3.16 can be interpreted in the following way: Observing
that𝑀 = Φ−1(0) holds, under validity of AM-regularity at a given feasible point 𝑥 ∈ 𝑀 of (P), some
kind of pre-image rule for the computation of the limiting normal cone to𝑀 in terms of initial problem
data, i.e., the coderivative ofΦ, holds. Keeping [31, Proposition 5.3] in mind, this alone is enough to show
that AM-regularity is indeed a constraint qualication which guarantees validity of M-stationarity at
the local minimizers of (P). A similar observation can be made in the presence of metric subregularity
of Φ at (𝑥, 0), and the upper estimate for the limiting normal cone to𝑀 can be sharpened if the precise
modulus of metric subregularity is known or can be estimated from above, see [22, Proposition 4.1].

We summarize our results on the relations between all mentioned qualication conditions in Figure 2.

We want to close this section with two remarks.
Remark 3.17. In light of Theorem 3.16, it might be reasonable to call a set-valued mapping Φ : ℝ𝑛 ⇒ ℝ𝑚

with a closed graph AM-regular at (𝑥, 𝑦) ∈ gphΦ whenever

lim sup
𝑥→𝑥, 𝑦→𝑦

M(𝑥, 𝑦) ⊂ M(𝑥, 𝑦)

holds. Indeed, this implies validity of the estimate

NΦ−1 (𝑦) (𝑥) ⊂ M(𝑥, 𝑦).
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Metric regularity Polyhedrality of Φ

Metric subregularity AM-regularity

pre-image rule

Figure 2: Relations between constraint qualications addressing (P) which guarantee M-stationarity of
associated local minimizers.

Besides, this approach opens a way to apply AM-regularity in more general contexts ranging from
applications addressing the limiting variational calculus to other interesting settings of optimization
theory.
Remark 3.18. Let Φ : ℝ𝑛 ⇒ ℝ𝑚 be a set-valued mapping with a closed graph and x (𝑥, 𝑦) ∈ gphΦ. In
[31, Denition 5.69], the author introduces a concept called normal semicontinuity of Φ at (𝑥, 𝑦) which
demands that

lim sup
𝑥→𝑥, 𝑦→𝑦

NΦ(𝑥) (𝑦) ⊂ NΦ(𝑥) (𝑦)

holds. This property and related results turned out to be useful in light of, e.g., extremal principles for
set-valued mappings, multiobjective optimization, and optimal control, see [31, Sections 5.3, 5.5.20, and
6.1.5].
By denition, normal semicontinuity seems to be related to AM-regularity. However, one can

easily check that both properties are independent of each other. Indeed, considering the data from
Example 3.7, we nd that AM-regularity fails at 𝑥 := 0while the mapping Φ is normally semicontinuous
at (𝑥, 0). On the other hand, let us revisit Example 3.15. Therein, 𝑥 := 0 is AM-regular while Φ is not
normally semicontinuous at (𝑥, 0). Nevertheless, AM-regularity and normal semicontinuity both
provide sequential stability properties of set-valued mappings which is why we believe that AM-
regularity could be useful in similar settings where normal semicontinuity turned out to be valuable.

4 decoupling of abstract constraints

In this section, we want to investigate the particular case where the mapping Φ is given by

(4.1) ∀𝑥 ∈ ℝ𝑛 : Φ(𝑥) :=
(
Γ(𝑥)
𝑥 −𝐶

)
where Γ : ℝ𝑛 ⇒ ℝℓ is a set-valued mapping with closed graph and 𝐶 ⊂ ℝ𝑛 is a nonempty, closed set.
Roughly speaking, we assume that the abstract constraint set 𝐶 is simple and shall be decoupled from
the more enhanced constraints which are modeled with the aid of the generalized equation 0 ∈ Γ(𝑥).
Exploiting the product rule for coderivative calculus from Lemma 2.1, a feasible point 𝑥 ∈ 𝑀 of

problem (P) where Φ is given as in (4.1) is M-stationary if and only if there is a multiplier �̃� ∈ ℝℓ

satisfying
0 ∈ 𝜕𝑓 (𝑥) + 𝐷∗Γ(𝑥, 0) (�̃�) + N𝐶 (𝑥) .

Furthermore, applying Denition 3.1 to the situation at hand, 𝑥 is an AM-stationary point of the
associated problem (P) if and only if there exist sequences {𝑥𝑘 }𝑘∈ℕ, {𝜀𝑘 }𝑘∈ℕ, {𝑧𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 as well as
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{�̃�𝑘 }𝑘∈ℕ, {�̃�𝑘 }𝑘∈ℕ ⊂ ℝℓ satisfying 𝑥𝑘 → 𝑥 , 𝜀𝑘 → 0, �̃�𝑘 → 0, 𝑧𝑘 → 0, and

∀𝑘 ∈ ℕ : 𝜀𝑘 ∈ 𝜕𝑓 (𝑥𝑘 ) + 𝐷∗Γ(𝑥𝑘 , �̃�𝑘 ) (�̃�𝑘 ) + N𝐶 (𝑥𝑘 − 𝑧𝑘 ) .

The relation 𝑧𝑘 := 0 for all 𝑘 ∈ ℕ seems to be desirable since this would mean that all points 𝑥𝑘
from above already satisfy the abstract constraint 𝑥 ∈ 𝐶 hidden in the denition of Φ, i.e., some
partial feasibility of the sequence {𝑥𝑘 }𝑘∈ℕ would be guaranteed in this situation. This motivates the
subsequent denition of decoupled AM-stationary points.
Definition 4.1. Let Φ be given as in (4.1). A feasible point 𝑥 ∈ 𝑀 of the associated problem (P) is referred
to as a decoupled asymptotically Mordukhovich-stationary point (dAM-stationary point for short)
whenever there are sequences {𝑥𝑘 }𝑘∈ℕ, {𝜀𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 as well as {�̃�𝑘 }𝑘∈ℕ, {�̃�𝑘 }𝑘∈ℕ ⊂ ℝℓ satisfying
𝑥𝑘 → 𝑥 , 𝜀𝑘 → 0, �̃�𝑘 → 0, and

∀𝑘 ∈ ℕ : 𝜀𝑘 ∈ 𝜕𝑓 (𝑥𝑘 ) + 𝐷∗Γ(𝑥𝑘 , �̃�𝑘 ) (�̃�𝑘 ) + N𝐶 (𝑥𝑘 ) .

Let us note that, by denition, the sequence {𝑥𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 from Denition 4.1 has to satisfy
{𝑥𝑘 }𝑘∈ℕ ⊂ dom Γ ∩𝐶 .
The following theorem shows that under an additional assumption on the mapping Γ, each local

minimizer of (P) with Φ given as in (4.1) is already a dAM-stationary point.
Theorem 4.2. Let 𝑥 ∈ 𝑀 be a local minimizer of (P) where Φ is given as in (4.1). Furthermore, assume
that Γ possesses the Aubin property at (𝑥, 0). Then 𝑥 is a dAM-stationary point of (P).

Proof. To start, observe that by denition of the Aubin property, we nd 𝛾, 𝛿 > 0 such that Γ possesses
the Aubin property at all the points from gph Γ ∩ (𝔹𝛾 (𝑥) × 𝔹𝛿 (0)). For small enough 𝛾, 𝛿 > 0, we can
also guarantee Γ(𝑥) ∩ 𝔹𝛿/2(0) ≠ ∅ for all 𝑥 ∈ 𝔹𝛾 (𝑥) since Γ is inner semicontinuous at (𝑥, 0).

Next, for each 𝑘 ∈ ℕ, we investigate the optimization problem

(Q(𝑘))
𝑓 (𝑥) + 𝑘

2
(
𝜌Γ (𝑥, 𝑦) + ‖𝑦 ‖2

)
+ 1
2
‖𝑥 − 𝑥 ‖2 → min

𝑥,𝑦

𝑥 ∈ 𝐶 ∩ 𝔹𝛾 (𝑥)
𝑦 ∈ 𝔹𝛿/4(0) .

Observing that the objective function of this problem is lower semicontinuous by Lemma 2.2 while its
feasible set is nonempty and compact, (Q(𝑘)) possesses a global minimizer (𝑥𝑘 , 𝑦𝑘 ) ∈ ℝ𝑛 ×ℝℓ for each
𝑘 ∈ ℕ. Since {𝑥𝑘 }𝑘∈ℕ and {𝑦𝑘 }𝑘∈ℕ are bounded, we may pass to a subsequence (without relabeling)
in order to nd 𝑥 ∈ 𝔹𝛾 (𝑥) and �̃� ∈ 𝔹𝛿/4(0) such that 𝑥𝑘 → 𝑥 and 𝑦𝑘 → �̃� . Similar as in the proof of
Theorem 3.2, we nd �̃� = 0. In analogous way, we obtain 0 ∈ Γ(𝑥) by lower semicontinuity of the
generalized distance function. Finally, the closedness of 𝐶 guarantees 𝑥 ∈ 𝐶 , i.e., 𝑥 ∈ 𝑀 . Furthermore,
𝑥 = 𝑥 can be shown as in the proof of Theorem 3.2.

For xed 𝑘 ∈ ℕ, we know Γ(𝑥𝑘 ) ∩ 𝔹𝛿/2(0) ≠ ∅ from the choice of 𝛾 and 𝛿 . Due to 𝑦𝑘 ∈ 𝔹𝛿/4(0),
we have ∅ ≠ Π(𝑦𝑘 , Γ(𝑥𝑘 )) ⊂ 𝔹𝛿 (0). Particularly, Γ possesses the Aubin property at all point from
{𝑥𝑘 } × Π(𝑦𝑘 , Γ(𝑥𝑘 )). As a consequence, Lemma 2.3 guarantees that 𝜌Γ is locally Lipschitz continuous
at (𝑥𝑘 , 𝑦𝑘 ). For suciently large 𝑘 ∈ ℕ, 𝑥𝑘 is an interior point of 𝔹𝛾 (𝑥) while 𝑦𝑘 is an interior point
of 𝔹𝛿/4(0). Due to these observations, we may now apply [31, Proposition 5.3], the sum rule for the
limiting subdierential, see [31, Theorem 3.36], and Lemma 2.3 in order to nd �̃�𝑘 ∈ Π(𝑦𝑘 , Γ(𝑥𝑘 )) such
that

(0, 0) ∈ 𝜕𝑓 (𝑥𝑘 ) × {0} + Ngph Γ (𝑥𝑘 , �̃�𝑘 ) + {(𝑥𝑘 − 𝑥, 𝑘𝑦𝑘 )} + N𝐶 (𝑥𝑘 ) × {0}

holds for large enough 𝑘 ∈ ℕ. Dening �̃�𝑘 := 𝑘𝑦𝑘 and 𝜀𝑘 := 𝑥 − 𝑥𝑘 , this yields

𝜀𝑘 ∈ 𝜕𝑓 (𝑥𝑘 ) + 𝐷∗Γ(𝑥𝑘 , �̃�𝑘 ) (�̃�𝑘 ) + N𝐶 (𝑥𝑘 )
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for large enough 𝑘 ∈ ℕ. The above observations guarantee 𝜀𝑘 → 0. It remains to show �̃�𝑘 → 0 in order
to complete the proof. Since Γ is inner semicontinuous at (𝑥, 0), we nd a sequence {𝑦𝑘 }𝑘∈ℕ ⊂ ℝℓ

with 𝑦𝑘 → 0 and 𝑦𝑘 ∈ Γ(𝑥𝑘 ) for all suciently large 𝑘 ∈ ℕ. By denition of the projector, we have

‖�̃�𝑘 ‖ ≤ ‖�̃�𝑘 − 𝑦𝑘 ‖ + ‖𝑦𝑘 ‖ ≤ ‖𝑦𝑘 − 𝑦𝑘 ‖ + ‖𝑦𝑘 ‖ ≤ 2 ‖𝑦𝑘 ‖ + ‖𝑦𝑘 ‖ → 0,

and this, nally, shows �̃�𝑘 → 0. �

The subsequently stated example demonstrates that the statement of Theorem 4.2 does not remain
true in general when Γ does not possess the Aubin property at the point of interest.
Example 4.3. We investigate the set-valued mapping Γ : ℝ2 ⇒ ℝ given by

∀𝑥 ∈ ℝ2 : Γ(𝑥) :=
{
[0,∞) 𝑥2 = 0
∅ otherwise

as well as the closed set 𝐶 := {𝑥 ∈ ℝ2 | 𝑥21 + (𝑥2 − 1)2 ≤ 1}. We consider the associated optimization
problem

𝑥1 → min
0 ∈ Γ(𝑥)
𝑥 ∈ 𝐶.

Its uniquely determined feasible point and, thus, global minimizer is 𝑥 := (0, 0).
Assuming that 𝑥 is a dAM-stationary point of the problem of interest and keeping the relation

dom Γ∩𝐶 = {𝑥} in mind, there need to exist sequences {𝜀𝑘 }𝑘∈ℕ ⊂ ℝ2, {�̃�𝑘 }𝑘∈ℕ ⊂ ℝ, and {�̃�𝑘 }𝑘∈ℕ ⊂ ℝ

such that 𝜀𝑘 → (0, 0) and �̃�𝑘 → 0 as well as

(4.2) ∀𝑘 ∈ ℕ : (𝜀𝑘,1, 𝜀𝑘,2) ∈ (1, 0) + 𝐷∗Γ(𝑥, �̃�𝑘 ) (�̃�𝑘 ) + {0} ×ℝ−

hold true. We note, however, that

𝐷∗Γ(𝑥, �̃�) (�̃�) =
{
{0} ×ℝ �̃� = 0, �̃� ≥ 0 or �̃� > 0, �̃� = 0
∅ otherwise

is valid for all �̃�, �̃� ∈ ℝ. Thus, (4.2) yields 𝜀𝑘,1 = 1 for all 𝑘 ∈ ℕ which contradicts 𝜀𝑘 → (0, 0). Thus, 𝑥
is not a dAM-stationary point of the problem of interest.
Note that Φ is a polyhedral set-valued mapping which does not possess the Aubin property at the

reference point (𝑥, 0).
Keeping our arguments from Section 3.2 in mind, Theorem 4.2 motivates the denition of another

constraint qualication weaker than AM-regularity which ensures that a dAM-stationary point of
(P) where Φ is given as in (4.1) is already an M-stationary point. For that purpose, we introduce a
set-valued mapping M̃ : ℝ𝑛 ×ℝℓ ⇒ ℝ𝑛 by

(4.3) ∀𝑥 ∈ ℝ𝑛 ∀�̃� ∈ ℝℓ : M̃(𝑥, �̃�) :=
⋃
�̃�∈ℝℓ

𝐷∗Γ(𝑥, �̃�) (�̃�) + N𝐶 (𝑥) .

Definition 4.4. A feasible point 𝑥 ∈ 𝑀 of (P) where Φ is given as in (4.1) is said to be decoupled
asymptotically Mordukhovich-regular (dAM-regular for short) whenever

lim sup
𝑥→𝑥, �̃�→0

M̃(𝑥, �̃�) ⊂ M̃(𝑥, 0)

is valid.
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For each feasible point 𝑥 ∈ 𝑀 of (P) forΦ given in (4.1), we have the relationsM(𝑥, (0, 0)) = M̃(𝑥, 0)
and

lim sup
𝑥→𝑥, �̃�→0

M̃(𝑥, �̃�) ⊂ lim sup
𝑥→𝑥, �̃�→0, 𝑧→0

M(𝑥, (�̃�, 𝑧))

which is why dAM-regularity is weaker than AM-regularity as promoted above. Example 4.3 shows
that there are situations where dAM-regularity is strictly weaker than AM-regularity. Therein, 𝑥
is a dAM-regular point. On the other hand, we have (1, 0) ∈ lim sup𝑥→𝑥, �̃�→0, 𝑧→0M(𝑥, (�̃�, 𝑧)) but
M(𝑥, (0, 0)) = {0} ×ℝ which is why 𝑥 cannot be AM-regular. The subsequent example visualizes that
dAM-regularity might be strictly weaker than AM-regularity even in situations where Γ possesses the
Aubin property at all points of its graph.
Example 4.5. We set 𝐶 := ℝ+ as well as

∀𝑥 ∈ ℝ : Γ(𝑥) := [−𝑥2,∞)

and investigate the mapping Φ from (4.1). In this situation, 𝑀 = ℝ+ is valid. Let us focus on the
point 𝑥 := 0. In Example 3.7, one can nd a formula for the coderivative of Γ. Using it and exploiting
N𝐶 (0) = ℝ−, we nd

M̃(𝑥, �̃�) =


ℝ− 𝑥 > 0, �̃� = −𝑥2 or 𝑥 = 0, �̃� ≥ 0
{0} 𝑥 > 0, �̃� > −𝑥2

∅ otherwise

for all 𝑥, �̃� ∈ ℝ. Due to M̃(𝑥, 0) = ℝ−, 𝑥 is dAM-regular. Let us set

𝑥𝑘 := − 1
𝑘

�̃�𝑘 := − 1
𝑘2

𝑧𝑘 := − 1
𝑘

for all 𝑘 ∈ ℕ. Then we ndM(𝑥𝑘 , (�̃�𝑘 , 𝑧𝑘 )) = ℝ, i.e.,

lim sup
𝑥→𝑥, �̃�→0, 𝑧→0

M(𝑥, (�̃�, 𝑧)) = ℝ,

and this shows that 𝑥 cannot be AM-regular sinceM(𝑥, (0, 0)) = M̃(𝑥, 0) = ℝ− holds true. Observing
that Γ is the sum of the locally Lipschitzian single-valued mapping 𝑥 ↦→ −𝑥2 and the constant set ℝ+,
Γ possesses the Aubin property at all points of its graph.
Clearly, 𝑥 ∈ 𝑀 is an M-stationary point of (P) where Φ is given as in (4.1) if and only if

𝜕𝑓 (𝑥) ∩
(
−M̃(𝑥, 0)

)
≠ ∅

is valid. Furthermore, similar as in the proof of Lemma 3.6, one can show that whenever 𝑥 is a dAM-
stationary point of the problem of interest, then

𝜕𝑓 (𝑥) ∩
(
− lim sup
𝑥→𝑥, �̃�→0

M̃(𝑥, �̃�)
)
≠ ∅

is true. Thus, Theorem 4.2 yields the following result.
Theorem 4.6. Let 𝑥 ∈ 𝑀 be a dAM-regular local minimizer of (P) where Φ is given as in (4.1). Furthermore,
let Γ possess the Aubin property at (𝑥, 0). Then 𝑥 is an M-stationary point of (P).

Using the product rule from Lemma 2.1 as well as the result of Corollary 3.13, the condition

(4.4) 0 ∈ 𝐷∗Γ(𝑥, 0) (𝑦∗) + 𝑧∗, 𝑧∗ ∈ N𝐶 (𝑥) =⇒ 𝑦∗ = 0, 𝑧∗ = 0
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is sucient for AM-regularity and, thus, dAM-regularity of a feasible point 𝑥 ∈ 𝑀 of (P) where Φ is
given as in (4.1).
Finally, we would like to mention that the assertion of Theorem 3.16 also holds true in the present

setting under validity of dAM-regularity whenever Γ possesses the Aubin property at the point of
interest.
Theorem 4.7. Let 𝑥 ∈ 𝑀 be a feasible dAM-regular point of (P) where Φ is given as in (4.1). Furthermore,
let Γ possess the Aubin property at (𝑥, 0). Then we have N𝑀 (𝑥) ⊂ M̃(𝑥, 0).

Proof. The proof is analogous to the one of Theorem 3.16 exploiting Theorem 4.2 and the fact that Γ
possesses the Aubin property at all points from gph Γ ∩𝑈 where 𝑈 ⊂ ℝ𝑛 ×ℝℓ is a suciently small
neighborhood of (𝑥, 0). �

5 applications of asymptotic regularity

5.1 asymptotic regularity for mathematical programs with geometric constraints

In this section, we assume that Φ : ℝ𝑛 ⇒ ℝℓ ×ℝ𝑛 is given by

(5.1) ∀𝑥 ∈ ℝ𝑛 : Φ(𝑥) :=
(
𝐺 (𝑥) − 𝐾
𝑥 −𝐶

)
where 𝐺 : ℝ𝑛 → ℝℓ is a locally Lipschitz continuous, single-valued mapping, while the sets 𝐾 ⊂ ℝℓ

and 𝐶 ⊂ ℝ𝑛 are nonempty as well as closed. Thus, the associated feasible region of (P) is given by

(5.2) 𝑀 = {𝑥 ∈ 𝐶 |𝐺 (𝑥) ∈ 𝐾},

and this rather general description still covers numerous interesting classes of optimization problems
comprising standard nonlinear problems, instances of conic programming, disjunctive programs (e.g.,
mathematical problems with complementarity, vanishing, switching, or cardinality constraints, see
Section 5.2), and conic complementarity programming. Generally, one refers to constraint systems of
this type as geometric constraints.

We observe that the structure of Φ is precisely the one discussed in Section 4 if we use the feasibility
mapping Γ : ℝ𝑛 ⇒ ℝℓ given by Γ(𝑥) := 𝐺 (𝑥) −𝐾 for all 𝑥 ∈ ℝ𝑛 . Observing that𝐺 is a locally Lipschitz
continuous map, Γ possesses the Aubin property at each point of its graph. Due to Theorems 4.2
and 4.6, the local minimizers of the underlying optimization problem are always dAM-stationary
points and dAM-regularity provides a constraint qualication for the presence of M-stationarity. Using
the coderivative sum rule from [31, Theorem 1.62], we have

∀(𝑥, �̃�) ∈ gph Γ ∀�̃� ∈ ℝℓ : 𝐷∗Γ(𝑥, �̃�) (�̃�) =
{
𝐷∗𝐺 (𝑥) (�̃�) �̃� ∈ N𝐾 (𝐺 (𝑥) − �̃�)
∅ otherwise.

Particularly, the mapping M̃ : ℝ𝑛 ×ℝℓ ⇒ ℝ𝑛 from (4.3) takes the form

∀𝑥 ∈ ℝ𝑛 ∀�̃� ∈ ℝℓ : M̃(𝑥, �̃�) = 𝐷∗𝐺 (𝑥)N𝐾 (𝐺 (𝑥) − �̃�) + N𝐶 (𝑥) .

The latter can be used to specify the precise nature of dAM-regularity for particular classes of optimiza-
tion problems with geometric constraints. We also note that validity of this constraint qualication at
an arbitrary point 𝑥 ∈ 𝑀 yields the estimate

N𝑀 (𝑥) ⊂ 𝐷∗𝐺 (𝑥)N𝐾 (𝐺 (𝑥)) + N𝐶 (𝑥),

P. Mehlitz Asymptotic regularity in optimization theory



J. Nonsmooth Anal. Optim. 1 (2020), 6575 page 20 of 30

see Theorem 4.7. In the literature, metric subregularity of Φ from (5.1) at (𝑥, (0, 0)) is often assumed
for that purpose, see e.g. [25, Theorem 4.1] where it is shown that already metric subregularity of
Φ̂ : ℝ𝑛 ⇒ ℝℓ given by

∀𝑥 ∈ ℝ𝑛 : Φ̂(𝑥) :=
{
𝐺 (𝑥) − 𝐾 𝑥 ∈ 𝐶
∅ otherwise

at the point (𝑥, 0) is enough for that purpose. In the light of Section 3.2, dAM-regularity is, however,
independent of the metric subregularity of Φ and, thus, provides a dierent approach to this pre-image
rule. In case where 𝐺 is smooth, 𝐶 = ℝ𝑛 , and 𝐾 is of special structure, the fact that dAM-regularity
provides a constraint qualication has been observed in [35, Theorem 3.13]. A related observation
has been made in the context of semidenite programming in [4]. Replacing the image space ℝℓ by
the Hilbert space of all real symmetric matrices, this paper’s theory covers this special situation, too.
Under additional assumptions on the data (e.g., convexity of 𝐾 and 𝐶), related results can be obtained
for optimization problems in Banach spaces as well, see [14] and Remark 5.2 below. It follows from
[35, Section 4] that dAM-regularity for feasible sets of type (5.2) is not related to suitable notions of
pseudo- and quasinormality which apply to feasible sets of type (5.2), see [10, Denition 3.4] and [24,
Denition 4.2] as well. On the other hand, we know from our investigations in the earlier sections that
this new constraint qualication is generally weaker than metric regularity of Φ from (5.1) at some
point (𝑥, (0, 0)) ∈ gphΦ, and the latter is equivalent to

−𝐺 ′(𝑥)>�̃� ∈ N𝐶 (𝑥), �̃� ∈ N𝐾 (𝐺 (𝑥)) =⇒ �̃� = 0

in case where𝐺 is continuously dierentiable at 𝑥 , see (4.4) as well. This condition is well known as no
nonzero abnormal multiplier constraint qualication (NNAMCQ) or generalized Mangasarian–Fromovitz
constraint qualication (GMFCQ) in the literature.
In the subsequently stated example, we interrelate our ndings with the results from [5] where a

sequential constraint qualication has been introduced for standard nonlinear programs.
Example 5.1. Fix ℓ := 𝑝 + 𝑞, 𝐾 := ℝ

𝑝
− × {0}, as well as 𝐶 := ℝ𝑛 and let the mapping 𝐺 : ℝ𝑛 → ℝ𝑝+𝑞

be continuously dierentiable. Furthermore, let 𝐺1, . . . ,𝐺𝑝+𝑞 : ℝ𝑛 → ℝ be the component mappings
associated with 𝐺 . In this situation, the mapping M̃ from above takes the particular form

M̃(𝑥, �̃�) =
{
𝑝+𝑞∑︁
𝑖=1

�̃�𝑖∇𝐺𝑖 (𝑥)
�����min(�̃�𝑖 , �̃�𝑖 −𝐺𝑖 (𝑥)) = 0 ∀𝑖 ∈ {1, . . . , 𝑝}

�̃�𝑖 −𝐺𝑖 (𝑥) = 0 ∀𝑖 ∈ {𝑝 + 1, . . . , 𝑞}

}
for all 𝑥 ∈ ℝ𝑛 and �̃� ∈ ℝ𝑝+𝑞 . We want to compare the associated AM-regularity condition (which
equals dAM-regularity due to 𝐶 = ℝ𝑛) with the so-called cone-continuity property (CCP for short)
from [5, Denition 3.1] which has been shown to be a constraint qualication for standard nonlinear
problems. It is based on the mapping K : ℝ𝑛 ⇒ ℝ𝑛 given by

∀𝑥 ∈ ℝ𝑛 : K(𝑥) :=
{
𝑝+𝑞∑︁
𝑖=1

𝜆𝑖∇𝐺𝑖 (𝑥)
�����min(𝜆𝑖 ,−𝐺𝑖 (𝑥)) = 0 ∀𝑖 ∈ {1, . . . , 𝑝}

}
and demands that

lim sup
𝑥→𝑥

K(𝑥) ⊂ K(𝑥)

holds at a given point 𝑥 ∈ 𝑀 . Note that we have M̃(𝑥, 0) = K(𝑥).
Observing that, for each 𝑥 ∈ ℝ𝑛 , we have K(𝑥) = M̃(𝑥,𝐺 (𝑥) − 𝐺 (𝑥)) while the convergence

𝐺 (𝑥) −𝐺 (𝑥) → 0 holds as 𝑥 → 𝑥 , validity of AM-regularity at 𝑥 yields that CCP holds at 𝑥 , too. On the
other hand, let CCP hold at 𝑥 . If {𝑥𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 as well as {�̃�𝑘 }𝑘∈ℕ ⊂ ℝ𝑝+𝑞 are sequences with
𝑥𝑘 → 𝑥 , 𝑥∗

𝑘
→ 𝑥∗ for some 𝑥∗ ∈ ℝ𝑛 , and �̃�𝑘 → 0 such that 𝑥∗

𝑘
∈ M̃(𝑥𝑘 , �̃�𝑘 ) holds for each 𝑘 ∈ ℕ, then
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we nd a sequence {�̃�𝑘 }𝑘∈ℕ ⊂ ℝ𝑝+𝑞 such that 𝑥∗
𝑘
=

∑𝑝+𝑞
𝑖=1 �̃�𝑘,𝑖∇𝐺𝑖 (𝑥𝑘 ) and min(�̃�𝑘,𝑖 , �̃�𝑘,𝑖 −𝐺𝑖 (𝑥𝑘 )) = 0,

𝑖 = 1, . . . , 𝑝 , are valid for all 𝑘 ∈ ℕ. Let 𝐼 (𝑥) := {𝑖 ∈ {1, . . . , 𝑝} |𝐺𝑖 (𝑥) = 0} denote the set of indices
associated with inequality constraints active at 𝑥 . For each 𝑘 ∈ ℕ, we have �̃�𝑘,𝑖 ≥ 0 for all 𝑖 ∈ {1, . . . , 𝑝}.
Whenever 𝑖 ∉ 𝐼 (𝑥) holds, �̃�𝑘,𝑖 −𝐺𝑖 (𝑥𝑘 ) > 0 is valid for suciently large 𝑘 ∈ ℕ due to 𝑥𝑘 → 𝑥 , �̃�𝑘 → 0,
and continuity of𝐺 . Thus, we have �̃�𝑘,𝑖 = 0 for suciently large 𝑘 ∈ ℕ and all 𝑖 ∉ 𝐼 (𝑥). This particularly
yields min(�̃�𝑘,𝑖 ,−𝐺𝑖 (𝑥)) = 0 for suciently large 𝑘 ∈ ℕ and all 𝑖 ∈ {1, . . . , 𝑝}. Hence, we have shown
𝑥∗
𝑘
∈ K(𝑥𝑘 ) for suciently large 𝑘 ∈ ℕ. By validity of CCP, 𝑥∗ ∈ K(𝑥) = M̃(𝑥, 0) follows, i.e., 𝑥 is

AM-regular.
The above investigations show that AM-regularity is equivalent to CCP in the setting of standard

nonlinear programming. Let us mention that CCP has also been referred to as AKKT-regularity in the
literature which is why the latter is a particular instance of AM-regularity as well.

In the subsequent remark, we address the situation where 𝐾 ⊂ ℝℓ is convex and 𝐺 is continuously
dierentiable.
Remark 5.2. Assume that 𝐾 ⊂ ℝℓ is convex while 𝐺 is continuously dierentiable. Adapting the proof
of [14, Proposition 3.3], whenever 𝑥 ∈ 𝑀 is a local minimizer of the associated problem (P) where Φ is
given as in (5.1), we nd sequences {𝑥𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 and {𝜀𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 such that 𝑥𝑘 → 𝑥 , 𝜀𝑘 → 0, and

∀𝑘 ∈ ℕ : 𝜀𝑘 ∈ 𝜕𝑓 (𝑥𝑘 ) +𝐺 ′(𝑥𝑘 )>(𝐾 −𝐺 (𝑥𝑘 ))◦ + N𝐶 (𝑥𝑘 )

hold. Note, however, that we cannot replace (𝐾 −𝐺 (𝑥𝑘 ))◦ by N𝐾 (𝐺 (𝑥𝑘 )) in the above formula since
𝐺 (𝑥𝑘 ) does not need to be an element of 𝐾 in general. Consequently, this sequential concept of
stationarity is slightly dierent from dAM-stationarity. However, it can be used in similar fashion
for the derivation of a constraint qualication which guarantees that 𝑥 satises the M-stationarity
conditions of the associated optimization problem, namely

lim sup
𝑥→𝑥

M̂(𝑥) ⊂ M̂(𝑥)

where M̂ : ℝ𝑛 ⇒ ℝ𝑛 is dened by

∀𝑥 ∈ ℝ𝑛 : M̂(𝑥) := 𝐺 ′(𝑥)>(𝐾 −𝐺 (𝑥))◦ + N𝐶 (𝑥),

see [14, Corollary 4.8] as well.

5.2 asymptotic regularity in disjunctive programming

In this section, we take a closer look at mathematical programs with disjunctive constraints which are
optimization problems of the form

(MPDC)
𝑓 (𝑥) → min
𝐺 (𝑥) ∈ 𝐾

where 𝑓 : ℝ𝑛 → ℝ and 𝐺 : ℝ𝑛 → ℝ𝑚 are continuously dierentiable mappings and 𝐾 :=
⋃𝑝

𝑖=1 𝐷𝑖
is the union of nitely many convex polyhedral sets 𝐷1, . . . , 𝐷𝑝 ⊂ ℝ𝑚 . Again, we denote its feasi-
ble set by 𝑀 . Such optimization problems have been dealt with e.g. in [10, 12, 17, 19, 30] in terms
of rst- and second-order optimality conditions as well as suitable constraint qualications. The
model (MPDC) is attractive since it covers numerous classes from structured nonlinear optimization
like mathematical programs with complementarity constraints (MPCCs), mathematical programs
with vanishing constraints (MPVCs), mathematical programs with switching constraints (MPSCs), or
cardinality-constrained mathematical problems (CCMPs), see [30, Section 5] for an overview of these
popular classes from disjunctive programming and references to the literature. Noting that (MPDC) is
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a particular instance of a mathematical program with geometric constraints, we are in position to apply
the theory from above to the problem of interest. Noting that no abstract constraints are present in the
formulation of (MPDC), we rely on AM-regularity as a constraint qualication for (P). The associated
mapping M : ℝ𝑛 ×ℝ𝑚 ⇒ ℝ𝑛 is given by

∀𝑥 ∈ ℝ𝑛 ∀𝑦 ∈ ℝ𝑚 : M(𝑥, 𝑦) = 𝐺 ′(𝑥)>N𝐾 (𝐺 (𝑥) − 𝑦)

in this setting.
Our rst result, which is inspired by our observations from Example 5.1, shows that we can rely on

the continuity properties of a much simpler map than M in order to check validity of AM-regularity.
The proof of this result exploits some arguments we already used to verify Theorem 3.10.
Theorem 5.3. Fix a feasible point 𝑥 ∈ 𝑀 of (MPDC) and dene a set-valued mapping K : ℝ𝑛 ⇒ ℝ𝑛 by
means of

∀𝑥 ∈ ℝ𝑛 : K(𝑥) := 𝐺 ′(𝑥)>N𝐾 (𝐺 (𝑥)) .

Then 𝑥 is AM-regular if and only if the following condition holds:

(5.3) lim sup
𝑥→𝑥

K(𝑥) ⊂ K(𝑥).

Proof. We show both implications separately.
[=⇒] Let 𝑥 be AM-regular. Then we have

lim sup
𝑥→𝑥

K(𝑥) = lim sup
𝑥→𝑥

M(𝑥,𝐺 (𝑥) −𝐺 (𝑥)) ⊂ lim sup
𝑥→𝑥, 𝑦→0

M(𝑥, 𝑦) ⊂ M(𝑥, 0) = K(𝑥)

by continuity of 𝐺 .
[⇐=] Assume that (5.3) holds. Furthermore, choose {𝑥𝑘 }𝑘∈ℕ, {𝑥∗𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 and {𝑦𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such
that 𝑥𝑘 → 𝑥 , 𝑥∗

𝑘
→ 𝑥∗ for some 𝑥∗ ∈ ℝ𝑛 , 𝑦𝑘 → 0, as well as 𝑥∗

𝑘
∈ 𝐺 ′(𝑥𝑘 )>N𝐾 (𝐺 (𝑥𝑘 ) − 𝑦𝑘 ) for all 𝑘 ∈ ℕ

hold. Then we nd a sequence {𝜆𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 such that 𝑥∗
𝑘
= 𝐺 ′(𝑥𝑘 )>𝜆𝑘 and 𝜆𝑘 ∈ N𝐾 (𝐺 (𝑥𝑘 ) − 𝑦𝑘 )

are valid for all 𝑘 ∈ ℕ. Exploiting that 𝐾 is the union of nitely many convex polyhedral sets, we
can use similar arguments as in the proof of Theorem 3.10 in order to nd a convex, polyhedral cone
𝑃 ⊂ ℝ𝑚 which satises 𝑃 ⊂ N𝐾 (𝐺 (𝑥𝑘 ) − 𝑦𝑘 ) and 𝜆𝑘 ∈ 𝑃 along a subsequence (without relabeling). The
robustness of the limiting normal cone yields 𝑃 ⊂ N𝐾 (𝐺 (𝑥)) due to 𝐺 (𝑥𝑘 ) − 𝑦𝑘 → 𝐺 (𝑥) as 𝑘 → ∞.
Thus, we have {𝜆𝑘 }𝑘∈ℕ ⊂ N𝐾 (𝐺 (𝑥)) and, consequently, 𝑥∗

𝑘
∈ K(𝑥𝑘 ) for all 𝑘 ∈ ℕ. By means of (5.3),

we nd 𝑥∗ ∈ K(𝑥) = M(𝑥, 0), i.e., 𝑥 is AM-regular. �

The following example points out that the assertion of Theorem 5.3 does not need to be true whenever
the set𝐾 is not disjunctive, i.e., in this setting, (5.3) does not provide a constraint qualication in general.

Example 5.4.We investigate the setting where 𝐺 : ℝ → ℝ2 is given by 𝐺 (𝑥) := (𝑥, 0) for all 𝑥 ∈ ℝ

and 𝐾 ⊂ ℝ2 is given by 𝐾 := {𝑦 ∈ ℝ2 | 𝑦2 ≥ 𝑦21 }. Obviously, 𝐾 is not of disjunctive structure. The
only feasible point of the associated constraint system 𝐺 (𝑥) ∈ 𝐾 is 𝑥 := 0. The mapping K from
Theorem 5.3 is given by K(𝑥) ≡ {0} in this situation which is why the condition (5.3) holds trivially.
On the other hand, one can check

∀𝑘 ∈ ℕ : M
( 1
𝑘
, (0,− 1

𝑘2
)
)
= ℝ+ M

(
− 1
𝑘
, (0,− 1

𝑘2
)
)
= ℝ−

and M(𝑥, (0, 0)) = {0}, i.e., 𝑥 is not AM-regular.
Let us mention that one could also check the validity of the constraint qualication from Remark 5.2
which applies to the present situation since 𝐾 is convex and𝐺 is continuously dierentiable. The latter,
however, is violated as well.
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In the literature on disjunctive programs, there exist two other weak constraint qualications which
we will recall below, see [17, Denition 6].
Definition 5.5. Fix a feasible point 𝑥 ∈ 𝑀 . We dene the linearization cone to𝑀 at 𝑥 as stated below:

L𝑀 (𝑥) := {𝑑 ∈ ℝ𝑛 |𝐺 ′(𝑥)𝑑 ∈ T𝐾 (𝐺 (𝑥))}.

We say that

(a) the generalized Abadie constraint qualication (GACQ) holds at the point 𝑥 whenever the relation
T𝑀 (𝑥) = L𝑀 (𝑥) is valid,

(b) the generalized Guignard constraint qualication (GGCQ) holds at the point 𝑥 whenever the
relation N̂𝑀 (𝑥) = L𝑀 (𝑥)◦ is valid.

Let us briey mention that the linearization cone introduced above is, by the special structure of 𝐾 ,
also polyhedral in the sense that it is the union of nitely many convex polyhedral cones. This is a
simple consequence of

T𝐾 (𝐺 (𝑥)) =
⋃
𝑖∈𝐽 (𝑥)

T𝐷𝑖
(𝐺 (𝑥))

where we used 𝐽 (𝑥) := {𝑖 ∈ {1, . . . , 𝑝} |𝐺 (𝑥) ∈ 𝐷𝑖} and 𝑥 ∈ 𝑀 , see [8, Table 4.1]. It has been shown
in [17, Theorem 7] that whenever 𝑥 ∈ 𝑀 is a local minimizer of (MPDC) where GGCQ holds, then 𝑥
is already an M-stationary point. As pointed out in [17], this result does not need to hold anymore
whenever continuous dierentiability of 𝑓 is replaced by local Lipschitz continuity.

Clearly, one could also dene GACQ and GGCQ in the situation where 𝐾 is a general closed
set. In this case, however, GGCQ on its own does not necessarily provide a constraint qualication
ensuring M-stationarity of local minimizers. As pointed out in [11, Proposition 3], some additional
metric subregularity of a linearized feasibility mapping is needed in this more general situation, see
[20] as well, and the latter is inherent whenever𝐾 is of disjunctive structure due to Robinson’s classical
result on the inherent calmness of polyhedral set-valued mappings.

Let us now focus on (MPDC) again. Let us x one of its feasible points 𝑥 ∈ 𝑀 . It is well known that
metric subregularity of the feasibility mapping Φ : ℝ𝑛 ⇒ ℝ𝑚 , given by Φ(𝑥) = 𝐺 (𝑥) −𝐾 for all 𝑥 ∈ ℝ𝑛

in the present situation, at (𝑥, 0) implies validity of GACQ which, in turn, implies validity of GGCQ,
see [17, formula (13)]. Noting that (MPDC) covers standard nonlinear problems while AM-regularity
coincides with CCP in this setting, see Example 5.1, the considerations from [5, Section 4.2] show that
validity of GACQ at 𝑥 is not sucient for AM-regularity of 𝑥 . In the following example, we show that
validity of AM-regularity does not need to imply validity of GGCQ.
Example 5.6. Let us consider the mapping𝐺 : ℝ → ℝ2 given by𝐺 (𝑥) := (𝑥, 𝑥3) for all 𝑥 ∈ ℝ as well as
the disjunctive set 𝐾 := 𝐷1 ∪ 𝐷2 where 𝐷1 := ℝ− × ℝ and 𝐷2 := ℝ+ × ℝ− hold. In this situation, we
have𝑀 = (−∞, 0]. Let us x 𝑥 := 0. One can easily check that T𝐾 (𝐺 (𝑥)) = 𝐾 holds. We conclude

L𝑀 (𝑥) = {𝑑 ∈ ℝ | (𝑑, 0) ∈ 𝐾} = ℝ,

and this shows that GACQ and GGCQ are violated at 𝑥 since we have T𝑀 (𝑥) = ℝ−. On the other hand,
we have

𝐺 ′(𝑥)>N𝐾 (𝐺 (𝑥)) = {𝜆1 + 3𝑥2𝜆2 | (𝜆1, 𝜆2) ∈ (ℝ+ × {0}) ∪ ({0} ×ℝ+)} = ℝ+

for each 𝑥 ∈ ℝ and, thus, due to Theorem 5.3, 𝑥 is AM-regular.
The above considerations show that AM-regularity for disjunctive programs is not related to the

constraint qualications GACQ and GGCQ. In the particular case of MPCCs, this already has been
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observed in [35, Section 4]. Due to the results of Section 5.1, AM-regularity is generally weaker than
NNAMCQ, i.e.,

𝐺 ′(𝑥)>𝜆 = 0, 𝜆 ∈ N𝐾 (𝐺 (𝑥)) =⇒ 𝜆 = 0,

and the later is, again, weaker than the problem-tailored version of the linear independence constraint
qualication discussed in [30].

5.3 variational calculus and asymptotic regularity

In this section, we are going to show how the concept of asymptotic regularity can be used to establish
some fundamental calculus rules for limiting normals and the limiting coderivative.

First, we show that asymptotic regularity may serve as a sucient condition for the validity of the
intersection rule for limiting normals.
Theorem 5.7. Let 𝐾,𝐶 ⊂ ℝ𝑛 be closed sets and x 𝑥 ∈ 𝐾 ∩𝐶 . Suppose that the qualication condition

(5.4) lim sup
𝑥→𝑥, 𝑥′→𝑥

(
N𝐾 (𝑥) + N𝐶 (𝑥 ′)

)
⊂ N𝐾 (𝑥) + N𝐶 (𝑥)

holds. Then we have
N𝐾∩𝐶 (𝑥) ⊂ N𝐾 (𝑥) + N𝐶 (𝑥) .

Proof. This result is a simple consequence of our considerations from Section 5.1 and Theorem 4.7
when xing 𝐺 : ℝ𝑛 → ℝ𝑛 to be the identity mapping. Indeed, validity of (5.4) is equivalent to the
validity of dAM-regularity for the constraint system𝑀 := 𝐾 ∩𝐶 . �

Following the structure of the books [31, 32], the intersection rule provides the fundamental basis of
the overall variational calculus. Classically, validity of the intersection rule at some point 𝑥 ∈ 𝐾 ∩𝐶 is
guaranteed by the so-called normal qualication condition

N𝐾 (𝑥) ∩ (−N𝐶 (𝑥)) = {0},

and the latter is equivalent to metric regularity of the mapping 𝑥 ⇒ (𝑥 − 𝐾) × (𝑥 −𝐶) at (𝑥, (0, 0)).
Following the arguments from Section 5.1, metric subregularity of this mapping at (𝑥, (0, 0)) is already
enough to guarantee validity of the intersection rule. Apart from these classical results, Theorem 5.7
shows that the intersection rule is also valid in the presence of the asymptotic stability condition (5.4)
which originates from the notion of asymptotic regularity. Keeping in mind our results from Section 3.2,
(5.4) is independent of the aforementioned metric subregularity condition and, thus, provides a new
approach to the variational calculus. Exemplary, we will show how the coderivative sum and chain
rule can be derived in the presence of asymptotic stability conditions.

Let us note that validity of (5.4) is equivalent to

lim sup
𝑥→𝑥, 𝑥′→𝑥

(
N̂𝐾 (𝑥) + N̂𝐶 (𝑥 ′)

)
⊂ N𝐾 (𝑥) + N𝐶 (𝑥)

by denition of the limiting normal cone. Thus, a direct proof of the intersection rule for limiting
normals under validity of (5.4) can be obtained from the fuzzy intersection rule for regular normals,
see [31, Lemma 3.1], and a simple diagonal sequence argument.

Next,wewill inspect how validity of the coderivative sum rule can be guaranteed under an asymptotic
stability condition. Let us mention that in [31, Theorem 3.10], [32, Theorem 3.9], or [38, Theorem 10.41],
the coderivative sum rule has been derived under validity of the Mordukhovich criterion. In order
to proceed, we x set-valued mappings 𝑆1, 𝑆2 : ℝ𝑛 ⇒ ℝ𝑚 with closed graphs and consider their sum
mapping 𝑆 : ℝ𝑛 ⇒ ℝ𝑚 given by

∀𝑥 ∈ ℝ𝑛 : 𝑆 (𝑥) := 𝑆1(𝑥) + 𝑆2(𝑥) .
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Furthermore, we make use of the intermediate mapping Ξ : ℝ𝑛 ×ℝ𝑚 ⇒ ℝ𝑚 ×ℝ𝑚 given by

(5.5) ∀𝑥 ∈ ℝ𝑛 ∀𝑦 ∈ ℝ𝑚 : Ξ(𝑥, 𝑦) := {(𝑦1, 𝑦2) ∈ ℝ𝑚 ×ℝ𝑚 | 𝑦1 + 𝑦2 = 𝑦, 𝑦1 ∈ 𝑆1(𝑥), 𝑦2 ∈ 𝑆2(𝑥)}.

Observe that we have domΞ = gph 𝑆 .
Theorem 5.8. Fix some point (𝑥, 𝑦) ∈ gph 𝑆 . Then the following assertions hold.

(a) Assume that there exists (𝑦1, 𝑦2) ∈ Ξ(𝑥, 𝑦) such that Ξ is inner semicontinuous at ((𝑥, 𝑦), (𝑦1, 𝑦2)).
Furthermore, let the qualication condition

(5.6)

lim sup
(𝑥1,𝑦1)→(𝑥,𝑦1)
(𝑥2,𝑦2)→(𝑥,𝑦2)
(𝑦∗1 ,𝑦∗2 )→(𝑦∗1 ,𝑦∗2 )

(
𝐷∗𝑆1(𝑥1, 𝑦1) (𝑦∗1 ) + 𝐷∗𝑆2(𝑥2, 𝑦2) (𝑦∗2)

)
⊂ 𝐷∗𝑆1(𝑥, 𝑦1) (𝑦∗1 ) + 𝐷∗𝑆2(𝑥, 𝑦2) (𝑦∗2)

hold for all 𝑦∗1 , 𝑦
∗
2 ∈ ℝ𝑚 . Then, for all 𝑦∗ ∈ ℝ𝑚 , we have

𝐷∗𝑆 (𝑥, 𝑦) (𝑦∗) ⊂ 𝐷∗𝑆1(𝑥, 𝑦1) (𝑦∗) + 𝐷∗𝑆2(𝑥, 𝑦2) (𝑦∗).

(b) Assume that Ξ is inner semicompact at (𝑥, 𝑦). Furthermore, let the qualication condition (5.6) hold
for each (𝑦1, 𝑦2) ∈ Ξ(𝑥, 𝑦) and all 𝑦∗1 , 𝑦∗2 ∈ ℝ𝑚 . Then, for all 𝑦∗ ∈ ℝ𝑚 , we have

𝐷∗𝑆 (𝑥, 𝑦) (𝑦∗) ⊂
⋃

(𝑦1,𝑦2) ∈Ξ(𝑥,𝑦)

(
𝐷∗𝑆1(𝑥, 𝑦1) (𝑦∗) + 𝐷∗𝑆2(𝑥, 𝑦2) (𝑦∗)

)
.

Proof. The proof essentially relies on the normal cone intersection rule from Theorem 5.7 and adapts
the arguments used to verify [31, Theorem 3.10].

(a) Fix 𝑥∗ ∈ 𝐷∗𝑆 (𝑥, 𝑦) (𝑦∗) for an arbitrarily chosen 𝑦∗ ∈ ℝ𝑚 . Mimicking the proof of [31, The-
orem 3.10(i)] and exploiting the postulated inner semicontinuity of Ξ, we nd the relation
(𝑥∗,−𝑦∗,−𝑦∗) ∈ NΩ1∩Ω2 (𝑥, 𝑦1, 𝑦2) where we used the closed sets Ω1,Ω2 ⊂ ℝ𝑛 ×ℝ𝑚 ×ℝ𝑚 given
by Ω𝑖 := {(𝑥, 𝑦1, 𝑦2) | 𝑦𝑖 ∈ 𝑆𝑖 (𝑥)}, 𝑖 = 1, 2.
Let us now show that (5.6) is sucient for the applicability of the normal cone intersection rule
from Theorem 5.7 for the estimation of NΩ1∩Ω2 (𝑥, 𝑦1, 𝑦2) from above. Therefore, we show that
(5.4) holds for the situation at hand. Choose sequences {𝑥∗

𝑘
}𝑘∈ℕ ⊂ ℝ𝑛 , {𝑦∗

𝑘,1}𝑘∈ℕ, {𝑦
∗
𝑘,2}𝑘∈ℕ ⊂ ℝ𝑚

as well as {𝑥𝑘,1}𝑘∈ℕ, {𝑥𝑘,2}𝑘∈ℕ ⊂ ℝ𝑛 and {𝑦1
𝑘,1}𝑘∈ℕ, {𝑦

1
𝑘,2}𝑘∈ℕ, {𝑦

2
𝑘,1}𝑘∈ℕ, {𝑦

2
𝑘,2}𝑘∈ℕ ⊂ ℝ𝑚 such

that 𝑥𝑘,1 → 𝑥 , 𝑥𝑘,2 → 𝑥 , 𝑦1
𝑘,1 → 𝑦1, 𝑦1𝑘,2 → 𝑦2, 𝑦2𝑘,1 → 𝑦1, 𝑦2𝑘,2 → 𝑦2, 𝑥∗𝑘 → 𝑥∗ for some 𝑥∗ ∈ ℝ𝑛 ,

𝑦∗
𝑘,1 → 𝑦∗1 as well as 𝑦

∗
𝑘,2 → 𝑦∗2 for some 𝑦∗1 , 𝑦

∗
2 ∈ ℝ𝑚 , and

(𝑥∗
𝑘
, 𝑦∗
𝑘,1, 𝑦

∗
𝑘,2) ∈ NΩ1 (𝑥𝑘,1, 𝑦1𝑘,1, 𝑦

1
𝑘,2) + NΩ2 (𝑥𝑘,2, 𝑦2𝑘,1, 𝑦

2
𝑘,2)

for all 𝑘 ∈ ℕ hold. By construction of Ω1 and Ω2, this guarantees the existence of sequences
{𝑥∗
𝑘,1}𝑘∈ℕ, {𝑥

∗
𝑘,2}𝑘∈ℕ ⊂ ℝ𝑛 such that 𝑥∗

𝑘
= 𝑥∗

𝑘,1 + 𝑥
∗
𝑘,2 as well as (𝑥∗

𝑘,𝑖
, 𝑦∗
𝑘,𝑖
) ∈ Ngph𝑆𝑖 (𝑥𝑘,𝑖 , 𝑦𝑖𝑘,𝑖),

𝑖 = 1, 2, for all 𝑘 ∈ ℕ hold. This leads to

∀𝑘 ∈ ℕ : 𝑥∗
𝑘
∈ 𝐷∗𝑆1(𝑥𝑘,1, 𝑦1𝑘,1) (−𝑦

∗
𝑘,1) + 𝐷

∗𝑆2(𝑥𝑘,2, 𝑦2𝑘,2) (−𝑦
∗
𝑘,2).

Due to validity of (5.6), we nd 𝑥∗ ∈ 𝐷∗𝑆1(𝑥, 𝑦1) (−𝑦∗1 ) + 𝐷∗𝑆2(𝑥, 𝑦2) (−𝑦∗2), i.e., there are points
𝑥∗1 , 𝑥

∗
2 ∈ ℝ𝑛 with (𝑥∗𝑖 , 𝑦∗𝑖 ) ∈ Ngph𝑆𝑖 (𝑥, 𝑦𝑖), 𝑖 = 1, 2, and 𝑥∗ = 𝑥∗1 + 𝑥∗2 . Particularly, we have

(𝑥∗, 𝑦∗1 , 𝑦∗2) ∈ NΩ1 (𝑥, 𝑦1, 𝑦2) + NΩ2 (𝑥, 𝑦1, 𝑦2).

Due to the above considerations, we can apply Theorem 5.7 in order to obtain

(𝑥∗,−𝑦∗,−𝑦∗) ∈ NΩ1 (𝑥, 𝑦1, 𝑦2) + NΩ2 (𝑥, 𝑦1, 𝑦2).

Now, the claim follows by denition of the sets Ω1 and Ω2, cf. [31, proof of Theorem 3.10].
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(b) Fixing 𝑥∗ ∈ 𝐷∗𝑆 (𝑥, 𝑦) (𝑦∗) for an arbitrarily chosen 𝑦∗ ∈ ℝ𝑚 , the inner semicompactness of Ξ
at (𝑥, 𝑦) can be used to obtain

(𝑥∗,−𝑦∗,−𝑦∗) ∈
⋃

(𝑦1,𝑦2) ∈Ξ(𝑥,𝑦)
NΩ1∩Ω2 (𝑥, 𝑦1, 𝑦2),

see [31, proof of Theorem 3.10(ii)] as well. Proceeding as in the proof of (a), the claim follows.

�

Finally, we would like to take a look at the coderivative chain rule. Therefore, let us consider set-
valued mappings 𝑇1 : ℝ𝑛 ⇒ ℝ𝑚 and 𝑇2 : ℝ𝑚 ⇒ ℝℓ with closed graphs as well as their composition
𝑇 : ℝ𝑛 ⇒ ℝℓ given by

∀𝑥 ∈ ℝ𝑛 : 𝑇 (𝑥) :=
⋃

𝑦∈𝑇1 (𝑥)
𝑇2(𝑦) .

Again, we will make use of an intermediate mapping Θ : ℝ𝑛 ×ℝℓ ⇒ ℝ𝑚 which is given as stated below:

∀𝑥 ∈ ℝ𝑛 ∀𝑧 ∈ ℝℓ : Θ(𝑥, 𝑧) := {𝑦 ∈ 𝑇1(𝑥) | 𝑧 ∈ 𝑇2(𝑦)}.

Oncemore,we note that gph𝑇 = domΘ is valid. Similar as in [31,Theorem 3.13] or [32,Theorem 3.11],we
will derive the coderivative chain rule from the coderivative sum rule. Exploiting Theorem 5.8 for that
purpose, we will see that validity of the chain rule can be guaranteed in the presence of an asymptotic
stability condition. In [31, 32] or [38, Theorem 10.37], a condition related to the Mordukhovich criterion
has been imposed for that purpose.
Theorem 5.9. Fix some point (𝑥, 𝑧) ∈ gph𝑇 . Then the following assertions hold.

(a) Assume that there exists 𝑦 ∈ Θ(𝑥, 𝑧) such thatΘ is inner semicontinuous at ((𝑥, 𝑧), 𝑦). Furthermore,
let the qualication condition

(5.7)

lim sup
(𝑥,𝑦1)→(𝑥,𝑦)
(𝑦2,𝑧)→(𝑦,𝑧)

(𝑥∗,𝑧∗)→(𝑥∗,𝑧∗)

(
𝐷∗𝑇2(𝑦2, 𝑧) (𝑧∗) − (𝐷∗𝑇1(𝑥, 𝑦1))−1(𝑥∗)

)
⊂ 𝐷∗𝑇2(𝑦, 𝑧) (𝑧∗) − (𝐷∗𝑇1(𝑥, 𝑦))−1(𝑥∗)

hold for each 𝑥∗ ∈ ℝ𝑛 and 𝑧∗ ∈ ℝℓ . Then, for each 𝑧∗ ∈ ℝℓ , we have

𝐷∗𝑇 (𝑥, 𝑧) (𝑧∗) ⊂
⋃

𝑦∗∈𝐷∗𝑇2 (𝑦,𝑧) (𝑧∗)
𝐷∗𝑇1(𝑥, 𝑦) (𝑦∗) .

(b) Assume that Θ is inner semicompact at (𝑥, 𝑧). Furthermore, let the qualication condition (5.7) hold
for each 𝑦 ∈ Θ(𝑥, 𝑧), 𝑥∗ ∈ ℝ𝑛 , and 𝑧∗ ∈ ℝℓ . Then, for each 𝑧∗ ∈ ℝℓ , we have

𝐷∗𝑇 (𝑥, 𝑧) (𝑧∗) ⊂
⋃

𝑦∈Θ(𝑥,𝑧)

⋃
𝑦∗∈𝐷∗𝑇2 (𝑦,𝑧) (𝑧∗)

𝐷∗𝑇1(𝑥, 𝑦) (𝑦∗).

Proof. We only show validity of statement (a). Assertion (b) can be obtained in analogous way. For
the proof of (a), we exploit the idea from [31, proof of Theorem 3.13] and consider the mapping
𝑆 : ℝ𝑛 ×ℝ𝑚 ⇒ ℝℓ given by

∀𝑥 ∈ ℝ𝑛 ∀𝑦 ∈ ℝ𝑚 : 𝑆 (𝑥, 𝑦) := Δgph𝑇1 (𝑥, 𝑦) +𝑇2(𝑦).
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Then [31, Theorem 1.64] yields

(5.8) 𝐷∗𝑇 (𝑥, 𝑧) (𝑧∗) ⊂ {𝑥∗ ∈ ℝ𝑛 | (𝑥∗, 0) ∈ 𝐷∗𝑆 ((𝑥, 𝑦), 𝑧) (𝑧∗)}

for all 𝑧∗ ∈ ℝℓ since Θ is inner semicontinuous at ((𝑥, 𝑧), 𝑦).
In order to estimate the coderivative of 𝑆 from above, we make use of Theorem 5.8. Therefore, we

introduce 𝑆1, 𝑆2 : ℝ𝑛 ×ℝ𝑚 ⇒ ℝℓ by means of

∀𝑥 ∈ ℝ𝑛 ∀𝑦 ∈ ℝ𝑚 : 𝑆1(𝑥, 𝑦) := Δgph𝑇1 (𝑥, 𝑦) 𝑆2(𝑥, 𝑦) := 𝑇2(𝑦) .

Next, we show that (5.6) holds in the present setting. Therefore, we make use of the formulas

𝐷∗𝑆1((𝑥, 𝑦), 𝑧) (𝑧∗) =
{
Ngph𝑇1 (𝑥, 𝑦) 𝑧 = 0
∅ 𝑧 ≠ 0

𝐷∗𝑆2((𝑥, 𝑦), 𝑧) (𝑧∗) = {0} × 𝐷∗𝑇2(𝑦, 𝑧) (𝑧∗)

which, by elementary calculations, hold for all 𝑥 ∈ ℝ𝑛 , 𝑦 ∈ ℝ𝑚 , and 𝑧, 𝑧∗ ∈ ℝℓ . In order to infer validity
of (5.6), we thus need to verify validity of

(5.9)

lim sup
(𝑥,𝑦1)→(𝑥,𝑦)
(𝑦2,𝑧)→(𝑦,𝑧)

𝑧∗→𝑧∗

(
Ngph𝑇1 (𝑥, 𝑦1) + {0} × 𝐷∗𝑇2(𝑦2, 𝑧) (𝑧∗)

)
⊂ Ngph𝑇1 (𝑥, 𝑦) + {0} × 𝐷∗𝑇2(𝑦, 𝑧) (𝑧∗)

for all 𝑧∗ ∈ ℝℓ . Thus, for some point 𝑧∗ ∈ ℝℓ , we x sequences {𝑥𝑘 }𝑘∈ℕ ⊂ ℝ𝑛 , {𝑦1
𝑘
}𝑘∈ℕ, {𝑦2𝑘 }𝑘∈ℕ ⊂ ℝ𝑚 ,

{𝑧𝑘 }𝑘∈ℕ, {𝑧∗𝑘 }𝑘∈ℕ ⊂ ℝℓ , as well as {𝑥∗
𝑘
}𝑘∈ℕ ⊂ ℝ𝑛 and {𝑦∗

𝑘
}𝑘∈ℕ ⊂ ℝ𝑚 such that 𝑥𝑘 → 𝑥 , 𝑦1

𝑘
→ 𝑦 ,

𝑦2
𝑘
→ 𝑦 , 𝑧𝑘 → 𝑧, 𝑧∗

𝑘
→ 𝑧∗, 𝑥∗

𝑘
→ 𝑥∗ and 𝑦∗

𝑘
→ 𝑦∗ for some 𝑥∗ ∈ ℝ𝑛 and 𝑦∗ ∈ ℝ𝑚 , as well as

(𝑥∗
𝑘
, 𝑦∗
𝑘
) ∈ Ngph𝑇1 (𝑥𝑘 , 𝑦1𝑘 ) + {0} × 𝐷∗𝑇2(𝑦2𝑘 , 𝑧𝑘 ) (𝑧

∗
𝑘
)

for all 𝑘 ∈ ℕ hold. Keeping the denitions of the coderivative and the inverse mapping in mind, we
nd

∀𝑘 ∈ ℕ : 𝑦∗
𝑘
∈ 𝐷∗𝑇2(𝑦2𝑘 , 𝑧𝑘 ) (𝑧

∗
𝑘
) − (𝐷∗𝑇1(𝑥𝑘 , 𝑦1𝑘 ))

−1(𝑥∗
𝑘
) .

Inspecting (5.7), we obtain

𝑦∗ ∈ 𝐷∗𝑇2(𝑦, 𝑧) (𝑧∗) − (𝐷∗𝑇1(𝑥, 𝑦))−1(𝑥∗),

i.e., (𝑥∗, 𝑦∗) ∈ Ngph𝑇1 (𝑥, 𝑦) + {0} × 𝐷∗𝑇1(𝑥, 𝑦) (𝑧∗). This shows validity of (5.9). Observing that the
intermediate mapping Ξ from (5.5) is given by

∀𝑥 ∈ ℝ𝑛 ∀𝑦 ∈ ℝ𝑚 ∀𝑧 ∈ ℝℓ : Ξ(𝑥, 𝑦, 𝑧) = {(0, 𝑧) | 𝑦 ∈ 𝑇1(𝑥), 𝑧 ∈ 𝑇2(𝑦)}

=

{
{(0, 𝑧)} ((𝑥, 𝑧), 𝑦) ∈ gphΘ
∅ otherwise

in this situation and, thus, is trivially inner semicontinuous at ((𝑥, 𝑦, 𝑧), (0, 𝑧)) by inner semicontinuity
of Θ at ((𝑥, 𝑧), 𝑦), we can apply assertion (a) of Theorem 5.8 in order to nd

𝐷∗𝑆 ((𝑥, 𝑦), 𝑧) (𝑧∗) ⊂ Ngph𝑇1 (𝑥, 𝑦) + {0} × 𝐷∗𝑇2(𝑦, 𝑧) (𝑧∗) .

Due to (5.8), the desired estimate is obtained. �
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6 conclusions

In this paper, we introduced a new sequential constraint qualication, namely AM-regularity, for
nonsmooth optimization problems. This concept has been shown to be generally weaker than metric
regularity of the associated feasibility mapping while it is not related to metric subregularity of the
latter. AM-regularity turned out to be a condition which is sucient for the validity of the pre-image
rule from the limiting variational calculus.

We claried how abstract constraints can be incorporated into the framework of AM-regularity and
presented some associated consequences for optimization problems with geometric constraints. Our
ndings were applied to mathematical programs with disjunctive constraints as well. This revealed that
AM-regularity is a generalization of the cone-continuity property (also referred to as AKKT-regularity)
for standard nonlinear problems and mathematical programs with complementarity constraints, see
[5, 35]. Keeping e.g. [1, 4, 14, 35] in mind, constraint qualications of AM-regularity-type can be used to
ensure convergence of dierent types of solution algorithms like augmented Lagrangian or relaxation
methods to stationary points of several classes of optimization problems. It is a promising subject of
future research to investigate more general algorithmic consequences of AM-regularity.
We nalized the paper by showing that asymptotic regularity provides a new approach to the

limiting variational calculus. It remains to be seen whether the resulting new asymptotic stability
conditions which ensure validity of the normal cone intersection rule, the coderivative sum rule, or the
coderivative chain rule can be used protably in the context of variational analysis. Following ideas
from [13, 18], it might be possible to introduce a reasonable concept of directional AM-regularity. Such a
concept may provide qualication conditions for optimization problems of type (P) and the directional
limiting variation calculus which are even weaker than the criteria inferred from AM-regularity.
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