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a penalty barrier framework
for nonconvex constrained optimization

Alberto De Marchi∗ Andreas Themelis†

Abstract We consider minimization problems with structured objective function and smooth

constraints, and present a flexible framework that combines the beneficial regularization effects of

(exact) penalty and interior-point methods. In the fully nonconvex setting, a pure barrier approach

requires careful steps when approaching the infeasible set, thus hindering convergence. We show

how a tight integration with a penalty scheme mitigates this issue and enables the construction

of subproblems whose domain is independent of the explicit constraints. This decoupling allows

us to leverage efficient solvers designed for unconstrained or suitably structured optimization

tasks. The key behind all this is a marginalization step: closely related to a conjugacy operation,

this step effectively merges (exact) penalty and barrier into a smooth, full domain functional

object. When the penalty exactness takes effect, the generated subproblems do not suffer the

ill-conditioning typical of barrier methods, nor do they exhibit the nonsmoothness of exact penalty

terms. We provide a theoretical characterization of the algorithm and its asymptotic properties,

deriving convergence results for fully nonconvex problems. Stronger conclusions are available

for the convex setting, where optimality can be guaranteed. Illustrative examples and numerical

simulations demonstrate the wide range of problems our theory and algorithm are able to cover.

Keywords Nonsmooth nonconvex optimization, exact penalty methods, interior point methods,

proximal algorithms
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1 introduction

We are interested in developing numerical methods for constrained optimization problems of the form

(P) minimize

𝒙∈�𝑛
𝑞(𝒙) subject to 𝒄 (𝒙) ≤ 0, 𝒄eq(𝒙) = 0,

where 𝒙 is the decision variable and 𝑞, 𝒄 and 𝒄eq are problem functions. (Throughout, we stick to

the convention of bold-facing vector variables and vector-valued functions, so that 0 indicates the

zero vector of suitable size and similarly 1 is the vector with all entries equal to one.) Henceforth we

consider (P) under the following standing assumptions.
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Assumption 1. The following hold in problem (P):

a1 𝑞 : �𝑛 → � is proper and lower semicontinuous (lsc).

a2 𝒄 : �𝑛 → �𝑚 and 𝒄eq : �𝑛 → �𝑚eq
are continuously differentiable.

a3 The problem is well posed: 𝑞★ B inf{𝒙 |𝒄 (𝒙 )≤0, 𝒄eq (𝒙 )=0} 𝑞(𝒙) is finite.

Notice that no differentiability requirements are imposed on the cost 𝑞, nor convexity on any term

in the formulation (hence the connotation of fully nonconvex). This modeling flexibility allows one to

include simple constraints directly in 𝑞, forcing all generated iterates to honor them, as an alternative

to explicit constraints in the format 𝒄 (𝒙) ≤ 0, 𝒄eq(𝒙) = 0, which may be violated along the iterates. We

remark that our framework allows for (and is robust to) equality constraints 𝒄eq(𝒙) = 0 to be expressed
as two-sided inequalities 𝒄eq(𝒙) ≤ 0 and −𝒄eq(𝒙) ≤ 0, despite the lack of constraint qualifications

and in contrast to purely interior-point schemes, though a dedicated treatment of equalities yields an

advantage in terms of algorithmic performance.

The primary objective of this paper is to devise an abstract algorithmic framework in the generality

of this setting. The methodology requires an oracle for solving, up to approximate local optimality,

minimization instances of the sum of 𝑞 with a differentiable term. In practice, some structure is

required in the cost function 𝑞 to efficiently address these subproblems. The general setting of (P)

under Assumption 1 is considered without significantly weakening the convergence guarantees with

respect to, say, assuming 𝑞 smooth. Nevertheless, some stronger results are established under additional

assumptions, such as locally Lipschitz continuity of the cost 𝑞 or convexity of (P). In our numerical

experiments we will invoke off-the-shelf routines based on proximal gradient iterations, thereby

restricting our attention to problem instances in which 𝑞 is structured as 𝑞 = 𝑓 + 𝑔 for a differentiable
function 𝑓 and a function 𝑔 that enjoys an easily computable proximal map. Most nonsmooth functions

widely used in practice comply with all these requirements. For instance, 𝑔 can include indicators of

any nonempty and closed set, and thus enforce arbitrary closed constraints that are easy to project

onto. This modeling flexibility extends beyond the handling of constraints. While nonsmooth functions

commonly encountered in practice can often be reformulated into smooth equivalents using slack

variables and additional constraints, such reformulations typically come at the cost of introducing

auxiliary variables and complicating the problem structure, penalizing algorithmic efficiency. By

allowing nonsmooth terms to appear directly in the objective, our framework eliminates the need for

such artificial constructs.

A particularly illustrative example is the so-called 𝐿0
-(pseudo)norm penalty (number of nonzero

entries) ∥𝒙 ∥0 for 𝒙 ∈ �𝑛 . As shown in [3, Lem. 3.1], this function can be represented as the linear
program

(1.1) ∥𝒙 ∥0 = min

𝒖∈�𝑛
∥𝒖∥1 subject to − 1 ≤ 𝒖 ≤ 1, ⟨𝒖, 𝒙⟩ = ∥𝒙 ∥1,

(more generally, matrix rank can also be cast in a similar fashion). In turn, nonsmoothness of each of

the 𝐿1
-norms can be resolved via the introduction of 𝑛 slack variables and 2𝑛 inequality constraints,

leading to a substantial increase in both problem size and constraint count. In contrast, our approach

accommodates nonsmooth terms such as the 𝐿0
-norm directly in the objective, avoiding any such

inflation. The computational advantages of this modeling flexibility are also evident from the numerical

experiments presented in Section 5.3.

Motivations and related work The class of problems (P) with structured cost 𝑞 has been recently

studied in [5] and [13], respectively, for the fully convex and nonconvex setting, developing methods

that bear strong convergence guarantees under some restrictive assumptions. Above all, building on a
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pure barrier approach, these methods demand a feasible set with nonempty interior, thus excluding

problems with equality constraints. Although restricted to simple bounds, a similar interior-point

technique is investigated in [18] and manifests analogous pros and cons. In contrast to these works,

we intend to address equality constraints as well. An augmented Lagrangian scheme for constrained

structured problems was developed in [11], which also allows the specification of constraints in a

function-in-set format.

Constrained structured programs (P) are also closely related to the template of structured composite
optimization

minimize

𝒙∈�𝑛
𝑞(𝒙) + ℎ(𝒄 (𝒙))

with ℎ : �𝑚 → �. By introducing additional variables, composite problems can be rewritten in

(equality) constrained form recovering the class of problems (P), with a one-to-one relationship between

(local and global) solutions and stationary points [11, Lem. 3.1]. The recent literature on structured

composite optimization includes [24], only for convex ℎ, and [16, 10] for fully nonconvex problems,

and concentrates almost exclusively on the augmented Lagrangian framework. Relying essentially on

a penalty approach, in contrast to a barrier, the algorithmic characterization in [11] involved weaker

assumptions and yet retrieved standard convergence results in constrained nonconvex optimization.

However, the dependency on dual estimates makes methods of this family sensitive to the initialization

of Lagrange multipliers. Moreover, they require some safeguards to ensure convergence from arbitrary

starting points [4, 6]. In contrast, thanks to their ‘primal’ nature and inherent regularizing effect,

penalty-barrier techniques can conveniently cope with degenerate problems.

The idea of adopting and merging penalty and barrier approaches, in a variety of possible flavors and

combinations, is certainly not new, tracing back at least to [15]. Among several recent concretizations

of this avenue, we refer to Curtis’ work [8] for a comprehensive discussion and further references.

Our motivation for developing this technique for constrained structured problems stems from insights

gained during the design of the interior point scheme IPprox [13]. The key observation therein is

that, with a pure barrier approach, the arising subproblems have a smooth term without full domain.

This nonstandard situation, together with a nonconvex and possibly extended-real-valued cost 𝑞 and

nonlinear constraints 𝒄 (𝒙) ≤ 0, significantly restricts the range of subsolvers that can be employed. As

a result, one cannot fully exploit more efficient optimization routines that would otherwise be suitable

in an unconstrained or more structured setting.

In the broad setting of (P) under Assumption 1, a blind application of penalty-barrier strategies in

the spirit of [8] would bear no advantages, since the inconvenience in IPprox of a restricted domain

would persist, hindering again the practical performance. In this paper we propose and investigate in

detail a simple technique to overcome this limitation. The crucial step consists in the marginalization
of auxiliary variables: after applying some penalty and barrier modifications, the auxiliary variables are

optimized pointwise, for any given decision variable 𝒙 .1 Before proceeding with the technical content,

we emphasize that the marginalization step not only reduces the subproblems’ size (recovering that of

the original decision variable 𝒙 only), but it also—and especially—results in a smooth penalty term for

the subproblems that has always full domain. The emergence of this penalty-barrier envelope enables

the adoption of generic (efficient) subsolvers, as well as tailored routines that exploit the problem’s

original structure. This claim will be substantiated in Section 3.2, where we show that properties

such as convexity and Lipschitz differentiability, whenever present, are preserved in the transformed

problems.

1
This approach can be interpreted as a drastic version of the so-called magical steps [7, 4], or slack reset in [8], and was

inspired by the proximal approaches in [14, 10].
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2 preliminaries

In this section we comment on useful notation and preliminary results before discussing optimality

notions to characterize solutions of (P).

2.1 notation and known facts

With � and � B � ∪ {±∞} we denote the real and extended-real line, respectively, and with �+ B
[0,∞) and �− B (−∞, 0] the set of nonnegative and nonpositive real numbers, respectively. The

positive and negative parts of a number 𝑟 ∈ � are respectively denoted as [𝑟 ]+ B max {0, 𝑟 } and
[𝑟 ]− B max {0,−𝑟 }, so that 𝑟 = [𝑟 ]+ − [𝑟 ]− and |𝑟 | = [𝑟 ]+ + [𝑟 ]− . We stick to the convention of

bold-facing vector variables and vector-valued functions, and use 0 to denote the zero vector of suitable
size and similarly 1 for the vector with all entries equal to one. When applying unary operators to a

vector 𝒓 , such as |𝒓 | or [𝒓]+, the operation is meant elementwise.

The notation 𝑇 : �𝑛 ⇒ �𝑚 indicates a set-valued mapping 𝑇 that maps any 𝒙 ∈ �𝑛 to a (possibly

empty) subset 𝑇 (𝒙) of �𝑚 . Its (effective) domain and graph are the sets dom𝑇 B {𝒙 ∈ �𝑛 | 𝑇 (𝒙) ≠ ∅}
and gph𝑇 B {(𝒙, 𝒚) ∈ �𝑛 ×�𝑚 | 𝒚 ∈ 𝑇 (𝒙)}. 𝑇 is said to be outer semicontinuous (osc) if its graph
is a closed subset of �𝑛 ×�𝑚 . Algebraic operations with or among set-valued mappings are meant

in a componentwise sense; for instance, the sum of 𝑇1,𝑇2 : �𝑛 ⇒ �𝑚 is defined as (𝑇1 + 𝑇2) (𝒙) B{
𝒚 1 + 𝒚2 | (𝒚 1, 𝒚2) ∈ 𝑇1(𝒙) ×𝑇2(𝒙)

}
for all 𝒙 ∈ �𝑛 .

The distance from a nonempty set 𝐸 ⊆ �𝑛 dist𝐸 : �𝑛 → [0,∞) is dist𝐸 (𝒙) B inf𝒚∈𝐸 ∥𝒚 − 𝒙 ∥.
With 𝛿𝐸 : �𝑛 → � we denote the indicator function of 𝐸, namely such that 𝛿𝐸 (𝒙) = 0 if 𝒙 ∈ 𝐸

and ∞ otherwise. For an extended-real-valued function ℎ : �𝑛 → �, the (effective) domain, graph,
and epigraph are given by domℎ B {𝒙 ∈ �𝑛 | ℎ(𝒙) < ∞}, gphℎ B {(𝒙, ℎ(𝒙)) | 𝒙 ∈ domℎ}, and
epiℎ B {(𝒙, 𝛼) ∈ �𝑛 ×� | 𝛼 ≥ ℎ(𝒙)}. We say that ℎ is proper if domℎ ≠ ∅ and ℎ > −∞, and lower
semicontinuous (lsc) if ℎ(𝒙̄) ≤ lim inf𝒙→𝒙̄ ℎ(𝒙) for all 𝒙̄ ∈ �𝑛 or, equivalently, if epiℎ is a closed subset

of �𝑛+1
. Following [25, Def. 8.3], we denote by 𝜕ℎ : �𝑛 ⇒ �𝑛 the regular subdifferential of ℎ, where

𝒗 ∈ 𝜕ℎ(𝒙̄)
(def)
⇔ lim inf

𝒙→𝒙̄
𝒙 ≠ 𝒙̄

ℎ(𝒙) − ℎ(𝒙̄) − ⟨𝒗, 𝒙 − 𝒙̄⟩
∥𝒙 − 𝒙̄ ∥ ≥ 0.

The (limiting, or Mordukhovich) subdifferential of ℎ is 𝜕ℎ : �𝑛 ⇒ �𝑛 , where 𝒗 ∈ 𝜕ℎ(𝒙̄) if and only if

𝒙̄ ∈ domℎ and there exists a sequence (𝒙𝑘 , 𝒗𝑘 )
𝑘∈� in gph 𝜕ℎ such that (𝒙𝑘 , 𝒗𝑘 , ℎ(𝒙𝑘 )) → (𝒙̄, 𝒗, ℎ(𝒙̄)).

In particular, 𝜕ℎ(𝒙) ⊆ 𝜕ℎ(𝒙) holds at any 𝒙 ∈ �𝑛 ; moreover, 0 ∈ 𝜕ℎ(𝒙) is a necessary condition for local
minimality ofℎ at 𝒙 [25, Thm. 10.1]. The subdifferential ofℎ at 𝒙̄ satisfies 𝜕(ℎ+ℎ0) (𝒙̄) = 𝜕ℎ(𝒙̄) +∇ℎ0(𝒙̄)
for any ℎ0 : �𝑛 → � continuously differentiable around 𝒙̄ [25, Ex. 8.8]. If ℎ is convex, then 𝜕ℎ = 𝜕ℎ

coincide with the convex subdifferential

�
𝑛 ∋ 𝒙̄ ↦→ {𝒗 ∈ �𝑛 | ℎ(𝒙) − ℎ(𝒙̄) − ⟨𝒗, 𝒙 − 𝒙̄⟩ ≥ 0 ∀𝒙 ∈ �𝑛}.

For a convex set 𝐶 ⊆ �𝑚 and a point 𝒙 ∈ 𝐶 one has that 𝜕 𝛿𝐶 (𝒙) = N𝐶 (𝒙), where

N𝐶 (𝒙) B {𝒗 ∈ �𝑛 | ⟨𝒗, 𝒙′ − 𝒙⟩ ≤ 0 ∀𝒙′ ∈ 𝐶}

denotes the normal cone of 𝐶 at 𝒙 , while N𝐶 (𝒙) = ∅ for 𝒙 ∉ 𝐶 .

We use the symbol J𝑭 : �𝑛 → �𝑚×𝑛
to indicate the Jacobian of a differentiable mapping 𝑭 : �𝑛 →

�𝑚 , namely J𝑭 (𝒙̄)𝑖, 𝑗 = 𝜕𝐹𝑖
𝜕𝑥 𝑗

(𝒙̄) for all 𝒙̄ ∈ �𝑚 . For a real-valued function ℎ, we instead use the gradient
notation ∇ℎ B Jℎ⊤ to indicate the column vector of its partial derivatives. Finally, we remind that

the convex conjugate of a proper lsc convex function 𝑏 : � → � is the proper lsc convex function

𝑏∗ : � → � defined as 𝑏∗(𝜏) B sup𝑡 ∈� {𝜏𝑡 − 𝑏 (𝑡)}, and that one then has 𝜏 ∈ 𝜕𝑏 (𝑡) if and only if

𝑡 ∈ 𝜕𝑏∗(𝜏).
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2.2 stationarity concepts

This subsection summarizes well-known standard local optimality measures which were adopted in

the proximal interior point framework of [13], and which will be further developed in the following

Section 3 into conditions tailored to the setting of this paper. The interested reader is referred to [13,

§2] for a verbose introduction and to [4, §3] for a detailed treatise. We start with the usual notion of

(approximate) stationarity for general minimization problems of an extended-real-valued function.

Definition 2.1 (stationarity). Relative to the problem minimize𝒙∈�𝑛 𝜑 (𝒙) for a function 𝜑 : �𝑛 → �, a
point 𝒙̄ ∈ �𝑛 is called

(i) stationary if it satisfies 0 ∈ 𝜕𝜑 (𝒙̄);

(ii) 𝜀-stationary (with 𝜀 > 0) if it satisfies dist𝜕𝜑 (𝒙̄ ) (0) ≤ 𝜀.

A standard optimality notion that reflects the constrained structure of (P) is given by the Karush-

Kuhn-Tucker (KKT) conditions.

Definition 2.2 (KKT optimality). Relative to problem (P), we say that 𝒙̄ ∈ �𝑛 is KKT-optimal if there
exist 𝒚̄ ∈ �𝑚 and 𝒚̄

eq
∈ �𝑚eq

such that

(KKT)


− J𝒄 (𝒙̄)⊤𝒚̄ − J𝒄eq(𝒙̄)⊤𝒚̄eq

∈ 𝜕𝑞(𝒙̄)
𝒄 (𝒙̄) ≤ 0 and 𝒄eq(𝒙̄) = 0
𝒚̄ ≥ 0
𝑦𝑖𝑐𝑖 (𝒙̄) = 0 𝑖 = 1, . . . ,𝑚.

In such case, we say that (𝒙̄, 𝒚̄, 𝒚̄
eq
) ∈ �𝑛 ×�𝑚 ×�𝑚eq

is a KKT-optimal triplet for (P).

Even for convex problems, unless suitable constraint and epigraphical qualifications are met, local

minimizers may fail to be KKT-optimal. Necessary conditions in the generality of problem (P) are

provided by the following asymptotic counterpart.
2

Definition 2.3 (A-KKT optimality). Relative to problem (P), we say that 𝒙̄ ∈ �𝑛 is asymptotically KKT-
optimal if 𝒙̄ ∈ dom𝑞 and there exist sequences (𝒙𝑘 )

𝑘∈� → 𝒙̄ , (𝒚𝑘 )
𝑘∈� ⊂ �𝑚 and (𝒚𝑘

eq
)
𝑘∈� ⊂ �𝑚eq

such that

(A-KKT)


dist𝜕𝑞 (𝒙𝑘 )

(
− J𝒄 (𝒙𝑘 )⊤𝒚𝑘 − J𝒄eq(𝒙𝑘 )⊤𝒚𝑘eq

)
→ 0

[𝒄 (𝒙𝑘 )]+ → 0 and 𝒄eq(𝒙𝑘 ) → 0
𝒚𝑘 ≥ 0
𝑦𝑘𝑖 𝑐𝑖 (𝒙̄) = 0 𝑖 = 1, . . . ,𝑚.

The requirement 𝒙̄ ∈ dom𝑞, while superfluous in the original [4, Def. 3.1], is a necessary technicality

to cope with possible nonclosedness of dom𝑞 in the generality of Assumption 1. Taking the uncon-

strained minimization of 𝑞(𝑥) = 1

|𝑥 | + sin
1

𝑥
as an example, this requirements prevents 𝑥 = 0 ∉ dom𝑞

to be considered A-KKT-optimal despite the fact that 𝑥𝑘 = 1

(2𝑘+1)𝜋 → 𝑥 constitutes a valid sequence in

the definition (having dist𝜕𝑞 (𝑥𝑘 ) (0) = 0 for all 𝑘).

Proposition 2.4 ([4, Thm. 3.1], [11, Prop. 2.5]). Any local minimizer for (P) is A-KKT-optimal.

For the sake of designing suitable algorithmic stopping criteria, we also define an approximate

variant which provides a further weaker notion of optimality.

2
This definition is inspired by [4, Def. 3.1], where the ‘A’ in A-KKT is short for ‘approximate’. We however find ‘asymptotic’

more fit to emphasize its dependency on sequences, and reserve the ‘approximate’ label to characterize points satisfying

KKT optimality up to some tolerance as in Definition 2.5.
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Definition 2.5 (𝝐-KKT optimality). Relative to problem (P), for 𝝐 = (𝜖p, 𝜖d) > (0, 0) we say that 𝒙̄ is an

(approximate) 𝝐-KKT point if there exist 𝒚̄ ∈ �𝑚 and 𝒚̄
eq

∈ �𝑚eq
such that

(𝝐-KKT)


dist𝜕𝑞 (𝒙̄ )

(
− J𝒄 (𝒙̄)⊤𝒚̄ − J𝒄eq(𝒙̄)⊤𝒚̄eq

)
≤ 𝜖d

∥ [𝒄 (𝒙̄)]+∥∞ ≤ 𝜖p and ∥𝒄eq(𝒙̄)∥∞ ≤ 𝜖p

𝒚̄ ≥ 0
min {𝑦𝑖 , [𝑐𝑖 (𝒙̄)]−} ≤ 𝜖p 𝑖 = 1, . . . ,𝑚.

It is handy to name points satisfying (approximate) feasibility as in Definition 2.5 and Definition 2.2

in order to soften symbolic clutter in the sequel.

Definition 2.6 (𝜖-feasibility). Given 𝜖 ≥ 0, a point 𝒙̄ ∈ �𝑛 is said to be 𝜖-feasible if ∥ [𝒄 (𝒙̄)]+∥∞ ≤ 𝜖 and
∥𝒄eq(𝒙̄)∥∞ ≤ 𝜖 . When 𝜖 = 0, we simply say that 𝒙̄ is feasible.

As discussed in the commentary after [4, Thm. 3.1], A-KKT optimality of 𝒙̄ ∈ dom𝑞 is tantamount

to the existence of a sequence 𝒙𝑘 → 𝒙̄ of 𝝐𝑘 -KKT points for some 𝝐𝑘 → (0, 0). More generally, any

KKT point is both A-KKT and 𝝐-KKT for any 𝝐 ≥ (0, 0). We conclude by listing the observations in

[13, Lem. 8 and Rem. 9] that will be useful in the sequel.

Remark 2.7. Relative to the conditions A-KKT in Definition 2.3:

(i) Up to possibly perturbing the sequence of multipliers, the complementarity slackness 𝑦𝑘𝑖 𝑐𝑖 (𝒙̄) = 0

can be equivalently expressed as 𝑦𝑘𝑖 𝑐𝑖 (𝒙𝑘 ) → 0.

(ii) Suppose that 𝜕𝑞 is osc on dom𝑞 (as is the case when 𝑞 is continuous relative to its domain). If

the sequence (𝒚𝑘 , 𝒚𝑘
eq
)
𝑘∈� contains a bounded subsequence, then 𝒙̄ is a KKT-optimal point, not

merely asymptotically.

We note that [13] imposes a standing assumption that 𝑞 be continuous at every point 𝒙̄ ∈ dom𝑞. This

is used to ensure that 𝒗 ∈ 𝜕𝑞(𝒙̄) whenever (𝒙𝑘 , 𝒗𝑘 ) → (𝒙̄, 𝒗) with (𝒙𝑘 , 𝒗𝑘 ) ∈ gph 𝜕𝑞, that is, that the

condition 𝑞(𝒙𝑘 ) → 𝑞(𝒙̄) is superfluous in the definition of limiting subdifferential. In Remark 2.7(ii)
we have relaxed this requirement by directly assuming this limiting property, that is, that 𝜕𝑞 is osc on

dom𝑞. Many functions of practical interest that are not continuous, such as the 𝐿0
-norm, still comply

with this requirement.

3 subproblems generation

In this section we operate a two-step modification of problem (P), whose conceptual roadmap is as

follows. We begin with a relaxed reformulation (P𝛼 ) in which violation of the constraints 𝒄 (𝒙) ≤ 0 and

𝒄eq(𝒙) = 0 is penalized with an 𝐿1
-norm in the cost function. An equivalent reformulation (Q𝛼 ) with

slack variables 𝒛 ∈ �𝑚 and 𝒛eq ∈ �𝑚eq
simplifies this formulation by promoting separability. Next, a

new problem (Q𝛼,𝜇) is created by adding a barrier term to enforce strict satisfaction of the inequality

constraints in the 𝐿1
-penalized reformulation (Q𝛼 ). The pointwise minimization with respect to the

slack variables 𝒛 and 𝒛eq can be carried out explicitly, with negligible computational overhead, resulting

in a new problem (P𝛼,𝜇) in which the original constraints 𝒄 (𝒙) ≤ 0 and 𝒄eq(𝒙) = 0 are softened with

a smooth penalty. Increasing the 𝐿1
-penalty and decreasing the barrier coefficients gives rise to a

homotopic transition between smooth reformulations (P𝛼,𝜇) and the original nonsmooth problem (P).

Compared to envelope-type smoothings such as in [28] that preserve one-to-one correspondence of

minimizers for any parameter, the smoothened subproblems here are equivalent to the original (P) only

in the limit. In this sense, our method is more closely related to the approach in [26], but without the

practical restrictions. Unlike the latter, which is tailored to problems where nonsmooth terms admit

an easily computable ‘double envelope’, our technique applies more broadly with minimal limitations.
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We adopt the convention of using the label ‘P’ in problems (P𝛼 ) and (P𝛼,𝜇) that share the minimization

variable 𝒙 with that in the original problem (P). Label ‘Q’ is instead used in problems (Q𝛼 ) and (Q𝛼,𝜇)

which come with additional slack variables 𝒛 and 𝒛eq. Each ‘P-problem’ amounts to the corresponding

‘Q-problem’ after marginal minimization with respect to the slack variables.

3.1 𝑳1-penalization

Given 𝛼 > 0, we consider the following 𝐿1
relaxation of (P):

(P𝛼 ) minimize

𝒙∈�𝑛
𝑞(𝒙) + 𝛼 ∥ [𝒄 (𝒙)]+∥1 + 𝛼 ∥𝒄eq(𝒙)∥1.

By introducing slack variables 𝒛 ∈ �𝑚 and 𝒛eq ∈ �𝑚eq
, (P𝛼 ) can equivalently be cast as

(Q𝛼 ) minimize

𝒙∈�𝑛,𝒛∈�𝑚
𝒛eq∈�𝑚eq

𝑞(𝒙) + 𝛼 ⟨1, 𝒛⟩ + 𝛿�𝑚+ (𝒛) + 𝛼
〈
1, 𝒛eq

〉
subject to 𝒄 (𝒙) ≤ 𝒛 and −𝒛eq ≤ 𝒄eq(𝒙) ≤ 𝒛eq,

as one can easily verify that

[𝒄 (𝒙)]+ = arg min

𝒛∈�𝑚

{
𝛼 ⟨1, 𝒛⟩ + 𝛿�𝑚+ (𝒛) | 𝒄 (𝒙) ≤ 𝒛

}
and

|𝒄eq(𝒙) | = arg min

𝒛eq∈�𝑚eq

{
𝛼
〈
1, 𝒛eq

〉
| −𝒛eq ≤ 𝒄eq(𝒙) ≤ 𝒛eq

}
hold for any 𝒙 ∈ �𝑛 and 𝛼 > 0. In other words, (P𝛼 ) amounts to (Q𝛼 ) after a marginal minimization

with respect to the slack variables 𝒛 and 𝒛eq. The KKT conditions associated to (Q𝛼 ) are of particular

interest to us. As it can be deduced from the following lemma, they correspond to the stationarity

condition 0 ∈ 𝜕𝑞 + 𝛼𝜕
[
∥ [𝒄 ( · )]+∥1

]
+ 𝛼𝜕

[
∥ [𝒄eq( · )∥1

]
for (P𝛼 ). The result is textbook, but its proof is

nevertheless detailed in Appendix a for completeness.

Lemma 3.1. Let Assumption 1 hold. Then, a point (𝒙, 𝒛, 𝒛eq) ∈ �𝑛 ×�𝑚 ×�𝑚eq is KKT-optimal for (Q𝛼 )

if and only if 𝒛 = [𝒄 (𝒙)]+, 𝒛eq = |𝒄eq(𝒙) |, and there exist 𝒚 ∈ �𝑚 and 𝒚
eq

∈ �𝑚eq such that

(KKT𝛼 )



− J𝒄 (𝒙)⊤𝒚 − J𝒄eq(𝒙)⊤𝒚eq
∈ 𝜕𝑞(𝒙)

0 ≤ 𝒚 ≤ 𝛼1
|𝒚

eq
| ≤ 𝛼1

𝑦𝑖 [𝑐𝑖 (𝒙)]− = 0 = (𝛼 − 𝑦𝑖) [𝑐𝑖 (𝒙)]+, 𝑖 = 1, . . . ,𝑚

(𝛼 − 𝑦eq, 𝑗 ) [𝑐eq, 𝑗 (𝒙)]+ = 0 = (𝛼 + 𝑦eq, 𝑗 ) [𝑐eq, 𝑗 (𝒙)]−, 𝑗 = 1, . . . ,𝑚eq.

Proof. See Appendix a. □

Lemma 3.1 suggests the following relaxed optimality notion for problem (P), which in light of the

connection with KKT-optimality for (Q𝛼 ) we shall refer to as KKT𝛼 -optimality.

Definition 3.2 (KKT𝛼 optimality). Given 𝛼 > 0, we say that a point 𝒙̄𝛼 ∈ �𝑛 is KKT𝛼 -optimal for (P)
if there exist 𝒚̄𝛼 ∈ �𝑚 and 𝒚̄𝛼

eq
∈ �𝑚eq

such that (𝒙̄𝛼 , 𝒚̄𝛼 , 𝒚̄𝛼
eq
) satisfy (KKT𝛼 ), and call (𝒙̄𝛼 , 𝒚̄𝛼 , 𝒚̄𝛼

eq
) ∈

�𝑛 ×�𝑚 ×�𝑚eq
a KKT𝛼 -optimal triplet for (P).

Similarly to what done in (𝝐-KKT) with respect to (KKT), we may introduce an approximate KKT𝛼 -

optimality condition in which stationarity and complementarity slackness are satisfied up to some

tolerance parameters. When said tolerance is zero, the nonapproximate KKT𝛼 notion is recovered.
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Definition 3.3 (𝝐-KKT𝛼 optimality). Given 𝛼 > 0 and 𝝐 = (𝜖p, 𝜖d) ≥ (0, 0), we say that a point 𝒙̄𝛼 ∈ �𝑛
is 𝝐-KKT𝛼 -optimal for (P) if there exist 𝒚̄𝛼 ∈ �𝑚 and 𝒚̄𝛼

eq
∈ �𝑚eq

such that

(𝝐-KKT𝛼 )


dist𝜕𝑞 (𝒙̄𝛼 )

(
− J𝒄 (𝒙̄𝛼 )⊤𝒚̄𝛼 − J𝒄eq(𝒙̄𝛼 )⊤𝒚̄𝛼eq

)
≤ 𝜖d

0 ≤ 𝒚̄𝛼 ≤ 𝛼1
−𝛼1 ≤ 𝒚̄𝛼

eq
≤ 𝛼1

𝑠 (𝒙̄𝛼 , 𝒚̄𝛼 , 𝒚̄𝛼
eq
) ≤ 𝜖p,

where

(3.1) 𝑠 (𝒙̄𝛼 , 𝒚̄𝛼 , 𝒚̄𝛼
eq
) B











min


©­­­­­«

𝒚̄𝛼

𝛼1 − 𝒚̄𝛼

𝛼1 + 𝒚̄𝛼
eq

𝛼1 − 𝒚̄𝛼
eq

ª®®®®®¬
,

©­­­­­«
[𝒄 (𝒙̄𝛼 )]−
[𝒄 (𝒙̄𝛼 )]+
[𝒄eq(𝒙̄𝛼 )]−
[𝒄eq(𝒙̄𝛼 )]+

ª®®®®®¬













∞

,

and we say that (𝒙̄𝛼 , 𝒚̄𝛼 , 𝒚̄𝛼
eq
) ∈ �𝑛 ×�𝑚 ×�𝑚eq

is an 𝝐-KKT𝛼 -optimal triplet for (P).

As a next step, we clarify how 𝝐-KKT- and 𝝐-KKT𝛼 -optimality for problem (P) are interrelated.

Lemma 3.4. For any 𝝐 = (𝜖p, 𝜖d) ≥ (0, 0) the following hold:

(i) An 𝝐-KKT𝛼 -optimal triplet (𝒙̄𝛼 , 𝒚̄𝛼 , 𝒚̄𝛼
eq
) with 𝒙̄𝛼 𝜖p-feasible is also 𝝐-KKT-optimal.

(ii) An 𝝐-KKT-optimal triplet (𝒙̄, 𝒚̄, 𝒚̄
eq
) is also 𝝐-KKT𝛼 -optimal for any 𝛼 ≥ max

{
∥𝒚̄ ∥∞, ∥𝒚̄eq

∥∞
}
.

Once again the result is standard, and the proof is obvious by comparing the 𝝐-KKT and 𝝐-KKT𝛼
optimality conditions, as schematically summarized below:

𝝐
-
K
K
T



dist𝜕𝑞 (𝒙̄ )
(
− J𝒄 (𝒙̄)⊤𝒚̄ − J𝒄eq(𝒙̄)⊤𝒚̄eq

)
≤ 𝜖d

𝒚̄ ≥ 0
∥𝒄eq(𝒙̄)∥∞ ≤ 𝜖p

∥ [𝒄 (𝒙̄)]+∥∞ ≤ 𝜖p

min {𝑦𝑖 , [𝑐𝑖 (𝒙̄)]−} ≤ 𝜖p

𝝐
-
K
K
T
𝛼



dist𝜕𝑞 (𝒙̄ )
(
− J𝒄 (𝒙̄)⊤𝒚̄ − J𝒄eq(𝒙̄)⊤𝒚̄eq

)
≤ 𝜖d

0 ≤ 𝒚̄ ≤ 𝛼1, −𝛼1 ≤ 𝒚̄
eq

≤ 𝛼1
min

{
𝛼 − 𝑦eq, 𝑗 sgn(𝑐eq, 𝑗 (𝒙̄)), |𝑐eq, 𝑗 (𝒙̄) |

}
≤ 𝜖p

min {𝛼 − 𝑦𝑖 , [𝑐𝑖 (𝒙̄)]+} ≤ 𝜖p

min {𝑦𝑖 , [𝑐𝑖 (𝒙̄)]−} ≤ 𝜖p

with 𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . ,𝑚eq.

3.2 ip-type barrier reformulation

To carry on with the second modification of the problem, in what follows we fix a barrier b satisfying

the following requirements.

Assumption 2. The barrier function b : �→ � is proper, lsc, and twice continuously differentiable

on its domain domb = (−∞, 0) with b′ > 0 and b′′ > 0.

For reasons that will be elaborated on later, convenient choices of barriers are b(𝑡) = − 1

𝑡
, b(𝑡) =

ln(1 − 1

𝑡
), and the classical logarithmic barrier b(𝑡) = − ln(−𝑡) (all extended as ∞ on �+), see Table 2

in Section 4.2. Once such b is fixed, in the spirit of interior point methods we enforce strict satisfaction
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of the constraint in (Q𝛼 ) by considering the following barrier version

minimize

𝒙∈�𝑛, 𝒛∈�𝑚
𝒛eq∈�𝑚eq

𝑞(𝒙) + 𝛼 ⟨1, 𝒛⟩ + 𝛿�𝑚+ (𝒛) + 𝜇
𝑚∑︁
𝑖=1

b
(
𝑐𝑖 (𝒙) − 𝑧𝑖

)
+ 𝛼 ⟨1, 𝒛eq⟩ + 𝜇

𝑚eq∑︁
𝑗=1

[
b
(
𝑐eq, 𝑗 (𝒙) − 𝑧eq, 𝑗

)
+ b

(
−𝑐eq, 𝑗 (𝒙) − 𝑧eq, 𝑗

) ]
(Q𝛼,𝜇)

for some given parameter 𝜇 > 0. Differently from the IP frameworks of [5, 13], we here enforce a

barrier in the relaxed version (Q𝛼 ), and not on the original problem (P). As such, it is only triplets

(𝒙, 𝒛, 𝒛eq) that need to lie in the interior of the constraints, but 𝒙 is otherwise ‘unconstrained’: for any

𝒙 ∈ �𝑛 , any 𝒛 > 𝒄 (𝒙) and 𝒛eq > |𝒄eq(𝒙) | (elementwise) yield a triplet (𝒙, 𝒛, 𝒛eq) that satisfies the strict
constraints 𝒄 (𝒙) − 𝒛 < 0 and −𝒛eq < 𝒄eq(𝒙) < 𝒛eq. Furthermore, notice that the positivity constraint

𝒛 ≥ 0 remains untouched, formally imposed by an indicator and not by the barrier. In fact, observing

that the cost in (Q𝛼,𝜇) is separable, we may explicitly minimize with respect to the slack variables 𝒛 and
𝒛eq. Plugging their optimal values into (Q𝛼,𝜇) results in an unconstrained reformulation of the form

(P𝛼,𝜇) minimize

𝒙∈�𝑛
𝑞(𝒙) + 𝜇Ψ𝛼/𝜇

(
𝒄 (𝒙)

)
+ 𝜇Ψeq

𝛼/𝜇
(
𝒄eq(𝒙)

)
,

where, for any 𝜌∗ > 0,
3

(3.2) Ψ𝜌∗ (𝒚) B
𝑚∑︁
𝑖=1

𝜓𝜌∗ (𝑦𝑖) and Ψ
eq

𝜌∗ (𝒚eq
) B

𝑚eq∑︁
𝑗=1

𝜓
eq

𝜌∗ (𝑦eq, 𝑗 )

are separable functions with

𝜓𝜌∗ (𝑡) B min

𝑧∈�+
{𝜌∗𝑧 + b(𝑡 − 𝑧)}(3.3)

and

𝜓
eq

𝜌∗ (𝑡) B min

𝑧∈�
{𝜌∗𝑧 + b(𝑡 − 𝑧) + b(−𝑡 − 𝑧)}.(3.4)

These functions satisfy appealing properties summarized in the following theorems.

Theorem 3.5. Suppose that Assumption 2 holds. Then, for any 𝜌∗ > 0 one has that

𝜓𝜌∗ (𝑡) =
{
b(𝑡) if b′(𝑡) ≤ 𝜌∗

𝜌∗𝑡 − b∗(𝜌∗) otherwise
(3.5)

is convex, Lipschitz differentiable, and 𝜌∗-Lipschitz continuous with derivative

𝜓 ′
𝜌∗ (𝑡) = min {b′(𝑡), 𝜌∗}.(3.6)

Moreover, for any 𝑐 : �𝑛 → � convex, the composition𝜓𝜌∗ ◦ 𝑐 is also convex.

Proof. See Appendix a. □

3
The choice of the starred symbol 𝜌∗ stems from the fact that, as shown in Theorem 3.5 (see also Figure 2a), this quantity

represents a ‘slope’ of b, that is, a value of its derivative, and we thus treat it as a ‘dual’ object.
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b(𝑡) (for 𝑡 < 0) b∗(𝜏) (for 𝜏 ≥ 0) 𝑧𝜌∗ (𝑡) (for 𝑡 ∈ �)

− 1

𝑡
−2

√
𝜏

√︂
𝑡2 + 1

𝜌∗ +
√︃

4

𝜌∗ 𝑡
2 + 1

(𝜌∗ )2

ln

(
1 − 1

𝑡

)
−2

( √
𝜏√

𝜏+
√
𝜏+4

+ ln

(√𝜏+√𝜏+4

2

) ) √︂
𝑡2 + 1

4
+ 1

𝜌∗ +
√︃
𝑡2 + 1

(𝜌∗ )2
+ 4𝑡2

𝜌∗ − 1

2

− ln (−𝑡) −1 − ln(𝜏) 1

𝜌∗ +
√︃
𝑡2 + 1

(𝜌∗ )2

Table 1: Examples of barriers with their conjugates and analytic expressions for 𝑧𝜌∗ (𝑡), needed to

compute the equality penalty𝜓
eq

𝜌∗ (𝑡) and its derivative (𝜓 eq

𝜌∗ )′(𝑡) as in (3.7) and (3.8).

As is apparent from (3.5),𝜓𝜌∗ coincides with the barrier b up to when its slope is 𝜌∗, and after that

point it reduces to its tangent line. As such, 𝜓𝜌∗ coincides with a McShane Lipschitz (and globally

Lipschitz differentiable) extension [20] of a portion of the barrier b, as depicted in Figure 1a and 2a.

This feature is also evident by viewing𝜓𝜌∗ as the 𝜌
∗-Pasch-Hausdorff envelope of b, as detailed in the

proof.

Similar properties are true for 𝜓
eq

𝜌∗ , though a corresponding closed-form expression for generic

barriers b is more cumbersome and not particularly helpful. An analytic expression is nevertheless

available for specific choices of barriers b, see Table 1, or their value at any point can more generally

be retrieved at negligible cost by solving a one-dimensional smooth monotone equation.

Theorem 3.6. Suppose that Assumption 2 holds. Then, for any 𝜌∗ > 0 one has that

𝜓
eq

𝜌∗ (𝑡) = 𝜌
∗𝑧𝜌∗ (𝑡) + b

(
𝑡 − 𝑧𝜌∗ (𝑡)

)
+ b

(
−𝑡 − 𝑧𝜌∗ (𝑡)

)
(3.7)

is convex, Lipschitz differentiable, and 𝜌∗-Lipschitz continuous with derivative

(𝜓 eq

𝜌∗ )
′(𝑡) = 𝜌∗ − 2b′ (−𝑡 − 𝑧𝜌∗ (𝑡)) ∈ (−𝜌∗, 𝜌∗),(3.8)

where, denoting 𝜌 B (b∗)′(𝜌∗) < 0, 𝑧𝜌∗ (𝑡) > |𝑡 | − 𝜌 is the unique solution 𝑧 ∈ � to the smooth monotone
equation

b′(𝑡 − 𝑧) + b′(−𝑡 − 𝑧) = 𝜌∗.(3.9)

Moreover, for any 𝑡 ≠ 0 one has that
��(𝜓 eq

𝜌∗ )′(𝑡)
�� ≥ 𝜌∗ − 2b′(−|𝑡 |).

Proof. See Appendix a. □

The specific barriers included in Table 1 are visualized for comparison in Figure 1, along with their

corresponding envelopes𝜓𝜌∗ and𝜓
eq

𝜌∗ . Notably, the log-like barrier offers an intermediate between the

inverse and the logarithmic barriers, bringing together the positive valuedness of the former with the

behavior of the latter near 𝑡 = 0. On the one hand, positive valuedness guarantees via Theorems 3.5

and 3.6 that this property is inherited by𝜓𝜌∗ and𝜓
eq

𝜌∗ , resulting in (P𝛼,𝜇) being more likely well posed.

On the other hand, we will see below in Section 4.2 that the logarithmic barrier behavior is optimal

near 𝑡 = 0, in a certain sense. For these reasons, the log-like barrier function is a practical substitute

for the classical logarithmic barrier and will be our default choice in the numerical validations, which

support these claims.

The appeal of𝜓𝛼/𝜇 and𝜓
eq

𝛼/𝜇 for the sake of addressing problem (P) lies in their behavior when 𝜇 is

driven to 0, as they respectively approximate the inequality and equality sharp 𝐿1
penalization 𝛼 [ · ]+
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b

ψρ∗

inverse
log-like
logarithmic

(a) Function𝜓𝜌∗ (solid lines) penalizes the violation of

the inequality constraint 𝑡 ≤ 0.

b

ψeq
ρ∗

(b) Function𝜓 eq

𝜌∗ (solid lines) penalizes the violation of

the equality constraint 𝑡 = 0.

Figure 1: Graph of𝜓𝜌∗ (left) and𝜓
eq

𝜌∗ (right) for different barriers b (dashed lines). The log-like barrier

behaves as an intermediate between the classical inverse and logarithmic barriers.

and 𝛼 | · |. In this respect, Figure 2b demonstrates the advantage of our tailored treatment of equality

constraints 𝒄eq(𝒙) = 0 (solid lines) as opposed to a naive use of double inequalities ±𝒄eq(𝒙) ≤ 0 (dotted
lines). Indeed, the latter approach results in the sum

(3.10) 𝑡 ↦→ 𝜓±
𝛼/𝜇 (𝑡) B 𝜓𝛼/𝜇 (𝑡) +𝜓𝛼/𝜇 (−𝑡)

appearing in the formulation (Q𝛼,𝜇), and because of their opposite slopes around the origin a flat

region appears that hinders algorithmic efficiency. In contrast, the combined marginalization in the

definition (3.7) results in an envelope function𝜓
eq

𝛼/𝜇 that better approximates the sharp 𝐿1
penalty, see

also Figure 3b.

Theorem 3.7. Suppose that Assumption 2 holds. Then,𝜓𝜌∗/𝜌∗ → [ · ]+ and𝜓 eq

𝜌∗/𝜌∗ → | · | pointwise as
𝜌∗ ↗ ∞. Under the assumption that b > 0, both sequences are pointwise decreasing.

Proof. See Appendix a. □

Problem (P𝛼,𝜇) is ‘unconstrained’, in the sense that no explicit ambient constraints are provided, yet

stationarity notions relative to it bear a close resemblance with KKT𝛼 -optimality.

Lemma 3.8. Suppose that Assumptions 1 and 2 hold. Then, for any 𝛼, 𝜇 > 0 and 𝒙 ∈ �𝑛 one has

𝜕

[
𝑞 + 𝜇Ψ𝛼/𝜇 ◦ 𝒄 + 𝜇Ψeq

𝛼/𝜇 ◦ 𝒄eq

]
(𝒙) = 𝜕𝑞(𝒙) + 𝜇

𝑚∑︁
𝑖=1

𝜓 ′
𝛼/𝜇 (𝑐𝑖 (𝒙))∇𝑐𝑖 (𝒙)

+ 𝜇
𝑚eq∑︁
𝑗=1

(𝜓 eq

𝛼/𝜇)
′(𝑐eq, 𝑗 (𝒙))∇𝑐eq, 𝑗 (𝒙) .

In particular, for any 𝜀 ≥ 0 a point 𝒙̄𝛼,𝜇 ∈ �𝑛 is 𝜀-stationary for (P𝛼,𝜇) if the pair (𝒚̄𝛼,𝜇, 𝒚̄𝛼,𝜇eq
) ∈ �𝑚×�𝑚eq

given by

𝑦
𝛼,𝜇

𝑖
B 𝜇𝜓 ′

𝛼/𝜇 (𝑐𝑖 (𝒙̄
𝛼,𝜇)) ∈ (0, 𝛼] and 𝑦

𝛼,𝜇

eq, 𝑗
B 𝜇 (𝜓 eq

𝛼/𝜇)
′(𝑐eq, 𝑗 (𝒙̄𝛼,𝜇)) ∈ (−𝛼, 𝛼),

𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . ,𝑚eq, satisfies

dist𝜕𝑞 (𝒙̄𝛼,𝜇 )
(
− J𝒄 (𝒙̄𝛼,𝜇)⊤𝒚̄𝛼,𝜇 − J𝒄eq(𝒙̄𝛼,𝜇)⊤𝒚̄𝛼,𝜇eq

)
≤ 𝜀.

De Marchi and Themelis A penalty barrier framework for constrained optimization
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b

ρ ρ ρ

ψρ∗

ρ∗ = 1
ρ∗ = 3
ρ∗ = 9

(a) Function𝜓𝜌∗ agrees with the barrier b until its slope

equals 𝜌∗ (at 𝜌 B (b∗)′ (𝜌∗)), and then continues

linearlywith slope 𝜌∗. Apparently,𝜓𝜌∗ ↗ b as 𝜌∗ ↗
∞.

b

ψeq
ρ∗

ψ±
ρ∗

(b) Function 𝜓±
𝜌∗ (dotted lines) as in (3.10) generates a

flat region around the origin, due to the opposite

slopes 𝜌∗ and −𝜌∗, which does not appear with𝜓
eq

𝜌∗

(solid lines).

Figure 2: Graph of 𝜓𝜌∗ (left) and 𝜓
eq

𝜌∗ (right) for different values of 𝜌
∗
. These examples employ the

inverse barrier b(𝑡) = − 1

𝑡
+ 𝛿 (−∞,0) .

Proof. The expression of the subdifferential follows from the continuous differentiability of 𝒄 and 𝒄eq

(Assumption 1), that of𝜓𝛼/𝜇 and𝜓
eq

𝛼/𝜇 (Theorems 3.5 and 3.6), and their separable structure as in (3.2).

The inclusion of each element of 𝒚̄𝛼,𝜇 in the appropriate interval (0, 𝛼] follows from (3.6), and similarly

the claimed bounds on the components of 𝒚̄𝛼,𝜇
eq

follow from (3.8). □

The information we gain from Lemma 3.8 is that whenever 𝒙̄ is 𝜀-stationary for (P𝛼,𝜇), then the triplet

(𝒙̄, 𝒚̄, 𝒚̄
eq
) with 𝒚̄ = 𝜇Ψ′

𝛼/𝜇 (𝒄 (𝒙̄)) and 𝒚̄eq
= 𝜇 (Ψeq

𝛼/𝜇)
′(𝒄eq(𝒙̄)) satisfies all the conditions of (𝜖p, 𝜀)-KKT𝛼

optimality, possibly with the exception of the complementarity slackness involving 𝑠 (𝒙̄, 𝒚̄, 𝒚̄
eq
).

In conclusion of this sectionwe emphasize that favorable features of the original problem (P) are likely

to be preserved in the formulation (Q𝛼 ). As expectable, and as explicitly mentioned in Theorems 3.5

and 3.6, convexity is one such property. More notably, under minimal additional assumptions, whenever

𝒄 and 𝒄eq are Lipschitz differentiable they remain so after the composition with 𝜓𝛼/𝜇 and 𝜓
eq

𝛼/𝜇 . This
consititutes a significant departure from, say, augmented Lagrangian or penalty methods where such

property is lost in the composition with quadratic functions. We exemplify this fact with the following

lemma; we note that the statement holds under more general conditions, but a detailed exploration of

these broader cases lies beyond the scope of this paper.

Lemma 3.9. Suppose that Assumption 2 holds, and let 𝑐 : �𝑛 → � be a Lipschitz-differentiable function.
Suppose that 𝑐 is Lipschitz continuous on the sublevel set {𝒙 ∈ �𝑛 | 𝑐 (𝒙) ≤ 0} (as is the case when it is
lower bounded [17, Lem. 2.3]). Then,𝜓𝜌∗ ◦ 𝑐 is Lipschitz differentiable for any 𝜌∗ > 0.

Proof. Let 𝐿𝑐 and ℓ denote the Lipschitz constant of ∇𝑐 (on �𝑛) and that of 𝑐 on {𝒙 ∈ �𝑛 | 𝑐 (𝒙) ≤ 0},
respectively. According to Theorem 3.5,𝜓𝜌∗ is 𝜌

∗
-Lipschitz continuous, coincides with b on (−∞, 𝜌],

and is then linear with slope 𝜌∗ on (𝜌,∞), where 𝜌 B (b∗)′(𝜌∗) < 0. Fix 𝒙, 𝒚 ∈ �𝑛 , and without loss

of generality assume that 𝑐 (𝒙) ≤ 𝑐 (𝒚). We have

∥∇(𝜓𝜌∗ ◦ 𝑐) (𝒙) − ∇(𝜓𝜌∗ ◦ 𝑐) (𝒚)∥ = ∥𝜓 ′
𝜌∗ (𝑐 (𝒙))∇𝑐 (𝒙) −𝜓 ′

𝜌∗ (𝑐 (𝒚))∇𝑐 (𝒚)∥
≤ 𝜓 ′

𝜌∗ (𝑐 (𝒙))∥∇𝑐 (𝒙) − ∇𝑐 (𝒚)∥ + ∥∇𝑐 (𝒚)∥ |𝜓 ′
𝜌∗ (𝑐 (𝒙)) −𝜓 ′

𝜌∗ (𝑐 (𝒚)) |
≤ 𝜌∗𝐿𝑐 ∥𝒙 − 𝒚 ∥ + ∥∇𝑐 (𝒚)∥

(
𝜓 ′
𝜌∗ (𝑐 (𝒚)) −𝜓 ′

𝜌∗ (𝑐 (𝒙))
)
.

It remains to account for the second term in the last sum. If 𝑐 (𝒙) ≤ 𝑐 (𝒚) ≤ 𝜌 , then𝜓𝜌∗ coincides with

b in all occurrences, and the term can be upper bounded as 𝐵ℓ2∥𝒙 − 𝒚 ∥, where 𝐵 B max(−∞,𝜌 ] b
′′
is a

De Marchi and Themelis A penalty barrier framework for constrained optimization
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α[ · ]+

µψα/µ

µb

µ = 1

µ = 1/3

µ = 1/9

(a) As 𝜇 ↘ 0, 𝜇𝜓𝛼/𝜇 converges to the sharp 𝐿1
penalty

𝛼 [ · ]+ while maintaining the same slope 𝛼 after

the breakpoints.

α| · |

µψ±
α/µ

µψeq
α/µ

(b) As 𝜇 ↘ 0, 𝜇𝜓
eq

𝛼/𝜇 (solid lines) converges to the sharp

𝐿1
penalty 𝛼 | · |. So does the function 𝜇𝜓±

𝛼/𝜇 (dotted

lines), but with a flat region around zero.

Figure 3: Limiting behavior of 𝜇𝜓𝛼/𝜇 (left) and 𝜇𝜓
eq

𝛼/𝜇 (right) with constant 𝛼 as 𝜇 ↘ 0. These examples

employ the inverse barrier b(𝑡) = − 1

𝑡
+ 𝛿 (−∞,0) .

Lipschitz modulus for b′
on (−∞, 𝜌]. If 𝑐 (𝒙) ≤ 𝜌 < 𝑐 (𝒚), then𝜓 ′

𝜌∗ (𝑐 (𝒚)) = 𝜓 ′
𝜌∗ (𝜌) and, by continuity,

there exists 𝑡 ∈ [0, 1] such that 𝑐 (𝒙 + 𝑡 (𝒚 − 𝒙)) = 𝜌 , so that𝜓 ′
𝜌∗ (𝑐 (𝒙 + 𝑡 (𝒚 − 𝒙))) = 𝜓 ′

𝜌∗ (𝜌), resulting in
the same bound 𝐵𝑡ℓ2∥𝒙 − 𝒚 ∥ ≤ 𝐵ℓ2∥𝒙 − 𝒚 ∥. Lastly, if 𝜌 ≤ 𝑐 (𝒙) ≤ 𝑐 (𝒚) then the last term is zero. In all

cases we conclude that

∥∇(𝜓𝜌∗ ◦ 𝑐) (𝒙) − ∇(𝜓𝜌∗ ◦ 𝑐) (𝒚)∥ ≤
(
𝛼
𝜇
𝐿 + 𝐵ℓ2

)
∥𝒙 − 𝒚 ∥ ∀𝒙, 𝒚 ∈ �𝑛,

proving the claim. □

4 algorithmic framework

The main ingredient for the proposed numerical scheme is the penalty-barrier problem (P𝛼,𝜇). As shown

in the previous section, the cost function in (P𝛼,𝜇) converges pointwise to the original hard-constrained

cost 𝑞 +𝛿�𝑚− ◦𝒄 +𝛿 {0} ◦𝒄eq of (P) as 𝜇 ↘ 0 and 𝛼 ↗ ∞. Following a homotopic rationale, this motivates

solving (up to approximate local optimality) instances of (P𝛼,𝜇) for progressively small values of 𝜇 and

larger values of 𝛼 . This is the leading idea of the algorithmic framework of Algorithm 1 presented

in this section, whose name ‘Marge’ evokes the key underlying feature of marginalization discussed

in Section 3.2. The update rules for the coefficients are carefully designed so as to ensure that the

output satisfies suitable optimality conditions for the original problem (P), as well as to prevent the 𝐿1

penalization parameter 𝛼 in (P𝛼,𝜇) from divergent behaviors under favorable conditions on the problem.

This is the reason behind the involvement of the conjugate b∗
in the update criterion at Step 1.8, as

will be revealed in Sections 4.2 and 4.3 through a systematic study of the properties of the barrier b in

the generality of Assumption 1 as well as when specialized to the convex case.

Algorithm 1 is not tied to any particular solver for addressing each instance of (P𝛼,𝜇) at Step 1.1.

Whenever 𝑞 amounts to the sum of a differentiable and a prox-friendly function (in the sense that

its proximal mapping is easily computable), such structure is retained by the cost function in (P𝛼,𝜇),

indicating that proximal-gradient based methods are suitable candidates. This was also the case

in the purely interior-point based IPprox of [13], which considers a plain proximal gradient with a

backtracking routine for selecting the stepsizes. Differently from the subproblems of IPprox in which

the differentiable term is extended-real valued, the differentiable term in (P𝛼,𝜇) is smooth on the whole
�𝑛 . This enables the employment of more sophisticated proximal-gradient-type algorithms such as

De Marchi and Themelis A penalty barrier framework for constrained optimization
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Algorithm 1Marge: A combined penalty and barrier framework for constrained optimization

reqire tolerances 𝜖p, 𝜖d ≥ 0; parameters 𝛼0, 𝜇0 > 0, 𝜀0 ≥ 𝜖d, 𝛿𝛼 > 1 and 𝛿𝜀, 𝛿𝜇 ∈ (0, 1)
repeat for 𝑘 = 0, 1, . . .

1.1: Find an 𝜀𝑘 -stationary point 𝒙𝑘 for (P𝛼,𝜇) with (𝛼, 𝜇) = (𝛼𝑘 , 𝜇𝑘 )
1.2: set 𝑦𝑘𝑖 = 𝜇𝑘𝜓

′
𝛼𝑘/𝜇𝑘

(𝑐𝑖 (𝒙𝑘 )) as in (3.6), 𝑖 = 1, . . . ,𝑚

1.3: set 𝑦𝑘
eq, 𝑗 = 𝜇𝑘 (𝜓

eq

𝛼𝑘/𝜇𝑘
)′(𝑐eq, 𝑗 (𝒙𝑘 )) as in (3.8), 𝑗 = 1, . . . ,𝑚eq

1.4: 𝑝𝑘 = max

{
∥ [𝒄 (𝒙𝑘 )]+∥∞, ∥𝒄eq(𝒙𝑘 )∥∞

}
% constraints violation

1.5: 𝑠𝑘 = 𝑠 (𝒙𝑘 , 𝒚𝑘 , 𝒚𝑘
eq
) as in (3.1) % complementarity violation

1.6: if (𝜀𝑘 , 𝑝𝑘 , 𝑠𝑘 ) ≤ (𝜖d, 𝜖p, 𝜖p) then

return (𝒙𝑘 , 𝒚𝑘 ) (𝜖p, 𝜖d)-KKT pair for (P)

1.7: 𝜀𝑘+1 = max {𝛿𝜀𝜀𝑘 , 𝜖d}

1.8: if 𝑝𝑘 > max

{
𝜖p, 2(𝑚 +𝑚eq) −b

∗ (𝛼𝑘/𝜇𝑘 )
𝛼𝑘/𝜇𝑘

}
then 𝛼𝑘+1 = 𝛿𝛼𝛼𝑘 , else 𝛼𝑘+1 = 𝛼𝑘

1.9: if 𝑠𝑘 > 𝜖p or 𝛼𝑘+1 = 𝛼𝑘 then 𝜇𝑘+1 = 𝛿𝜇𝜇𝑘 , else 𝜇𝑘+1 = 𝜇𝑘

PANOC+
[29, 12] that make use of higher-order information to considerably enhance convergence

speed. This claim will be substantiated with numerical evidence in Section 5; in this section, we instead

focus on properties of the outer Algorithm 1 that are independent of the inner solver.

Remark 4.1. Throughout our convergence analysis, it is assumed that Algorithm 1 is well-defined, thus

requiring that each subproblem (P𝛼,𝜇) at Step 1.1 admits an approximate stationary point. Moreover,

some of the following statements assume the existence of an accumulation point 𝒙̄ for a sequence

(𝒙𝑘 )
𝑘∈� generated by Algorithm 1. In general, these preconditions can be verified with coercivity or

(level) boundedness arguments; for instance, the objective function of (P𝛼,𝜇) is bounded from below

whenever dom𝑞 is a compact set.

Remark 4.2 (parameter update variant). According to Steps 1.8 and 1.9, at each iteration either 𝛼𝑘 or 𝜇𝑘
(possibly both) is updated. With the aim of slowing down the reduction of 𝜇𝑘 to attenuate unnecessary

ill-conditioning, another viable option is to restrict the update condition as in

1.9’: if 𝑠𝑘 > 𝜖p or (𝛼𝑘+1, 𝜀𝑘+1) = (𝛼𝑘 , 𝜀𝑘 ) then 𝜇𝑘+1 = 𝛿𝜇𝜇𝑘 , else 𝜇𝑘+1 = 𝜇𝑘

allowing also the possibility of neither parameter being updated. Such circumstance takes place only if

𝜀𝑘 > 𝜖d, owing to Step 1.7. In this event, then, it is only the stationarity tolerance 𝜀𝑘 for Step 1.1 that is

decreased, and the next iteration reduces to solving the same subproblem with higher accuracy. To

avoid unnecessary notational complexity in the proofs, we adhere to the steps outlined in Algorithm 1,

while noting that the entire theoretical framework remains valid for this variant, with only minor

changes required to the iteration indexing. For our numerical tests in Section 5, however, Step 1.9 of

Algorithm 1 is replaced by the variant above.

4.1 convergence analysis

Lemma 4.3 (properties of the iterates). Suppose that Assumptions 1 and 2 hold, and consider the iterates
generated by Algorithm 1. At every iteration 𝑘 the following hold:

(i) 0 < 𝒚𝑘 ≤ 𝛼𝑘1 and |𝒚𝑘
eq
| < 𝛼𝑘1.

(ii) (𝒙𝑘 ∈ dom𝑞 and) dist𝜕𝑞 (𝒙𝑘 ) (− J𝒄 (𝒙𝑘 )⊤𝒚𝑘 − J𝒄eq(𝒙𝑘 )⊤𝒚𝑘eq
) ≤ 𝜀𝑘 .
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(iii) If (𝜖p > 0 and) 𝜇𝑘 ≤ 𝜖p

2b′ (−𝜖p ) , then 𝑠𝑘 ≤ 𝜖p.

(iv) For 𝑘 ≥ 1, either 𝛼𝑘 = 𝛿𝛼𝛼𝑘−1 or 𝜇𝑘 = 𝛿𝜇𝜇𝑘−1 (possibly both); in particular, letting 𝜌∗
𝑘
B 𝛼𝑘/𝜇𝑘 and

𝛿𝜌∗ B min

{
𝛿𝛼 , 𝛿

−1

𝜇

}
it holds that 𝜌∗

𝑘
≥ 𝛿𝜌∗𝜌∗𝑘−1

.

Proof. Assertions 4.3(i) and 4.3(ii) follow from Lemma 3.8. Assertion 4.3(iv) is obvious by observing

that whenever 𝛼𝑘+1 = 𝛼𝑘 the update 𝜇𝑘+1 = 𝛿𝜇𝜇𝑘 is enforced.

We finally turn to assertion 4.3(iii), and suppose that 𝜇𝑘 ≤ 𝜖p

2b′ (−𝜖p ) . Then, for all 𝑖 such that

[𝑐𝑖 (𝒙𝑘 )]− > 𝜖p (or, equivalently, 𝑐𝑖 (𝒙𝑘 ) < −𝜖p), one has

𝑦𝑘𝑖 = 𝜇𝑘𝜓
′
𝛼𝑘/𝜇𝑘 (𝑐𝑖 (𝒙

𝑘 )) ≤ 𝜇𝑘b
′(𝑐𝑖 (𝒙𝑘 )) ≤ 𝜇𝑘b

′(−𝜖p) ≤ 1

2
𝜖p ≤ 𝜖p,

where the first inequality follows from the definition of 𝒚𝑘 together with (3.6), and the second one owes
to monotonicity of b′

. On the other hand, for all 𝑖 such that 𝑐𝑖 (𝒙𝑘 ) > 𝜖p (in fact, more generally when

𝑐𝑖 (𝒙𝑘 ) > 0), one has that 𝑦𝑘𝑖 = 𝜇𝑘𝜓
′
𝛼𝑘/𝜇𝑘

(𝑐𝑖 (𝒙𝑘 )) = 𝛼𝑘 , cf. (3.6). Next, if 𝑗 is such that 𝑐eq, 𝑗 (𝒙𝑘 ) > 𝜖p, one

has that

𝑦𝑘
eq, 𝑗 = 𝜇𝑘 (𝜓

eq

𝛼𝑘/𝜇𝑘
)′(𝑐eq, 𝑗 (𝒙𝑘 )) ≥ 𝜇𝑘

(
𝛼𝑘/𝜇𝑘 − 2b′(−𝜖p)

)
≥ 𝛼 − 𝜖p,

where the first inequality follows from Theorem 3.6. By the same arguments, we deduce that 𝑦𝑘
eq, 𝑗 ≤

−𝛼 + 𝜖p holds for all 𝑗 such that 𝑐eq, 𝑗 (𝒙𝑘 ) < −𝜖p. In summary, for all 𝑖 = 1, . . . ,𝑚 at least one among

𝑦𝑘𝑖 and [𝑐𝑖 (𝒙𝑘 )]− is not larger than 𝜖p, and at least one among 𝛼 − 𝑦𝑘𝑖 and [𝑐𝑖 (𝒙𝑘 )]+ is zero. Similarly,

for all 𝑗 = 1, . . . ,𝑚eq at least one among 𝛼 − 𝑦𝑘
eq, 𝑗 sgn(𝑐eq, 𝑗 (𝒙𝑘 )) and |𝑐eq, 𝑗 (𝒙𝑘 ) | is not larger than 𝜖p,

overall proving that 𝑠𝑘 ≤ 𝜖p. □

Corollary 4.4 (stationarity of feasible limit points). Let Assumptions 1 and 2 hold, and consider the iterates
generated by Algorithm 1. If the algorithm runs indefinitely, then − 𝜇𝑘

𝛼𝑘
b∗(𝛼𝑘/𝜇𝑘) ↘ 0 as 𝑘 → ∞. Moreover,

any feasible accumulation point of (𝒙𝑘 )
𝑘∈� that belongs to dom𝑞 is A-KKT-optimal for (P).

Proof. The monotonic vanishing of − 𝜇𝑘
𝛼𝑘
b∗(𝛼𝑘/𝜇𝑘) follows from Lemmas 4.3(iv) and a.1(iv). Suppose

that (𝒙𝑘 )
𝑘∈𝐾 → 𝒙̄ ∈ dom𝑞 with 𝒄 (𝒙̄) ≤ 0 and 𝒄eq(𝒙̄) = 0, and let 𝑖 be such that 𝑐𝑖 (𝒙̄) < 0 (if such

an 𝑖 does not exist, then there is nothing to show). According to Definition 2.3 and Remark 2.7(i), it
suffices to show that (𝑦𝑘𝑖 )𝑘∈𝐾 → 0; in turn, by definition of 𝒚𝑘 and continuity of 𝒄 it suffices to show

that 𝜇𝑘 ↘ 0. If 𝜖p > 0, then continuity of 𝒄 implies that 𝛼𝑘+1 = 𝛼𝑘 for all 𝑘 ∈ 𝐾 large enough, hence,

by virtue of Lemma 4.3(iv), 𝜇𝑘+1 = 𝛿𝜇𝜇𝑘 for all such 𝑘 . Since (𝜇𝑘 )𝑘∈� is monotone, in this case 𝜇𝑘 ↘ 0

as 𝑘 → ∞. Suppose instead that 𝜖p = 0, and, to arrive to a contradiction, that 𝜇𝑘 is asymptotically

constant. This implies that 𝑠𝑘 ≤ 𝜖p = 0 eventually always holds, which is a contradiction since

𝑠𝑘 ≥ min

{
𝑦𝑘𝑖 , [𝑐𝑖 (𝒙𝑘 )]−

}
≥ min

{
𝑦𝑘𝑖 ,− 1

2
𝑐𝑖 (𝒙̄)

}
> 0 ∀𝑘 ∈ 𝐾 large,

where the first inequality follows by definition of 𝑠𝑘 , cf. Step 1.5, the second one for 𝑘 ∈ 𝐾 large since

𝑐𝑖 (𝒙𝑘 ) → 𝑐𝑖 (𝒙̄) < 0 as 𝐾 ∋ 𝑘 → ∞, and the last one because 𝒚𝑘 > 0. □

The update rule for the penalty parameter does not demand (approximate) feasibility, but it depends

on a relaxed condition at Step 1.8. By (a.1) in the appendix, the second term vanishes as 𝛼/𝜇 → ∞, so

the penalty parameter is eventually increased as needed to achieve 𝜖p-feasibility. The relaxation of this

condition using a quantity involving the conjugate b∗
mitigates the growth of 𝛼 . Simultaneously, under

suitable choices of the barrierb, it ensures that this parameter remains unchanged only if the constraints

violation stays within a controlled range, as will be ultimately demonstrated in Corollary 4.12.

Theorem 4.5. Suppose that Assumptions 1 and 2 hold, and consider the iterates generated by Algorithm 1
with 𝜖p, 𝜖d > 0. Then, inf𝑘∈� 𝜇𝑘 > 0 and exactly one of the following scenarios occurs:
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(A) either the algorithm terminates returning an (𝜖p, 𝜖d)-KKT stationary point for (P),

(B) or it runs indenfinitely with 𝑠𝑘 ≤ 𝜖p < 𝑝𝑘 for all 𝑘 large enough, and (𝛼𝑘 )𝑘∈� ↗ ∞.

In the latter case, if dom𝑞 is closed and 𝑞 is continuous relative to it, then for any accumulation point 𝒙̄ of
(𝒙𝑘 )

𝑘∈� one has that (𝒙̄, 𝑞(𝒙̄)) is KKT-stationary for the feasiblity problem

(4.1) minimize

(𝒙,𝑡 ) ∈epi𝑞
∥ [𝒄 (𝒙)]+∥1 + ∥𝒄eq(𝒙)∥1,

in the sense that (0, 0) ∈ 𝜕
[
∥ [𝒄 (𝒙̄)]+∥1 + ∥𝒄eq(𝒙̄)∥1

]
× {0} + Nepi𝑞 (𝒙̄, 𝑞(𝒙̄)).

Proof. Since 𝜇𝑘+1 ≤ 𝜇𝑘 for all 𝑘 , and 𝜇𝑘 is linearly reduced whenever 𝑠𝑘 > 𝜖p, we conclude that (either

the algorithm terminates or) 𝑠𝑘 ≤ 𝜖p eventually always holds.

If the algorithm returns (𝒙𝑘 , 𝒚𝑘 , 𝒚𝑘
eq
), then the compliance with the termination criteria combined

with the fact that 𝒚𝑘 > 0 for all 𝑘 , see Lemma 4.3(i), ensures that such triplet meets all conditions in

Definition 2.5, and hence it is (𝜖p, 𝜖d)-KKT-stationary for (P).

Suppose instead that the algorithm does not terminate. Clearly, 𝜀𝑘 = 𝜖d holds for 𝑘 large enough, so

that the only unmet termination criterion is eventually 𝑝𝑘 ≤ 𝜖d. Therefore, 𝑝𝑘 > 𝜖p holds for every

𝑘 large enough. It follows from Lemmas 4.3(iv) and a.1(iv) that −2(𝑚 +𝑚eq)b∗(𝜌∗
𝑘
)/𝜌∗

𝑘
eventually

drops below 𝜖p, implying that the condition for increasing 𝛼𝑘+1 at Step 1.8 reduces to 𝑝𝑘 > 𝜖p. Having

shown that this is eventually always the case, 𝛼𝑘+1 = 𝛿𝛼𝛼𝑘 always holds for 𝑘 large, 𝛼𝑘 ↗ ∞, and 𝜇𝑘 is

eventually never updated, cf. Step 1.8.

To conclude, suppose that dom𝑞 is closed and that 𝑞 is continuous relative to this set. By Lemma 3.8,

for every 𝑘 we have that there exists 𝜼𝑘 ∈ �𝑛 with ∥𝜼𝑘 ∥ ≤ 𝜖d such that

𝜼𝑘 − J𝒄 (𝒙𝑘 )⊤𝒚𝑘 − J𝒄eq(𝒙𝑘 )⊤𝒚𝑘eq
∈ 𝜕𝑞(𝒙𝑘 ).

Let 𝒙̄ be the limit of a subsequence (𝒙𝑘 )
𝑘∈𝐾 and, up to extracting, let

¯𝝀 and
¯𝝀eq be the limits of

( 1

𝛼𝑘
𝒚𝑘 )

𝑘∈𝐾 and ( 1

𝛼𝑘
𝒚𝑘

eq
)
𝑘∈𝐾 , respectively. The definition of 𝒚𝑘 and 𝒚𝑘

eq
together with the continuity of

𝒄 and 𝒄eq yields that

¯𝜆𝑖


= 0 if 𝑐𝑖 (𝒙̄) < 0

= 1 if 𝑐𝑖 (𝒙̄) > 0

∈ [0, 1] if 𝑐𝑖 (𝒙̄) = 0

and
¯𝜆eq, 𝑗


= −1 if 𝑐eq, 𝑗 (𝒙̄) < 0

= 1 if 𝑐eq, 𝑗 (𝒙̄) > 0

∈ [−1, 1] if 𝑐eq, 𝑗 (𝒙̄) = 0

or, equivalently,

(4.2)
¯𝜆𝑖 ∈ 𝜕[ · ]+(𝑐𝑖 (𝒙̄)) and

¯𝜆eq, 𝑗 ∈ 𝜕∥ · ∥1(𝑐eq, 𝑗 (𝒙̄))

for every 𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . ,𝑚eq. Since dom𝑞 is closed and 𝒙𝑘 ∈ dom𝑞 for all 𝑘 , one has that

𝑞(𝒙̄) < ∞. Moreover, it follows from the continuity assumption that 𝑞(𝒙𝑘 ) → 𝑞(𝒙̄) as 𝐾 ∋ 𝑘 → ∞,

hence that − J𝒄 (𝒙̄)⊤ ¯𝝀 − J𝒄eq(𝒙̄)⊤ ¯𝝀eq ∈ 𝜕∞𝑞(𝒙̄), where 𝜕∞𝑞(𝒙̄) denotes the horizon subdifferential of 𝑞

at 𝒙̄ . Appealing to [25, Thm. 8.9 and Ex. 8.14], this means that

(4.3)

(
− J𝒄 (𝒙̄)⊤ ¯𝝀 − J𝒄eq(𝒙̄)⊤ ¯𝝀eq, 0

)
∈ Nepi𝑞 (𝒙̄, 𝑞(𝒙̄)) = 𝜕 𝛿epi𝑞 (𝒙̄, 𝑞(𝒙̄)) .

Since

𝜕∥ [𝒄 (𝒙)]+∥1 =

𝑚∑︁
𝑖=1

𝜕[𝑐𝑖 (𝒙)]+ =

𝑚∑︁
𝑖=1

𝜕[ · ]+(𝑐𝑖 (𝒙))∇𝑐𝑖 (𝒙)

and similarly

𝜕∥𝒄eq(𝒙)∥1 =

𝑚eq∑︁
𝑗=1

𝜕 |𝑐eq, 𝑗 (𝒙) | =
𝑚eq∑︁
𝑗=1

𝜕 | · | (𝑐eq, 𝑗 (𝒙))∇𝑐eq, 𝑗 (𝒙),
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see [25, Ex. 10.26], it follows from (4.2) and continuity of ∥ [𝒄 (𝒙)]+∥1 and ∥𝒄eq(𝒙)∥1 that
¯𝝀 ∈ 𝜕∥ [𝒄 (𝒙̄)]+∥1

and
¯𝝀eq ∈ 𝜕∥𝒄eq(𝒙̄)∥1. Combining with (4.3) concludes the proof. □

Remark 4.6 (relaxing continuity of 𝑞). Similarly to the commentary after Remark 2.7(ii) pertaining the

limiting subdifferential 𝜕𝑞, note that continuity of 𝑞 on its domain is used to guarantee that equality

𝜕∞𝑞(𝒙̄) = 𝜕∞𝑞(𝒙̄) (as opposed to inclusion 𝜕∞𝑞(𝒙̄) ⊆ 𝜕∞𝑞(𝒙̄)) holds for the horizon subdifferential

𝜕∞𝑞(𝒙̄) of 𝑞 at any point 𝒙̄ ∈ dom𝑞, where for reference we denote

𝜕∞𝑞(𝒙̄) B
{
𝒗 ∈ �𝑛 | ∃𝜆𝑘 → 0, (𝒙𝑘 , 𝒗𝑘 ) ∈ gph 𝜕𝑞 such that (𝒙𝑘 , 𝜆𝑘𝒗𝑘 ) → (𝒙̄, 𝒗)

}
.

Here, the definition of 𝜕∞𝑞(𝒙̄) matches that of 𝜕∞𝑞(𝒙̄) except that the “𝑞-attentive” constraint 𝑞(𝒙𝑘 ) →
𝑞(𝒙̄) is not imposed for the sequence (𝒙𝑘 )

𝑘∈�. The validity of Theorem 4.5 is thus unaffected if

continuity of 𝑞 on its domain is replaced by 𝜕∞𝑞 being as above at any point 𝒙̄ ∈ dom𝑞, and once

again this generalization covers important examples such as functions involving 𝐿0
-norm terms.

On the other hand, note that mere outer semicontinuity of 𝜕𝑞 as in Remark 2.7(ii) is not enough
to ensure this identity. To see this, consider the function ℎ : � → � defined as ℎ(𝑥) = 0 for 𝑥 ≤ 0

ℎ(𝑥) = 1 −
√
𝑥 for 𝑥 > 0. One can easily see that 𝜕ℎ = 𝜕ℎ with 𝜕ℎ(𝑥) = {∇ℎ(𝑥)} for 𝑥 ≠ 0 and

𝜕ℎ(0) = [0,∞) is everywhere osc, yet 𝜕∞𝑞(0) = [0,∞) ≠ � = 𝜕∞𝑞(0).
The abuse of terminology to express KKT-stationarity in terms of subdifferentials passes through the

same construct relating (P𝛼 ) and (Q𝛼 ), in which a slack variable is tacitly introduced to reformulate the

𝐿1
norm; see the discussion in Section 3.1. More importantly, the involvement in (4.1) of the epigraph

of 𝑞, as opposed to its domain, is a necessary technicality that cannot be avoided in the generality of

Assumption 1, as we illustrate next.

Remark 4.7 (epi𝑞 vs dom𝑞). Stationarity for (4.1) is, in general, weaker than that for the more natural

minimal infeasibility violation problem

(4.4) minimize

𝒙∈dom𝑞
∥ [𝒄 (𝒙)]+∥1 + ∥𝒄eq(𝒙)∥1.

To see how this notion may be violated, consider 𝑞(𝑥) =
√︁
|𝑥 | and 𝑐 (𝑥) = 𝑥 + 1, so that (P) reads

minimize

𝑥∈�

√︁
|𝑥 | subject to 𝑥 ≤ −1.

The point 𝑥𝑘 = 0 is stationary for any subproblem (P𝛼,𝜇) with arbitrary 𝛼, 𝜇 > 0, and therefore

constitutes a feasible choice in Algorithm 1. However, the limit 𝑥 = 0 of the corresponding constant

sequence is not stationary for the minimization of [𝑥 + 1]+ over dom𝑞 = �. Nevertheless,

𝜕[𝑥 + 1]+(0) × {0} + Nepi𝑞 (0, 0) = {(1, 0)} + (� × {0}) ∋ (0, 0),

confirming that (0, 0) is stationary for the epigraphical problem (4.1).

We next formally illustrate why stationarity for (4.4) always implies that for (4.1), and identify the

culprit of a possible discrepancy in uncontrolled growths around 𝒙̄ from within dom𝑞. To this end,

we remind that a proper function ℎ : �𝑛 → � is said to be calm at a point 𝒙̄ ∈ domℎ relative to a set

𝑋 ∋ 𝒙̄ if

lim inf

𝑋 ∋𝒙→𝒙̄
𝒙≠𝒙̄

|ℎ(𝒙) − ℎ(𝒙̄) |
∥𝒙 − 𝒙̄ ∥ < ∞,

and that this condition is weaker than strict continuity.
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Lemma 4.8. Let ℎ : �𝑛 → � be proper and lsc. Then, for any 𝒙̄ ∈ domℎ one has

N̂domℎ (𝒙̄) ⊆
{
𝒗 ∈ �𝑛 | (𝒗, 0) ∈ N̂epiℎ (𝒙̄, ℎ(𝒙̄))

}
and

Ndomℎ (𝒙̄) ⊆
{
𝒗 ∈ �𝑛 | (𝒗, 0) ∈ Nepiℎ (𝒙̄, ℎ(𝒙̄))

}
= 𝜕∞ℎ(𝒙̄) .(4.5)

When ℎ is convex, both inclusions hold as equality. More generally, when ℎ is calm (in particular, if it
is strictly continuous) at 𝒙̄ relative to domℎ, then the first inclusion holds as equality, and so does the
second one when such property holds not only at 𝒙̄ , but also at all points in domℎ close to it.

Proof. The relations in the convex case are shown in [25, Thm. 8.9 and Prop. 8.12]; in what follows, we

consider an arbitrary proper and lsc function ℎ. Let 𝑣 ∈ N̂domℎ (𝒙̄) and let epiℎ ∋ (𝒙𝑘 , 𝑡𝑘 ) → (𝒙̄, ℎ(𝒙̄)).
Then, there exists 𝜀𝑘 → 0 such that

〈
𝒗, 𝒙𝑘 − 𝒙̄

〉
≤ 𝜀𝑘 ∥𝒙𝑘 − 𝒙̄ ∥ holds for every 𝑘 , hence

𝜀𝑘





( 𝒙𝑘 − 𝒙̄

𝑡𝑘 − ℎ(𝒙̄)

)



 ≥ 𝜀𝑘 ∥𝒙𝑘 − 𝒙̄ ∥ ≥
〈
𝒗, 𝒙𝑘 − 𝒙̄

〉
=

〈(
𝒗

0

)
,

(
𝒙𝑘 − 𝒙̄

𝑡𝑘 − ℎ(𝒙̄)

)〉
.

By the arbitrariness of the sequence, we conclude that (𝒗, 0) ∈ N̂epiℎ (𝒙̄, ℎ(𝒙̄)). The same inclusion

must then hold for the limiting normal cones, leading to (4.5), where the identity follows from [25,

Thm. 8.9].

Suppose now that there exists 𝜅 > 0 such that |ℎ(𝒙) − ℎ(𝒙̄) | ≤ 𝜅∥𝒙 − 𝒙̄ ∥ for 𝒙 ∈ domℎ close to 𝒙̄ ,
and suppose that (𝒗, 0) ∈ N̂epiℎ (𝒙̄, ℎ(𝒙̄)). Let domℎ ∋ 𝒙𝑘 → 𝒙̄ , and note that epiℎ ∋ (𝒙𝑘 , ℎ(𝒙𝑘 )) →
(𝒙̄, ℎ(𝒙̄)). Then, there exists 𝜀𝑘 → 0 such that〈

𝒗, 𝒙𝑘 − 𝒙̄
〉
=

〈(
𝒗

0

)
,

(
𝒙𝑘 − 𝒙̄

𝑡𝑘 − ℎ(𝒙̄)

)〉
≤ 𝜀𝑘





( 𝒙𝑘 − 𝒙̄

ℎ(𝒙𝑘 ) − ℎ(𝒙̄)

)




≤ 𝜀𝑘





( 𝒙𝑘 − 𝒙̄

𝜅∥𝒙𝑘 − 𝒙̄ ∥

)



 = 𝜀𝑘√1 + 𝜅2∥𝒙𝑘 − 𝒙̄ ∥,

where the second inequality holds for 𝑘 large enough. Arguing again by the arbitrariness of the

sequence, we conclude that 𝒗 ∈ N̂domℎ (𝒙̄). Finally, when ℎ is calm relative to its domain at all points

𝒙 ∈ domℎ close to 𝒙̄ , then the identity N̂domℎ (𝒙) × {0} = N̂epiℎ (𝒙, ℎ(𝒙)) holds for all such points, and

a limiting argument then yields that Ndomℎ (𝒙̄) × {0} = Nepiℎ (𝒙̄, ℎ(𝒙̄)) holds for the limiting normal

cones. Therefore, the inclusion in (4.5) holds as equality, which concludes the proof. □

When 𝑞 is locally Lipschitz relative to its domain, the inclusion

(
− J𝒄 (𝒙̄)⊤ ¯𝝀 − J𝒄eq(𝒙̄)⊤ ¯𝝀eq, 0

)
∈

𝜕 𝛿epi𝑞 (𝒙̄, 𝑞(𝒙̄)) derived in (4.3) thus simplifies as − J𝒄 (𝒙̄)⊤ ¯𝝀 − J𝒄eq(𝒙̄)⊤ ¯𝝀eq ∈ 𝜕 𝛿dom𝑞 (𝒙̄), and the

conclusions of Theorem 4.5 can be strengthened as follows.

Corollary 4.9. Additionally to Assumptions 1 and 2, suppose that 𝑞 is locally Lipschitz continuous on
its domain, assumed to be closed. Consider the iterates generated by Algorithm 1 with 𝜖p, 𝜖d > 0. Then,
inf𝑘∈� 𝜇𝑘 > 0 and exactly one of the following scenarios occurs:

(A) either the algorithm terminates returning an (𝜖p, 𝜖d)-KKT stationary point for (P),

(B) or it runs indenfinitely with 𝑠𝑘 ≤ 𝜖p < 𝑝𝑘 for all 𝑘 large enough, and (𝛼𝑘 )𝑘∈� ↗ ∞. Moreover, any
accumulation point 𝒙̄ of (𝒙𝑘 )

𝑘∈� is KKT-stationary for the feasiblity problem

minimize

𝒙∈dom𝑞
∥ [𝒄 (𝒙)]+∥1 + ∥𝒄eq(𝒙)∥1,

in the sense that 0 ∈ 𝜕
[
∥ [𝒄 (𝒙̄)]+∥1 + ∥𝒄eq(𝒙̄)∥1

]
+ Ndom𝑞 (𝒙̄).
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Even under smoothness assumptions on 𝑞, the outcomes presented in Corollary 4.9 are usual for

nonlinear programming solvers in the sense that, in general, one cannot exclude the possibility that

the iterates remain trapped in an infeasible region. If Algorithm 1 achieves approximate feasibility,

then outcome (A) guarantees that it returns an approximate KKT stationary point for (P). Otherwise,

outcome (B) specifies that the constraint violation is increasingly emphasized and Algorithm 1 steers

toward the solution of a feasibility problem. Several analogous results appear in the literature, such as

[6, Thm. 4.4], [11, Thm. 3.3] and [4, Thm. 6.2], among others. Stronger convergence guarantees can be

established based on more restrictive assumptions, which are not of interest here beyond this remark.

In practice, well-established solvers such as Ipopt [32] rely on auxiliary procedures whose purpose

is to compute a new iterate that yields sufficient improvement. When in difficulty, Ipopt switches to
a feasibility restoration phase that attempts to decrease the constraint violation. Equipped with this

mechanism, all the limit points it generates are feasible under the (tautological) assumption that “the

feasibility restoration phase . . . always terminates successfully” [31, Ass. G and Thm. 1].

Another strategy is that of [8, §3.2], whose update rules of penalty (and barrier) parameters are

designed to result in rapid convergence to optimal points of the original problem (P) or, at least, of the

feasibility problem (4.1)—in the context of nonlinear programming. Again, this technique promotes

feasibility but additional properties are needed to obtain convergence guarantees. Our update rules at

Steps 1.8 and 1.9 draw inspiration from the Fiacco–McCormick approach [15] and are comparable to

the conservative strategy in [8].

Finally, also the question of whether the sequence of penalty parameters (𝛼𝑘 )𝑘∈� remains bounded or

not has practical interest, but theoretical findings in this direction are limited and circumscribed, even in

the nonlinear programming setting. Boundedness of the sequence of multipliers, strict complementarity,

and constraint qualifications are some of the assumptions adopted to establish the boundedness of

penalty parameters; cf. [4, §7] and [16, Ass. 3 and Thm. 1].

4.2 barrier’s properties

According to its update rule in Algorithm 1, before a desired feasibility violation 𝑝𝑘 ≤ 𝜖p has been

reached, 𝛼𝑘+1 = 𝛼𝑘 means that 𝑝𝑘 ≤ 2(𝑚 +𝑚eq)
−b∗ (𝜌∗

𝑘
)

𝜌∗
𝑘

, where 𝜌∗
𝑘
= 𝛼𝑘/𝜇𝑘 . As shown in Lemma 4.3(iv),

regardless of whether 𝛼𝑘 is updated or not, 𝜌∗
𝑘
grows linearly over the iterations, specifically as 𝜌∗

𝑘
≥

𝜌∗
0
𝛿𝑘
𝜌∗ . Therefore, having 𝛼𝑘+1 = 𝛼𝑘 implies in particular that either the constraint violation 𝑝𝑘 is within

a desired tolerance 𝜖p, or that it is controlled from above by 2(𝑚 +𝑚eq)
−b∗ (𝜌∗

𝑘
)

𝜌∗
𝑘

≤ 2(𝑚 +𝑚eq)
−b∗ (𝛿𝑘

𝜌∗𝜌
∗
0
)

𝛿𝑘
𝜌∗𝜌

∗
0

,

where the inequality follows from (asymptotic) monotonicity of −b∗ (𝑡∗ )/𝑡∗, cf. Lemma a.1(iv). This means

that a desired bound on feasibility violation whenever 𝛼𝑘 is not updated can be enforced through

suitable choices of the barrier b. This will be particularly significant in the convex case, for it can be

shown that 𝛼𝑘 does eventually remain constant under reasonable assumptions.

Lemma 4.10. Let Assumptions 1 and 2 hold, and consider the iterates generated by Algorithm 1. Suppose
that there exists 𝜃 ∈ (0, 1) such that the barrier b satisfies b(𝜃𝑡) ≤ 𝜃𝛿𝜌∗b(𝑡) for every 𝑡 < 0 (resp. for

every 𝑡 < 0 close enough to 0), where 𝛿𝜌∗ B min

{
𝛿−1

𝜇 , 𝛿𝛼

}
> 1. Then,

(4.6) 𝛼𝑘+1 = 𝛼𝑘 ⇒ 𝑝𝑘 ≤ max

{
𝜖p,−2(𝑚 +𝑚eq) 𝜇0

𝛼0

b∗ (𝛼0

𝜇0

)
𝜃𝑘

}
holds for every 𝑘 (resp. for every 𝑘 large enough).

Proof. To simplify the presentation, without loss of generality let us set 𝜖p = 0. We have already argued

that 𝛼𝑘+1 = 𝛼𝑘 implies 𝑝𝑘 ≤ 2(𝑚 +𝑚eq)𝜋𝑘 , where 𝜋𝑘 B
−b∗ (𝛿𝑘

𝜌∗𝜌
∗
0
)

𝛿𝑘
𝜌∗𝜌

∗
0

for all 𝑘 ∈ �. It thus suffices to
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show that 𝜋𝑘 ≤ − 𝜇0

𝛼0

b∗ (𝛼0

𝜇0

)
𝜃𝑘 . To this end, notice that for every 𝑡∗ > 0 one has

−b∗(𝛿𝜌∗𝑡∗)
𝛿𝜌∗𝑡

∗ ≤ 𝜃 −b
∗(𝑡∗)
𝑡∗

⇔ b∗(𝑡∗) ≤
b∗(𝛿𝜌∗𝑡∗)
𝜃𝛿𝜌∗

= sup

𝜏

{
𝑡∗𝜏 − b(𝜃𝜏 )

𝛿𝜌∗𝜃

}
=

(
b(𝜃 · )
𝜃𝛿𝜌∗

)∗
(𝑡∗),

hence, since b∗(𝑡∗) = ∞ for 𝑡∗ < 0,

−b∗(𝛿𝜌∗𝑡∗)
𝛿𝜌∗𝑡

∗ ≤ 𝜃 −b
∗(𝑡∗)
𝑡∗

∀𝑡∗ ∈ � ⇔ b(𝑡) ≥ b(𝜃𝑡 )
𝜃𝛿𝜌∗

∀𝑡 ∈ �,

which amounts to the condition in the statement. Under such condition, then, 𝜋𝑘+1 ≤ 𝜃𝜋𝑘 holds for
every 𝑘 , leading to 𝜋𝑘 ≤ 𝜋0𝜃

𝑘 =
−b∗ (𝜌∗

0
)

𝜌∗
0

𝜃𝑘 as claimed. □

Though it would be tempting to seek barriers for which (𝜋𝑘 )𝑘∈� as in the proof vanishes at any

desired rate, it can be easily verified that no choice of b or 𝛿𝜌∗ can result in (𝜋𝑘 )𝑘∈� converging any

faster than linearly. In fact,

𝜋𝑘+1 =
−b∗(𝜌∗

0
𝛿𝑘+1

𝜌∗ )
𝜌∗

0
𝛿𝑘+1

𝜌∗
>

−b∗(𝜌∗
0
𝛿𝑘
𝜌∗)

𝜌∗
0
𝛿𝑘+1

𝜌∗
=

1

𝛿𝜌∗
𝜋𝑘 ,

where the inequality follows from monotonicity of −b∗
, cf. Lemma a.1(ii). This shows that a linear

decrease by a factor 𝛿−1

𝜌∗ is the fastest worst-case rate this lemma can guarantee, and that this can

only happen in the limit. Lemma 4.10 nevertheless identifies a property that allows us to judge the

fitness of a barrier b within the framework of Algorithm 1. As we will see in Section 4.3, this will be

particularly evident in the convex case, for it can be guaranteed that, under assumptions, 𝛼𝑘 eventually

does remain constant, so that employing a barrier that complies with this requirement is a guarantee

that eventually the infeasibility 𝑝𝑘 of the iterates generated by Algorithm 1 vanishes at R-linear rate.

This motivates the following definition.

Definition 4.11 (behavior profiles of b).We say that a barrier b complying with Assumption 2 is

asymptotically well behaved if

∀𝜃 ∈ (0, 1) 𝜅b(𝜃 ) B lim sup

𝑡→0
−

b(𝜃𝑡)
𝜃b(𝑡) < ∞ and lim

𝜃→1
−
𝜅b(𝜃 ) = 1.

If this condition can be strengthened to

∀𝜃 ∈ (0, 1) 𝜅max

b (𝜃 ) B sup

𝑡<0

b(𝜃𝑡)
𝜃b(𝑡) < ∞ and lim

𝜃→1
−
𝜅max

b (𝜃 ) = 1,

then we say that b is well behaved (not merely asymptotically). We call the functions 𝜅max

b
, 𝜅b : (0, 1) →

(1,∞) the behavior profile and the asymptotic behavior profile of b, respectively.

In penalty-type methods, the update of a penalty parameter is typically decided based on the violation

of the corresponding constraints. Under the assumption that the barrier b is (asymptotically) well

behaved, Lemma 4.10 demonstrates that in Algorithm 1 (eventually) the condition 𝛼𝑘+1 = 𝛼𝑘 furnishes

a guarantee of linear decrease of the infeasibility. Insisting on continuity of 𝜅b and 𝜅max

b
at 𝜃 = 1 in

Definition 4.11 is a minor technicality ensuring that, regardless of the value of 𝛿𝜇 ∈ (0, 1) and 𝛿𝛼 > 1,

for any (asymptotically) well behaved barrier there always exists 𝜃 ∈ (0, 1) such that b(𝜃𝑡) ≤ 𝜃𝛿𝜌∗b(𝑡)
holds for every 𝑡 < 0 (close enough to zero) as required in Lemma 4.10. The result can thus be restated

as follows.

Corollary 4.12. Additionally to Assumptions 1 and 2, suppose that the barrier b is (asymptotically) well
behaved. Then, there exists 𝜃 ∈ (0, 1) such that the iterates of Algorithm 1 satisfy (4.6) for all 𝑘 ∈ � (large
enough).
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b(𝑡) (for 𝑡 < 0) 𝜅b(𝜃 ) 𝜅max

b
(𝜃 )

1

𝑝
(−𝑡)−𝑝

(
1

𝜃

)
1+𝑝 (

1

𝜃

)
1+𝑝

(𝑝 > 0)

ln

(
1 − 1

𝑡

)
1

𝜃

(
1

𝜃

)
2

− ln(−𝑡) 1

𝜃
∞

exp

(
− 1

𝑡

)
∞ ∞

Table 2: Examples of barriers and their behavior profiles 𝜅b. A low 𝜅b is symptomatic of good aptitude

of b as barrier within Algorithm 1. Geometrically, it indicates that b well approximates the

nonsmooth indicator 𝛿�− . Functions like exp

(
− 1

𝑡

)
growing too fast are unsuited, whereas

logarithmic barriers attain an optimal asymptotic behavior profile 𝜅b(𝜃 ) = 1

𝜃
. The log-like

barrier b(𝑡) = ln

(
1 − 1

𝑡

)
is well-behaved, whereas the logarithmic barrier b(𝑡) = − ln (−𝑡) is

so only asymptotically.

When it comes to comparing different barriers, lower values of 𝜅b are clearly preferable. Notice that

both 𝜅max

b
and 𝜅b are scaling invariant:

𝜅𝛽b = 𝜅b(𝛽 · ) = 𝜅b and 𝜅max

𝛽b = 𝜅max

b(𝛽 · ) = 𝜅
max

b ∀𝛽 > 0.

Moreover, since

𝜅b(𝜃 ) ≥ 1

𝜃
∀𝜃 ∈ (0, 1)

(owing to monotonicity of b and the fact that consequently b(𝜃𝑡) ≥ b(𝑡) for 𝑡 < 0), barriers attaining

𝜅b(𝜃 ) = 1

𝜃
can be considered asymptotically optimal. Table 2 shows that logarithmic barriers can

attain such lower bound.

4.3 the convex case

In this section we investigate the behavior of Algorithm 1 when applied to convex problems. In

particular, we detail an asymptotic analysis in which the termination tolerances are set to zero, so that

the algorithm (may) run indefinitely. We demonstrate that under standard assumptions the iterates

subsequentially converge to (global) solutions, and that the 𝐿1
penalty parameter 𝛼 is eventually never

updated.

Theorem 4.13. Additionally to Assumptions 1 and 2, suppose that inf b > 0 and that problem (P) is convex,
namely that 𝑞 and 𝑐𝑖 , 𝑖 = 1, . . . ,𝑚, are convex functions and that 𝒄eq is affine. If there exists an optimal
KKT-triplet (𝒙★, 𝒚★, 𝒚★

eq
) for (P), then the following hold for the iterates generated by Algorithm 1 with

𝜖p = 𝜖d = 0:

(i) Any accumulation point of the sequence (𝒙𝑘 )
𝑘∈� is a solution of (P).

(ii) If, additionally, (𝒙𝑘 )
𝑘∈� remains bounded (as is the case when dom𝑞 is bounded), 𝛼𝑘 is eventually

never updated.

(iii) Further assuming that the barrier b is asymptotically well behaved, so that there exists 𝜃 ∈ (0, 1) such
that b(𝜃𝑡) ≤ 𝜃 min

{
𝛿−1

𝜇 , 𝛿𝛼

}
b(𝑡) for every 𝑡 < 0 close enough to 0, then the feasibility violation

eventually vanishes with rate 𝑝𝑘 ≤ 2(𝑚 +𝑚eq) −b
∗ (𝛼0/𝜇0

)
𝛼

0/𝜇0

𝜃𝑘 .

Proof. It follows from Lemma 3.4(ii) that 𝒙★ solves (P𝛼 ) for 𝛼 B max

{
∥𝒚★∥∞, ∥𝒚★eq

∥∞
}
. For every 𝑘 ,

there exists

(4.7) 𝜼𝑘 ∈ 𝜕𝑞𝛼𝑘 ,𝜇𝑘 (𝒙𝑘 ) with ∥𝜼𝑘 ∥ ≤ 𝜀𝑘 ,
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where for 𝛼, 𝜇 > 0 we let

(4.8) 𝑞𝛼,𝜇 B 𝑞 + 𝜇Ψ𝛼/𝜇 ◦ 𝒄 + 𝜇Ψeq

𝛼/𝜇 ◦ 𝒄eq ≥ 𝑞 + 𝛼 ∥ [𝒄 ( · )]+∥1 + 𝛼 ∥𝒄eq( · )∥1.

Function 𝑞𝛼,𝜇 is convex, because so are Ψ𝛼/𝜇 ◦ 𝒄 and Ψ
eq

𝛼/𝜇 ◦ 𝒄eq by Theorems 3.5 and 3.6, and satisfies

the inequality as in (4.8) owing to Theorem 3.7, having assumed that b > 0. Notice further that

𝑞𝛼,𝜇 (𝒙★) = 𝑞(𝒙★) + 𝜇Ψ𝛼/𝜇 (𝒄 (𝒙★)) + 𝜇Ψeq

𝛼/𝜇 (0)
≤ 𝑞(𝒙★) + 𝜇Ψ𝛼/𝜇 (0) + 𝜇Ψeq

𝛼/𝜇 (0)
= 𝑞(𝒙★) +𝑚𝜇𝜓𝛼/𝜇 (0) +𝑚eq𝜇𝜓

eq

𝛼/𝜇 (0)
= 𝑞(𝒙★) +𝑚𝜇𝜓𝛼/𝜇 (0) + 2𝑚eq𝜇𝜓𝛼/2𝜇 (0)

(by Lemma a.1(iv)) ≤ 𝑞(𝒙★) + (𝑚 +𝑚eq)𝜇𝜓𝛼/𝜇 (0)

(by (3.7)) = 𝑞(𝒙★) + (𝑚 +𝑚eq)𝛼
−b∗(𝛼/𝜇)

𝛼/𝜇 ,(4.9)

where the first inequality follows from (elementwise) monotonicity of Ψ𝛼/𝜇 , and the third identity uses

the fact that 𝜓
eq

𝜌∗ (0) = 2𝜓𝜌∗/2(0) which is apparent from (3.3) and (3.4). Next observe that, since 𝒙★

solves (P𝛼 ) and is feasible, one has

𝑞(𝒙★) = 𝑞(𝒙★) + 𝛼 ∥ [𝒄 (𝒙★)]+∥1 + 𝛼 ∥𝒄eq(𝒙★)∥1

≤ 𝑞(𝒙𝑘 ) +
(
𝛼𝑘 − (𝛼𝑘 − 𝛼)

) (
∥ [𝒄 (𝒙𝑘 )]+∥1 + ∥𝒄eq(𝒙𝑘 )∥1

)
C𝑝̃𝑘(by (4.8)) ≤ 𝑞𝛼𝑘 ,𝜇𝑘 (𝒙𝑘 ) − (𝛼𝑘 − 𝛼)𝑝𝑘

(by (4.7)) ≤ 𝑞𝛼𝑘 ,𝜇𝑘 (𝒙★) +
〈
𝜼𝑘 , 𝒙★ − 𝒙𝑘

〉
− (𝛼𝑘 − 𝛼)𝑝𝑘

(by (4.9)) ≤ 𝑞(𝒙★) + (𝑚 +𝑚eq)𝛼𝑘
−b∗(𝛼𝑘/𝜇𝑘)

𝛼𝑘/𝜇𝑘
+ 𝜀𝑘 ∥𝒙★ − 𝒙𝑘 ∥ − (𝛼𝑘 − 𝛼)𝑝𝑘 .(4.10)

We next prove the assertions one by one.

♦ 4.13(i) If (𝛼𝑘 )𝑘∈� is asymptotically constant, then according to the update rule in Algorithm 1

one has that 𝑝𝑘 ≤ 2(𝑚 +𝑚eq) −b
∗ (𝛼𝑘/𝜇𝑘 )
𝛼𝑘/𝜇𝑘

eventually always holds, and thus vanishes as 𝑘 → ∞, see

Lemma a.1(iv). Any limit point 𝒙̄ of (𝒙𝑘 )
𝑘∈� is thus feasible, and furthermore belongs to dom𝑞 since

𝑞(𝒙𝑘 ) remains bounded as is evident from the inequalities in (4.10). In this case, we conclude from

Corollary 4.4 that 𝒙★ is A-KKT-optimal, and thus optimal because of convexity.

Suppose instead that (𝛼𝑘 )𝑘∈� ↗ ∞, and by removing early iterates let us assume without loss of

generality that 𝛼𝑘 > 𝛼 holds for any 𝑘 . Denoting 𝜌∗
𝑘
B 𝛼𝑘/𝜇𝑘 ↗ ∞, the inequality in (4.10) yields that

(4.11) 𝑝𝑘 ≤ 𝑝𝑘 ≤ 𝛼𝑘

𝛼𝑘 − 𝛼

(
(𝑚 +𝑚eq)

→0

−b∗(𝜌∗
𝑘
)

𝜌∗
𝑘

+

→0

𝜀𝑘

𝛼𝑘
∥𝒙★ − 𝒙𝑘 ∥

)
,

where the fact that

−b∗ (𝜌∗
𝑘
)

𝜌∗
𝑘

→ 0 follows from Lemma a.1(iv). Along any convergent subsequence, it

is clear that 𝑝𝑘 → 0 and that 𝑞(𝒙𝑘 ) remains bounded, and again we conclude that the limit point is

optimal for (P).

♦ 4.13(ii) To arrive to a contradiction, suppose that 𝛼𝑘 ↗ ∞, and again assume without loss of

generality that 𝛼𝑘 > 𝛼 holds for all 𝑘 . It then follows from (4.11) that

𝑝𝑘

2(𝑚 +𝑚eq)
−b∗ (𝜌∗

𝑘
)

𝜌∗
𝑘

≤ 1

2

𝛼𝑘

𝛼𝑘 − 𝛼

(
1 + 𝜀𝑘

𝛼𝑘

𝜌∗
𝑘

−b∗(𝜌∗
𝑘
)𝑅

)
→ 1

2

as 𝑘 → ∞,
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and in particular 𝑝𝑘 is eventually always smaller than 2(𝑚 +𝑚eq)
−b∗ (𝜌∗

𝑘
)

𝜌∗
𝑘

. According to the update

rule of 𝛼𝑘 in Algorithm 1, this means that 𝛼𝑘 is eventually constant, which is a contradiction.

♦ 4.13(iii) Follows from Lemma 4.10. □

The PIPA algorithm of [5], specialized to the convex setting, generates primal-dual sequences that

remain bounded, offering a theoretical advantage over Theorem 4.13, where boundedness is assumed.

The difficulty in recovering the results of [5] appears to stem from the constraint relaxation occurring

in (P𝛼 ), which on the other hand is the key for Marge to handle equality constraints and infeasible

starting points.

5 numerical experiments

This section is dedicated to experimental results and comparisons with other numerical approaches

for constrained structured optimization. The modular structure of the proposed framework allows

us to combineMarge with a variety of penalty-barrier envelopes and inner solvers (insofar as they

provide suitable guarantees). The perfomance and behavior ofMarge is illustrated in different variants,

considering three barrier functions, namely b(𝑡) = − 1

𝑡
, b(𝑡) = ln(1 − 1

𝑡
), and b(𝑡) = − ln(−𝑡) (all

extended as ∞ on �+) denominated inverse, log-like, and log, respectively. The numerical comparison

will comprise two data science tasks and two ad hoc illustrative problems. These numerical tests will

also highlight the influence of the barrier function on the performance ofMarge, supporting the quality
assessment of Section 4.2.

The performance of Marge is compared against those of IPprox [13, Alg. 1], ALPS [10, Alg. 4.1], and

the well-known Ipopt [32]. IPprox builds upon a pure interior point scheme and solves the barrier

subproblems with a tailored adaptive proximal-gradient algorithm, extending the strategy of PIPA
[5] to the nonconvex setting. ALPS belongs to the family of augmented Lagrangian algorithms and

does not require a custom subsolver—suitable subsolvers for Marge can be applied within ALPS
and viceversa. The closely related solvers OpEn [27] and Alpaqa [22] also build on the augmented

Lagrangian framework and provide easy-to-use high-performance implementations; however, these

focus on nonlinear programming problems and cannot support generic prox-friendly cost functions

as ALPS does. Finally, Ipopt is a software package for large-scale sparse nonlinear optimization; it

implements an interior point line search filter method. Ipopt can address problems of the form (P)

where the input functions, particularly 𝑞, should be at least continuously differentiable.

Marge’s minimal assumptions on the subsolver leave us much freedom in its selection. To handle

potential (structured) nonsmoothness of the cost 𝑞, we chose PANOC+
[12, 29], a proximal-gradient-

based solver that can exploit directions of quasi-Newton type while ensuring convergence with a

backtracking linesearch, see also [30, §5.1]. We also tested the nonmonotone proximal-gradient method

with adaptive stepsizes of [9], but in our comparisons we only retained the results with PANOC+
, set

as default solver in our implementation, as it consistently demonstrated better performance.

Patterning the simulations of [13, §5.2], we first examine the nonnegative PCA problem in Section 5.2

to evaluateMarge in several variants and compare it against the other solvers. Then, Section 5.3 focuses

on a low-rank matrix completion task, a fully nonconvex problem with thousands of variables and

constraints, contrastingMarge to ALPS and Ipopt. Finally, the exact penalty behavior and the ability to
handle hidden equalities are illustrated and discussed in Sections 5.4 and 5.5, respectively. Additional

observations that support the analysis of barriers’ properties are included in Appendix b.

The source code of our implementation has been archived for reproducibility of the numerical results

presented in this paper; it can be found on Zenodo at doi: 10.5281/zenodo.11098283.
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5.1 implementation details

We describe here details pertinent to our implementation Marge of Algorithm 1, such as the initializa-

tion and update of algorithmic parameters. These numerical features tend to improve the practical

performances, without compromising the convergence guarantees. IPprox is available from [13] and

adopted as is, whereas ALPS is a slight modification of the code from [10] to be comparable withMarge,
as detailed below.

Our implementation ofMarge accepts problems formulated in the form

minimize

𝒙∈�𝑛
𝑓 (𝒙) + 𝑔(𝒙) subject to 𝒍 ≤ 𝒄 (𝒙) ≤ 𝒖,

with bounds defined by extended-real-valued vectors 𝒍 and 𝒖. In a preprocessing phase, these vectors

are parsed to reformulate the problem data in the format (P) and to instantiate the appropriate penalty-

barrier functions to treat inequality and equality constraints as described above.

Default parameters for Marge are 𝜇0 = 1 and 𝛿𝜀 = 𝛿𝜇 = 1/4 as in IPprox, 𝛿𝛼 = 2 as in ALPS, and
𝛼0 = 1. The initial tolerance 𝜀0 for Marge (and ALPS) is chosen adaptively, based on the user-provided

starting point 𝒙0
and penalty-barrier parameters. Following the mechanism implemented in IPprox,

we set 𝜀0 = max {𝜖d, 𝜀min,min {𝜅𝜀𝜂0, 𝜀max}}, where 𝜅𝜀 ∈ (0, 1) and 𝜀max ≥ 𝜀min ≥ 0 are user-specified

parameters (default 𝜅𝜀 = 10
−2
, 𝜀max = 1, 𝜀min = 10

−6
) and 𝜂0 is an estimate of the initial stationarity

measure, as evaluated by (executing one iteration of) the inner solver invoked at (𝒙0, 𝛼0, 𝜇0). The barrier
parameter is updated according to the rule presented in Remark 4.2. For simplicity, no infeasibility

detection mechanism nor artificial bounds on penalty and barrier parameters have been included.

We run ALPS with the same settings as in [11, 10] apart from the following features to matchMarge:
the initial penalty parameter is fixed (𝛼0 = 1) and not adaptive, the tolerance reduction factor is set to

𝛿𝜀 = 1/4 instead of 𝛿𝜀 = 1/10, and the initial inner tolerance is selected adaptively. We always initialize

ALPS with dual estimate 𝒚0 = 0. The PANOC+
subsolver is considered with its default tuning, namely

L-BFGS directions (memory 5) and monotone linesearch strategy as in [12]. We use Ipopt version 3.13.3,

called via mexIPOPT [2], with linear solver MUMPS. The only non-default optional values we set are

the limited-memory Hessian approximation and the desired termination tolerance tol, as specified

below. For consistency with Ipopt’s termination condition [32, §2.1], Marge requires approximate

stationarity measured in the 𝐿∞-norm, deviating from Definition 2.5; this applies also to ALPS and

IPprox.
For 𝑃 the set of problems and 𝑆 the set of solvers, let 𝑡𝑠,𝑝 denote the user-defined metric for the

computational effort required by solver 𝑠 ∈ 𝑆 to solve instance 𝑝 ∈ 𝑃 (lower is better). We will

monitor the (total) number of gradient evaluations, so that the computational overhead triggered

by backtracking is fairly accounted for, the number of (outer) iterations, and the wall-clock runtime.

Then, we display data profiles to graphically summarize our numerical results and compare different

solvers. A data profile is the graph of the cumulative distribution function 𝑓𝑠 : [0,∞) → [0, 1] of
the evaluation metric, namely 𝑓𝑠 (𝑡) B |

{
𝑝 ∈ 𝑃 | 𝑡𝑠,𝑝 ≤ 𝑡

}
|/|𝑃 |. As such, each data profile reports the

fraction of problems 𝑓𝑠 (𝑡) that can be solved (for a given tolerance 𝜖) by solver 𝑠 with a computational

budget 𝑡 , and therefore it is independent of the other solvers [21].

5.2 nonnegative pca

Principal component analysis (PCA) aims at estimating the direction of maximal variability of a high-

dimensional dataset. Imposing nonnegativity of entries as prior knowledge, we address PCA restricted

to the positive orthant:

(5.1) maximize

𝒙∈�𝑛
𝒙⊤𝒁𝒙 subject to ∥𝒙 ∥ = 1, 𝒙 ≥ 0.
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This task falls within the scope of (P), with 𝑓 (𝒙) B −𝒙⊤𝒁𝒙 , 𝑔(𝒙) B 𝛿 ∥ · ∥=1(𝒙), and 𝒄 (𝒙) = −𝒙 , and
has been considered in [13] for validating IPprox and tuning its hyperparameters. Here, we start by

showing that allMarge’s variants significantly outperform IPprox on the same instances the latter was

fine-tuned with (using the inverse barrier); cf. [13, §5.2]. Then, we investigate how the computational

effort ofMarge’s default setup (that is, with log-like barrier and subsolver PANOC+
) scales with the

problem size and the accuracy requirement.

Setup We generate synthetic problem data as in [13, §5.2]. For a problem size 𝑛 ∈ �, let 𝒁 =√
𝜎𝑛𝒛𝒛⊤ +𝑵 ∈ �𝑛×𝑛 , where 𝑵 ∈ �𝑛×𝑛 is a random noise matrix, 𝒛 ∈ �𝑛 is the true (random) principal

direction, and 𝜎𝑛 > 0 is the signal-to-noise ratio. We consider some dimensions 𝑛 and, for each

dimension, the set of problems parametrized by 𝜎𝑛 ∈ {0.05, 0.1, 0.25, 0.5, 1.0} and 𝜎𝑠 ∈ {0.1, 0.3, 0.7, 0.9},
which control the noise and sparsity level, respectively. There are 5 choices for 𝜎𝑛 , 4 for 𝜎𝑠 , and, for

each set of parameters, 2 instances are generated with different problem data 𝒁 and starting point 𝒙0
.

Overall, each solver-settings pair is invoked on 40 different instances for each dimension 𝑛.

A strictly feasible starting point 𝒙0
is generated by sampling a uniform distribution over [0, 3]𝑛

and projecting onto dom𝑔 = {𝒙 ∈ �𝑛 | ∥𝒙 ∥ = 1}. This property is necessary for IPprox but not for
the other solvers. We will test Marge, Ipopt and ALPS also with arbitrary initialization, in which

case 𝒙0
is generated by sampling a uniform distribution over [−3, 3]𝑛 and then projecting onto dom𝑔.

Furthermore, since IPprox requires a nonnegative-valued barrier function [13, Ass. 2], its variant with

log barrier is not included in these tests. Finally, Ipopt tackles (5.1) encoded with the nonlinear equality

constraint

∑𝑛
𝑖=1
𝑥2

𝑖 = 1 and simple lower bounds on 𝒙 .

Barriers and subsolvers Algorithm 1 is controlled by, and its performance depends on, several algorith-

mic hyperparameters, such as the (sequences of) barrier and penalty parameters, the choice of barrier

function b, and the subsolver adopted at Step 1.1. We now focus on the effect of the barriers specified

in Table 1, for different levels of accuracy requirements, testing all solver variants on tiny and small
instances with problem dimensions 𝑛 ∈ {10, 15, 20} and 𝑛 ∈ {100, 150, 200}, respectively. Moreover,

because of the excessive runtime to perform all simulations for IPprox, we exclude it altogether for the
high accuracy tests, for which we consider starting points 𝒙0

that are not necessarily (strictly) feasible.

The results are graphically summarized in Figure 4 with data profiles relative to runtime. All solvers

returned successfully within the desired primal-dual tolerances. Across all accuracy levels, Marge
inverse operates consistently better than the other variants of Marge, all of which outperform IPprox.
In particular, the overall effort (in terms of runtime) required by the inverse barrier (in bothMarge and
IPprox) is less than with the log-like and log barriers , whose profiles almost overlap. With increasing

accuracy it becomes even more efficient to adopt Marge over IPprox, which performs gradually more

poorly. The slow tail convergence typical of first-order schemes badly affects the scalability of IPprox,
whereas the adoption of a quasi-Newton scheme within the subsolver PANOC+

ofMarge and ALPS
leads to fast local convergence in practice. Despite the “optimality” of logarithmic barriers ascertained

in Section 4.2, the overall computational effort (measured in terms of gradient evaluations or runtime)

also depends on the subsolver’s efficiency in solving the subproblems.

For tiny instances or low accuracy, the overall runtime of Marge tends to be comparable with that

of Ipopt. For high accuracy requirements and manageable problem sizes, Ipopt can profit from the

more computation-intense iterations, whereas the cheaper first-order steps of Marge’s subsolver pay
off with lower accuracies. Adopting the same first-order subsolver, ALPS appears to finish ahead of

Marge and Ipopt. We can attribute this advantage to the simple structure of the explicit constraints

𝒙 ≥ 0 in (5.1), since the superiority of ALPS vanishes with more difficult constraints, as witnessed by

the following Section 5.3.
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Figure 4: Nonnegative PCA problem (5.1): comparison of solvers on small (bottom) and large instances

(top) with low, medium and high accuracy 𝜖p = 𝜖d = 𝜀 ∈ {10−3, 10−4, 10−5} (left to right) using
data profiles relative to runtime. Results for IPprox (green solid lines) are not included for

the high accuracy tests due to excessive runtime; in these simulations, the other solvers are

initialized with a possibly infeasible guess. In all plots, Marge’s profiles for log-like (blue
thick solid lines) and log (blue thick dashed lines) barriers almost coincide.

Problem size and accuracy To investigate scalability and influence of accuracy requirements, we

consider larger instances of (5.1) with dimensions 𝑛 ∈
{
10, ⌈101.5⌉, 102, ⌈102.5⌉, 103

}
and tolerances

𝜖p = 𝜖d = 𝜀 ∈
{
10

−3, 10−4, 10−5

}
, and invoke the default solver Marge (with PANOC+

subsolver and

log-like barrier) without time limit. For each of these tolerance parameters, we generate 2 instances (as

described above) for each set of parameters, leading to a total of 200 problem instances to be solved

for each accuracy level.

All instances are solved up to the desired primal-dual tolerances. The influence of problem size and

tolerance is depicted in Figure 5, which displays for each pair (𝑛, 𝜀) the number of gradient evaluations

and runtime with a jitter plot (for a better visualization of the distribution of numerical values over

categories). The empirical cumulative distribution function and the associated median value are also

indicated. This chart visualizes how problem size and accuracy requirement affect the solution process,

and reveals the stark effect of both 𝑛 and 𝜀.

For low accuracy, Marge scales relatively well with the problem size, whereas larger problems

become prohibitive for high accuracy. This behavior is typical of first-order methods, due to their slow

tail convergence, and we take it as a motivation for investigating the interaction between subpoblems

and subsolvers in future works. Nevertheless, these experiments (and those forthcoming) demonstrate

Marge’s capability to handle thousands of variables and constraints in a fully nonconvex optimization

landscape. These results witness a tremendous improvement over IPprox, not only in the practical

performance but also in the flexibility of use, asMarge can be initialized at infeasible points and can
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take advantage of general-purpose fast subsolvers, such as PANOC+
.
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Figure 5: Nonnegative PCA problem (5.1) with Marge log-like: comparison for increasing accuracy

requirements (decreasing tolerances 𝜖p = 𝜖d = 𝜀) and problem sizes 𝑛, relative to gradient

evaluations (left) and runtime (right). Combination of jitter plot (dots) and empirical cumula-

tive distribution function (solid line) with median value (vertical segment).

5.3 low-rank matrix completion

Given an incomplete matrix of (uncertain) ratings 𝒀 , a common task is to find a complete ratings

matrix 𝑿 that is a parsimonious representation of 𝒀 , in the sense of low-rank, and such that 𝒀 ≈ 𝑿
for the entries available [19]. Let #𝑢 and #𝑚 denote the number of users and items, respectively, and

let the rating 𝑌𝑖, 𝑗 by the 𝑖th user for the 𝑗th item range on a scale defined by constants 𝑌min and 𝑌max.

Let Ω represent the index set of observed ratings, and |Ω | the cardinality of Ω. The ratings matrix

𝒀 could be very large and often most of the entries are unobserved, since a given user will only

rate a small subset of items. Low-rankness of 𝑿 can be enforced by construction, with the Ansatz

𝑿 ≡ 𝑼𝑽⊤
, as in dictionary learning. In practice, for some prescribed embedding dimension #𝑎 , we seek

a user embedding matrix 𝑼 ∈ �#𝑢×#𝑎
and an item embedding matrix 𝑽 ∈ �#𝑚×#𝑎

. Each row 𝑼 𝑖,: of
𝑼 is a #𝑎-dimensional vector representing user 𝑖 , while each row 𝑽 𝑗,: of 𝑽 is a #𝑎-dimensional vector

representing item 𝑗 . We address the joint completion and factorization of the ratings matrix 𝒀 , encoded
in the following form:

minimize

𝑼 ∈�#𝑢×#𝑎 ,

𝑽 ∈�#𝑚×#𝑎

1

|Ω |
∑︁

(𝑖, 𝑗 ) ∈Ω

(〈
𝑼 𝑖,:, 𝑽 𝑗,:

〉
− 𝑌𝑖, 𝑗

)
2 + 𝜆

#𝑚

#𝑚∑︁
𝑗=1

∥𝑽 𝑗,:∥0(5.2)

subject to max

{
𝑌min, 𝑌𝑖, 𝑗 − 1

}
≤
〈
𝑼 𝑖,:, 𝑽 𝑗,:

〉
≤ min

{
𝑌max, 𝑌𝑖, 𝑗 + 1

}
∀(𝑖, 𝑗) ∈ Ω,

𝑌min ≤
〈
𝑼 𝑖,:, 𝑽 𝑗,:

〉
≤ 𝑌max ∀(𝑖, 𝑗) ∉ Ω,

∥𝑼 𝑖,:∥2 = 1 ∀𝑖 ∈ {1, . . . , #𝑢}.

While aiming at 𝑼𝑽⊤ ≈ 𝒀 , the model in (5.2) sets the rating range [𝑌min, 𝑌max] as a hard constraint for

all predictions; a tighter constraint is imposed to observed ratings. Following [30, §6.2], we explicitly

constrain the norm of the dictionary atoms 𝑼 𝑖,:, without loss of generality, to reduce the number of

equivalent (up to scaling) solutions; this norm specification is included as an indicator in the nonsmooth

objective term 𝑔. Furthermore, we encourage sparsity of the coefficient representation 𝑽 𝑗,: with the

∥ · ∥0 penalty, which counts the nonzero elements, scaled with a regularization parameter 𝜆 ≥ 0.
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Overall, this problem has 𝑛 B #𝑎 (#𝑢 + #𝑚) decision variables and𝑚 B 2#𝑢#𝑚 inequality constraints.

All terms (𝑓 , 𝑔, and 𝒄) are nonconvex, as well as the (unbounded) feasible set.
It appears nontrivial to find a strictly feasible point for (5.2), in the sense of [13, Def. 2], which is

required for initializing IPprox, thus highlighting a major advantage of Marge. Another feature of
Marge is the versatility of model (P), which enables an effortless handling of the nonsmooth term

∥ · ∥0, in stark contrast with Ipopt. Although (5.2) can be reformulated as a nonlinear program via (1.1)

using 3#𝑚#𝑎 auxiliary variables, 4#𝑚#𝑎 linear and #𝑚 nonlinear additional constraints, this extended

formulation hinders the scalability to large datasets. For comparison, we will consider instances of

(5.2) with and without the sparsity-promoting term ∥ · ∥0 in the objective.

Setup We consider the MovieLens 100k dataset,
4
which contains 1000023 ratings for 3706 unique

movies (the dataset contains some repetitions in movie ratings and we have ignored them); these

recommendations were made by 6040 users on a discrete rating scale from 𝑌min = 1 to 𝑌max = 5. If we

construct a matrix of movie ratings by the users, then it is a sparse unstructured matrix with only

4.47% of the total entries available.

We compare Marge to ALPS and Ipopt, testing their scalability with instances of increasing size.

The set of problems consists of small and large instances, as well as instances with and without the
∥ · ∥0 term in (5.2). We set the regularization parameter 𝜆 = 10

−2
, randomly generate 4 starting points

for each problem instance, and invoke each solver with the primal-dual tolerances 𝜖p = 𝜖d = 10
−3

and without time limit. First, we fix the number of atoms to #𝑎 = 5 and consider the small instances

corresponding to subsets of #𝑢 ∈ {3, 4, . . . , 7} users (always starting from the first one), for a total

of 20 calls to each solver variant. For these problem instances the sizes range 𝑛 ∈ [1790, 3450] and
𝑚 ∈ [2130, 9562]. Then, we fix the number of atoms to #𝑎 = 10 and consider the large instances of (5.2)

corresponding to subsets of #𝑢 ∈ {11, 12, . . . , 20} users, for a total of 40 calls to each solver variant. For

these problem instances the sizes range 𝑛 ∈ [7630, 9930] and𝑚 ∈ [16544, 38920]; Ipopt is not tested
on these large instances with ∥ · ∥0 because of excessive runtime.

Results A summary of the numerical results is depicted in Figure 6 as data profiles, while median

values are reported in Table 3. Except Ipopt on instances with ∥ · ∥0, all solver variants were able to

find a solution up to the specified primal-dual tolerance. For small instances, there is not a clear winner

among Marge’s variants and ALPS, but Ipopt appears to fall behind. Ipopt returned unsuccessfully

on 30% of calls for small instances with ∥ · ∥0, requiring more than ten times the runtime of other

solvers; for this reason it was not tested on the large instances. Although Ipopt requires significantly
fewer gradient evaluations, its overall runtime soars, even on the instances without ∥ · ∥0. Indeed,

the metrics reported in Table 3 indicate that, to solve at least half of all large instances without ∥ · ∥0,

Ipopt’s runtime is six times longer than Marge’s with log-like barrier. On the large instances with

∥ · ∥0, Marge with log-like and log barriers consistently outperformed the variant with inverse barrier

and ALPS, cutting the runtime almost in half. These results show that Marge can handle problems

with thousands of variables and constraints, with a purely primal approach, and be as effective as

well-established general-purpose solvers.

Among all instances of (5.2) considered so far, we observed that the penalty parameter 𝛼𝑘 was rarely,

if ever, updated by any variants ofMarge. For illustrative purposes, we solved once again the large

instance with #𝑢 = 11 from above, but starting with the much smaller penalty parameter 𝛼0 = 10
−4
. The

penalty behavior is displayed in Figure 7 (left panel), tracing the number of updates for 𝛼𝑘 along the

iterations for each of the 4 starting points. The solution process of each solver is consistent throughout

4
The entire dataset is available at https://grouplens.org/datasets/movielens/100k/.
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Figure 6: Matrix completion problem (5.2): comparison of different solvers and variants on small (left)

and large instances (right), with (bottom) and without the ∥ · ∥0 regularization (top), using data

profiles relative to runtime. Ipopt (red thick dashed lines) is not included on large instances

with ∥ · ∥0 because of excessive runtime.

all initializations, and the total number of penalty updates is also distinctive of Marge (except for the
log variant) and ALPS; see right panel of Figure 7. The latter takes between 8 and 11 updates, whereas

the former only 4 or 5 (7 updates for the log variant). Such updates takes place in ALPS whenever local
improvement in feasibility is deemed insufficient from one iteration to the next. The same favorable

behavior of Marge is enabled by the relaxed condition at Step 1.8 of Algorithm 1, which does not

require any sufficient improvement at every iteration, but instead monitors globally how the constraint

violation 𝑝𝑘 vanishes. Correspondingly, only the barrier parameter 𝜇𝑘 is decreased in order to reduce

the complementarity slackness 𝑠𝑘 , see Lemma 4.3(iii). When active, this exact penalty quality prevents

the barrier to yield too much ill-conditioning.

While the update of the penalty parameter 𝛼 for log-like and inverse barriers follow similar profiles

(though exhibiting a discrepancy coherent with Section 4.2), Figure 7 (left panel) portrays a sharper

increase of the penalty parameter when adopting the logarithmic barrier. Most directly, this different

behavior emerges because, starting with (𝛼0, 𝜇0) = (10−4, 1), b∗(𝛼𝑘/𝜇𝑘) = −1 − ln(𝛼𝑘/𝜇𝑘) > 0 holds for

some iterations until the ratio 𝛼𝑘/𝜇𝑘 becomes large enough. In practice, during these initial iterations,

Step 1.8 of Algorithm 1 effectively checks the condition 𝑝𝑘 > 𝜖p. Log-like and inverse barriers do not

experience this effect since b∗ ≤ 0; see Table 1 and Lemma a.1(ii). Moreover, we do not observe this

phenomenon in Figure 6 because, starting with the default values 𝛼0 = 𝜇0 = 1, it is

0 >
b∗(𝛼0/𝜇0)
𝛼0/𝜇0

≤ b∗(𝛼𝑘/𝜇𝑘)
𝛼𝑘/𝜇𝑘

↗ 0

for all barrier functions specified in Table 1; see Lemma a.1(iv). More fundamentally, we can attribute

the disparity in Figure 7 to the fact that, in contrast to the log-like and inverse barriers, the logarithmic

barrier is only asymptotically well-behaved; see Table 2.
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Small instances Large instances

Solver variant # gradient eval. Runtime [s] # gradient eval. Runtime [s]

Marge log-like 4103 2.7 6874 18.8 w
i
t
h
o
u
t∥·∥

0
Marge inverse 7262 4.2 15064 36.6

Marge log 5941 3.7 8657 23.0

ALPS 6223 2.7 11959 17.4

Ipopt 161 11.2 215 125.2

Marge log-like 4248 5.9 7156 31.0

w
i
t
h
∥·∥

0

Marge inverse 6789 7.6 15239 56.5

Marge log 5805 7.5 7712 34.4

ALPS 6906 8.0 15239 59.8

Ipopt 1176 296.7 — —

Table 3:Matrix completion problem (5.2): performance comparison of different solvers and variants,

reporting the computational effort needed to achieve 50% of problems solved. The reported

values arise from the intersection of the data profiles in Figure 6 with the 50% horizontal line;

analogously for the number of gradient evaluations. Ipopt was not tested on large instances

with ∥ · ∥0 because of excessive runtime.

Overall, despite the fully nonconvex setting of problem (5.2), Marge is able to solve these instances

with only moderate values for the penalty parameter 𝛼𝑘 . Although these observations indicate that

the assumptions behind Theorem 4.13(ii) could be relaxed, the penalty exactness does not always take

effect, as demonstrated in the following section.

5.4 exact penalty behavior

After observing the bounded penalty behavior ofMarge in Section 5.3, we present now an example

problem where Marge exhibits 𝛼𝑘 ↗ ∞, hence it does not boil down to an exact penalty method. For

this purpose it suffices to consider the two-dimensional convex problem

(5.3) minimize

𝒙∈�2

𝑥1 + 𝛿�+ (𝑥2) subject to 𝑥2

1
+ 𝑥2 ≤ 0,

whose (unique) solution is the only feasible point 𝒙★ = (0, 0). Since there exists no suitable multiplier

𝑦★, the minimizer 𝒙★ is not KKT-optimal. Hence, there is no contradiction with Theorem 4.13(ii).
We intend to solve problem (5.3) with tolerances 𝜖p = 𝜖d = 10

−5
, initializingMarge and ALPS from

100 random points generated according to 𝑥0

𝑖 ∼ N(0, 𝜎2

𝑥 ) with large standard deviation 𝜎𝑥 = 30.

Results All solver variants find a primal-dual solution to (5.3), up to the specified tolerances, for

all starting points. The progression ofMarge and ALPS in terms of penalty updates are summarized

in Figure 8, in analogy with Figure 7. The unbounded behavior of the penalty parameters (𝛼𝑘 )𝑘∈�
appears evident for all solvers. Thus, 𝛼𝑘 ↗ ∞ seems necessary to drive the constraint violation 𝑝𝑘 to

zero, while the barrier parameter 𝜇𝑘 ↘ 0 forces the complementarity slackness 𝑠𝑘 .

Considering Marge’s variants, the log-like and log barriers are again almost indistinguishable and

yield better results than the inverse one. ALPS performs poorly and always returns after more iterations

and updates of the penalty parameter. All runs ofMarge and ALPS terminate with 𝛼𝑘 updated 8 and 21

times, respectively, namely increased up to 𝛼0𝛿
8

𝛼 = 256 and 𝛼0𝛿
21

𝛼 ≈ 2.1 · 10
6
. Then, it is clear that the

performance of ALPS is badly affected by the lack of regularity in (5.3); without an appropriate dual
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Figure 7:Matrix completion problem (5.2), smallest large instance: comparison of different solvers

and variants in terms of updates for the penalty parameter 𝛼𝑘 along the iterations (left) and

at the solution (right). All solvers start with the penalty value 𝛼0 = 10
−4

for each of the

4 initializations. Fewer updates are expected to result in better-conditioned subproblems.

Notice in the left panel that Marge log-like (orange) and inverse (green) increase 𝛼𝑘 only

after several iterations and fewer times, thanks to the relaxed criterion at Step 1.8; Marge log
(yellow) and ALPS (black) update 𝛼𝑘 from the first iterations.

estimate, ALPS essentially falls back to a quadratic penalty scheme. In contrast, allMarge’s variants
cope well with the lack of penalty exactness and operate consistently better than ALPS in this scenario.

5.5 handling equalities

Even though equality constraints can be handled explicitly, it is important that Marge can cope with

hidden equalities too. These may appear as the result of automatic model constructions, and are

often difficult to identify by inspection. Here we compare the behavior ofMarge when the problem

specification has explicit equalities against the same problem but whose constraints are described

using two inequalities each. The latter approach not only increases the number of constraints, but it

has also the drawback that the Mangasarian-Fromovitz constraint qualification (MFCQ) fails to hold at

all feasible points. Effectively, the redundancy introduced by splitting into two inequalities undermines

the practical relevance of Lemma 3.4(ii); see [8, §4.1.4].
Consider quadratic programming (QP) problems of the form

(5.4) minimize

𝒙∈�𝑛

1

2
𝒙⊤𝑸𝒙 + ⟨𝒒, 𝒙⟩ subject to 𝑨𝒙 = 𝒃, 𝒙 low ≤ 𝒙 ≤ 𝒙upp

with matrices 𝑸 ∈ �𝑛×𝑛 , 𝑨 ∈ �𝑚×𝑛
and vectors 𝒒, 𝒙 low, 𝒙upp ∈ �𝑛 , 𝒃 ∈ �𝑚 as problem data. Problem

(5.4) can be cast as (P) with cost functions 𝑓 (𝒙) B 1

2
𝒙⊤𝑸𝒙 + ⟨𝒒, 𝒙⟩ and 𝑔(𝒙) B 𝛿 [𝒙 low,𝒙upp ] (𝒙), and

constraint function 𝒄eq(𝒙) B 𝑨𝒙 − 𝒃 . We are interested in comparing the performance ofMarge (in
different variants) with the two problem formulations described in Section 3.2 to deal with equalities:

either by splitting into two inequalities (leading to the sum𝜓±
𝜌∗ (𝑡) B 𝜓𝜌∗ (𝑡) +𝜓𝜌∗ (−𝑡) as in (3.10)) or by

performing a combined marginalization (resulting in𝜓
eq

𝜌∗ ). Hence, for each solver’s variant and problem

instance, we contrast these two formulations, symbolized byMarge± and Margeeq
, respectively.

Setup Problem instances are generated as follows: we let either 𝑸 = 𝑴𝑴⊤
or 𝑸 = 𝑴 +𝑴⊤

, where

the elements of 𝑴 ∈ �𝑛×𝑛 are normally distributed,𝑀𝑖, 𝑗 ∼ N(0, 1), with only 10% being nonzero. The

linear part of the cost 𝒒 is also normally distributed, i.e., 𝑞𝑖 ∼ N(0, 1). Simple bounds are generated
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Figure 8: Convex problem without LICQ (5.3), first 10 initializations: comparison of different solvers

and variants in terms of updates for the penalty parameter 𝛼𝑘 along the iterations (left) and

at the solution (right). All solvers start with the (default) penalty value 𝛼0 = 1. The left panel

depicts the solver trajectories for each initialization, indicating how many times the penalty

parameter 𝛼𝑘 is updated during the solution process. Fewer updates are expected to result

in better-conditioned subproblems. In all cases the sequence of penalty parameters (𝛼𝑘 )𝑘∈�
blows up, but variants of Marge terminate sooner and with less penalty updates than ALPS.
The results for logarithmic barriers almost overlap and always take less iterations than the

inverse barrier, as expected.

according to a uniform distribution, i.e., 𝑥 low

𝑖 ∼ −U(0, 1) and 𝑥upp

𝑖
∼ U(0, 1). We set the elements of

𝑨 ∈ �𝑚×𝑛
as 𝐴𝑖, 𝑗 ∼ N(0, 1) with only 10% being nonzero. To ensure that the problem is feasible, we

draw an element 𝒙̂ ∈ [𝒙 low, 𝒙upp] (as 𝑥𝑖 = 𝑥 low

𝑖 + (𝑥upp

𝑖
− 𝑥 low

𝑖 )𝑎𝑖 with 𝑎𝑖 ∼ U(0, 1)) and set 𝒃 = 𝑨𝒙̂ . An
initial guess is randomly generated for each problem instance, as 𝑥0

𝑖 ∼ N(0, 1), and shared across all

solvers and formulations.

We consider problems with𝑚 ∈ {1, 2, . . . , 20} and 𝑛 = 10𝑚, set the tolerances 𝜖p = 𝜖d = 10
−5
, and

construct 10 instances for each size, for a total of 200 calls to each solver for each formulation.

Results Numerical results are visualized by means of pairwise (extended) performance profiles. Let

𝑡±𝑠,𝑝 and 𝑡
eq

𝑠,𝑝 denote the evaluation metric of solver 𝑠 ∈ 𝑆 on a certain instance 𝑝 ∈ 𝑃 with the two

formulations. Then, for each solver 𝑠 , the corresponding pairwise performance profile displays the

cumulative distribution 𝜚𝑠 : [0,∞) → [0, 1] of its performance ratio 𝜏𝑠,𝑝 , namely

𝜚𝑠 (𝜏) B
|
{
𝑝 ∈ 𝑃 | 𝜏𝑠,𝑝 ≤ 𝜏

}
|

|𝑃 | where 𝜏𝑠,𝑝 B
𝑡

eq

𝑠,𝑝

𝑡±𝑠,𝑝
.

Thus, the profile for solver 𝑠 indicates the fraction of problems 𝜚𝑠 (𝜏) for which solver 𝑠 invoked by

Margeeq
requires at most 𝜏 times the computational effort needed by the same solver 𝑠 when invoked

by Marge±.
As depicted in Figure 9, all pairwise performance profiles cross the unit ratio with at least 70%

problems solved, meaning that, across all variants,Margeeq
is a more effective formulation thanMarge±

for a large majority of problems. Thus, all solver variants benefit from the tailored handling of equality

constraints, especially in terms of gradient evaluations (whose profiles are all above 85% at the unit

ratio). The flat region of𝜓±
𝜌∗ displayed in Figures 2b and 3b is arguably responsible for hindering the

performance of Marge when equalities are split into two inequalities. In the possibly nonconvex case

(bottom panels of Figure 9), the narrower advantage of Margeeq
could stem from the fact that solvers
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might end up in different local solutions, or even spurious ones due to the reformulation with two

inequalities. Moreover, the smaller benefit of Margeeq
observed in terms of runtime over gradient

evaluations could be ascribed to the slightly more complicated computation of𝜓
eq

𝜌∗ over𝜓𝜌∗ . Regardless,

all variants exhibited a robust performance with both formulations, confirming that our algorithmic

framework can endure redundant, degenerate constraints and hidden equalities.
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Figure 9: Quadratic programs (5.4): comparison of different solvers and formulations using pairwise

performance profiles, relative to gradient evaluations (left) and runtime (right), for Margeeq

(explicit equality) overMarge± (split into two inequalities). Profiles located in the top-left

indicate thatMargeeq
tends to outperformMarge±. Across all barrier functions,Margeeq

is

more efficient thanMarge± for both convex (top panels) and possibly nonconvex problems

(bottom panels).

6 final remarks

We proposed Marge, an optimization framework for the numerical solution of constrained structured

problems in the fully nonconvex setting. Marge combines (exact) penalty and barrier approaches

through a marginalization step, which not only preserves the problem size by avoiding auxiliary

variables, but also enables the adoption of generic subsolvers. In particular, by extending the domain of

the subproblems’ smooth objective term, the proposed methodology overcomes the need for safeguards

within the subsolver and the difficulty of accelerating it, a major drawback of IPprox [13]. Under mild

assumptions, our theoretical analysis established convergence results on par with those typical for

nonconvex continuous optimization. Most notably, all feasible accumulation points are asymptotically

KKT optimal. We validated and compared our approach numerically with problems arising in data
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science, studying scalability and the effect of accuracy requirements. Furthermore, illustrative examples

confirmed the robust behavior of Marge on badly formulated problems and degenerate cases.

The methodology in this paper could be applied to a combination of barrier and augmented La-

grangian approaches. By generating a smoother penalty-barrier term, this strategy could benefit from

the more effective performance of subsolvers. However, this development comes with the additional

challenge of designing suitable updates for the Lagrange multipliers. Future research may also focus

on specializing the proposed framework to classical nonlinear programming, taking advantage of

the special structure and linear algebra. Finally, mechanisms for rapid infeasibility detection and

guaranteed existence of subproblems’ solutions should be investigated.

appendix a auxiliary results and missing proofs

This appendix contains some auxiliary results and proofs of statements referred to in the main body.

Lemma a.1 (Properties of the barrier b). Any function b as in Assumption 2 satisfies the following:

(i) lim𝑡→−∞ b(𝑡) = inf b and lim𝑡→0
− b(𝑡) = lim𝑡→0

− b′(𝑡) = ∞.

(ii) The conjugate b∗ is continuously differentiable on the interior of its domain int domb∗ = �++ with
(b∗)′ < 0, and satisfies b∗(0) = − inf b and lim𝑡∗→∞ b∗(𝑡∗) = −∞.

(iii) b∗(𝑡∗) = (b∗)′(𝑡∗)𝑡∗ − b((b∗)′(𝑡∗)) for any 𝑡∗ > 0.

(iv) The function (0,∞) ∋ 𝑡∗ ↦→ b∗ (𝑡∗ )/𝑡∗ = 𝑡 − b(𝑡 )/b′ (𝑡 ), where 𝑡 B (b∗)′(𝑡∗), is strictly increasing for
𝑡∗ large enough with lim𝑡∗→∞ b∗ (𝑡∗ )/𝑡∗ = 0. If inf b ≥ 0, then it is strictly increasing on the whole
(0,∞).

Proof.

♦ a.1(i) Trivial because of strict monotonicity on (−∞, 0) (since b′ > 0).

♦ a.1(ii) It follows from the definition of Fenchel conjugate that b∗(0) = − inf b, see also [1, Prop.

13.10(i)]. Notice that b is (essentially) strictly convex and essentially smooth, in the sense that b′(𝑡) → ∞
as 𝑡 → 0

−
, 0 being the only point in the boundary of domb. As such, the conjugate b∗

enjoys the

same properties, with int domb∗ = rangeb′ = �++ by virtue of [23, Thm. 26.1 and 26.3]. For the same

reason, range(b∗)′ = int domb = �−− , hence b∗′ < 0 on (0,∞). Finally, since inf b∗ = −b(0) = −∞,

we conclude that lim𝑡∗→∞ b∗(𝑡∗) = −∞.

♦ a.1(iii) This is a standard result of Fenchel conjugacy, see e.g. [1, Prop. 16.10], here specialized to the

fact that rangeb′ = �++.

♦ a.1(iv) Observe that (b∗ (𝑡∗ )/𝑡∗)′ = b(𝑡 )/(𝑡∗ )2
for 𝑡∗ > 0 and 𝑡 B (b∗)′(𝑡∗) → 0

−
as 𝑡∗ → ∞. Since

b(0−) = ∞, for 𝑡∗ large enough (or for any 𝑡∗ > 0 if inf b ≥ 0) this derivative is strictly positive, and

as such the function strictly increasing. Lastly,

(a.1) lim

𝑡∗→∞
b∗ (𝑡∗ )
𝑡∗ = lim

𝑡∗→∞
b∗′(𝑡∗) = lim

b′ (𝑡 )→∞
𝑡 = lim

𝑡→0
−
𝑡 = 0,

where the first equality uses L’Hôpital’s rule. □

Proof of Lemma 3.1. The Lagrangian associated to (Q𝛼 ) reads

L(𝒙, 𝒛, 𝒛eq;𝝀+,𝝀−, 𝒚) = 𝑞(𝒙) + 𝛼 ⟨1, 𝒛⟩ + 𝛿�𝑚+ (𝒛) + 𝛼
〈
1, 𝒛eq

〉
+ ⟨𝒚, 𝒄 (𝒙) − 𝒛⟩ +

〈
𝝀+, 𝒄eq(𝒙) − 𝒛eq

〉
−
〈
𝝀−, 𝒄eq(𝒙) + 𝒛eq

〉
,
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so that the corresponding KKT conditions are
0 ∈ 𝜕𝑞(𝒙) + J𝒄 (𝒙)⊤𝒚 + J𝒄eq(𝒙)⊤(𝝀+ − 𝝀−)
0 ∈ 𝛼 − 𝑦𝑖 + N�+ (𝑧𝑖)
0 = 𝛼 − 𝜆+𝑗 − 𝜆−𝑗


𝑐𝑖 (𝒙) ≤ 𝑧𝑖
|𝑐eq, 𝑗 (𝒙) | ≤ 𝑧eq, 𝑗

𝑦𝑖 , 𝜆
±
𝑗 ≥ 0


0 = 𝑦𝑖 (𝑐𝑖 (𝒙) − 𝑧𝑖)
0 = 𝜆+𝑗 (𝑧eq, 𝑗 − 𝑐eq, 𝑗 (𝒙))
0 = 𝜆−𝑗 (𝑧eq, 𝑗 + 𝑐eq, 𝑗 (𝒙))

where 𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . ,𝑚eq. Here, the first set of conditions corresponds to Lagrangian

stationarity (LS), the second one to primal and dual feasibility (PDF), and the last one to complementarity

slackness (CS).

Suppose that 𝑧eq, 𝑗 > |𝑐eq, 𝑗 (𝒙) |; then, CS implies that 𝜆±𝑗 = 0, contradicting the fact that 𝜆+𝑗 + 𝜆−𝑗 = 𝛼

in LS. Thus, 𝒛eq = |𝒄eq(𝒙) | must hold. Suppose instead that 𝑧𝑖 > 𝑐𝑖 (𝒙); then, 𝑦𝑖 = 0 by CS, and the

second condition in LS then implies that 𝑧𝑖 = 0 (for otherwise N�+ (𝑧𝑖) = {0}). Either way, since
𝑦𝑖 − 𝛼 ∈ N�+ (𝑧𝑖) ⊆ �− , one has that 𝑦𝑖 − 𝛼 ≤ 0. These observations show that 𝒛 = [𝒄 (𝒙)]+ and that

0 ≤ 𝒚 ≤ 𝛼1.
Set 𝒚

eq
B 𝝀+ − 𝝀−

, which combined with the last condition in LS yields that 𝝀+ = 1

2
(𝛼1 + 𝒚

eq
) and

𝝀− = 1

2
(𝛼1 − 𝒚

eq
). Since 𝝀± ≥ 0 by PDF, one has that |𝒚

eq
| ≤ 𝛼1. With these substitutions, observing

that

(a.2) 𝒛eq − 𝒄eq(𝒙) = 2[𝒄eq(𝒙)]−, 𝒛eq + 𝒄eq(𝒙) = 2[𝒄eq(𝒙)]+, and 𝒛 − 𝒄 (𝒙) = [𝒄 (𝒙)]−,

the KKT conditions simplify as
0 ∈ 𝜕𝑞(𝒙) + J𝒄 (𝒙)⊤𝒚 + J𝒄eq(𝒙)⊤𝒚eq

0 ≤ 𝒚 ≤ 𝛼1
|𝒚

eq
| ≤ 𝛼1


0 = 𝑦𝑖 [𝑐𝑖 (𝒙)]−, 𝑦𝑖 − 𝛼 ∈ N�+ ( [𝑐𝑖 (𝒙)]+)
0 = (𝛼 + 𝑦eq, 𝑗 ) [𝑐eq, 𝑗 (𝒙)]−
0 = (𝛼 − 𝑦eq, 𝑗 ) [𝑐eq, 𝑗 (𝒙)]+

where 𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . ,𝑚eq. Noticing that N�+ ( [𝑐𝑖 (𝒙)]+) = {0} when [𝑐𝑖 (𝒙)]+ > 0, (KKT𝛼 )

are obtained. Conversely, by reverting 𝒚
eq

= 𝝀+ − 𝝀−
and using (a.2) to substitute [𝒄eq(𝒙)]± and

[𝒄 (𝒙)]+ one reobtains the KKT conditions for problem (Q𝛼 ). □

Proof of Theorem 3.5. We start by observing that

𝜓𝜌∗ (𝑡)
(def)
= min

𝑧≥0

{𝜌∗𝑧 + b(𝑡 − 𝑧)} = min

𝑧∈�
{𝜌∗ |𝑧 | + b(𝑡 − 𝑧)},

owing to the fact that b is increasing and consequently inf𝑧≤0 b(𝑡 − 𝑧) = b(𝑡) for any 𝑡 . Hence,𝜓𝜌∗
is the 𝜌∗-Pasch-Hausdorff envelope of the convex function b as in [1, Def. 12.16], and is itself convex

by virtue of [1, Prop. 12.11]. Since b′′ > 0, and b′(0−) = ∞, there exists 𝜌 < 0 such that b′(𝜌) = 𝜌∗. In
particular, b′((−∞, 𝜌]) = (0, 𝜌∗] and b′((𝜌∗, 0)) = (𝜌∗,∞), implying that b is 𝜌∗-Lipschitz continuous
on (−∞, 𝜌]. The expression (3.7) and 𝜌∗-Lipschitz continuity then follow from [1, Prop. 12.17(i)], and in

turn so does the expression (3.6) of the derivative, which is clearly globally Lipschitz continuous as

well. Finally, that𝜓𝜌∗ ◦ 𝑐 is convex whenever 𝑐 is convex follows from the fact that𝜓𝜌∗ is increasing

(additionally to being convex). □

Proof of Theorem 3.6. Function 𝐹 (𝑧, 𝑡) B 𝜌∗𝑧+b(𝑡−𝑧)+b(−𝑡−𝑧) being minimized on the right-hand

side of (3.4) is convex, hence so is its marginalized (wrt 𝑧) function𝜓
eq

𝜌∗ . For every 𝑡 ∈ �, 𝑧 ↦→ 𝐹 (𝑧, 𝑡)
is proper, lsc, strictly convex, coercive, and differentiable on its (open) domain, and thus admits a

unique minimizer 𝑧𝜌∗ (𝑡), this being the (unique) zero of the derivative, that is, such that (3.9) holds. In
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particular,𝜓
eq

𝜌∗ is convex and finite valued, and thus everywhere subdifferentiable. Appealing to [25,

Thm. 10.13] and denoting 𝑧 = 𝑧𝜌∗ (𝑡), its (regular, or equivalently, convex) subdifferential satisfies

∅ ≠ 𝜕𝜓
eq

𝜌∗ (𝑡) ⊆
{
𝑦 |

(
0

𝑦

)
∈ 𝜕𝐹 (𝑧, 𝑡)

}
=

{
𝑦 |

(
0

𝑦

)
∈
(𝜌∗−b′ (𝑡−𝑧 )−b′ (−𝑡−𝑧 )

b′ (𝑡−𝑧 )−b′ (−𝑡−𝑧 )
)}

⊆ {b′(𝑡 − 𝑧) − b′(−𝑡 − 𝑧)}.

This shows that𝜓
eq

𝜌∗ is everywhere differentiable with derivative

(𝜓 eq

𝜌∗ )
′(𝑡) = b′(𝑡 − 𝑧𝜌∗ (𝑡)) − b′(−𝑡 − 𝑧𝜌∗ (𝑡)) = 𝜌∗ − 2b′(−𝑡 − 𝑧𝜌∗ (𝑡)),

as claimed, where the second identity follows from (3.9). Notice that (3.9) also implies that b′(±𝑡 −
𝑧𝜌∗ (𝑡)) ≤ 𝜌∗ (byb′ > 0); sinceb′

is increasing, onemust have that±𝑡−𝑧𝜌∗ (𝑡) ≤ (b∗)′(𝜌∗) C 𝜌 , yielding

the claimed bound 𝑧𝜌∗ (𝑡) > |𝑡 | − 𝜌 . Notice further that (𝜓 eq

𝜌∗ )′(𝑡) < 𝜌∗, since b′ > 0, and consequently

(𝜓 eq

𝜌∗ )′(𝑡) > −𝜌∗ as well by symmetry. In particular,𝜓
eq

𝜌∗ is globally 𝜌
∗
-Lipschitz continuous.

We next turn to Lipschitz differentiability. We first demonstrate that the mapping�+ ∋ 𝑡 ↦→ 𝑧𝜌∗ (𝑡) is
nonexpansive. Fix 𝑡 ′ > 𝑡 ≥ 0 and let 𝜀 B 𝑧𝜌∗ (𝑡 ′) − 𝑧𝜌∗ (𝑡) − (𝑡 ′ − 𝑡); since, apparently, 𝑧𝜌∗ (𝑡 ′) ≥ 𝑧𝜌∗ (𝑡),
the claim is proven once we show that 𝜀 ≤ 0. It follows from (3.9) that

b′(𝑡 − 𝑧𝜌∗ (𝑡)) + b′(−𝑡 − 𝑧𝜌∗ (𝑡)) = b′(𝑡 ′ − 𝑧𝜌∗ (𝑡 ′)) + b′(−𝑡 ′ − 𝑧𝜌∗ (𝑡 ′))
= b′(𝑡 − 𝑧𝜌∗ (𝑡) − 𝜀) + b′(𝑡 − 𝑧𝜌∗ (𝑡) − 2𝑡 ′ − 𝜀) .

For the top left-hand side to equal the bottom right-hand side 𝜀 < 0 must hold, for otherwise b′(𝑡 −
𝑧𝜌∗ (𝑡) − 𝜀) < b′(𝑡 − 𝑧𝜌∗ (𝑡)) and b′(𝑡 − 𝑧𝜌∗ (𝑡) − 2𝑡 ′ − 𝜀) < 𝑏′(−𝑡 − 𝑧𝜌∗ (𝑡)) (since b′

is increasing and

𝑡 ′ > 0). This shows that |𝑧𝜌∗ (𝑡 ′) − 𝑧𝜌∗ (𝑡) | ≤ |𝑡 ′ − 𝑡 |, as claimed. Next, observe that��(𝜓 eq

𝜌∗ )
′(𝑡 ′) − (𝜓 eq

𝜌∗ )
′(𝑡)

�� = 2

��b′(−𝑡 − 𝑧𝜌∗ (𝑡)) − b′(−𝑡 ′ − 𝑧𝜌∗ (𝑡 ′))
��,

and both −𝑡 − 𝑧𝜌∗ (𝑡) and −𝑡 ′ − 𝑧𝜌∗ (𝑡 ′) are larger than 𝜌 = (b∗)′(𝜌∗) < 0, as shown above. In particular,��(𝜓 eq

𝜌∗ )
′(𝑡 ′) − (𝜓 eq

𝜌∗ )
′(𝑡)

�� ≤ 2𝐵
��𝑡 ′ − 𝑡 + 𝑧𝜌∗ (𝑡 ′) − 𝑧𝜌∗ (𝑡)�� ≤ 4𝐵 |𝑡 ′ − 𝑡 |,

where 𝐵 B sup(−∞,𝜌 ] b
′′ < ∞ is a finite quantity (by the properties of b in Assumption 2) that

depends only on 𝜌∗. This shows that (𝜓 eq

𝜌∗ )′ is 4𝐵-Lipschitz continuous on �+, hence on the entire �

by symmetry.

Lastly, take 𝑡 > 0 and observe that, since 𝑧𝜌∗ (𝑡) > |𝑡 | −𝜌 > 0 and b′
is increasing, one has (𝜓 eq

𝜌∗ )′(𝑡) =
𝜌∗−2b′(−𝑡 −𝑧𝜌∗ (𝑡)) > 𝜌∗−2b′(−𝑡). By symmetry, the claimed inequality | (𝜓 eq

𝜌∗ )′(𝑡) | > 𝜌∗−2b′(−|𝑡 |)
follows. □

Proof of Theorem 3.7. We start by observing that when b > 0 the pointwise monotonic decrease

of 𝜓𝜌∗/𝜌∗ and 𝜓 eq

𝜌∗/𝜌∗ as 𝜌∗ grows is apparent from the respective definitions (3.5) and (3.7). Next,

the claimed limit of𝜓𝜌∗ follows from the expression (3.5) and Lemma a.1(iv). As to𝜓 eq

𝜌∗ , notice that it

satisfies

𝜓
eq

𝜌∗
(
𝑡
)
≤ inf

𝑧≥0

{
𝜌∗𝑧 + 2b

(
|𝑡 | − 𝑧

)}
= 2𝜓𝜌∗/2

(
|𝑡 |
)
,

where the inequality owes to the fact that b′ > 0 (hence that b is increasing). Next, fix 𝑡 ∈ � and plug

𝑧𝜌∗ (𝑡) = 𝑧𝜌∗ ( |𝑡 |) into (3.3) to obtain a bound

𝜓𝜌∗ ( |𝑡 |)
(def)
= min

𝑧≥0

{𝜌∗𝑧 + b( |𝑡 | − 𝑧)} ≤ 𝜌∗𝑧𝜌∗ ( |𝑡 |) + b( |𝑡 | − 𝑧𝜌∗ ( |𝑡 |)) = 𝜓 eq

𝜌∗ (𝑡) − b(−|𝑡 | − 𝑧𝜌∗ (𝑡)) .

Observe that 𝑧𝜌∗ (𝑡) ↘ |𝑡 | as 𝜌∗ → ∞, implying that the term b(−|𝑡 | − 𝑧𝜌∗ (𝑡)) is positive for 𝜌∗

large enough (or for any 𝜌∗ in case b > 0). Thus, for any fixed 𝑡 and 𝜌∗ large enough one has that

𝜓
eq

𝜌∗ (𝑡) ≥ 𝜓𝜌∗ ( |𝑡 |), which combined with the previous bound results in

𝜓𝜌∗
(
|𝑡 |
)
≤ 𝜓 eq

𝜌∗
(
𝑡
)
≤ 2𝜓𝜌∗/2

(
|𝑡 |
)
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for all 𝜌∗ large enough (depending on 𝑡 ). Dividing by 𝜌∗ and letting 𝜌∗ → ∞, it follows from the earlier

claim on 𝜓𝜌∗ that the lower and the upper bounds both converge to

[
|𝑡 |
]
+ = |𝑡 |, demonstrating the

claim. □

appendix b barrier properties

The analysis in Section 4.2 of the barrier’s properties is corroborated by examining the performance of

solver variants in terms of outer iterations. Computational results relative to the nonnegative PCA

example of Section 5.2 are depicted in Figure 10, where (i) the log-like and log barriers have almost

indistinguishable profiles and (ii) they invariably demand the solution of fewer subproblems than the

inverse barrier. Although observation (i) is supported also by the results in Figure 8, it does not hold in

general, as pointed out with the experiments summarized in Figure 7 and the associated discussion.

Regardless, both observations are in agreement with the analysis in Section 4.2, in particular with

the log-like barrier having a better (in fact, optimal) behavior profile than the inverse barrier. Profiles

with an analogous pattern were observed also for the matrix completion task of Section 5.3, but with a

less pronounced discrepancy between the inverse and other barrier functions. Interestingly, Figure 10

suggests that this assessment remains valid also for IPprox’s profiles, although not being covered by

our theory.
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Figure 10: Nonnegative PCA problem (5.1), small and large instances: comparison of solvers with low,

medium and high accuracy (left to right) using data profiles relative to the number of outer

iterations. With high accuracy, results for IPprox (green solid lines) are not included due

to excessive runtime; in this case the other solvers are initialized with a possibly infeasible

guess. The comparisons in terms of outer iterations for Marge (blue) and IPprox (green)
confirms the theoretical appeal of “well-behaved” logarithmic (thick dashed lines) and log-

like (thick solid lines) barriers for the former method, with the two profiles almost perfectly

overlapping.
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