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single-loop methods for bilevel parameter
learning in inverse imaging

Ensio Suonperä∗ Tuomo Valkonen†

Abstract Bilevel optimisation is used in inverse imaging problems for hyperparameter learn-

ing/identification and experimental design, for instance, to find optimal regularisation parameters

and forward operators. However, computationally, the process is costly. To reduce this cost, recently

so-called single-loop approaches have been introduced. On each step of an outer optimisation

method, they take just a single gradient step towards the solution of the inner problem. In this paper,

we flexibilise the inner algorithm to include standard methods in inverse imaging. Moreover, as we

have recently shown, significant performance improvements can be obtained in PDE-constrained

optimisation by interweaving the steps of conventional iterative linear system solvers with the

optimisation method. We now demonstrate how the adjoint equation in bilevel problems can also

benefit from such interweaving. We evaluate the performance of our approach on identifying the

deconvolution kernel for image deblurring, and the subsampling operator for magnetic resonance

imaging (MRI).

1 introduction

Bilevel optimisation has recently found significant interest in inverse imaging problems, to learn or

identify regularisation parameters and kernels [11, 31, 12, 3, 13, 23, 24, 25, 15, 7], as well as for experimental

design, for example, to design optimal sampling patterns for magnetic resonance imaging (MRI) [38].

For our purposes, the bilevel problem involves solving

(1.1) min

𝛼∈𝒜
𝐽 (𝑆𝑢 (𝛼)) + 𝑅(𝛼) with 𝑆𝑢 (𝛼) ∈ arg min

𝑢∈𝑈
𝐹 (𝑢;𝛼)

in Hilbert spaces𝒜 and𝑈 . Here 𝐹 would be an optimisation formulation of the inverse problem of

interest, and 𝛼 the aforementioned parameters that we want to choose optimally. For Tikhonov-type

formulations

(1.2) 𝐹 (𝑢;𝛼) = 𝑓 (𝑢;𝛼) + 𝑔(𝐾𝑢;𝛼),

where 𝑓 is the data fidelity term, and 𝑔 ◦ 𝐾 forms, for example, a total variation regularisation term.

For instance, to identify the parameterisation of a forward operator 𝐴𝛼 , including the kernel of a

convolution operator, or the subsampling weights of a subsampled Fourier or Radon transform as in

[38], we could solve the problem

min

𝛼∈ℝ𝑛

𝑚∑︁
𝑖=1

1

2

∥𝑢𝑖 − 𝑧𝑖 ∥2 + 𝛽 ∥𝛼 ∥1 where each 𝑢𝑖 ∈ arg min

𝑢

1

2

∥𝐴𝛼𝑢 − 𝑏𝑖 ∥2 + 𝜆TV(𝑢),
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where 𝛼 is the parameterisation to be identified;𝑢𝑖 = [𝑆𝑢 (𝛼)]𝑖 are the reconstructed images correspond-

ing to the corrupted data 𝑏𝑖 ; and 𝑧𝑖 are the ground-truth images. The outer regularisation parameter

𝛽 > 0 controls the sparsity of the parameters-to-be-identified 𝛼 . This regularisation could be combined

with a positivity constraint. In this example, we also fix the inner regularisation parameter 𝜆 > 0,

although it could also be identified.

However, bilevel optimisation can be very expensive. At the outset, it requires solving the inner

problem min 𝐹𝑢—in our domain of interest, a possibly expensive inverse problem itself—several times

to find the desired optimal parameters. Therefore, in recent years, there has been a growing interest—

also from machine learning, where bilevel optimisation has relevance to adversary learning [35]—in

developing “single-loop” methods, that on each step of an algorithm to solve the outer problem (1.1),

only take a single step of a conventional optimisation method towards a minimiser of the inner objective

(1.2) [40, 6, 26, 33, 46, 10]. There are also similar methods that take more than one but only a fixed

(small) number of inner iterations for each outer iteration [30, 29, 18, 32], while [37, 16] take an adaptive

number of inner iterations.

In [28], we introduced the single-loop approach to nonsmooth PDE-constrained optimisation, such as

total-variation regularised electrical impedance tomography (EIT) reconstruction, avoiding solving the

PDE on each step of the optimisation method, and instead taking a single step of a conventional linear

system solver (Jacobi, Gauss–Seidel, conjugate gradients) on each step of the optimisation method.

This achieved significant speedups.

We nowwant to apply such single-loop approaches to the adjoint equations that also surface in bilevel

optimisation. Moreover, compared to the aforementioned works on single-loop bilevel optimisation

methods, that generally use gradient descent for the inner problem, we want to use methods that are

applicable to inverse problems with nonsmooth total variation regularisation. Gradient descent only

applies to smooth problems. The next step from gradient descent is forward-backward splitting, which

is applicable to simple total variation regularised denoising through a dual formulation. However, when

both the data term and the regularisation term involve a difficult operator, neither forward-backward is

applicable [9]. A popular choice then is the primal-dual proximal splitting method (PDPS) of Chambolle

and Pock [5]. We want to use (single steps of) this method for the inner problem, yet remain flexible

towards other alternatives as well.

That said, due to inherent difficulties in bilevel optimisation, in this work we cannot yet allow for

a nonsmooth inner problem. Indeed, due to the use of the adjoint equation, we require the inner

problem to be twice differentiable. Some recent works [32, 34] avoid second-order derivatives in the

algorithm through the value function reformulation, but, nevertheless, require significant second-order

and other differentiability assumptions for the convergence theory.
1
This may impose a performance

penalty without a corresponding benefit in applications where the (nevertheless assumed) second-

order information can easily be computed, and—this is one of our principal contributions—efficiently

exploited. These and, indeed, most algorithms in the literature, also do not allow a nonsmooth 𝑅 in the

outer problem, as our approach does. The convergence results are, moreover, for the gradient, while

we are interested in iterate convergence.

In Section 2 we, therefore, introduce and prove the convergence of an abstract tracking approach

to the solution of bilevel optimisation problems, based on arbitrary solvers for the inner problem

and the adjoint equation that are subject to simple tracking estimates. This abstract analysis signif-

icantly simplifies upon our earlier more specific analysis in [40]. Parts of the analysis we relegate

to the appendix: integral to our convergence proofs, we recall and adapt to our needs a three-point

monotonicity estimate from [42] in Appendix a. Not integral to the theory, but helpful to verify the its

conditions, we also discuss the regularity of the solution mapping of the inner problem in Appendix b.

1
The Polyak–Łojasiewicz inequality is also, essentially, a second-order growth assumption [36].
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We treat tracking estimates for the inner problem in Section 3, proving that they hold for both

forward-backward splitting and the PDPS. Correspondingly, in Section 4, we then prove that standard

operator splitting schemes, such as Jacobi and Gauss–Seidel splitting, satisfy the adjoint tracking

property. We finish in Section 5 with numerical experiments: identifying a convolution kernel for

image deconvolution, and an optimal subsampling operator for MRI. We demonstrate, in particular,

significant performance improvements from a block-Gauss–Seidel scheme for the adjoint equation.

We delay the derivation of details of the numerical realisation to Appendices c and d.

notation and basic concepts

We write 𝕃(𝑋 ;𝑌 ) for the space of bounded linear operators between the normed spaces 𝑋 and 𝑌 , and

Id for the identity operator. Generally 𝑋 will be Hilbert, so we can identify it with the dual 𝑋 ∗
. We

use the notation 𝐴 > 𝐵 (resp. 𝐴 ≥ 𝐵) to indicate that 𝐴 − 𝐵 is positive (semi-)definite We write ⟨𝑥, 𝑦⟩
for an inner product, and 𝐵(𝑥, 𝑟 ) for a closed ball in a relevant norm ∥ · ∥. For self-adjoint positive
semi-definite 𝑄 ∈ 𝕃(𝑋 ;𝑋 ) we write ∥𝑥 ∥𝑄 :=

√︁
⟨𝑥, 𝑥⟩𝑄 :=

√︁
⟨𝑄𝑥, 𝑥⟩ and 𝐵𝑄 (𝑥, 𝑟 ) for a closed ball in

the norm ∥ · ∥𝑄 . For operators 𝑝 ∈ 𝕃(𝑋 ;𝒜), we set ∥𝑝∥𝑄 := ∥𝑝𝑄 1/2∥𝕃 (𝑋 ;𝒜) . Pythagoras’ three-point
identity in Hilbert spaces then states

(1.3) ⟨𝑥 − 𝑦, 𝑥 − 𝑧⟩𝑄 =
1

2

∥𝑥 − 𝑦 ∥2

𝑄 − 1

2

∥𝑦 − 𝑧∥2

𝑄 + 1

2

∥𝑥 − 𝑧∥2

𝑄 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 .

We also extensively use Young’s inequality

⟨𝑥, 𝑦⟩𝑄 ≤ 𝑎

2

∥𝑥 ∥2

𝑄 + 1

2𝑎
∥𝑦 ∥2

𝑄 for all 𝑥, 𝑦 ∈ 𝑋, 𝑎 > 0.

For 𝐺 ∈ 𝐶1(𝑋 ), we write 𝐺 ′(𝑥) ∈ 𝑋 ∗
for the Fréchet derivative at 𝑥 , and ∇𝐺 (𝑥) ∈ 𝑋 for its Riesz

presentation, i.e., the gradient. For 𝐸 ∈ 𝐶1(𝑋 ;𝑌 ), since 𝐸′(𝑥) ∈ 𝕃(𝑋 ;𝑌 ), we use the Hilbert adjoint
to define ∇𝐸 (𝑥) := 𝐸′(𝑥)∗ ∈ 𝕃(𝑌 ;𝑋 ). Then the Hessian ∇2𝐺 (𝑥) := ∇[∇𝐺] (𝑥) ∈ 𝕃(𝑋 ;𝑋 ). When

necessary we indicate the differentiation variable with a subscript, e.g., ∇𝑢𝐹 (𝑢, 𝛼).
We define ℝ := ℝ ∪ {∞} with the usual arithmetic on ℝ extended by 𝑡 + ∞ = ∞ for all 𝑡 ∈ ℝ. For

convex 𝑅 : 𝑋 → ℝ, we write dom𝑅 for the effective domain and 𝜕𝑅(𝑥) for the subdifferential at 𝑥 . With

slight abuse of notation, we identify 𝜕𝑅(𝑥) with the set of Riesz presentations of its elements. We define

the proximal map as prox𝑅 (𝑥) := arg min𝑧
1

2
∥𝑧 −𝑥 ∥2 +𝑅(𝑧) = (Id+𝜕𝑅)−1(𝑥). For 𝐹 : 𝑋 → ℝ, we define

𝐹 ∗ : 𝑋 ∗ → ℝ for Fenchel conjugate (or convex conjugate) of 𝐹 as 𝐹 ∗(𝑥∗) = sup𝑥∈𝑋 {⟨𝑥∗, 𝑥⟩ − 𝐹 (𝑥)}.

2 an abstract tracking approach

In this section, we prove the convergence of our proposed abstract tracking approach to bilevel

optimisation. We start in Section 2.1 by describing the problem, and then deriving in Section 2.2 the

optimality conditions that we try to solve; in particular, the adjoint equation. We then introduce

and discuss in Section 2.3 the abstract algorithm. We continue by stating the assumptions of the

abstract method in Section 2.4, and then proving its convergence based on these assumptions 2.5. The

assumptions in particular involve inner problem and adjoint tracking conditions. We verify these for

several explicit algorithms in the coming Sections 3 and 4.

2.1 problem description

We slightly generalise the problem formulation (1.1), and seek to solve

(2.1) min

𝛼∈𝒜
𝐽 (𝑆𝑢 (𝛼)) + 𝑅(𝛼) subject to 𝑆𝑢 (𝛼) ∈ 𝑈 satisfying 0 = 𝐺 (𝑆𝑢 (𝛼);𝛼),
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where, on Hilbert spaces 𝑈 and 𝒜, 𝐽 : 𝑈 → ℝ is convex and Fréchet differentiable, 𝑅 : 𝒜 → ℝ is

convex, proper, and lower semicontinuous, and 𝐺 : 𝑈 ×𝒜 → 𝑈 . We call 𝑆𝑢 : 𝒜 → 𝑈 the solution

mapping. We will generally assume it to be well-defined (and single-valued) on the effective domain

of 𝑅, i.e., in dom𝑅 := {𝛼 ∈ 𝒜 | 𝑅(𝛼) < ∞}. Of all the function, we will also be making further

assumptions, including differeniability assumptions, in Section 2.4

Taking 𝐺 = ∇𝑢𝐹 for sufficiently regular 𝐹 , (2.1) is a necessary condition for (1.1). If 𝐹 is convex in 𝑢,

this condition is also sufficient. However, we want to allow for other optimality conditions, such as the

primal-dual conditions that arise from the Frenchel–Rockafellar theorem, and that our used in the

context of primal-dual methods (see, e.g., [9]). We therefore allow for abstract optimality conditions

for the inner problem via a general 𝐺 .

2.2 optimality conditions and the adjoint equation

Assume that both𝐺 and 𝑆𝑢 are Fréchet differentiable. Suppose a solution 𝑆𝑢 (𝛼) exists for all 𝛼 near

𝛼 ∈ 𝒜. Then 𝐺 (𝑆𝑢 (𝛼);𝛼) = 0 for all such 𝛼 , so by implicit differentiation

0 = ∇𝛼𝑆𝑢 (𝛼)∇𝑢𝐺 (𝑆𝑢 (𝛼), 𝛼) + ∇𝛼𝐺 (𝑆𝑢 (𝛼), 𝛼).

That is, 𝑝 = ∇𝛼𝑆𝑢 (𝛼) solves for 𝑢 = 𝑆𝑢 (𝛼) the adjoint equation

(2.2) 0 = 𝑝∇𝑢𝐺 (𝑢, 𝛼) + ∇𝛼𝐺 (𝑢, 𝛼) .

We introduce the corresponding solution mapping for the adjoint variable 𝑝 ,

(2.3) 𝑆𝑝 (𝑢, 𝛼) := −∇𝛼𝐺 (𝑢;𝛼) (∇𝑢𝐺 (𝑢;𝛼))−1 .

We will later make assumptions that ensure that 𝑆𝑝 is well-defined. Then ∇𝑆𝑢 (𝛼) = 𝑆𝑝 (𝑆𝑢 (𝛼), 𝛼) .
Since 𝑆𝑢 : 𝒜 → 𝑈 , the Fréchet derivative 𝑆 ′𝑢 (𝛼) ∈ 𝕃(𝒜;𝑈 ) and the Hilbert adjoint ∇𝛼𝑆𝑢 (𝛼) ∈

𝕃(𝑈 ;𝒜) for all 𝛼 . Consequently 𝑝 ∈ 𝕃(𝑈 ;𝒜).
By the sum rule for Clarke subdifferentials (denoted 𝜕𝐶 ) and their compatibility with convex subdif-

ferentials and Fréchet differentiable functions [8], we obtain

𝜕𝐶 (𝐽 ◦ 𝑆𝑢 + 𝑅) (𝛼) = ∇𝛼 (𝐽 ◦ 𝑆𝑢) (𝛼) + 𝜕𝑅(𝛼) = ∇𝛼𝑆𝑢 (𝛼)∇𝑢 𝐽 (𝑆𝑢 (𝛼)) + 𝜕𝑅(𝛼) .

The Fermat principle for Clarke or Mordukhovich subdifferentials then furnishes the necessary opti-

mality condition

(2.4) 0 ∈ ∇𝛼 (𝐽 ◦ 𝑆𝑢) (𝛼) + 𝜕𝑅(𝛼) = ∇𝛼𝑆𝑢 (𝛼)∇𝑢 𝐽 (𝑆𝑢 (𝛼)) + 𝜕𝑅(𝛼) .

We combine the inner optimality condition𝐺 (𝑆𝑢 (𝛼);𝛼) = 0, the adjoint equation (2.2), and the outer

optimality condition (2.4) as the inclusion

0 ∈ 𝐻 (𝑢, 𝑝, 𝛼)(2.5a)

with

𝐻 (𝑢, 𝑝, 𝛼) :=
©­«

𝐺 (𝑢;𝛼)
𝑝∇𝑢𝐺 (𝑢;𝛼) + ∇𝛼𝐺 (𝑢;𝛼)

𝑝∇𝑢 𝐽 (𝑢) + 𝜕𝑅(𝛼)

ª®¬ for all 𝑢 ∈ 𝑈 , 𝑝 ∈ 𝕃(𝑈 ;𝒜), 𝛼 ∈ 𝒜.(2.5b)

This is the optimality condition that our proposed methods attempt to satisfy.
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Algorithm 2.1 Bilevel abstract tracking approach (BATA)

Require: Functions 𝐽 : 𝑈 → ℝ, and𝑅 : 𝒜 → ℝ, with 𝐽 Fréchet differentiable and𝑅 convex, on Hilbert

spaces𝑈 and𝒜. Outer step length 𝜎 > 0. Norm-defining 𝑄 ∈ 𝕃(𝑈 ;𝑈 ) and tracking parameters

𝜅𝑢, 𝜅𝑝 > 1; 𝜋𝑢, 𝜋𝑝 > 0; as well as 𝐶𝑆 > 0, satisfying the further bounds in Assumption 2.2.

1: Pick an initial iterate (𝑢0, 𝑝0, 𝛼0) ∈ 𝑈 × 𝕃(𝑈 ;𝒜) ×𝒜. Set 𝛼−1
:= 𝛼0

.

2: for 𝑘 ∈ ℕ do
3: Find (with an algorithm from Section 3) a 𝑢𝑘+1 ∈ 𝑈 satisfying the inner tracking property

𝜅𝑢 ∥𝑢𝑘+1 − 𝑆𝑢 (𝛼𝑘 )∥𝑄 ≤ ∥𝑢𝑘 − 𝑆𝑢 (𝛼𝑘−1)∥𝑄 + 𝜋𝑢 ∥𝛼𝑘 − 𝛼𝑘−1∥.

4: Find (with an algorithm from Section 4) a 𝑝𝑘+1 ∈ 𝕃(𝑈 ;𝒜) satisfying the adjoint tracking

property

𝜅𝑝 ∥𝑝𝑘+1 − ∇𝛼𝑆𝑢 (𝛼𝑘 )∥𝑄−1 ≤ ∥𝑝𝑘 − ∇𝛼𝑆𝑢 (𝛼𝑘 )∥𝑄−1 +𝐶𝑆 ∥𝑢𝑘+1 − 𝑆𝑢 (𝛼𝑘 )∥𝑄 + 𝜋𝑝 ∥𝛼𝑘 − 𝛼𝑘−1∥.

5: Update 𝛼𝑘+1
:= prox𝜎𝑅

(
𝛼𝑘 − 𝜎𝑝𝑘+1∇𝑢 𝐽 (𝑢𝑘+1)

)
.

6: end for

2.3 algorithm

As already discussed, we generally assume that there exist solution mappings 𝑆𝑢 and 𝑆𝑝 of the inner

problem and the adjoint equation, i.e., the first two lines of the inclusion (2.5). However, our algorithms

do not attempt to solve these computationally expensive equations exactly on each step. Instead, in

the abstract Algorithm 2.1, we assume to be given an abstract inner algorithm and an abstract adjoint

algorithm, that satisfy a corresponding inner tracking and adjoint tracking property (Lines 3 and 4 of the

algorithm). The idea is to implement those steps by taking a single step of a conventional optimisation

method (Section 3), or a linear system solver (Section 4). The corresponding algorithm defines the

tracking parameters, that are never to be explicitly used; they are merely needed for the convergence

theory.

2.4 assumptions

We next state essential structural, initialisation, and step length assumptions. We start with a contrac-

tivity condition needed for the proximal step with respect to 𝑅.

Assumption 2.1. Let 𝑅 : 𝒜 → ℝ be convex, proper, and lower semicontinuous. We say that 𝑅 is locally

prox-𝜎-contractive at 𝛼 ∈ 𝒜 for 𝑞 ∈ 𝒜 (within𝐴 ⊂ dom𝑅) if there exist 𝜎,𝐶𝑅 > 0 and a neighbourhood

𝐴 ⊂ dom𝑅 of 𝛼 such that, for all 𝛼 ∈ 𝐴,

∥𝐷𝜎𝑅 (𝛼) − 𝐷𝜎𝑅 (𝛼)∥ ≤ 𝜎𝐶𝑅 ∥𝛼 − 𝛼 ∥ for 𝐷𝜎𝑅 (𝛼) := prox𝜎𝑅 (𝛼 − 𝜎𝑞) − 𝛼.

If 𝜎 > 0 can be arbitrary with the same factor 𝐶𝑅 , we drop the word “locally”.

The assumption holds for smooth functions [40, Theorem A.4]. It also holds for indicator functions of

convex sets if𝑞 = 0 [40, TheoremA.2], and𝑅 = 𝛽 ∥ · ∥1+𝛿 [0,∞)𝑛 if−𝑞 = (𝛽, . . . , 𝛽) ∈ 𝜕𝑅(𝛼) [40, Theorem
A.1]. When applying the assumption to 𝛼 satisfying (2.5), we will take −𝑞 = −𝑝∇𝑢 𝐽 (𝑢) ∈ 𝜕𝑅(𝛼). The
restriction on 𝑞 in the two nonsmooth examples thus serves to forbid strict complementarity: optimal

solutions cannot involve interior subdifferentials. Intuitively, this restriction serves to forbid the finite

identification property [20] of proximal-type methods, as {𝛼𝑛} cannot converge too fast in our current

proof techniques for the stability of the inner problem and adjoint with respect to perturbations of 𝛼 .

We now come to our main assumption for the abstract algorithm.
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Assumption 2.2. Let 𝑈 and 𝒜 be a Hilbert spaces. Let 𝑅 : 𝒜 → ℝ be convex, proper, and lower

semicontinuous, and 𝐽 : 𝑈 → ℝ be convex and Fréchet differentiable. Also let 𝐺 : 𝑈 ×𝒜 → 𝑈 . Pick

(𝑢, 𝑝, 𝛼) ∈ 𝐻−1(0) and let {(𝑢𝑛, 𝑝𝑛, 𝛼𝑛)}𝑛∈ℕ be generated by Algorithm 2.1 for a given initial iterate

(𝑢0, 𝑝0, 𝛼0) ∈ 𝑈 × 𝕃(𝑈 ;𝒜) × dom𝑅. For some positive 𝑟𝛼 , 𝑟𝑢 > 0, we then suppose that

(i) There exists an inner problem solution mapping 𝑆𝑢 ∈ 𝐶1(𝒜2𝑟 ;𝑈 ), satisfying 𝐺 (𝑆𝑢 (𝛼);𝛼) = 0

for all 𝛼 ∈ 𝒜2𝑟 := 𝐵(𝛼, 2𝑟𝛼 ) ∩ dom𝑅. For a positive definite self-adjoint operator 𝑄 ∈ 𝕃(𝑈 ;𝑈 ),
this mapping is also 𝐿𝑆𝑢 -Lipschitz w.r.t. the 𝑄-norm, i.e. ∥𝑆𝑢 (𝛼1) − 𝑆𝑢 (𝛼2)∥𝑄 ≤ 𝐿𝑆𝑢 ∥𝛼1 − 𝛼2∥ for
𝛼1, 𝛼2 ∈ 𝒜2𝑟 .

(ii) We are given an inner algorithm 𝐴𝑢 that satisfies the inner tracking property

𝜅𝑢 ∥𝐴𝑢 (𝑢, 𝛼2) − 𝑆𝑢 (𝛼2)∥𝑄 ≤ ∥𝑢 − 𝑆𝑢 (𝛼1)∥𝑄 + 𝜋𝑢 ∥𝛼2 − 𝛼1∥

for any 𝑢 ∈ 𝐵𝑄 (𝑢, 𝑟𝑢) and 𝛼1, 𝛼2 ∈ 𝒜2𝑟 with 𝜋𝑢 > 0 and 𝜅𝑢 > 1.

(iii) We are given an adjoint algorithm 𝐴𝑝 that satisfies the adjoint tracking property

𝜅𝑝 ∥𝐴𝑝 (𝑢, 𝑝, 𝛼2) − ∇𝛼𝑆𝑢 (𝛼2)∥𝑄−1 ≤ ∥𝑝 − ∇𝛼𝑆𝑢 (𝛼1)∥𝑄−1 +𝐶𝑆 ∥𝑢 − 𝑆𝑢 (𝛼2)∥𝑄 + 𝜋𝑝 ∥𝛼2 − 𝛼1∥

for any 𝑝 ∈ 𝕃(𝑈 ;𝒜), 𝑢 ∈ 𝐵𝑄 (𝑢, 𝑟𝑢) and 𝛼1, 𝛼2 ∈ 𝒜2𝑟 with 𝐶𝑆 , 𝜋𝑝 > 0 and 𝜅𝑝 > 1.

(iv) The outer fitness function 𝐽 is Lipschitz continuously differentiable with factor 𝐿∇ 𝐽 , and the

function 𝐽 ◦ 𝑆𝑢 is 𝛾𝛼 -strongly convex and 𝐿𝛼 -Lipschitz differentiable in 𝐵(𝛼, 𝑟 ) ∩ dom𝑅 for some

𝛾𝛼 , 𝐿𝛼 > 0. Moreover, 𝑅 is locally prox-𝜎-contractive at 𝛼 for 𝑝 ∇𝑢 𝐽 (𝑢) within 𝐵(𝛼, 𝑟𝛼 ) ∩ dom𝑅

for some 𝐶𝑅 ≥ 0.

(v) The relative initialization bounds

∥𝑢1 − 𝑆𝑢 (𝛼0)∥𝑄 ≤ 𝐶𝑢 ∥𝛼0 − 𝛼 ∥ and ∥𝑝1 − ∇𝛼𝑆𝑢 (𝛼0)∥𝑄−1 ≤ 𝐶𝑝 ∥𝛼0 − 𝛼 ∥

hold with constants 𝐶𝑢,𝐶𝑝 > 0, which satisfy

𝐶𝑆𝜅
−1

𝑢 𝐶𝑢 < (𝜅𝑝 − 1)𝐶𝑝 and 𝐶𝛼 := 𝐿∇ 𝐽𝑁𝑝𝐶𝑢 + 𝑁∇ 𝐽𝐶𝑝 < 𝛾𝛼

for 𝑁𝑝 := 𝑁∇𝑆𝑢 +𝐶𝑝𝑟𝛼 ,

𝑁∇ 𝐽 := max

𝛼∈𝐵 (𝛼,𝑟𝛼 )∩dom𝑅
∥∇𝑢 𝐽 (𝑆𝑢 (𝛼))∥𝑄 , and 𝑁∇𝑆𝑢 := max

𝛼∈𝐵 (𝛼,𝑟𝛼 )∩dom𝑅
∥∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 .

(vi) The initial outer iterate 𝛼0 ∈ 𝐵(𝛼, 𝑟 ) for 𝑟 = min{𝑟𝛼 , 𝑟𝑢/(𝐶𝑢 + 𝐿𝑆𝑢 )}.

(vii) The outer step length 𝜎 > 0 satisfies

𝜎 ≤ 1

𝐶𝛼 + 𝐿𝛼 +𝐶𝑅

min

{
(𝜅𝑢 − 1)𝐶𝑢
𝜋𝑢 + 𝜅𝑢𝐶𝑢

,
(𝜅𝑝 − 1)𝐶𝑝 −𝐶𝑆𝜅

−1

𝑢 𝐶𝑢

𝜋𝑝 + 𝜅𝑝𝐶𝑝 +𝐶𝑆𝜅
−1

𝑢 𝜋𝑢

}
and

𝜎 < (𝛾𝛼 −𝐶𝛼 )
2

𝐿2

𝛼

.

Remark 2.3 (Interpretation). The condition (i) of Assumption 2.2 ensures that the inner problem

solutions do not vary uncontrollably as the parameter 𝛼 changes. This is necessary to ensure that

small changes of one variable result in small changes in the other variables as well. We discuss the

condition more in the next Remark 2.4.
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The conditions (ii) and (iii) likewise ensure that the specific algorithms that are used to generate

inner and adjoint iterates, produce small steps in response to small changes in 𝛼 , and, with no change,

are contractive. We verify these conditions for exemplary optimisation algorithms and linear system

splitting schemes in Sections 3 and 4.

The first part of (iv) is a second order growth and boundedness condition, standard in smooth

optimisation. Together with (i), the condition ensures that 𝛼 ↦→ ∇𝛼 (𝐽 ◦ 𝑆𝑢) (𝛼) is Lipschitz in 𝐵(𝛼, 𝑟 ).
The local strong convexity of 𝐽 ◦ 𝑆𝑢 in the smooth case amounts to ∇2

𝛼 (𝐽 ◦ 𝑆𝑢) (𝛼) > 𝛾𝛼 Id holding

locally. We refer to [40, Remark 2.3] on how to reduce the latter to properties of ∇2

𝑢 𝐽 (𝑆 (𝛼)) and of

𝑆 . The second part of (iv) essentially prevents prox𝜎𝑅 from having a finite identification property, as

discussed above.

The condition (v) ensures that the initial inner problem and adjoint iterates are good relative to the

outer problem iterate. If 𝑢1
solves the inner problem for 𝛼0

, (v) holds for any 𝐶𝑢 > 0. Therefore, (v)

can always be satisfied by solving the inner problem for 𝛼0
to high accuracy. This condition does not

require 𝛼0
to be close to a solution 𝛼 of the entire problem. We stress that the inequality on constants in

(v) can always be satisfied by good relative initialisation (small𝐶𝑢,𝐶𝑝 > 0). The constants 𝑁∇ 𝐽 and 𝑁∇𝑆𝑢
require analysing the specific inner problem: how large can the solutions 𝑢 = 𝑆𝑢 (𝛼) for 𝛼 in 𝐵(𝛼, 𝑟𝛼 )?
How fast do the vary? Practically, we will not know 𝑟𝛼 , so want to do this analysis for a large value.

The semifinal (vi) is a standard initialisation condition for local convergence. If 𝑟 > 0 can be

arbitrarily large, we obtain global convergence. The final (vii) is a step length restriction on the outer

problem. Practically, it requires 𝜎 > 0 to be sufficiently small.

Remark 2.4 (Existence and differentiability of the solution map). The existence and differentiability of

a 𝑆𝑢 (𝛼) = 𝑢 such that 𝐺 (𝑢, 𝛼) = 0 needs to be explicitly verified. When 𝐺 = ∇𝑢𝐹 , Fermat’s principle

proves that min𝑢 𝐹 (𝑢, 𝛼) has a solution. That in turn, follows from lower semicontinuity and coercivity.

Suppose then that 𝐺 is continuously differentiable in both variables, and that for some 𝑢 ∈ 𝐵(𝑢, 𝑟𝑢)
and 𝛼 ∈ 𝐵(𝛼, 2𝑟𝛼 ) ∩ dom𝑅 we have 𝐺 (𝑢;𝛼) = 0 with ∇𝑢𝐺 (𝑢;𝛼) invertible. Then the implicit function

theorem shows the existence of a unique continuously differentiable 𝑆𝑢 in a neighborhood of 𝛼 . Such

an 𝑆𝑢 is also Lipschitz in a neighborhood of 𝛼 ; see, e.g., [9, Lemma 2.11]. If𝒜 is finite-dimensional, a

compactness argument gluing together the neighborhoods then proves the continuity and Lipschitz

properties of Assumption 2.2 (i). In Appendix b we discuss relaxations of these conditions to mere

right-invertibility of 𝐺𝑢 (𝑢;𝛼) (left-invertibility of ∇𝑢𝐺 (𝑢;𝛼)).
Remark 2.5 (Inner and adjoint algorithms). Although for visual reasons Assumption 2.2 parametrises

the inner and adjoint algorithms 𝐴𝑢 and 𝐴𝑝 by just 𝑢, 𝑝 , and 𝛼 , which will in application be previous

iterates, our proofs can easily handle iteration-dependent 𝐴𝑢 and 𝐴𝑝 , and therefore dependence on the

entire history of iterates.

2.5 convergence analysis

We now prove the convergence of Algorithm 2.1 subject to Assumption 2.2. Throughout, we take the

assumption holding as a given, and use the constants from it. We also tacitly take it that 𝛼𝑛 ∈ dom𝑅 for

all 𝑛 ∈ ℕ, as this is guaranteed by the assumptions for 𝑛 = 0, and by the proximal step in the algorithm

for 𝑛 ≥ 1.

An essential goal here is to bound the error in the inner and adjoint iterates 𝑢𝑛+1
and 𝑝𝑛+1

in terms

of the outer iterates 𝛼𝑛 with

∥𝑢𝑛+1 − 𝑆𝑢 (𝛼𝑛)∥𝑄 ≤ 𝐶𝑢 ∥𝛼𝑛 − 𝛼 ∥, and(2.6a)

∥𝑝𝑛+1 − ∇𝛼𝑆𝑢 (𝛼𝑛)∥𝑄−1 ≤ 𝐶𝑝 ∥𝛼𝑛 − 𝛼 ∥.(2.6b)

We prove by induction that Assumption 2.2 implies these bounds for each 𝑛 ∈ ℕ. We also derive

bounds on the outer steps, and local monotonicity estimates.
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Lemma 2.6. Suppose Assumption 2.2 holds. Let 𝑛 ∈ ℕ and suppose that (2.6b) holds with 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ).
Then ∥𝑝𝑛+1∥𝑄−1 ≤ 𝑁𝑝 .

Proof. We estimate using (2.6b) and the definitions of the relevant constants in Assumption 2.2 that

∥𝑝𝑛+1∥𝑄−1 ≤ ∥∇𝛼𝑆𝑢 (𝛼𝑛)∥𝑄−1 + ∥𝑝𝑛+1 − ∇𝛼𝑆𝑢 (𝛼𝑛)∥𝑄−1

≤ 𝑁∇𝑆𝑢 +𝐶𝑝 ∥𝛼𝑛 − 𝛼 ∥ ≤ 𝑁∇𝑆𝑢 +𝐶𝑝𝑟𝛼 = 𝑁𝑝 . □

The next lemma bounds the steps taken for the outer problem variable.

Lemma 2.7. Let 𝑛 ∈ ℕ. Suppose Assumption 2.2 and (2.6) hold, and 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ). Then

∥𝛼𝑛+1 − 𝛼𝑛 ∥ ≤ 𝜎 [(𝐶𝛼 + 𝐿𝛼 ) +𝐶𝑅] ∥𝛼𝑛 − 𝛼 ∥,(2.7)

𝐶𝑢 ∥𝛼𝑛 − 𝛼 ∥ + 𝜋𝑢 ∥𝛼𝑛+1 − 𝛼𝑛 ∥ ≤ 𝜅𝑢𝐶𝑢
(
∥𝛼𝑛 − 𝛼 ∥ − ∥𝛼𝑛+1 − 𝛼𝑛 ∥

)
≤ 𝜅𝑢𝐶𝑢 ∥𝛼𝑛+1 − 𝛼 ∥(2.8)

and

(𝐶𝑝 +𝐶𝑆𝜅
−1

𝑢 𝐶𝑢)∥𝛼𝑛 − 𝛼 ∥ + (𝜋𝑝 +𝐶𝑆𝜅
−1

𝑢 𝜋𝑢)∥𝛼𝑛+1 − 𝛼𝑛 ∥ ≤ 𝜅𝑝𝐶𝑝 ∥𝛼𝑛+1 − 𝛼 ∥.(2.9)

Proof. Using the 𝛼-update of Algorithm 2.1, we estimate

∥𝛼𝑛+1 − 𝛼𝑛 ∥ = ∥ [prox𝜎𝑅 (𝛼𝑛 − 𝜎𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1)) − 𝛼𝑛] − [prox𝜎𝑅 (𝛼 − 𝜎𝑝∇𝑢 𝐽 (𝑢)) − 𝛼] ∥
≤ ∥[prox𝜎𝑅 (𝛼𝑛 − 𝜎𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1)) − 𝛼𝑛] − [prox𝜎𝑅 (𝛼𝑛 − 𝜎𝑝∇𝑢 𝐽 (𝑢)) − 𝛼𝑛] ∥
+ ∥[prox𝜎𝑅 (𝛼𝑛 − 𝜎𝑝∇𝑢 𝐽 (𝑢)) − 𝛼𝑛] − [prox𝜎𝑅 (𝛼 − 𝜎𝑝∇𝑢 𝐽 (𝑢)) − 𝛼] ∥ .

Since proximal maps are 1-Lipschitz, and 𝑅 is by Assumption 2.2 (iv) locally prox-𝜎-contractive at 𝛼 for

𝑝∇𝑢 𝐽 (𝑢) within 𝐵(𝛼, 𝑟 ) ∩ dom𝑅 with factor 𝐶𝑅 , it follows

(2.10) ∥𝛼𝑛+1 − 𝛼𝑛 ∥ ≤ 𝜎 ∥𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) − 𝑝∇𝑢 𝐽 (𝑢)∥ + 𝜎𝐶𝑅 ∥𝛼𝑛 − 𝛼 ∥ =: 𝜎𝐴 + 𝜎𝐶𝑅 ∥𝛼𝑛 − 𝛼 ∥ .

We have 𝑝∇𝑢 𝐽 (𝑢) = ∇𝛼𝑆𝑢 (𝛼)∇𝑢 𝐽 (𝑆𝑢 (𝛼)) = ∇𝛼 (𝐽 ◦ 𝑆𝑢) (𝛼), where ∇𝛼 (𝐽 ◦ 𝑆𝑢) is 𝐿𝛼 -Lipschitz in
𝐵(𝛼, 𝑟 ) ∋ 𝛼𝑛 by Assumption 2.2 (iv). Hence

𝐴 ≤ ∥𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) − ∇𝛼 (𝐽 ◦ 𝑆𝑢) (𝛼𝑛) + ∇𝛼 (𝐽 ◦ 𝑆𝑢) (𝛼𝑛) − 𝑝 ∇𝑢 𝐽 (𝑢)∥
≤ ∥𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) − ∇𝛼𝑆𝑢 (𝛼𝑛)∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛))∥ + 𝐿𝛼 ∥𝛼𝑛 − 𝛼 ∥.

Using the Lipschitz continuity of ∇𝑢 𝐽 from Assumption 2.2 (iv), we continue

𝐴 ≤ ∥𝑝𝑛+1(∇𝑢 𝐽 (𝑢𝑛+1) − ∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛)) + (𝑝𝑛+1 − ∇𝛼𝑆𝑢 (𝛼𝑛))∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛))∥ + 𝐿𝛼 ∥𝛼𝑛 − 𝛼 ∥
≤ ∥𝑝𝑛+1∥𝑄−1𝐿∇ 𝐽 ∥𝑢𝑛+1 − 𝑆𝑢 (𝛼𝑛)∥𝑄 + ∥𝑝𝑛+1 − ∇𝛼𝑆𝑢 (𝛼𝑛)∥𝑄−1 ∥∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛))∥𝑄 + 𝐿𝛼 ∥𝛼𝑛 − 𝛼 ∥.

Since 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ), we have ∥𝑝𝑛+1∥𝑄−1 ≤ 𝑁𝑝 by Lemma 2.6 and ∥∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛))∥𝑄 ≤ 𝑁∇ 𝐽 by the

definition in Assumption 2.2 (v). Using (2.6) therefore gives

𝐴 ≤ 𝑁𝑝𝐿∇ 𝐽𝐶𝑢 ∥𝛼𝑛 − 𝛼 ∥ + 𝑁∇ 𝐽𝐶𝑝 ∥𝛼𝑛 − 𝛼 ∥ + 𝐿𝛼 ∥𝛼𝑛 − 𝛼 ∥ = (𝐶𝛼 + 𝐿𝛼 )∥𝛼𝑛 − 𝛼 ∥ .

Inserting this into (2.10), we obtain (2.7). Assumption 2.2 (vii) and (2.7) then yield

(𝜋𝑢 + 𝜅𝑢𝐶𝑢)∥𝛼𝑛+1 − 𝛼𝑛 ∥ ≤ 𝜎 (𝜋𝑢 + 𝜅𝑢𝐶𝑢) [𝐶𝛼 + 𝐿𝛼 +𝐶𝑅] ∥𝛼𝑛 − 𝛼 ∥ ≤ (𝜅𝑢 − 1)𝐶𝑢 ∥𝛼𝑛 − 𝛼 ∥.

Rearranging terms and finishing with the triangle inequality we get (2.8). We obtain (2.9) analogously

to (2.8). □

We discussed taking gradient steps instead of proximal steps with respect to 𝑅 in [40, Remark 3.10].

We next prove that if both inner problem and adjoint iterates have small error, and we take a short

step in the outer problem, then also the next inner problem and adjoint iterate has small error.
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Lemma 2.8. Let 𝑘 ∈ ℕ. Suppose Assumption 2.2 holds. If 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ) and (2.6) holds for 𝑛 = 𝑘, then (2.6)

holds for 𝑛 = 𝑘 + 1 and we have 𝛼𝑘+1 ∈ 𝐵(𝛼, 2𝑟 ).

Proof. First, we show that 𝛼𝑘+1 ∈ 𝐵(𝛼, 2𝑟 ) and 𝑢𝑘+1 ∈ 𝐵𝑄 (𝑢, 𝑟𝑢). We use (2.8) of Lemma 2.7. Its first

inequality readily implies either ∥𝛼𝑘 − 𝛼 ∥ > ∥𝛼𝑘+1 − 𝛼𝑘 ∥ or 𝛼𝑘+1 = 𝛼 ∈ 𝐵(𝛼, 2𝑟 ). In the former, using

𝛼𝑘 ∈ 𝐵(𝛼, 𝑟 ), we get

∥𝛼𝑘+1 − 𝛼 ∥ ≤ ∥𝛼𝑘+1 − 𝛼𝑘 ∥ + ∥𝛼𝑘 − 𝛼 ∥ < 2∥𝛼𝑘 − 𝛼 ∥ ≤ 2𝑟 .

We estimate using (2.6a) for 𝑛 = 𝑘 and Lipschitz continuity of 𝑆𝑢

∥𝑢𝑘+1 − 𝑢∥𝑄 ≤ ∥𝑢𝑘+1 − 𝑆𝑢 (𝛼𝑘 )∥𝑄 + ∥𝑆𝑢 (𝛼𝑘 ) − 𝑆𝑢 (𝛼)∥𝑄
≤ (𝐶𝑢 + 𝐿𝑆𝑢 )∥𝛼𝑘 − 𝛼 ∥ ≤ (𝐶𝑢 + 𝐿𝑆𝑢 )𝑟 ≤ 𝑟𝑢 .

Thus 𝑢𝑘+1 ∈ 𝐵𝑄 (𝑢, 𝑟𝑢), so that we may apply Assumption 2.2 (ii) and (iii) with 𝑢 = 𝑢𝑘+1
.

The former with (2.6a) for 𝑛 = 𝑘 then imply

(2.11) 𝜅𝑢 ∥𝑢𝑘+2 − 𝑆𝑢 (𝛼𝑘+1)∥𝑄 ≤ ∥𝑢𝑘+1 − 𝑆𝑢 (𝛼𝑘 )∥𝑄 + 𝜋𝑢 ∥𝛼𝑘+1 − 𝛼𝑘 ∥
≤ 𝐶𝑢 ∥𝛼𝑘 − 𝛼 ∥ + 𝜋𝑢 ∥𝛼𝑘+1 − 𝛼𝑘 ∥.

Inserting (2.8) here, we establish (2.6a) for 𝑛 = 𝑘 + 1.

Similarly, Assumption 2.2 (iii), (2.11) and (2.6b) for 𝑛 = 𝑘 imply

𝜅𝑝 ∥𝑝𝑘+2 − ∇𝛼𝑆𝑢 (𝛼𝑘+1)∥𝑄−1 ≤ ∥𝑝𝑘+1 − ∇𝛼𝑆𝑢 (𝛼𝑘 )∥𝑄−1 +𝐶𝑆 ∥𝑢𝑘+2 − 𝑆𝑢 (𝛼𝑘+1)∥𝑄 + 𝜋𝑝 ∥𝛼𝑘+1 − 𝛼𝑘 ∥
≤ (𝐶𝑝 +𝐶𝑆𝜅

−1

𝑢 𝐶𝑢)∥𝛼𝑘 − 𝛼 ∥ + (𝜋𝑝 +𝐶𝑆𝜅
−1

𝑢 𝜋𝑢)∥𝛼𝑘+1 − 𝛼𝑘 ∥ .

Inserting (2.9) here, we establish (2.6b) for 𝑛 = 𝑘 + 1. □

The next lemma is a crucial monotonicity-type estimate for the outer problem. It depends on an

𝛼-relative exactness condition on the inner and adjoint variables.

Lemma 2.9. Let 𝑛 ∈ ℕ. Suppose Assumption 2.2 (iv) and (v) hold with 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ) and (2.6). Then, for
any 𝑡 > 0 and 𝑑 > 0, for some 𝑞𝑛+1 ∈ 𝜕𝑅(𝛼𝑛+1),

(2.12) ⟨𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) + 𝑞𝑛+1, 𝛼𝑛+1 − 𝛼⟩ ≥ −𝐿𝛼
4𝑡

∥𝛼𝑛+1 − 𝛼𝑛 ∥2

+
(
𝛾𝛼 − 𝑡𝐿𝛼

2

− 𝐶𝛼

2𝑑

)
∥𝛼𝑛+1 − 𝛼 ∥2 +

(
𝛾𝛼 − 𝑡𝐿𝛼

2

− 𝐶𝛼𝑑

2

)
∥𝛼𝑛 − 𝛼 ∥2.

Proof. The 𝛼-update of Algorithm 2.1 in implicit form reads

(2.13) 0 = 𝜎 (𝑞𝑛+1 + 𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1)) + 𝛼𝑛+1 − 𝛼𝑛 for some 𝑞𝑛+1 ∈ 𝜕𝑅(𝛼𝑛+1) .

Similarly, 0 ∈ 𝐻 (𝑢, 𝑝, 𝛼) implies 𝑝 ∇𝑢 𝐽 (𝑢) +𝑞 = 0 for some 𝑞 ∈ 𝜕𝑅(𝛼) .Writing 𝐸0 for the left hand side

of (2.12), these expressions and the monotonicity of 𝜕𝑅 yield

(2.14) 𝐸0 = ⟨𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) − 𝑝 ∇𝑢 𝐽 (𝑢) + 𝑞𝑛+1 − 𝑞, 𝛼𝑛+1 − 𝛼⟩
≥ ⟨𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) − ∇𝛼𝑆𝑢 (𝛼𝑛)∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛)), 𝛼𝑛+1 − 𝛼⟩
+ ⟨∇𝛼𝑆𝑢 (𝛼𝑛)∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛)) − 𝑝 ∇𝑢 𝐽 (𝑢), 𝛼𝑛+1 − 𝛼⟩ =: 𝐸1 + 𝐸2.

We estimate 𝐸1 and 𝐸2 separately. Assumption 2.2 (iv) and Theorem a.1 yield

(2.15) 𝐸2 ≥ 𝛾𝛼 − 𝑡𝐿𝛼
2

(∥𝛼𝑛+1 − 𝛼 ∥2 + ∥𝛼𝑛 − 𝛼 ∥2) − 𝐿𝛼

4𝑡
∥𝛼𝑛+1 − 𝛼𝑛 ∥2
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for 𝑡 > 0. To estimate 𝐸1 we rearrange

𝐸1 = ⟨𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) − ∇𝛼𝑆𝑢 (𝛼𝑛)∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛)), 𝛼𝑛+1 − 𝛼⟩
= ⟨𝑝𝑛+1(∇𝑢 𝐽 (𝑢𝑛+1) − ∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛))) + (𝑝𝑛+1 − ∇𝛼𝑆𝑢 (𝛼𝑛)) (∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛)), 𝛼𝑛+1 − 𝛼⟩.

We have ∥𝑝𝑛+1∥𝑄−1 ≤ 𝑁𝑝 by Lemma 2.6 and ∥∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛))∥𝑄 ≤ 𝑁∇ 𝐽 by the definition of the latter in

Assumption 2.2 (v) with 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ) . The same assumptions establish that ∇𝑢 𝐽 is Lipschitz. Hence it

holds

𝐸1 ≥ −∥𝑝𝑛+1∥𝑄−1 ∥∇𝑢 𝐽 (𝑢𝑛+1) − ∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛))∥𝑄 ∥𝛼𝑛+1 − 𝛼 ∥
− ∥𝑝𝑛+1 − ∇𝛼𝑆𝑢 (𝛼𝑛)∥𝑄−1 ∥∇𝑢 𝐽 (𝑆𝑢 (𝛼𝑛))∥𝑄 ∥𝛼𝑛+1 − 𝛼 ∥

≥ −
(
𝐿∇ 𝐽𝑁𝑝 ∥𝑢𝑛+1 − 𝑆𝑢 (𝛼𝑛)∥𝑄 + 𝑁∇ 𝐽 ∥𝑝𝑛+1 − ∇𝛼𝑆𝑢 (𝛼𝑛)∥𝑄−1

)
∥𝛼𝑛+1 − 𝛼 ∥ .

Applying (2.6) and Young’s inequality now yields for any 𝑑 > 0 the estimate

(2.16) 𝐸1 ≥ −
(
𝐿∇ 𝐽𝑁𝑝𝐶𝑢 +𝐶𝑝𝑁∇ 𝐽

)
∥𝛼𝑛 − 𝛼 ∥∥𝛼𝑛+1 − 𝛼 ∥

≥ −
(
𝐿∇ 𝐽𝑁𝑝𝐶𝑢 +𝐶𝑝𝑁∇ 𝐽

) (𝑑
2

∥𝛼𝑛 − 𝛼 ∥2 + 1

2𝑑
∥𝛼𝑛+1 − 𝛼 ∥2

)
.

By inserting (2.15) and (2.16) into (2.14) we obtain the claim (2.12). □

By combining the previous lemmas,we prove an estimate fromwhich local convergence is immediate.

Lemma 2.10. Suppose Assumption 2.2 and the inner and adjoint exactness estimate (2.6) hold with 𝛼𝑛 ∈
𝐵(𝛼, 𝑟 ) for a 𝑛 ∈ ℕ. Then

(2.17) (1 + 𝜎𝜀𝜎 )∥𝛼𝑛+1 − 𝛼 ∥2 ≤ ∥𝛼𝑛 − 𝛼 ∥2

for

𝜀𝜎 := 𝛾𝛼 − 𝜎𝐿2

𝛼/2 −𝐶2

𝛼 (𝛾𝛼 − 𝜎𝐿2

𝛼/2)−1 > 0.

Proof. We observe that 𝜀𝜎 > 0 by the inequality in Assumption 2.2 (v). Since 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ) and (2.6)

hold, Lemma 2.9 with 𝑡 = 𝜎𝐿𝛼/2 gives the monotonicity estimate

⟨𝜎
(
𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) + 𝑞𝑛+1

)
, 𝛼𝑛+1 − 𝛼⟩ ≥

− 1

2

∥𝛼𝑛+1 − 𝛼𝑛 ∥2 +
𝜎 (𝛾𝛼 − 𝜎𝐿2

𝛼/2 −𝐶𝛼𝑑
−1)

2

∥𝛼𝑛+1 − 𝛼 ∥2 +
𝜎 (𝛾𝛼 − 𝜎𝐿2

𝛼/2 −𝐶𝛼𝑑)
2

∥𝛼𝑛 − 𝛼 ∥2

for some 𝑞𝑛+1 ∈ 𝜕𝑅(𝛼𝑛+1) and a constant 𝑑 > 0. Choosing 𝑑 = 𝐶−1

𝛼 (𝛾𝛼 − 𝜎𝐿2

𝛼/2), we get

𝛾𝛼 − 𝜎𝐿2

𝛼/2 −𝐶𝛼𝑑
−1 = 𝜀𝜎 and 𝛾𝛼 − 𝜎𝐿2

𝛼/2 −𝐶𝛼𝑑 = 0.

It follows

(2.18) ⟨𝜎
(
𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1) + 𝑞𝑛+1

)
, 𝛼𝑛+1 − 𝛼⟩ ≥ − 1

2

∥𝛼𝑛+1 − 𝛼𝑛 ∥2 + 𝜎𝜀𝜎
2

∥𝛼𝑛+1 − 𝛼 ∥2.

We now come to the fundamental argument of the testing approach of [42], combining operator-

relative monotonicity estimates with the three-point identity. Indeed, (2.18) combined with the implicit

algorithm

0 = 𝜎 (𝑞𝑛+1 + 𝑝𝑛+1∇𝑢 𝐽 (𝑢𝑛+1)) + 𝛼𝑛+1 − 𝛼𝑛 for some 𝑞𝑛+1 ∈ 𝜕𝑅(𝛼𝑛+1)

gives

⟨𝛼𝑛+1 − 𝛼𝑛, 𝛼𝑛+1 − 𝛼⟩ + 𝜎𝜀𝜎
2

∥𝛼𝑛+1 − 𝛼 ∥2 ≤ 1

2

∥𝛼𝑛+1 − 𝛼𝑛 ∥2.

Inserting the three-point identity (1.3) yields (2.17). □
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We simplify the assumptions of the previous lemma to just Assumption 2.2.

Lemma 2.11. Suppose Assumption 2.2 holds. Then (2.17) holds for any 𝑛 ∈ ℕ.

Proof. The claim readily follows from Lemma 2.10 if we prove by induction for all 𝑛 ∈ ℕ that

(2.19) 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ), (2.6), and (2.17) hold.

We first prove (2.19) for 𝑛 = 0. Assumption 2.2 (v) directly establishes (2.6), and Assumption 2.2 (vi)

establishes 𝛼𝑛 ∈ 𝐵(𝛼, 𝑟 ). Now Lemma 2.10 proves (2.17) for 𝑛 = 0. This concludes the proof of induction

base.

We then make the induction assumption that (2.19) holds for 𝑛 = 𝑘 and prove it for 𝑛 = 𝑘 + 1. The

induction assumption and Lemma 2.8 give (2.6) for 𝑛 = 𝑘 + 1. The inequality (2.17) for 𝑛 = 𝑘 and

𝛼𝑘 ∈ 𝐵(𝛼, 𝑟 ) also ensure ∥𝛼𝑘+1 − 𝛼 ∥ ≤ ∥𝛼𝑘 − 𝛼 ∥ ≤ 𝑟 . Now Lemma 2.10 shows (2.17) and concludes the

proof of (2.19) for 𝑛 = 𝑘 + 1. □

We finally come to the main convergence result for the abstract Algorithm 2.1.

Theorem 2.12. Suppose Assumption 2.2 holds. Then for {𝛼𝑛}𝑛∈ℕ generated by Algorithm 2.1, we have

∥𝛼𝑛 − 𝛼 ∥2 → 0 linearly.

Proof. Lemma 2.11 proves (2.17) for all 𝑛 ∈ ℕ. Since, by the very same lemma, 1 + 𝜎𝜀𝜎 > 1 therein, the

claim follows. □

Corollary 2.13. Suppose Assumption 2.2 holds. Then for {𝑢𝑛}𝑛∈ℕ generated by Algorithm 2.1, we have

∥𝑢𝑛 − 𝑢∥2 → 0 linearly.

Proof. We apply Theorem 2.12 and then use (2.6a) and Lipschitz continuity of 𝑆𝑢 in

∥𝑢𝑛+1 − 𝑢∥𝑄 ≤ ∥𝑢𝑛+1 − 𝑆𝑢 (𝛼𝑛)∥𝑄 + ∥𝑆𝑢 (𝛼𝑛) − 𝑆𝑢 (𝛼)∥𝑄 ≤ (𝐶𝑢 + 𝐿𝑆𝑢 )∥𝛼𝑛 − 𝛼 ∥. □

3 splitting methods for the inner problem

In Section 3.1 we present a general framework for optimisation algorithms that can be used for solving

the inner problem. We also give examples of algorithms following the framework. In Section 3.2 we

first prove inner tracking estimate for such general algorithm under appropriate assumptions. Last, we

show that the aforementioned example algorithms satisfy these assumptions and thus also the inner

tracking property.

3.1 a general approach

Let 𝑈 and 𝒜 be Hilbert spaces, and 𝐺 = 𝑇 +𝑊 for some 𝑇,𝑊 : 𝑈 ×𝒜 → 𝑈 . Then 𝑢 = 𝑆𝑢 (𝛼) solves
the inner problem if

(3.1) 0 = 𝑇 (𝑢;𝛼) +𝑊 (𝑢;𝛼).

We assume that such a solution exists for all 𝛼 ∈ 𝒜2𝑟 , see Remark 2.4.
2
We seek to move towards 𝑆𝑢 (𝛼)

with preconditioned forward-backward type algorithms that, for fixed 𝛼 , given the previous iterate 𝑢𝑘 ,

solve the next iterate 𝑢𝑘+1
from

(3.2) 0 = 𝑇 (𝑢𝑘+1
;𝛼) +𝑊 (𝑢𝑘 ;𝛼) +𝑄 (𝑢𝑘+1 − 𝑢𝑘 )

for some self-adjoint preconditioning operator 𝑄 ∈ 𝕃(𝑈 ;𝑈 ).

2
We do not here at the outset assume unique solutions, although we will later, in practise, need to impose uniqueness. In

principle, for Section 2, sufficient regularity of some solution map 𝑆𝑢 and a corresponding tracking inequality is enough.
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Example 3.1 (Forward-backward splitting). Let𝑈 and𝒜 be Hilbert spaces. Let further 𝑓 , 𝑔 : 𝑈 ×𝒜 →
ℝ be convex, proper and lower semicontinuous in their first parameter, 𝑓 also differentiable with

respect to its first parameter. Then (3.1) with 𝑇 = ∇𝑢 𝑓 and𝑊 = 𝜕𝑢𝑔 is a necessary and sufficient

optimality condition for solution of min𝑢∈𝑈 𝑓 (𝑢;𝛼) + 𝑔(𝑢;𝛼). Choosing 𝑄 = 𝜏−1
Id, the implicit

form (3.2) corresponds to the forward-backward splitting

(3.3) 𝑢𝑘+1 = prox𝜏𝑔 ( · ;𝛼 ) (𝑢𝑘 − 𝜏∇𝑓 (𝑢𝑘 ;𝛼))

Example 3.2 (Primal-dual proximal splitting, PDPS). Let𝑋,𝑌 and𝒜 beHilbert spaces, 𝑓0, 𝑒 : 𝑋×𝒜 →
ℝ and 𝑔 : 𝑌 ×𝒜 → ℝ be convex, proper, and lower semicontinuous in their first parameter, 𝑒 with

an 𝐿-Lipschitz gradient with respect to its first parameter. Define 𝑓 := 𝑓0 + 𝑒 , suppose 𝐾 ∈ 𝕃(𝑋 ;𝑌 ),
and consider the problem

min

𝑥
𝑓 (𝑥, 𝛼) + 𝑔(𝐾𝑥 ;𝛼) .

This can be equivalently written as the saddle point problem

min

𝑥
max

𝑦
𝑓 (𝑥 ;𝛼) + ⟨𝐾𝑥, 𝑦⟩ − 𝑔∗(𝑦 ;𝛼) .

Following [21, 9, Theorem 5.11] and writing 𝑢 = (𝑥, 𝑦), this problem has primal-dual optimality

conditions of the form (3.1) with

(3.4) 𝑇 (𝑢;𝛼) :=

(
𝜕𝑥 𝑓0(𝑥 ;𝛼) + 𝐾∗𝑦

𝜔−1 [𝜕𝑦𝑔∗(𝑦 ;𝛼) − 𝐾𝑥]

)
and 𝑊 (𝑢;𝛼) :=

(
∇𝑥𝑒 (𝑥 ;𝛼)

0

)
for any 𝜔 > 0. Defining for step length parameters 𝜏𝑥 , 𝜏𝑦 > 0 the preconditioning operator

(3.5) 𝑄 :=

(
𝜏−1

𝑥 Id −𝐾∗

−𝐾 𝜔−1𝜏−1

𝑦 Id

)
,

(3.2) then becomes an implicit form of the primal-dual proximal splitting (PDPS) method of [5],

here with an additional forward step with respect to 𝑒:

(3.6)

{
𝑥𝑘+1 = prox𝜏𝑥 𝑓0 ( · ;𝛼 ) (𝑥𝑘 − 𝜏𝑥 (𝐾∗𝑦𝑘 + ∇𝑥𝑒 (𝑥𝑘 ;𝛼)),
𝑦𝑘+1 = prox𝜏𝑦𝑔

∗ ( · ;𝛼 ) (𝑦𝑘 + 𝜏𝑦𝐾 ((1 + 𝜔)𝑥𝑘+1 − 𝜔𝑥𝑘 )) .

The method converges (for fixed 𝛼) if 𝜏𝑥𝐿/2+𝜏𝑥𝜏𝑦 ∥𝐾 ∥2 ≤ 1 and𝜔 = 1, or is chosen to appropriately

reflect available strong convexity; see, e.g., [9].

Further algorithms fitting the general framework (3.2) can be found in [9, 42].

3.2 tracking estimates

We now prove inner problem tracking estimates for the above methods. To do so, we start with a result

for abstract methods of the form (3.2). It requires introducing abstract forms of monotonicity. Let 𝑋 be

a Hilbert space and �̃� ⊂ 𝑋 .We say that 𝑇 : 𝑋 → 𝑋 is (Γ𝑇 -strongly) monotone for some self-adjoint

and positive semi-definite Γ𝑇 ∈ 𝕃(𝑋 ;𝑋 ) at 𝑥 ∈ ˜𝑋 if

(3.7) ⟨𝑇 (𝑥) −𝑇 (𝑥), 𝑥 − 𝑥⟩ ≥ ∥𝑥 − 𝑥 ∥2

Γ𝑇
(𝑥 ∈ ˜𝑋 ) .

If this holds for all 𝑥 ∈ �̃� , we say that 𝑇 is (Γ𝑇 -strongly) monotone in �̃� . Moreover, we say that

𝑊 : 𝑋 → 𝑋 is (Γ𝑊 -strongly) three-point monotone at 𝑥 ∈ ˜𝑋 with respect to a self-adjoint and positive
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semi-definite Γ𝑊 ,Λ ∈ 𝕃(𝑋 ;𝑋 ) if

(3.8) ⟨𝑊 (𝑧) −𝑊 (𝑥), 𝑥 − 𝑥⟩ ≥ ∥𝑥 − 𝑥 ∥2

Γ𝑊
− 1

4

∥𝑥 − 𝑧∥2

Λ (𝑥, 𝑧 ∈ ˜𝑋 ).

If this holds for all 𝑥 ∈ ˜𝑋, we say that𝑊 is (Γ𝑊 -strongly) three-point monotone with respect to Λ in

˜𝑋 .When Γ𝑇 = 𝛾 Id, Γ𝑃 = 0 and Λ = 𝐿 Id, these operator-relative properties reduce to standard strong

and three-point monotonicity, see [9, Cororolary 7.2].

We now prove the promised tracking estimate result for general splitting methods for the inner

problem. The Lipschitz properties required from 𝑆𝑢 , were discussed in Remark 2.4.

Theorem 3.3. Let𝑈 and𝒜 be Hilbert spaces, 𝑢𝑘 ∈ ˜𝑈 ⊂ 𝑈 , 𝛼, 𝛼 ∈ ˜𝒜 ⊂ 𝒜, and operators 𝑇,𝑊 : 𝑈 → 𝑈 .

Let further 𝑄, Γ := Γ𝑇 + Γ𝑊 ,Λ ∈ 𝕃(𝑈 ;𝑈 ) be self-adjoint and positive semi-definite, and suppose that 𝑇

is ( Γ𝑇 -strongly) monotone in ˜𝑈 and𝑊 is ( Γ𝑊 -strongly) three-point monotone with respect to Λ in ˜𝑈 .

Moreover, assume that 𝑢 = 𝑆𝑢 (𝛼) that satisfies (3.1) is unique, and 𝐿𝑆𝑢 -Lipschitz in ˜𝒜. If

𝑄 + 2Γ ≥ 𝑐𝑄 for some 𝑐 > 1, and(3.9a)

𝑄 ≥ Λ/2,(3.9b)

then 𝑢𝑘+1
generated by (3.2) satisfies Assumption 2.2 (ii) with 𝜅𝑢 =

√
𝑐 and 𝜋𝑢 = 𝐿𝑆𝑢 , i.e.

√
𝑐 ∥𝑢𝑘+1 − 𝑆𝑢 (𝛼)∥𝑄 ≤ ∥𝑢𝑘 − 𝑆𝑢 (𝛼)∥𝑄 + 𝐿𝑆𝑢 ∥𝛼 − 𝛼 ∥ .

Proof. By the assumed monotonicity properties of 𝑇 and𝑊, we have

(3.10) ⟨𝑇 (𝑢𝑘+1
;𝛼) +𝑊 (𝑢𝑘 ;𝛼), 𝑢𝑘+1 − 𝑆𝑢 (𝛼)⟩ ≥ ∥𝑢𝑘+1 − 𝑆𝑢 (𝛼)∥2

Γ −
1

4

∥𝑢𝑘+1 − 𝑢𝑘 ∥2

Λ.

Inserting (3.2) into (3.10), and applying the three-point inequality (1.3) yields

1

2

∥𝑢𝑘+1 − 𝑆𝑢 (𝛼)∥2

𝑄+2Γ +
1

2

∥𝑢𝑘+1 − 𝑢𝑘 ∥2

𝑄−Λ/2
≤ 1

2

∥𝑢𝑘 − 𝑆𝑢 (𝛼)∥2

𝑄 .

Using (3.9) we obtain

𝜅𝑢 ∥𝑢𝑘+1 − 𝑆𝑢 (𝛼)∥𝑄 ≤ ∥𝑢𝑘 − 𝑆𝑢 (𝛼)∥𝑄 .

Therefore triangle inequality and Lipschitz continuity of 𝑆𝑢 in
˜𝒜 gives

𝜅𝑢 ∥𝑢𝑘+1 − 𝑆𝑢 (𝛼)∥𝑄 ≤ ∥𝑢𝑘 − 𝑆𝑢 (𝛼)∥𝑄 + 𝐿𝑆𝑢 ∥𝛼 − 𝛼 ∥ . □

The next two theorems specialise Theorem 3.3 to forward-backward splitting and the PDPS.

Theorem 3.4. Let𝑈 and𝒜 be Hilbert spaces with ˜𝑈 ⊂ 𝑈 and 𝛼 ∈ ˜𝒜 ⊂ 𝒜. Let further 𝑓 : 𝑈 ×𝒜 → ℝ

and 𝑔 : 𝑈 ×𝒜 → ℝ be convex, proper, and lower semicontinuous in their first argument. Suppose that 𝑓

is differentiable, ∇𝑓 is 𝐿-Lipschitz continuous, and 𝑔 is 𝛾-strongly convex in ˜𝑈 for some 𝛾 > 0. Moreover,

assume that 𝑆𝑢 satisfying (3.1) with 𝑇 = ∇𝑢 𝑓 and𝑊 = 𝜕𝑢𝑔 is single-valued and 𝐿𝑆𝑢 -Lipschitz in
˜𝒜. If the

step length parameter 𝜏 > 0 satisfies 𝜏𝐿 ≤ 2, then 𝑢𝑘+1
generated by forward-backward algorithm (3.3)

for given 𝑢𝑘 ∈ ˜𝑈 and 𝛼 ∈ ˜𝒜 satisfies inner tracking property.

Proof. This proof is based on Theorem 3.3 and to use it we need to prove (3.9). By assumption, 𝜕𝑔 is

𝛾-strongly monotone, and ∇𝑓 is three-point monotone with the factor 𝐿. Thus the condition (3.9) now

reads 1 + 2𝛾 > 1, 1 ≥ 𝜏𝐿/2 and 1 > 0. These hold due to 𝛾 > 0 and the step length condition 𝜏𝐿 ≤ 2. □

Remark 3.5. Similar proof works for strongly convex 𝑓 and convex 𝑔. Gradient descent is a special case

of this with 𝑔 as the zero function.
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Theorem 3.6. Let 𝑈 = (𝑋 × 𝑌 ) and 𝒜 be Hilbert spaces with �̃� = (�̃� × �̃� ) ⊂ 𝑈 and 𝛼 ∈ ˜𝒜 ⊂ 𝒜. Let

further 𝑓0, 𝑒 : 𝑋 ×𝒜 → ℝ and 𝑔 : 𝑌 × 𝒜 → ℝ be convex, proper, and lower semicontinuous in their

first argument, 𝑒 with a 𝐿−Lipschitz gradient with respect to its first argument. Moreover, suppose 𝑓0 is

𝛾𝑓 -strongly convex in ˜𝑋 and 𝑔∗ is 𝛾𝑔∗-strongly convex in ˜𝑌 for some 𝛾𝑓 , 𝛾𝑔∗ > 0. Also let 𝐾 ∈ 𝕃(𝑋 ;𝑌 ),
and assume that 𝑆𝑢 satisfying (3.1) with (3.4) is single-valued and 𝐿𝑆𝑢 -Lipschitz in

˜𝒜. If the step length

parameters 𝜏𝑥 > 0 and 𝜏𝑦 > 0 satisfy 𝜏𝑥𝐿/2 + 𝜏𝑥𝜏𝑦 ∥𝐾 ∥2 ≤ 1, then 𝑢𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1) generated by the

PDPS (3.6) for given 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 ) ∈ ˜𝑈 and 𝛼 ∈ ˜𝒜 satisfies the inner tracking property.

Proof. The PDPS can be written as (3.2) with operators𝑇 and𝑊 as in (3.4), and preconditioning operator

𝑄 defined in (3.5). The operator 𝑇 is Γ-strongly monotone in
˜𝑈 and𝑊 is three-point monotone with

respect to Λ in �̃� for

Γ :=

(
𝛾𝑓 Id (1 − 𝜔−1)𝐾∗/2

(1 − 𝜔−1)𝐾/2 𝜔−1𝛾𝑔∗ Id

)
and Λ =

(
𝐿 Id 0

0 0

)
.

The claim follows from Theorem 3.3 if we show (3.9). We first expand (3.9a) as(
((1 − 𝑐)𝜏−1

𝑥 + 2𝛾𝑓 ) Id [(1 − 𝜔−1) − (1 − 𝑐)]𝐾∗

[(1 − 𝜔−1) − (1 − 𝑐)]𝐾 𝜔−1((1 − 𝑐)𝜏−1

𝑦 + 2𝛾𝑔∗) Id

)
≥ 0.

This readily holds by taking𝜔−1 = 𝑐 = 1+2 min{𝜏𝑥𝛾𝑓 , 𝜏𝑦𝛾𝑔∗}. To prove (3.9b), we use Young’s inequality
to estimate for any 𝛿 > 0 that

2⟨𝑥, 𝐾∗𝑦⟩ ≤ 𝜏−1

𝑥 (1 − 𝛿)∥𝑥 ∥2 + 𝜏𝑥 (1 − 𝛿)−1∥𝐾∗𝑦 ∥2
for all 𝑥, 𝑦.

Thus

𝑄 =

(
𝜏−1

𝑥 Id −𝐾∗

−𝐾 𝜔−1𝜏−1

𝑦 Id

)
≥

(
𝛿𝜏−1

𝑥 Id 0

0 𝜔−1𝜏−1

𝑦 Id−𝜏𝑥 (1 − 𝛿)−1𝐾𝐾∗

)
.

Consequently (3.9b) holds if 𝛿 ≥ 𝜏𝑥𝐿/2 and (1 − 𝛿)𝜔−1 > 𝜏𝑥𝜏𝑦 ∥𝐾 ∥2. Since 𝜔−1 > 1, the latter holds if

1 − 𝛿 ≥ 𝜏𝑥𝜏𝑦 ∥𝐾 ∥2
. It remains to take 𝛿 = 𝜏𝑥𝐿/2, and use our assumption 𝜏𝑥𝐿/2 + 𝜏𝑥𝜏𝑦 ∥𝐾 ∥2 ≤ 1. Note

that, since 𝜔−1 > 1, this also proves that 𝑄 is positive definite. □

4 splitting methods for the adjoint

We now develop splitting methods for solving the adjoint equation based on conventional iterative split-

ting methods for linear systems. In Section 4.1 we present the overall approach and prove a perturbed

contractivity property. We also provide example of splittings that satisfy the relevant conditions. In

Section 4.2 we then prove the adjoint tracking estimate based on the perturbed contractivity property.

4.1 operator splitting methods for linear systems

Let 𝑈 and 𝒜 be Hilbert spaces. We need to find 𝑝𝑘+1 ∈ 𝕃(𝑈 ;𝒜) that approximately solves the adjoint

equation

(4.1) 𝑝𝑘+1∇𝑢𝐺 (𝑢𝑘+1, 𝛼𝑘 ) + ∇𝛼𝐺 (𝑢𝑘+1, 𝛼𝑘 ) = 0

to such a precision that adjoint tracking property Assumption 2.2 (iii) holds. Dropping the iteration

indices for brevity, this is a linear equation of the form

𝐴𝑣𝑝 = 𝑏𝑣(4.2)
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with

𝑣 = (𝑢, 𝛼), 𝐴𝑣𝑝 := 𝑝∇𝑢𝐺 (𝑢, 𝛼), and 𝑏𝑣 = −∇𝛼𝐺 (𝑢, 𝛼) .(4.3)

We write this section in general Hilbert spaces𝑉 and 𝑃 , which in the overall setting of this paper equal

𝑈 ×𝒜 and 𝕃(𝑈 ;𝒜). For some 𝑣 ∈ 𝐷 ⊂ 𝑉 and 𝐴𝑣 ∈ 𝕃(𝑃 ; 𝑃), let us thus be given the splitting

(4.4) 𝐴𝑣 = 𝑁𝑣 +𝑀𝑣

with 𝑁𝑣 invertible. Given the previous iterate 𝑝𝑘 ∈ 𝑃 , a linear system splitting method takes a step

towards solution of equation (4.2) by solving 𝑝𝑘+1
from

(4.5) 𝑁𝑣𝑝
𝑘+1 +𝑀𝑣𝑝

𝑘 = 𝑏𝑣 .

The next lemma is adapted from [28], where squared tracking estimates were needed for PDE-

constrained optimisation. We need non-squared estimates. The condition (4.6) is a Lipschitz condition

on𝐴𝑣 , which for (4.1) becomes a Lipschitz condition on ∇𝑢𝐺 ; see (4.3). The condition (4.7) is a standard

contractivity condition on the splitting scheme; see [19, Theorem 10.1.1]. It obviously holds for the

trivial splitting 𝑁𝑣 = 𝐴𝑣 and 𝑀𝑣 = 0 if 𝐴𝑣 is positive definite. For (4.1) this again means that ∇𝑢𝐺 is

positive definite. We provides examples of other splitting schemes after the lemma.

Lemma 4.1. Let 𝑉 and 𝑃 be Hilbert spaces, and 𝐴𝑣 ∈ 𝕃(𝑃 ; 𝑃) for all 𝑣 ∈ 𝐷 ⊂ 𝑉 . Suppose 𝑣 ↦→ 𝑏𝑣 : 𝑉 → 𝑃

is 𝐿𝑏-Lipschitz, and for some 𝐿𝐴 ≥ 0 that

(4.6) ∥𝐴𝑣 −𝐴�̃� ∥ ≤ 𝐿𝐴∥𝑣 − 𝑣 ∥ (𝑣, 𝑣 ∈ 𝐷).

Let us be given a splitting (4.4) with 𝑁𝑣 invertible, and such that

(4.7) ∥𝑁 −1

𝑣 𝑀𝑣 ∥ ≤ 𝜁 and 𝛾𝑁 ∥𝑁 −1

𝑣 ∥ ≤ 1

for some 𝜁 ∈ [0, 1) and 𝛾𝑁 > 0. Suppose 𝑝 solves 𝑁𝑣𝑝 +𝑀𝑣𝑝 = 𝑏𝑣 for a given 𝑝 ∈ 𝑃 . Then for any 𝑣, 𝑣 ∈ 𝐷
and 𝑝 ∈ 𝑃 satisfying

𝐴𝑣𝑝 = 𝑏𝑣,

we have

(4.8) 𝜁 ∥𝑝 − 𝑝 ∥ ≥ ∥𝑝 − 𝑝 ∥ − (𝐿𝐴∥𝑝 ∥ + 𝐿𝑏)𝛾−1

𝑁 ∥𝑣 − 𝑣 ∥.

Proof. Using (4.5) with 𝐴𝑣𝑝 = 𝑏𝑣 and 𝐴𝑣𝑝 = 𝑁𝑣𝑝 +𝑀𝑣𝑝 , we expand

𝑝 − 𝑝 = 𝑁 −1

𝑣 (𝑏𝑣 −𝑀𝑣𝑝) − 𝑝
= 𝑁 −1

𝑣 [𝑏𝑣 − 𝑏𝑣] + 𝑁 −1

𝑣 (𝐴𝑣 −𝐴𝑣)𝑝 − 𝑁 −1

𝑣 𝑀𝑣 (𝑝 − 𝑝).

Taking the norm and using the triangle inequality, the Lipschitz assumption on 𝑏, as well as (4.6),

therefore

∥𝑝 − 𝑝 ∥ ≤ ∥𝑁 −1

𝑣 ∥(𝐿𝐴∥𝑝∥ + 𝐿𝑏)∥𝑣 − 𝑣 ∥ + ∥𝑁 −1

𝑣 𝑀𝑣 ∥∥𝑝 − 𝑝∥ .

Further using (4.7), we obtain (4.8). □

If the parameters are not perturbed, we immediately get linear convergence:

Corollary 4.2. If 𝑣 = 𝑣 in Lemma 4.1, then ∥𝑝 − 𝑝∥ ≤ 𝜁 ∥𝑝 − 𝑝∥ .
We next present example slitting methods, and conditions that guarantee (4.7).
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Example 4.3 (Jacobi splitting). If 𝑁𝑣 is the diagonal of a matrix𝐴𝑣 ∈ ℝ𝑛×𝑛
, we obtain Jacobi splitting.

The first part of (4.7) reduces to strict diagonal dominance, see [19, §10.1]. The second part always

holds and 𝑁𝑣 is invertible when the main diagonal of 𝐴𝑣 has only positive entries. Then 𝛾𝑁 is the

minimum of the diagonal values.

Example 4.4 (Gauss–Seidel splitting). If 𝑁𝑣 is the lower triangle and diagonal of a matrix𝐴𝑣 ∈ ℝ𝑛×𝑛
,

we obtain Gauss–Seidel splitting. The first inequality of (4.7) holds for some 𝜁 ∈ [0, 1) when 𝐴𝑣 is

symmetric and positive definite. This follows similarly to [19, proof of Theorem 10.1.2]. The second

inequality holds for some 𝛾𝑁 when 𝑁𝑣 is invertible, i.e., has no zeros on the main diagonal.

Example 4.5 (Identity splitting). If 𝛾 Id ≤ 𝐴𝑣 and ∥𝐴𝑣 ∥ ≤ 𝐿 for 𝛾, 𝐿 > 0, and 𝑁𝑣 = 𝜃−1
Id for

0 < 𝜃 < min{𝛾−1

𝑁
, 2𝛾/𝐿2}, then (4.7) holds for 𝜁 =

√︁
1 + 𝜃2𝐿2 − 2𝜃𝛾 ∈ [0, 1) and (any) 𝛾𝑁 > 0.

Indeed,

∥𝑁 −1

𝑣 𝑀𝑣 ∥2 = sup

𝑥,∥𝑥 ∥≤1

⟨(Id−𝜃𝐴𝑣)𝑥, (Id−𝜃𝐴𝑣)𝑥⟩ ≤ 1 + 𝜃2∥𝐴∥2 − 2𝜃 inf

𝑥,∥𝑥 ∥≤1

⟨𝐴𝑥, 𝑥⟩ ≤ 1 + 𝜃2𝐿2 − 2𝜃𝛾 .

Example 4.6 (No splitting). If 𝑁𝑣 = 𝐴𝑣 , (4.7) holds with 𝜁 = 0 and 𝛾𝑁 the minimal eigenvalue of 𝐴𝑣 ,

assumed symmetric positive definite.

Example 4.7 (Block Gauss–Seidel). Let

𝐴𝑣 =

(
𝐴11 𝐴12

𝐴21 𝐴22

)
, 𝑁𝑣 =

(
𝑁11 0

𝐴21 𝑁22

)
, and 𝑀𝑣 =

(
𝑀11 𝐴12

0 𝑀22

)
with 𝐴11 = 𝑁11 +𝑀11 and 𝐴22 = 𝑁22 +𝑀22 for some invertible and bounded operators 𝑁11 and 𝑁22

invertible and bounded. Suppose that 𝛾𝑁 and 𝜁 ∈ [0, 1) satisfy

(4.9) 0 < 𝛾𝑁 ≤ ∥𝑁11∥∥𝑁22∥
2∥𝑁11∥ + ∥𝑁22∥(1 + ∥𝑁 −1

22
𝐴21∥2)

,

and

∥𝑁 −1

22
(𝑀22 −𝐴21𝑁

−1

11
𝐴12)∥2 + ∥𝑁 −1

22
(𝑀22 −𝐴21𝑁

−1

11
𝐴12)∥∥𝑁 −1

22
𝐴21∥∥𝑁 −1

11
𝑀11∥

+ ∥𝑁 −1

11
𝑀11∥2(1 + ∥𝑁 −1

11
𝐴12∥)(1 + ∥𝑁 −1

22
𝐴21∥2) + ∥𝑁 −1

11
𝐴12∥2 + ∥𝑁 −1

11
𝐴12∥∥𝑁 −1

11
𝑀11∥ ≤ 𝜁 2.

Then (4.7) holds, as we prove in Appendix c. In particular, if𝑀11 = 0 and𝑀22 = 0, the condition on

𝜁 reduces to the much simpler

(4.10) ∥𝐴−1

22
𝐴21𝐴

−1

11
𝐴12∥2 + ∥𝐴−1

11
𝐴12∥2 ≤ 𝜁 2.

This holds, in particular, when the diagonal blocks of 𝐴𝑣 are invertible and large compared to the

off-diagonal blocks. Moreover, there exists 𝛾𝑁 satisfying (4.9) when both 𝑁11 and 𝑁22 are non-zero.
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Example 4.8. Let𝐺 = 𝑇 +𝑊 as in Example 3.2 on the PDPS for the inner problem. Assume that the

functions 𝑓 and 𝑔∗ therein are twice continuously differentiable in their first parameter and ∇𝑥 𝑓

and ∇𝑦𝑔
∗
are also Lipschitz differentiable in their second parameter. We may then apply the block

Gauss–Seidel splitting of Example 4.7 to the corresponding adjoint equation, which now reads(
∇2

𝑥 𝑓 (𝑥 ;𝛼) 𝐾∗

−𝐾 ∇2

𝑦𝑔
∗(𝑦 ;𝛼)

) (
𝑝𝑥
𝑝𝑦

)
+
(
∇𝛼∇𝑥 𝑓 (𝑥 ;𝛼)
∇𝛼∇𝑦𝑔

∗(𝑦 ;𝛼)

)
= 0

for the unknown 𝑝 = (𝑝𝑥 , 𝑝𝑦 ) ∈ 𝑃 . The simplified condition (4.10) holds if∇2

𝑥 𝑓 (𝑥 ;𝛼) and∇2

𝑦𝑔
∗(𝑦 ;𝛼)

are non-singular, and 𝐾 is small compared to them. In practise, to ensure invertibility and the

stability of inversion we can take 𝑁11 as perturbed version of ∇2

𝑥 𝑓 (𝑥 ;𝛼) . We also take 𝑁22 =

∇2

𝑦𝑔
∗(𝑦 ;𝛼) + 𝜃−1

𝑦 Id for 𝜃𝑦 > 0, which imply the choice of𝑀𝑣 via𝑀𝑣 = 𝐴𝑣 − 𝑁𝑣 .

4.2 tracking estimates

We next show adjoint equation tracking estimates for the above operator splitting methods for linear

systems as 𝛼 varies. Following result relies heavily on Lemma 4.1.

Theorem 4.9. Let𝑈 and𝒜 be Hilbert spaces. Let further 𝐺 : 𝑈 ×𝒜 → 𝑈 and 𝑆𝑢 : 𝒜 → 𝑈 be Lipschitz

continuously differentiable, and satisfy

∇𝛼𝑆𝑢 (𝛼)∇𝑢𝐺 (𝑆𝑢 (𝛼);𝛼) + ∇𝛼𝐺 (𝑆𝑢 (𝛼);𝛼) = 0.

Also let 𝑄 ∈ 𝕃(𝑈 ;𝑈 ) be positive definite and self-adjoint. For 𝑣 = (𝑢, 𝛼) ∈ 𝑈 ×𝒜, define 𝐴𝑣 ∈ 𝕃(𝑃 ; 𝑃)
for 𝑃 = 𝕃(𝑈 ;𝒜) and 𝑏𝑣 via

𝐴𝑣𝑝 := 𝑝∇𝑢𝐺 (𝑢;𝛼) and 𝑏𝑣 = −∇𝛼𝐺 (𝑢;𝛼).

Let the splitting 𝑁𝑣 +𝑀𝑣 = 𝐴𝑣 satisfy the conditions of Lemma 4.1 for some 𝜁 ∈ [0, 1) and 𝛾𝑁 > 0. Then

𝑝𝑘+1
solving (4.5) for given 𝑝𝑘 ∈ 𝑃 satisfies the adjoint tracking property, i.e.

𝜅𝑝 ∥𝑝𝑘+1 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 ≤ ∥𝑝𝑘 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 +𝐶𝑆 ∥𝑢 − 𝑆𝑢 (𝛼)∥𝑄 + 𝜋𝑝 ∥𝛼 − 𝛼 ∥

for any 𝛼 ∈ 𝑉𝛼 ⊂ 𝒜 as well as the constants

𝜅𝑝 = 𝜁 −1, 𝐶𝑆 = sup

𝛼∈𝑉𝛼
𝜁 −1(𝐿𝐴∥∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 + 𝐿𝑏), and 𝜋𝑝 = 𝐿∇𝛼𝑆𝑢 .

Proof. By Lemma 4.1, we have

𝜁 ∥𝑝𝑘 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 ≥ ∥𝑝𝑘+1 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 − (𝐿𝐴∥∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 + 𝐿𝑏)𝛾−1

𝑁 ∥𝑢 − 𝑆𝑢 (𝛼)∥𝑄 .

Rearranging terms and multiplying by 𝜁 −1
gives

𝜅𝑝 ∥𝑝𝑘+1 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 ≤ ∥𝑝𝑘 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 +𝐶𝑆 ∥𝑢 − 𝑆𝑢 (𝛼)∥𝑄 .

The triangle inequality and Lipschitz continuity of ∇𝛼𝑆𝑢 gives

∥𝑝𝑘 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 ≤ ∥𝑝𝑘 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 + ∥∇𝛼𝑆𝑢 (𝛼) − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1

≤ ∥𝑝𝑘 − ∇𝛼𝑆𝑢 (𝛼)∥𝑄−1 + 𝐿∇𝛼𝑆𝑢 ∥𝛼 − 𝛼 ∥ .

Combining the previous estimates finishes the proof. □
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We needed to assume that the solution mapping of the inner problem is Lipschitz continuously

differentiable to prove the adjoint tracking estimates. We discuss next the reasonability of this as-

sumption. If the inner and adjoint solution mappings 𝑆𝑢 and 𝑆𝑝 are Lipschitz, then also ∇𝛼𝑆𝑢 is since

∇𝛼𝑆𝑢 (𝛼) = 𝑆𝑝 (𝑆𝑢 (𝛼), 𝛼) . The Lipschitz properties of 𝑆𝑢 are discussed in Remark 2.4. We next prove

the Lipschitz continuity of 𝑆𝑝 under similar assumption as in Lemma 4.1.

Lemma 4.10. Let 𝑈 and 𝒜 be Hilbert spaces. Let further 𝑄 ∈ 𝕃(𝑈 ;𝑈 ) be positive definite, and ∇𝐺 :

𝑈 ×𝒜 → 𝕃(𝑈 ;𝑈 ×𝒜) be invertible and Lipschitz continuous with constant 𝐿∇𝐺 in some bounded closed

set 𝑉𝑢 ×𝑉𝛼 . Moreover, assume that ∥(∇𝑢𝐺 (𝑢;𝛼))−1∥ ≤ 𝛾−1

𝐺
in 𝑉𝑢 ×𝑉𝛼 for some 𝛾𝐺 > 0. Then 𝑆𝑝 defined

in (2.3) is Lipschitz in 𝑉𝑢 ×𝑉𝛼 , i.e.

∥𝑆𝑝 (𝑢1, 𝛼1) − 𝑆𝑝 (𝑢2, 𝛼2)∥𝑄−1 ≤ 𝐿𝑆𝑝 (∥𝑢1 − 𝑢2∥𝑄 + ∥𝛼1 − 𝛼2∥)

for 𝑢1, 𝑢2 ∈ 𝑉𝑢 and 𝛼1, 𝛼2 ∈ 𝑉𝛼 with the factor

𝐿𝑆𝑝 := 𝛾−1

𝐺 𝐿∇𝐺
(
1 + 𝛾−1

𝐺 max

(𝑢,𝛼 ) ∈𝑉𝑢×𝑉𝛼
∥∇𝛼𝐺 (𝑢, 𝛼)∥𝑄−1

)
.

Proof. Using the definition of 𝑆𝑝 in (2.3), we rearrange

𝑆𝑝 (𝑢1, 𝛼1) − 𝑆𝑝 (𝑢2, 𝛼2) = (∇𝛼𝐺 (𝑢1;𝛼1) − ∇𝛼𝐺 (𝑢2;𝛼2)) (∇𝑢𝐺 (𝑢1;𝛼1))−1

+ ∇𝛼𝐺 (𝑢2;𝛼2)
(
(∇𝑢𝐺 (𝑢1;𝛼1))−1 − (∇𝑢𝐺 (𝑢2;𝛼2))−1

)
.

Since 𝑄 is positive definite, hence invertible, we have ∥𝑝𝑢∥𝒜 = ∥(𝑝𝑄−1/2) (𝑄 1/2𝑢)∥ ≤ ∥𝑝∥𝑄−1 ∥𝑢∥𝑄 .
This and the triangle inequality give

(4.11) ∥𝑆𝑝 (𝑢1, 𝛼1) − 𝑆𝑝 (𝑢2, 𝛼2)∥𝑄−1

≤ ∥(∇𝑢𝐺 (𝑢1;𝛼1))−1∥∥∇𝛼𝐺 (𝑢1;𝛼1) − ∇𝛼𝐺 (𝑢2;𝛼2)∥𝑄−1

+ ∥∇𝛼𝐺 (𝑢2;𝛼2)∥𝑄−1 ∥(∇𝑢𝐺 (𝑢1;𝛼1))−1 − (∇𝑢𝐺 (𝑢2;𝛼2))−1∥ =: 𝐸1 + 𝐸2.

The bound ∥(∇𝑢𝐺 (𝑢;𝛼))−1∥ ≤ 𝛾−1

𝐺
and the Lipschitz continuity of ∇𝐺 in 𝑉𝑢 ×𝑉𝛼 give

(4.12) 𝐸1 ≤ 𝛾−1

𝐺 𝐿∇𝛼𝐺

(
∥𝑢1 − 𝑢2∥𝑄 + ∥𝛼1 − 𝛼2∥

)
.

Towards estimating the second term on the right hand side of (4.11), we observe that

𝐴−1 − 𝐵−1 = 𝐴−1𝐵𝐵−1 −𝐴−1𝐴𝐵−1 = 𝐴−1(𝐴 − 𝐵)𝐵−1

for any invertible linear operators 𝐴, 𝐵. This and Lipschitz continuity of ∇𝐺 give

𝐸2 = ∥∇𝑢𝐺 (𝑢1;𝛼1)−1(∇𝑢𝐺 (𝑢1;𝛼1) − ∇𝑢𝐺 (𝑢2;𝛼2))∇𝑢𝐺 (𝑢2;𝛼2)−1∥ · ∥∇𝛼𝐺 (𝑢2;𝛼2)∥𝑄−1

≤
(

max

(𝑢,𝛼 ) ∈𝑉𝑢×𝑉𝛼
∥∇𝛼𝐺 (𝑢, 𝛼)∥𝑄−1

)
∥∇𝑢𝐺 (𝑢1;𝛼1)−1∥

· ∥∇𝑢𝐺 (𝑢2;𝛼2)−1∥∥(∇𝑢𝐺 (𝑢1;𝛼1) − ∇𝑢𝐺 (𝑢2;𝛼2))∥

≤ 𝛾−2

𝐺 𝐿∇𝐺

(
max

(𝑢,𝛼 ) ∈𝑉𝑢×𝑉𝛼
∥∇𝛼𝐺 (𝑢, 𝛼)∥𝑄−1

) (
∥𝑢1 − 𝑢2∥𝑄 + ∥𝛼1 − 𝛼2∥

)
.

Inserting this inequality and (4.12) into (4.11) establishes the claim since ∥∇𝛼𝐺 (𝑢, 𝛼)∥𝑄−1 is bounded in

𝑉𝑢 ×𝑉𝛼 by the Lipschitz continuity of ∇𝐺 . □
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5 numerical experiments

In this section, we evaluate the operator identification performance of the following methods:

PDPS + block-GS Algorithm 5.1, i.e., our general bilevel approach with the PDPS of Example 3.2 for

the inner problem, and the block Gauss–Seidel splitting of Example 4.8 for the adjoint.

PDPS + identity Our general bilevel approach with PDPS for the inner problem, and the identity

splitting of Example 4.5 for the adjoint.

implicit Solve both the inner problem and the adjoint equation to a high precision.

trust region The inexact derivative-free method of [16] that solves inner problem inexactly while

taking trust region steps to solve the bilevel (outer) problem.

In all cases except the trust region method, the outer iterates are updated with forward-backward

steps.

Note that the algorithms PDPS + block-GS and PDPS + identity follow the framework of Algorithm 2.1,

i.e. satisfy the inner and adjoint tracking conditions, if the objective functions satisfy the assumptions

of Theorem 3.6 and the conditions discussed in the splitting Examples 4.5 and 4.7 respectively.

The implicit method is used as a baseline comparison and the trust region method as more advanced

one. We have chosen the latter as a comparison from the more recent literature, as the algorithm

itself requires the least information as a derivative-free method, and, therefore, can, in principle, be

applied to the (primal-only form of) the same inner problem as our method, unlike many other methods

that would require a different smoothing of the inner regularisation term 𝑔 to achieve the required

second-order differentiability, as we will discuss below. The specific convergence conditions of [16]

can be difficult to verify, however, and might indirectly require the second-order differentiability of

the inner regulariser.

Our specific operator identification problems are:

MRI Find an optimal sparse subsampling (line) pattern for MRI reconstruction using four slices of

the digital brain phantom of [2] as a ground-truth in the outer problem, and corresponding

simulated fully sampled MRI measurements as the data of the corresponding inner-problem(s).

deblurring Find an optimal parametrisation of convolution kernel and regularisation parameter to

deblur/deconvolve a photograhic image with simulated blur.

We define component functions used in both problems in Section 5.1. Then in Sections 5.2 and 5.3 we

present inner problem and adjoint equations details for MRI and deblurring respectively. We present

numerical details in Section 5.4, and discuss performance in Section 5.5.

5.1 objective functions

For a training set of𝑚 “ground truth” images {𝑏𝑖} of dimension 𝑛1 ×𝑛2, i.e. each 𝑏𝑖 ∈ ℝ
𝑛1𝑛2

+ , we take as

the outer data fitting term

𝐽 (𝑢) = 1

2

𝑚∑︁
𝑖=1

∥𝑥𝑖 − 𝑏𝑖 ∥2

2
, 𝑢𝑖 = (𝑥𝑖 , 𝑦𝑖) ∈ ℝ

𝑛1𝑛2

+ ×ℝ2𝑛1𝑛2 .

We specify the outer regulariser 𝑅 and the (primal-dual) inner problem for the different experiments in

corresponding subsections.

Suonperä and Valkonen Single-loop methods for bilevel parameter learning



J. Nonsmooth Anal. Optim. 5, 2025, 15577 page 20 of 36

Algorithm 5.1 PDPS + block-GS

Require: Functions 𝐽 : 𝑈 → ℝ, and 𝑅 : 𝒜 → ℝ, with 𝐽 Fréchet differentiable and 𝑅 convex, on

Hilbert spaces 𝑈 = 𝑋 × 𝑌 and 𝒜. Functions 𝑓0, 𝑒 : 𝑋 × 𝒜 → ℝ and 𝑔 : 𝑌 × 𝒜 → ℝ convex

in their first parameter, 𝑒 has a 𝐿−Lipschitz gradient with respect to its first parameter. Also let

𝐾 ∈ 𝕃(𝑋 ;𝑌 ), Outer step length 𝜎 > 0, adjoint step length 𝜃𝑦 > 0, inner step lengths 𝜏𝑥 , 𝜏𝑦 > 0

satisfying 𝜏𝑥𝐿/2 + 𝜏𝑥𝜏𝑦 ∥𝐾 ∥2 ≤ 1 and parameter 𝜔 > 0.

1: Pick an initial iterate (𝑢0, 𝑝0, 𝛼0) ∈ 𝑈 × 𝕃(𝑈 ;𝒜) ×𝒜.

2: for 𝑘 ∈ ℕ do
3: 𝑥𝑘+1

:= prox𝜏𝑥 𝑓0 ( · ;𝛼𝑘 ) (𝑥𝑘 − 𝜏𝑥 (𝐾∗𝑦𝑘 + ∇𝑥𝑒 (𝑥𝑘 ;𝛼𝑘 )) ⊲ inner primal update

4: 𝑦𝑘+1
:= prox𝜏𝑦𝑔

∗ ( · ;𝛼𝑘 ) (𝑦𝑘 + 𝜏𝑦𝐾 ((1 + 𝜔)𝑥𝑘+1 − 𝜔𝑥𝑘 )) ⊲ inner dual update

5: Choose a splitting ∇2

𝑥 𝑓 (𝑥𝑘+1
;𝛼𝑘 ) = 𝑁11 +𝑀11 with 𝑁11 invertible.

6: Write 𝑁22 = ∇2

𝑦𝑔
∗(𝑦𝑘+1

;𝛼𝑘 ) + 𝜃−1

𝑦 Id

7: 𝑝𝑘+1

𝑥 := 𝑁 −1

11

(
−𝑀11𝑝

𝑘
𝑥 − ∇𝛼∇𝑥 𝑓 (𝑥𝑘+1

;𝛼𝑘 ) − 𝐾∗𝑝𝑘𝑦

)
⊲ adjoint primal update

8: 𝑝𝑘+1

𝑦 := 𝑁 −1

22

(
𝜃−1

𝑦 𝑝
𝑘
𝑦 − ∇𝛼∇𝑦𝑔

∗(𝑦𝑘+1
;𝛼𝑘 ) − 𝐾𝑝𝑘+1

𝑥

)
⊲ adjoint dual update

9: 𝛼𝑘+1
:= prox𝜎𝑅

(
𝛼𝑘 − 𝜎𝑝𝑘+1∇𝑢 𝐽 (𝑢𝑘+1)

)
⊲ outer forward-backward step

10: end for

For simplicity, we have not yet analysed our method in a stochastic setting, although a generalisation

should be immediate.
3
We therefore concentrate on small sample sets, with the goal of evaluating the

performance of our splitting approaches. These performance improvements should directly generalise

to an eventual stochastic extension of our approach.

The general form of the inner problem, related primal-dual optimality conditions and description

of the algorithm can be found in Example 3.2. We take 𝑔(𝑦 ;𝛼0) = 𝛼0∥𝑦 ∥2,1, where ∥𝑦 ∥2,1 is the sum

over pixelwise two-norms. The use the steps of the PDPS for the inner problem, we need its Fenchel

conjugate

𝑔∗(𝑦 ;𝛼0) =
𝑛1𝑛2∑︁
𝑗=1

𝛿𝐵ℝ2 (0,𝛼0 ) (𝑦 𝑗 ).

However, our theory does not yet allow for the inner problem to be nonsmooth.
4
Therefore, instead of

𝑔∗(𝑦 ;𝛼0), we use the 𝐶2
strongly convex approximation

(5.1) 𝑔∗
𝜀,𝛿

(𝑦 ;𝛼0) =
𝑛1𝑛2∑︁
𝑗=1

max{0, 1

3𝜀
(∥𝑦 𝑗 ∥ − 𝛼0)3} + 𝛿

2

∥𝑦 𝑗 ∥2 (𝑦 𝑗 ∈ ℝ2)

Since 𝑔∗
𝜀,𝛿

is convex, proper, and lower semicontinuous, it is the Fenchel conjugate of 𝑔𝜀,𝛿 := 𝑔∗∗
𝜀,𝛿
.We

take 𝜀 = 1 · 10−6
and 𝛿 = 1 · 10−4, which are numerically practical small values that ensure that 𝑔∗

𝜀,𝛿
≈ 𝑔∗.

We differentiate and derive the proximal operator of 𝑔∗
𝜀,𝛿

in Appendix d.2

3
This would simply involve selecting on each iteration 𝑘 a random subset 𝑆𝑘 ∈ {1, . . . ,𝑚}, and making the step with respect

to
𝑚

2#𝑆𝑘

∑
𝑖∈𝑆𝑘 ∥𝑥𝑖 − 𝑏𝑖 ∥ instead of 𝐽 . Then steps for the inner problems would only have to be made for 𝑖 ∈ 𝑆𝑘 . However,

as the inner and adjoint variables for 𝑖 ∉ 𝑆𝑘 would not be updated, convergence would need to be analysed carefully.

4
Assumption 2.2 makes no such restriction, and we could, in principle, take 𝑆𝑢 as a differentiable selection of a multi-valued

solution map. However, to prove the assumption in Sections 3 and 4, we needed to impose differentiability and strong

convexity assumptions.
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Figure 1: Top: true data (4 instances) presented in the colormap with

values from interval [0, 1]. Bottom: corresponding simulated fully sampled MRI measure-

ments presented in logarithmic scale, computed as log
10
( | · | + 0.05), using colormap

with values from interval [−1.3, 2.0] .

5.2 mri

The ground truth of the training set, {𝑏𝑖}, contains four 247 × 292 slices of the digital brain phantom

[2] scaled into interval [0, 1] and corresponding simulated fully sampled MRI measurement {𝑧𝑖}, see
Figure 1. The measurements {𝑧𝑖} are simulated by adding Gaussian noise of standard deviation 0.02 to

{𝑏𝑖} and then taking the Fourier transform.

The inner (inverse) problem is

(5.2) arg min

𝑥𝑖 ∈ℝ𝑛
1
𝑛

2

+

1

2

∥𝑍𝛼 (F𝑥𝑖 − 𝑧𝑖)∥2

2
+ 𝑔𝜀,𝛿 (𝐷𝑥𝑖 ;𝛼0) (𝛼 ∈ [0,∞)75)

where 𝑍𝛼 is the subsampling operator (diagonal matrix), see Figure 2a, F is discrete 2-D Fourier

transform (matrix) and𝐷 is a backward difference operator (matrix) with Dirichlet boundary conditions.

We take 𝛼0 = 0.02 constant because the subsampling operator 𝑍𝛼 can also model the regularisation

factor, and we do not want several competing parameters to optimise. This value of 𝛼0 was chosen by

trial and error to achieve good reconstruction with fully sampled data, i.e. 𝑍𝛼 = Id. To apply Example 3.2

for the derivation of the PDPS, we split 𝑓 = 𝑓0 + 𝑒 for 𝑓0(𝑥 ;𝛼) = 1

2
∥𝑍𝛼 (F𝑥 − 𝑧)∥2

2
and 𝑒 (𝑥 ;𝛼) = 0.

Although 𝑓0 involves the linear forward operator 𝑍𝛼 (F , its proximal mapping can be easily calculated

due to the unitarity of F and the diagonality of 𝑍𝛼 .

Remark 5.1. This choice of 𝑓0 is not necessarily strongly convex as required for Theorem 3.6 to ensure

the inner tracking property. It is, however, convex, and due to our good numerical results, we have not

added artificial strong convexity. Moreover, in many cases, appropriate local growth can be elicited

through the metric subregularity of the entire objective [44, 43, 9].

We use block Gauss–Seidel splitting for the adjoint equation following Example 4.8. We have
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𝛼1

𝛼2

𝛼2

𝛼3

𝛼3

𝛼4

𝛼4

𝛼5

𝛼5

(a) Mask structure
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0

2

(b) Discovered sampling mask (top) and its Fourier transform (bottom)

Figure 2: Sampling pattern for MRI. Figure 2a shows how 𝛼 parametrise the sampling pattern with a

small example. Different colours represent different components of 𝛼 such that applying the

mask multiplies every pixel of one colour with same multiplier 𝛼𝑖 . In our case image height

is 292 and 𝛼 has 75 elements. Figure 2b presents identified pattern weights and their Fourier

transform, with the 𝑥-axis restricted to [−64, 64].

∇2

𝑥 𝑓 (𝑢;𝛼) = F ∗𝑍 2

𝛼F and we take 𝑁11 = F ∗𝑍 2

𝜃
F with 𝑍 2

𝜃
= max{𝜃−1

𝑥 , 𝑍
2

𝛼 } for

(5.3) 𝜃−1

𝑥 (𝑖, 𝑗) = 0.1 + 0.4

(
1 − sin

(
𝑖
𝑛1

𝜋
)

sin

( 𝑗

𝑛2

𝜋
) )2

, (𝑖 ∈ {1, ..., 𝑛1}, 𝑗 ∈ {1, ..., 𝑛2})

and the maximum is taken pointwise. To be more precise 𝜃−1

𝑥 is the matrix (5.3) stacked into the

diagonal of 𝑛1𝑛2 × 𝑛1𝑛2 matrix.

For the outer regulariser we take

𝑅(𝛼) = 𝛽𝜑 (𝑤𝑇𝛼) + 𝛿 [0,∞)𝑛 (𝛼) where 𝜑 (𝑡) = 𝑡 + 𝛿 (−∞,𝑀 ] (𝑡)

with the parameter 𝛽 = 10 and sparsity control 𝑀 = 0.15. The vector 𝑤 , whose components sum to

1, weights the components of 𝛼 according to how many lines of the 𝑘-space they correspond to, see

Figure 2a. Our choice for the initial subsampling weights 𝛼0
has each component 0.15 according to

our choice for parameter 𝑀 such that 𝛼0 ∈ dom𝑅 and 𝛼0
doesn’t contain prior information about

important weights. The proximal operator of 𝑅 we present in Appendix d.1.

5.3 deblurring

We use a cropped portion (128 × 128) of image 02 from the free Kodak dataset [17] converted to

gray values in [0, 1] as our "ground truth" {𝑏𝑖}. The 2-D convolution operator (matrix) parametrised

by 𝛼2, 𝛼3 and 𝛼4 as illustrated in Figure 3a is denoted by 𝐴𝛼 . Operator 𝑟𝜃 rotates image 𝜃 degrees,

clockwise for 𝜃 > 0 and counterclocwise for 𝜃 < 0. We form {𝑧𝑖} by computing 𝑟−1(𝐴𝛼𝑟1(𝑏𝑖)) for
[𝛼2, 𝛼3, 𝛼4] = [0.15, 0.1, 0.75] and adding Gaussian noise of standard deviation 0.02.

The inner (inverse) problem is

(5.4) arg min

𝑥𝑖 ∈ℝ𝑛
1
𝑛

2

+

1

2

∥𝐴𝛼𝑥𝑖 − 𝑧𝑖 ∥2

2
+ 𝑔𝜀,𝛿 (𝐷𝑥𝑖 ;𝛼0) (𝛼 ∈ [0,∞)4)

where 𝐴𝛼 is the aforementioned convolution operator and 𝐷 is a backward difference operator. We

use the scaled regularisation parameter 𝛼0 = 𝐶𝛼1 for the constant 𝐶 = 1

10
to help with outer iterate

convergence by ensuring the same order of magnitude for all components of 𝛼 . We consider 𝑓 in

Example 3.2 as sum of 𝑓0(𝑥 ;𝛼) = 0 and 𝑒 (𝑥 ;𝛼) = 1

2
∥𝐴𝛼𝑥𝑖 − 𝑧𝑖 ∥2

2
, which means that the primal step for

the the inner problem does not involve a proximal operator, but only gradient step. Again this choice

of 𝑓0 is not necessarily strong convex; see, however, Remark 5.1.
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𝛼2

𝛼3 𝛼4

0

0

0

0

(a) Kernel structure (b) Original (c) Blurry; error 9.8% (d) Result; error 6.9%

Figure 3: Deconvolution kernel parametrisation, data, and result for PDPS + block-GS. The different

colours in 3a represent different components of 𝛼 such that elements of kernel with same

colour have same value. The errors in 3c and 3d are ∥image − target∥2/∥target∥2.

For the block Gauss–Seidel splitting we need to choose an invertible 𝑁11. We use the fact that

∇2

𝑥 𝑓 (𝑢;𝛼) = 𝐴∗
𝛼𝐴𝛼 equals F ∗𝑍 2

𝛼F with 𝑍𝛼 being the Fourier transform of the convolution kernel, or

more precisely it stacked into diagonal of 𝑛1𝑛2 × 𝑛1𝑛2 matrix. This lets us again take 𝑁11 = F ∗𝑍 2

𝜃
F

such that 𝑍 2

𝜃
= max{𝜃−1

𝑥 , 𝑍
2

𝛼 } for 𝜃−1

𝑥 defined in (5.3).

With the parameter 𝛽 = 10
4
, our choice for the outer regulariser is

𝑅(𝛼) = 𝛽 (𝛼2 + 𝛼3 + 𝛼4 − 1)2 + 𝛿 [0,∞) (𝛼1) .

The proximal operator of 𝑅 we present in Appendix d.1.

5.4 numerical setup

Our algorithm implementations are provided on Zenodo [41]. The specific parameter choices for both

experiments are listed in Table 1. To pick inner step lengths 𝜏𝑥 , 𝜏𝑦 > 0 satisfying 𝜏𝑥𝐿/2 + 𝜏𝑥𝜏𝑦 ∥𝐷 ∥2 ≤ 1

for PDPS we use the upper bound of ∥𝐷 ∥2 ≤ 8 from [4]. All the other step lengths, numbers of step

for solving inner problem and adjoint equation to a high precision in implicit method, and parameters,

such as 𝜔 = 1, are chosen by trial and error to obtain an apparently stable, but as efficient as possible,

algorithm. We do not attempt to verify their theoretical conditions. The chosen initial outer iterates 𝛼0

are specified in Sections 5.2 and 5.3. Initial inner and adjoint iterates for PDPS + block-GS and PDPS +

identity are obtained by solving inner problem and adjoint equation to a high precision similarly than

in implicit method for corresponding experiment.

The adjoint equation in the implicit method is solved with block Gauss–Seidel, see Example 4.7,

for MRI and with the conjugate gradients squared method [39] for deblurring. For the latter, we use

Matlab’s cgs implementation with tolerance 10
−4

and maximum iteration count 2000. The dimension

of the adjoint equation in our MRI experiment is large, 64911600. Matlab’s standard linear solvers,

like cgs or bicgstab [45], did not scale well to such a high-dimensional problem, so we used block

Gauss–Seidel instead. We took 200 steps of the latter, which still provides a less precise solution of the

adjoint equation than cgs for deblurring.

The parameters of the trust region method in the deblurring experiment are also chosen by trial and

error, as follows:

• initial and maximum trust region radii Δ0 = 0.01 and Δmax = 0.1, as well as rates of change

𝛾inc = 2 and 𝛾dec = 0.1,

• step validation parameters 𝜂1 = 0.01, 𝜂2 = 0.5 and 𝜂′
1
= 0.004,

• FISTA parameters for the inner problem, 𝜇 = 1 · 10−4, 𝐿 = 1 · 10
5
, and 𝜏 = 1/𝐿 = 1 · 10

−5. On

each outer step, the inner FISTA is initialized using a restarting strategyfrom the previous outer
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Table 1: Algorithm parametrisation, time multiplier, and total outer steps to reach threshold computa-

tional resources (CPU time) value. The threshold is 15000 for MRI and 10000 for deblurring,

except 6000 and 3000 for PDPS + block-GS. The time multipliers allow conversion from

computational resources to seconds. It differs between algorithms and problems due to dif-

ferent levels of parallelisability. The ‘inner steps’ and ‘adjoint steps’ indicate the (maximum)

number of iterations taken towards a solution of the inner problem or the adjoint equation

on every outer iteration. The cgs method (of Matlab) that we use to solve the adjoint for

the implicit method in the deblurring experiment, may use a smaller number of iterations as

determined by the tolerance 10
−4
. Similarly, the inner level solver of trust region method may

take less iterations if it achieves the dynamic tolerance. Step lengths for PDPS (inner steps) are

𝜏𝑥 = 0.354, 𝜏𝑦 = 0.350 for MRI and 𝜏𝑥 = 0.600, 𝜏𝑦 = 0.141 for deblurring.

outer inner adjoint time

method steps steps steps mult. 𝜃𝑥 , 𝜃𝑦 𝜎

implicit 16 3 · 10
3

200 0.23 (5.3), 0.1 7 · 10
−4

PDPS + identity 1.9 · 10
3

1 1 0.23 0.1, 6.25 · 10
−4

1 · 10
−5

PDPS + block-GS 7.6 · 10
2

1 1 0.22 (5.3), 0.1 1 · 10
−4

implicit 142 2.5 · 10
3

2 · 10
3

0.18 - 2 · 10
−4

PDPS + identity 4.9 · 10
2

1 1 0.22 1 · 10
−3, 1 · 10

−3
5 · 10

−7

PDPS + block-GS 5.2 · 10
5

1 1 0.21 (5.3), 0.1 1 · 10
−5

trust region 48 2.5 · 10
4

- 0.18 - -

M
R
I

d
e
b
l
u
r

step. It takes maximum of 25000 steps or until the tolerance ∥inner gradient∥2 < 10
3(Δ𝑘 )2𝜇2

is

achieved.

We do not present parameters and results for the trust region method for the MRI experiment, as it

scaled poorly to such a large-dimensional problem. Already the first step of the method surpassed the

limit 15000 of computational resources (CPU Time), common to all algorithms.

To compare algorithm performance, we plot relative errors and values of outer objective as function

of the cputime value of Matlab on an AMD Ryzen 5 5600H CPU. We call this value “computational

resources”, since it takes measures the use of several CPU cores by Matlab’s internal linear algebra.

This is fairer than the elapsed real time.

We need estimates 𝛼 and �̃� of optimal 𝛼 and 𝑢 = 𝑆𝑢 (𝛼) to compare performance of the algorithms.

For the MRI experiment these estimates are obtained by running PDPS + block-GS until computational

resource (CPU time) value of 8000. For deblur experiment er use slightly different estimates for PDPS

+ block-GS and PDPS + identity, which are obtained by running the corresponding algorithms for

CPU time values of 4000 and 15000. The first estimates are also used to track performance of implicit

method. With these solution estimates we define the inner and outer relative errors

𝑒𝛼,rel :=
∥𝛼 − 𝛼𝑘 ∥

∥𝛼 ∥ and 𝑒𝑢,rel :=
∥�̃� − 𝑢𝑘 ∥𝑄

∥�̃�∥𝑄
for 𝑄 :=

(
𝜏−1

𝑥 Id −𝐷∗

−𝐷 𝜔−1𝜏−1

𝑦 Id

)
.

5.5 results

We report performance in Figure 5 and the image data and reconstructions in Figures 3 and 4. Figure 5

indicates that PDPS + block-GS has significantly lower computational costs than the other methods. It

has the fastest convergence of the outer objective function as well as the inner and the outer iterates

in both experiments, MRI and deblurring. PDPS + identity also seems to perform better than implicit

function and trust region methods based on Figure 5, but its efficiency appears to be closer to them
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Figure 4: Target images of size 247 × 292 (middle column),simulated MRI measurements (left column)

and reconstructions (right column). Colorbar for image domain

values from interval [0, 1] and for measurements presented in logarithmic scale computed

as log
10
( · + 0.05) values (of logs) from interval [−1.3, 2.0] . Top

row presents a training set example and bottom row test example, not used in training. The

relative error ∥reconstruction − target∥2/∥target∥2 for the reconstruction of training target

is 6.92% and for the test target 6.86%.

than to PDPS + block-GS. This suggests that block Gauss-Seidel for adjoint steps significantly improves

algorithm performance. This improvement is likely based on fact that adjoint steps based on the block

Gauss-Seidel and identity splitting have a similar computational cost, but the former allowed us to

choose a 10–20 times larger outer step length parameter, see Table 1, while still obtaining an apparently

stable algorithm.

All single-loop bilevel methods (as far as we know) require the inner objective to be twice con-

tinuously differentiable, including the methods we propose here. This means that nonsmooth inner

problems need to be smoothed. This prevents us from (fairly) comparing our proposed method that

uses PDPS steps for the inner problem, to most single-loop bilevel in the literature—including the

FIFB and FEFB of [40]. Based on gradient steps for the inner problem, these would require a different

type of smoothing. Regardless, in our previous work [40], for roughly the same deconvolution kernel

identification problem that we treat here, we compared the performance of inner methods based on a

single gradient descent step to the implicit method, based on the primal form of the inner problem.

The implicit method present here, based on the primal-dual form of the inner problem, performs better

than the implicit method in [40], but also, our single-loop method based on the block-GS adjoint solver,

obtains greater improvements over the implicit method than the improvements obtained in [40].

From machine learning perspective, our MRI training set is extremely small, only 4 examples. To

assess the quality of the identified sampling mask, we solved the inner inverse problem (5.2) to a high
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precision with PDPS (3000 steps with the step length parameters from Table 1, since taking more steps

did not decrease the inner objective value significantly) for simulated measurements 𝑧𝑖 in a training

set and in a test set of one data pair. Figure 4 shows these reconstructions as well as the true target

images. These reconstructions lose target detail but are still of good quality (less than 7% relative

error) for a sampling sparsity of 28%. The errors between the test set and the training set are similar,

suggesting that our bilevel learning model generalises well to unseen data (from the same distribution)

despite the small training set. We note that the reconstruction can be slightly improved by setting, as a

post-processing step, all the non-zero learned weights to one.

As could be expected from our sparsity regularisation, for MRI, the reconstructed sampling mask in

the 𝑘-space, shown in Figure 2b (top), takes a range of values. It emphasises the lowest frequencies,

and then falls of until it reaches a threshold frequency, after which the mask is zero. The threshold

frequencies appear to be again emphasised to compensate for the lack of sampling at higher frequencies.

The Fourier transform of the mask, which would correspond to spatial regularisation of the image,

resembles a sinc function, as would be expected from the structure of the 𝑘-space mask, but also,

interestingly, the weights of a discretised higher-order differential operator. It, therefore, seems that an

optimal MRI sampling mask attempts to extract information about the differentials of the image.

appendix a three-point monotonicity

We needed the following three-point monotonicity property in Lemma 2.9.

Theorem a.1. Let 𝑋 be Banach space and let 𝐹 : 𝑋 → ℝ be strongly convex with factor 𝛾 (in a set 𝐴 ⊂ 𝑋 )
as well as Lipschitz differentiable with constant 𝐿 > 0 (in 𝐴). Then for any 𝑡 > 0,

⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩ ≥ 𝛾 − 𝑡𝐿
2

∥𝑥 − 𝑥 ∥2 + 𝛾 − 𝑡𝐿
2

∥𝑧 − 𝑥 ∥2 − 𝐿

4𝑡
∥𝑥 − 𝑧∥2 (for all 𝑥, 𝑧, 𝑥 ∈ 𝐴) .

Proof. The proof is adapted from [42]. We have

(a.1) ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩ = 1

2

⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩ + 1

2

⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩

≥ 1

2

(
⟨𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩ + ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩

)
+ 1

2

(
⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑧 − 𝑥⟩ + ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑧⟩

)
=:

1

2

𝐼1 +
1

2

𝐼2.

The strong monotonicity and Lipschitz continuity of 𝐷𝐹 with Young’s inequality yield

𝐼1 = ⟨𝐷𝐹 (𝑥) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩ + ⟨𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥), 𝑥 − 𝑥⟩

≥ 𝛾 ∥𝑥 − 𝑥 ∥2 − ∥𝐷𝐹 (𝑧) − 𝐷𝐹 (𝑥)∥∥𝑥 − 𝑥 ∥ ≥ 𝛾 ∥𝑥 − 𝑥 ∥2 − 𝑡𝐿∥𝑥 − 𝑥 ∥2 − 𝐿

4𝑡
∥𝑥 − 𝑧∥2.

Inserting this and an analogous estimate for 𝐼2 into (a.1) establishes the claim. □

appendix b lipschitz selections of the solution map

We now continue from Remark 2.4 to treat the existence and differentiability of the solution map 𝑆𝑢 of

the inner problem. The next lemma is a an implicit function variant of [9, Lemma 22.3]. It relaxes the

invertibility restriction on 𝐺𝑢 in the standard implicit function theorem.
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Figure 5: Performance of the compared methods. Top row: outer iterate convergence, middle row: inner

iterate convergence and bottom row: outer function value convergence. The “computational

resources” is the spent CPU time over multiple cores, parallelisation level depending on

algorithm.

Lemma b.1. On Banach spaces 𝑈 , 𝒜, and 𝑌 , suppose 𝐺 : 𝑈 ×𝒜 → 𝑌 is continuously differentiable at

(𝑢, 𝛼), 𝐺 (𝑢;𝛼) = 0, and that 𝐺𝑢 (𝑢;𝛼) ∈ 𝕃(𝑈 ;𝑌 ) has a right-inverse 𝐺𝑢 (𝑢;𝛼)† ∈ 𝕃(𝑌 ;𝑈 ). Then there

exists a neigborhood 𝑉𝛼 of 𝛼 and a continuously differentiable 𝑆 : 𝑉𝛼 → 𝑈 such that 𝐺 (𝑆 (𝛼);𝛼) = 0 for

all 𝛼 ∈ 𝑉𝛼 , and 𝑆 ′(𝛼) = 𝐺𝑢 (𝑢;𝛼)†𝐺𝛼 (𝑢;𝛼).

Proof. Let 𝐴 := 𝐺𝑢 (𝑢;𝛼) and 𝐴†
:= 𝐺𝑢 (𝑢;𝛼)†. Then 𝑃 := Id−𝐴†𝐴 is a projection into ker𝐴 =
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ker𝐺𝑢 (𝑢;𝛼), in particular, 𝐴𝑃 = 0. We further define

¯𝐺 : 𝑈 ×𝒜 → 𝑌 × ker𝐺𝑢 (𝑢;𝛼), ¯𝐺 (�̃�;𝛼) := (𝐺 (�̃�;𝛼), 𝑃�̃�) for all (�̃�, 𝛼) ∈ 𝑈 ×𝒜,

as well as

𝑀 : 𝑌 × ker𝐴 → 𝑈 , 𝑀 (�̃�, 𝑞) := 𝐴†�̃� + 𝑞, for all �̃� ∈ 𝑌 and 𝑞 ∈ ker𝐴.

Then for all Δ𝑢 ∈ 𝑈 , we have𝑀 ¯𝐺𝑢 (𝑢;𝛼)Δ𝑢 = 𝐴†𝐴Δ𝑢 +𝑃Δ𝑢 = Δ𝑢. Thus𝑀 is a left-inverse of
¯𝐺𝑢 (𝑢;𝛼),

and consequently ker
¯𝐺𝑢 (𝑢;𝛼) = {0}. Since ¯𝐺𝑢 (𝑢;𝛼)Δ𝑢 = (𝐴Δ𝑢, 𝑃Δ𝑢) for all Δ𝑢 ∈ 𝑈 , similarly, for all

(�̃�, 𝑞) ∈ 𝑌 × ker𝐴, we have

¯𝐺𝑢 (𝑢;𝛼)𝑀 (�̃�, 𝑞) = (𝐴𝐴†�̃� +𝐴𝑞, 𝑃𝐴†�̃� + 𝑃𝑞) = (𝐴𝐴†�̃�, 𝑃𝑞) = (�̃�, 𝑞),

which shows that𝑀 is also the right-inverse of
¯𝐺𝑢 (𝑢;𝛼) on 𝑌 × ker 𝐹 ′(𝑥). Hence ¯𝐺𝑢 (𝑢;𝛼) is bijective.

By the implicit function theorem, e.g., [27, Theorem 1.25], a continuously differentiable 𝑆 : 𝑉𝛼 → 𝑈

now exists in a neighborhood 𝑉𝛼 of 𝛼 with

𝑆 ′(𝛼) = ¯𝐺𝑢 (𝑢;𝛼)−1 ¯𝐺𝛼 (𝑢;𝛼) = 𝑀 ¯𝐺𝛼 (𝑢;𝛼) = 𝑀 (𝐺𝛼 (𝑢;𝛼), 0)
= 𝐴†𝐺𝛼 (𝑢;𝛼) = 𝐺𝑢 (𝑢;𝛼)†𝐺𝛼 (𝑢;𝛼) . □

We now obtain the following; compare [14, Theorem 5J.8].

Corollary b.2. Suppose that the assumptions of Lemma b.1 hold at some 𝑢𝛼 with 𝐺 (𝑢𝛼 ;𝛼) = 0 for all 𝛼 in

a compact
˘𝒜 ⊂ 𝒜. If, moreover

(i) The set {𝑢 | 𝐺 (𝑢;𝛼) = 0} is convex for all 𝛼 ∈ ˘𝒜, and

(ii) 𝑀 := sup
𝛼∈ ˘𝒜

∥𝐺𝑢 (𝑢𝛼 ;𝛼)†𝐺𝛼 (𝑢𝛼 ;𝛼)∥ < ∞,

then for every 𝜀 > 0, there exists a continuously differentiable and Lipschitz 𝑆 :
˘𝒜 → 𝑈 with𝐺 (𝑆 (𝛼);𝛼) =

0 for all 𝛼 ∈ ˘𝒜. Moreover, the Lipschitz factor of 𝑆 is at most𝑀 + 𝜀.

Proof. We apply Lemma b.1 to all 𝛼 ∈ ˘𝒜 to obtain corresponding neighbourhoods 𝑉𝛼 ⊂ ˘𝒜 and

continuously differentiable mappings 𝑆𝛼 : 𝑉𝛼 → 𝑈 satisfying 𝐺 (𝑆𝛼 (𝛼);𝛼) = 0 for all 𝛼 ∈ 𝑉𝛼 . Due to
continuous differentiability and the expression (𝑆𝛼 )′(𝛼) = 𝐺𝑢 (𝑢;𝛼)†𝐺𝛼 (𝑢;𝛼), shrinking𝑉𝛼 if necessary,

we may assume that 𝑆𝛼 is Lipschitz in 𝑉𝛼 with Lipschitz factor at most ∥𝐺𝑢 (𝑢;𝛼)†𝐺𝛼 (𝑢;𝛼)∥ + 𝜀.
If 𝛼 ∈ 𝑉𝛼1

∩ 𝑉𝛼2
for 𝛼1 ≠ 𝛼2, it may be that 𝑆𝛼1 (𝛼) ≠ 𝑆𝛼2 (𝛼). However, the convexity assumption

(i) guarantees for any 𝜆 ∈ [0, 1] that 𝑢𝜆 := 𝜆𝑆𝛼1 (𝛼) + (1 − 𝜆)𝑆𝛼2 (𝛼) satisfies 𝐺 (𝑢𝜆 ;𝛼) = 0. Therefore,

we may use a compact covering argument and a partition of unity (which exists by the compactness

of
˘𝒜) to glue together the various 𝑆𝛼 to obtain a single inverse selection 𝑆 :

˘𝒜 → 𝑈 , satisfying

𝐺 (𝑆 (𝛼);𝛼) = 0 for all 𝛼 . Finally, (ii) establishes the claimed bound on the Lipschitz factor. □

If 𝐺 (𝑢;𝛼) = ∇𝑢𝐹 (𝑢;𝛼) for a convex function 𝐹 , then it is clear that the convexity assumption in

Corollary b.2 (i) holds. However, it also holds for 𝐺 (𝑢;𝛼) = 𝐴(𝑢;𝛼) + 𝐵(𝑢;𝛼) as given by Example 3.2

for the PDPS. As a variation of [22, Theorem 2.1], this can be seen from the characterisation of solutions

(𝑥, 𝑦) to 0 = 𝐺 (𝑥, 𝑦 ;𝛼) as the saddle points of L(𝑥, 𝑦) := 𝑓 (𝑥 ;𝛼) + ⟨𝐾𝑥, 𝑦⟩ − 𝑔∗(𝑦 ;𝛼). The latter as
defined as those (𝑥, 𝑦) satisfying

L(𝑥, 𝑦) ≤ L(𝑥, 𝑦) ≤ L(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌 .

Lemma b.3. The saddle points of a convex-concave L : 𝑋 × 𝑌 → [−∞,∞] form a convex set.

Proof. For any two solutions pairs (𝑥0, 𝑦0) and (𝑥1, 𝑦1), defining 𝑥𝜆 := 𝜆𝑥0 + (1 − 𝜆)𝑥1 and 𝑦𝜆 :=

𝜆𝑦0 + (1 − 𝜆)𝑦1, by convexity L(𝑥𝜆, 𝑦𝜆) ≤ 𝜆L(𝑥0, 𝑦𝜆) + (1 − 𝜆)L(𝑥1, 𝑦𝜆) ≤ L(𝑥, 𝑦𝜆) for any 𝑥 . The
lower bound is proved analogously. □
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appendix c lemmas for the tracking property of block gauss–seidel

We prove here an estimate that was needed to derive the tracking inequality for block Gauss–Seidel

splitting in Example 4.7. We start with two technical lemmas.

Lemma c.1. Let 𝑏 > 0 and 𝑐 ≤ 0. Then −𝑏 +
√
𝑏2 − 4𝑏𝑐 ≥ −2𝑏𝑐/(−𝑐 + 𝑏) .

Proof. We estimate

−𝑏 +
√
𝑏2 − 4𝑏𝑐 =

𝑏2 − 4𝑏𝑐 − 𝑏2

𝑏 +
√
𝑏2 − 4𝑏𝑐

=
−4𝑏𝑐

𝑏 +
√
𝑏2 − 4𝑏𝑐

≥ −4𝑏𝑐

𝑏 +
√︁
𝑏2 − 4𝑏𝑐 + (2𝑐)2

=
−2𝑏𝑐

−𝑐 + 𝑏 . □

Lemma c.2. Let 𝑎, 𝑏, 𝑐, 𝑑 > 0 and define for 𝜂1, 𝜂2 > 0 the functions

𝑓1(𝜂1, 𝜂2) = (1 + 𝜂−1

1
+ (1 + 𝜂−1

2
)𝑎2)𝑏2

and 𝑓2(𝜂1, 𝜂2) = (1 + 𝜂1)𝑐2 + (1 + 𝜂2)𝑑2.

Moreover, assume for some 𝜁 ∈ [0, 1) that

(c.1) 𝑑2 + 𝑎𝑏𝑑 + 𝑏2(1 + 𝑐) (1 + 𝑎2) + 𝑐2 + 𝑏𝑐 ≤ 𝜁 2

Then there exists 𝜂∗
1
> 0 such that

𝑓1(𝜂∗1 , 𝑎𝑐𝑑−1𝜂∗
1
) = 𝑓2(𝜂∗1 , 𝑎𝑐𝑑−1𝜂∗

1
) ≤ 𝜁 2.

Proof. The equation 𝑓1(𝜂∗1 , 𝑎𝑐𝑑−1𝜂∗
1
) = 𝑓2(𝜂∗1 , 𝑎𝑐𝑑−1𝜂∗

1
) is equivalent to the quadratic

𝑔(𝑐2 + 𝑎𝑐𝑑) (𝜂∗
1
)2 + (𝑐2 + 𝑑2 − 𝑏2(1 + 𝑎2))𝜂∗

1
− 𝑏2/𝑐2(𝑐2 + 𝑎𝑐𝑑) = 0.

The left-hand-side is negative at 𝜂∗
1
= 0, and the equation has a root 𝜂∗

1
> 0. Instead of solving for this

root, we find the root greater than 𝜂∗
1
of

𝑞(𝜂) = (𝑐2 + 𝑎𝑐𝑑)𝜂2 − 𝑏2(1 + 𝑎2)𝜂 − 𝑏2/𝑐2(𝑐2 + 𝑎𝑐𝑑).

This is

𝜂 =
𝑏2(1 + 𝑎2) +

√︁
(𝑏2(1 + 𝑎2))2 + 4𝑏2/𝑐2(𝑐2 + 𝑎𝑐𝑑)2

2(𝑐2 + 𝑎𝑐𝑑)

≤ 𝑏2(1 + 𝑎2) + 𝑏/𝑐 (𝑐2 + 𝑎𝑐𝑑)
𝑐2 + 𝑎𝑐𝑑 =

𝑏

𝑐
𝑟 for 𝑟 :=

(
1 + 𝑏 (1 + 𝑎

2)
𝑐 + 𝑎𝑑

)
.

Because 𝑓2(𝜂1, (𝑎𝑐/𝑑)𝜂1) is an increasing function of 𝜂1, an application of (c.1) gives

𝑓2(𝜂∗1 , (𝑎𝑐/𝑑)𝜂∗1 ) ≤ 𝑓2(𝜂, (𝑎𝑐/𝑑)𝜂) =
(
1 + 𝑏

𝑐
𝑟

)
𝑐2 +

(
1 + 𝑎𝑏

𝑑
𝑟

)
𝑑2

≤ 𝑑2 + 𝑎𝑏𝑑 + 𝑏2(1 + 𝑐) (1 + 𝑎2) + 𝑐2 + 𝑏𝑐 ≤ 𝜁 2. □

Theorem c.3. Assume 𝐴11, 𝐴12, 𝐴21 and 𝐴22 are linear operator between Hilbert spaces 𝑈 and 𝒜. With

𝐴11 = 𝑁11 +𝑀11 and 𝐴22 = 𝑁22 +𝑀22, let

𝐴 =

(
𝐴11 𝐴12

𝐴21 𝐴22

)
, 𝑁 =

(
𝑁11 0

𝐴21 𝑁22

)
, and 𝑀 =

(
𝑀11 𝐴12

0 𝑀22

)
.

Moreover, suppose 𝑁11 and 𝑁22 are invertible and bounded, and

(c.2) ∥𝑁 −1

22
(𝑀22 −𝐴21𝑁

−1

11
𝐴12)∥2 + ∥𝑁 −1

22
(𝑀22 −𝐴21𝑁

−1

11
𝐴12)∥∥𝑁 −1

22
𝐴21∥∥𝑁 −1

11
𝑀11∥

+ ∥𝑁 −1

11
𝑀11∥2(1 + ∥𝑁 −1

11
𝐴12∥)(1 + ∥𝑁 −1

22
𝐴21∥2) + ∥𝑁 −1

11
𝐴12∥2 + ∥𝑁 −1

11
𝐴12∥∥𝑁 −1

11
𝑀11∥ ≤ 𝜁 2

for some 𝜁 ∈ [0, 1) . Then (4.7) holds with the aforementioned 𝜁 and any 𝛾𝑁 satisfying

0 ≤ 𝛾𝑁 ≤ ∥𝑁11∥∥𝑁22∥
2∥𝑁11∥ + ∥𝑁22∥(1 + ∥𝑁 −1

22
𝐴21∥2)

.
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Proof. We have

𝑁 −1 =

(
𝑁 −1

11
0

−𝑁 −1

22
𝐴21𝑁

−1

11
𝑁 −1

22

)
.

Thus Young’s inequality, for any 𝛽 > 0, establishes

(c.3) ∥𝑁 −1∥2 = sup

𝑥,𝑦

∥𝑁 −1

11
𝑥 ∥2 + ∥𝑁 −1

22
𝑦 − 𝑁 −1

22
𝐴21𝑁

−1

11
𝑥 ∥2

∥𝑥 ∥2 + ∥𝑦 ∥2
= sup

𝑥,𝑦

∥𝑥 ∥2 + ∥𝑦 − 𝑁 −1

22
𝐴21𝑥 ∥2

∥𝑁11𝑥 ∥2 + ∥𝑁22𝑦 ∥2

≤ sup

𝑥,𝑦

∥𝑥 ∥2 + (1 + 𝛽−1)∥𝑦 ∥2 + (1 + 𝛽)∥𝑁 −1

22
𝐴21𝑥 ∥2

∥𝑁11𝑥 ∥2 + ∥𝑁22𝑦 ∥2
.

Consequently 𝜌 ∥𝑁 −1∥2 ≤ 1 (here 𝜌 = 𝛾2

𝑁
) if and only if, for all 𝑥 and 𝑦 ,

∥𝑥 ∥2 + (1 + 𝛽)∥𝑁 −1

22
𝐴21𝑥 ∥2 ≤ 𝜌−1∥𝑁11𝑥 ∥2

and (1 + 𝛽−1)∥𝑦 ∥2 ≤ 𝜌−1∥𝑁22𝑦 ∥2.

This is to say

(c.4) 𝜌 + 𝜌 (1 + 𝛽)∥𝑁 −1

22
𝐴21∥2 ≤ ∥𝑁11∥2

and 𝜌 (1 + 𝛽−1) ≤ ∥𝑁22∥2.

We can solve from the latter

𝛽−1 = 𝜌−1∥𝑁22∥2 − 1 ⇐⇒ 𝛽 =
𝜌

∥𝑁22∥2 − 𝜌 ⇐⇒ 𝜌 =
∥𝑁22∥2

1 + 𝛽−1
=
𝛽 ∥𝑁22∥2

𝛽 + 1

provided ∥𝑁22∥2 > 𝜌. Then the first inequality in (c.4) reads

𝛽 ∥𝑁22∥2

𝛽 + 1

+ 𝛽 ∥𝑁22∥2

𝛽 + 1

(1 + 𝛽)∥𝑁 −1

22
𝐴21∥2 ≤ ∥𝑁11∥2.

In other words

𝛽 ∥𝑁22∥2 + (1 + 𝛽)𝛽 ∥𝑁22∥2∥𝑁 −1

22
𝐴21∥2 ≤ (1 + 𝛽)∥𝑁11∥2.

Note that this holds with 𝛽 = 0, and rearranges as

(c.5) 𝛽2∥𝑁22∥2∥𝑁 −1

22
𝐴21∥2 + 𝛽

(
∥𝑁22∥2(1 + ∥𝑁 −1

22
𝐴21∥2) − ∥𝑁11∥2

)
− ∥𝑁11∥2 ≤ 0.

We want maximal 𝜌 , therefore minimal 𝛽 > 0 that satisfies (c.5). Since this is condition is quadratic in

𝛽 , and is satisfied at 𝛽 = 0,, the corresponding function has a positive root 𝛽 ′. Any positive number

smaller than 𝛽 ′, such as the positive root of

𝛽2∥𝑁22∥2(1 + ∥𝑁 −1

22
𝐴21∥2) + 𝛽 ∥𝑁22∥2(1 + ∥𝑁 −1

22
𝐴21∥2) − ∥𝑁11∥2,

also satisfies (c.5). We solve the corresponding quadratic equation in 𝛽 and use Lemma c.1 to find

𝛽∗ < 𝛽 ′

−∥𝑁22∥2(1 + ∥𝑁 −1

22
𝐴21∥2) +

√︃
∥𝑁22∥4(1 + ∥𝑁 −1

22
𝐴21∥2)2 − 4∥𝑁22∥2(1 + ∥𝑁 −1

22
𝐴21∥2)∥𝑁11∥2

2∥𝑁22∥2(1 + ∥𝑁 −1

22
𝐴21∥2)

≥ ∥𝑁11∥2

∥𝑁11∥2 + ∥𝑁22∥2(1 + ∥𝑁 −1

22
𝐴21∥2)

=: 𝛽∗.

Therefore 𝜌 ∥𝑁 −1

𝑣 ∥2 ≤ 1 for 𝜌 = 𝛽∗∥𝑁22∥2/(1 + 𝛽∗) and we get

𝜌 =
𝛽∗∥𝑁22∥2

𝛽∗ + 1

=
∥𝑁11∥2∥𝑁22∥2

2∥𝑁11∥2 + ∥𝑁22∥2(1 + ∥𝑁 −1

22
𝐴21∥2)

≥ ∥𝑁11∥2∥𝑁22∥2(
2∥𝑁11∥ + ∥𝑁22∥(1 + ∥𝑁 −1

22
𝐴21∥2)

)
2
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Taking the square root, we see that 𝛾𝑁 ∥𝑁 −1∥ ≤ 1 for any

𝛾𝑁 ≤ ∥𝑁11∥∥𝑁22∥/(2∥𝑁11∥ + ∥𝑁22∥(1 + ∥𝑁 −1

22
𝐴21∥2)) .

Likewise we have

𝑁 −1

𝑣 𝑀𝑣 =

(
𝑁 −1

11
𝑀11 𝑁 −1

11
𝐴12

−𝑁 −1

22
𝐴21𝑁

−1

11
𝑀11 −𝑁 −1

22
𝐴21𝑁

−1

11
𝐴12 + 𝑁 −1

22
𝑀22

)
.

Similarly as in (c.3), using Young’s inequality we obtain ∥𝑁 −1

𝑣 𝑀𝑣 ∥2 ≤ 𝜁 2
if and only if, for some

𝜂1, 𝜂2 > 0 and 𝜁 ∈ [0, 1), we have(
1 + 𝜂−1

1
+ (1 + 𝜂−1

2
)∥𝑁 −1

22
𝐴21∥2

)
∥𝑁 −1

11
𝑀11∥2 ≤ 𝜁 2

and

(1 + 𝜂1)∥𝑁 −1

11
𝐴12∥2 + (1 + 𝜂2)∥𝑁 −1

22
(𝑀22 −𝐴21𝑁

−1

11
𝐴12)∥2 ≤ 𝜁 2.

By Lemma c.2 these inequalities hold when the assumed (c.2) does. □

appendix d proximal operators

appendix d.1 outer proximal operators

Lemma d.1. Let 𝑅(𝛼) = 𝛽 (∑4

𝑖=2
𝛼𝑖 − 1)2 + 𝛿 [0,∞) (𝛼1) for 𝛼 = (𝛼1, . . . , 𝛼4) ∈ ℝ4

. Then

prox𝜎𝑅 (𝑎) = (max{0, 𝛼1}, 𝛼2, 𝛼3, 𝛼4)

where 𝛼2, 𝛼3, and 𝛼4 are solved from the system of linear equations

𝛼 𝑗 + 2𝜎𝛽

4∑︁
𝑖=2

𝛼 𝑗 = 𝑎 𝑗 + 2𝜎𝛽.

Proof. The claim follows directly from the definition of proximal operator and the corresponding first

order optimality condition

𝜕𝛼 𝑗

[
𝜎𝛽 (

4∑︁
𝑖=2

𝛼𝑖 − 1)2 + 1

2

4∑︁
𝑖=2

(𝛼𝑖 − 𝛼𝑖)2

]
= 0 for 𝑗 = 2, 3, 4. □

The next result on our sparsity regulariser for MRI sampling pattern weights has a lot of resemblance

to simplex projection methods, see, for example, [1, Chapter 5].

Lemma d.2. For some weight vector𝑤 ∈ (0,∞)𝑛 and 𝛽,𝑀 > 0, let

𝑅(𝛼) := 𝛽𝜑 (𝑤⊤𝛼) + 𝛿 [0,∞)𝑛 (𝛼), 𝜑 (𝑡) = 𝑡 + 𝛿 (−∞,𝑀 ] (𝑡) .

Then, for all 𝑖 = 1, . . . , 𝑛 and 𝛼 ∈ ℝ𝑛
,

[prox𝜏𝑅 (𝛼)]𝑖 = max(0, 𝛼𝑖 −𝑤𝑖
˜𝜆) where

˜𝜆 = max

{
𝑤⊤

I𝛼I −𝑀
∥𝑤I ∥2

, 𝜏𝛽

}
,

where 𝜏 > 0, 𝛼I = (𝛼𝑖)𝑖∈I and𝑤I = (𝑤𝑖)𝑖∈I for I ⊂ {1, . . . , 𝑛} chosen such that

(d.1) 𝛼𝑖/𝑤𝑖 > ˜𝜆 =⇒ 𝑖 ∈ I and 𝛼𝑖/𝑤𝑖 < ˜𝜆 =⇒ 𝑖 ∉ I .

Moreover, such a choice exists.
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Thus, due to (d.1), to calculate 𝛼 , we need to sort the vector (𝛼𝑖/𝑤𝑖)𝑛𝑖=1
, and find a dividing index 𝑗

such that I = { 𝑗 + 1, . . . , 𝑛} and ˜𝜆 computed based on it satisfies (d.1). If 𝛼𝑖/𝑤𝑖 = 𝛼 𝑗/𝑤 𝑗 and𝑤𝑖 ≠ 𝑤 𝑗

for 𝑖 ≠ 𝑗 , then all sorting combinations may be needed to be tried for such indices. If𝑤⊤𝛼 < 𝑀 , we

can always take I = {1, . . . , 𝑛}.

Proof. The necessary and sufficient first-order optimality condition for 𝛼 = prox𝜏𝑅 (𝛼) is

0 ∈ 𝛼 − 𝛼 +𝑤𝑁≤𝑀 (𝑤⊤𝛼) + 𝜏𝛽𝑤 + 𝑁≥0(𝛼),

in other words

0 = 𝛼 − 𝛼 +𝑤 (𝜆 + 𝜏𝛽) + 𝜇 where(d.2)

0 ≤ 𝜆, 𝑤⊤𝛼 ≤ 𝑀, (𝑀 −𝑤⊤𝛼)𝜆 = 0, and(d.3)

𝜇𝑖 ≤ 0, 𝛼𝑖 ≥ 0, 𝛼𝑖𝜇𝑖 = 0 for all 𝑖 = 1, . . . , 𝑛.(d.4)

We choose

𝜆 = ˜𝜆 − 𝜏𝛽 = max

{
𝑤⊤

I𝛼I −𝑀
∥𝑤I ∥2

− 𝜏𝛽, 0
}
.

For any 𝑖 ∈ {1, . . . , 𝑛}, if 𝛼𝑖 ≥ 𝑤𝑖
˜𝜆, then 𝛼𝑖 = 𝛼𝑖 −𝑤𝑖

˜𝜆 ≥ 0, so (d.4) is satisfied by taking 𝜇𝑖 = 0, and

(d.2) when 𝛼𝑖 −𝛼𝑖 +𝑤𝑖𝜆 + 𝜏𝛽𝑤𝑖 = 0, which indeed holds. Likewise, if 𝛼𝑖 < 𝑤𝑖
˜𝜆, we have 𝛼𝑖 = 0, so (d.4)

is satisfied for any 𝜇𝑖 ≤ 0, and, therefore, (d.2) when 𝛼𝑖 − 𝛼𝑖 +𝑤𝑖𝜆 + 𝜏𝛽𝑤𝑖 ≥ 0, which again holds.

It, therefore, remains to verify (d.3). To do so, we start by proving that

(d.5) 𝑤⊤𝛼 = 𝑤⊤
I𝛼I − ∥𝑤I ∥2 ˜𝜆,

Indeed, by the construction 𝛼𝑖 = max(0, 𝛼𝑖 −𝑤𝑖
˜𝜆), we have

𝑤⊤𝛼 =
∑︁

𝑖:�̃�𝑖≥𝑤𝑖
˜𝜆

𝑤𝑖𝛼𝑖 −𝑤2

𝑖
˜𝜆 =

∑︁
𝑖:�̃�𝑖>𝑤𝑖

˜𝜆

𝑤𝑖𝛼𝑖 −𝑤2

𝑖
˜𝜆.

Therefore (d.5) holds by (d.1). Now, to prove (d.3), observe that 0 ≤ 𝜆 by construction. Using (d.5), and

the definition of
˜𝜆, we obtain𝑤⊤𝛼 = min

(
𝑀,𝑤⊤

I𝛼I − ∥𝑤I ∥2𝜏𝛽
)
. In particular𝑤⊤𝛼 ≤ 𝑀 . Moreover, if

𝜆 > 0, i.e.,𝑤⊤
I𝛼I − ∥𝑤I ∥2𝜏𝛽 > 𝑀 , we obtain𝑤⊤𝛼 = 𝑀 , proving (d.3).

To see that (d.1) can be satisfied, let J := {𝑖 | 𝜇𝑖 = 0}. Observe from (d.4) that 𝜇𝑖 = 0 whenever

𝛼𝑖 > 0. Since𝑤⊤
J𝛼J = 𝑤⊤𝛼 ≤ 𝑀 and𝑤⊤

J𝜇J , applying𝑤
⊤
J to the components of (d.2) corresponding

to J , we obtain

(d.6) 0 ≤ 𝑀 −𝑤⊤
J𝛼J + ∥𝑤J ∥2(𝜆 + 𝜏𝛽).

Due to this and the first part of (d.3),

𝜆 ≥ max

{
0,
𝑤⊤

J𝛼J −𝑀
∥𝑤J ∥2

− 𝜏𝛽
}
.

If𝑤⊤𝛼 < 𝑀 , we need 𝜆 = 0, so this must hold as an equality. If𝑤⊤𝛼 = 𝑀 , the inequality in (d.6) would

be an equality, so we again reach the same conclusion due to the non-negativity requirement. It follows

from (d.2) and (d.4) that

𝛼𝑖 = 𝛼𝑖 −𝑤𝑖 (𝜆 + 𝜏𝛽) − 𝜇𝑖 = 𝛼𝑖 −𝑤𝑖
˜𝜆 − 𝜇𝑖 = max{0, 𝛼𝑖 −𝑤𝑖

˜𝜆J},

where

˜𝜆J = 𝜆 + 𝜏𝛽 = max

{
𝑤⊤

J𝛼J −𝑀
∥𝑤J ∥2

, 𝜏𝛽

}
.

Finally, if 𝛼𝑖 > 𝑤𝑖
˜𝜆J then 𝑖 ∈ J by definition. Since also 𝛼𝑖 < 𝑤𝑖

˜𝜆J implies 𝜇𝑖 < 0, hence 𝑖 ∉ J , it

follows that we can take I = J and
˜𝜆 = ˜𝜆J . □
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appendix d.2 differentials and the proximal operator of the inner regularizer

We present here expansions of derivations and the proximal operator of the inner regularizer 𝑔∗
𝜀,𝛿

defined in (5.1). These are needed for the numerical realisation of our method for the experiments of

Section 5. Readily, we calculate the partial derivatives of 𝑔∗
𝜀,𝛿

as (note that each 𝑦𝑖 ∈ ℝ2
)

(d.7) 𝜕𝑦 𝑗
𝑔∗
𝜀,𝛿

(𝑦) = 𝜕𝑦 𝑗

[
max{0, 1

3𝜀
(∥𝑦 𝑗 ∥ − 𝛼0)3} + 𝛿

2

∥𝑦 𝑗 ∥2

]
= 𝛿𝑦 𝑗 +

{
0, if ∥𝑦 𝑗 ∥ < 𝛼0

1

𝜀

𝑦 𝑗

∥𝑦 𝑗 ∥ (∥𝑦 𝑗 ∥ − 𝛼0)2, otherwise.

Likewise, the Hessian ∇2

𝑦𝑔
∗
𝜀,𝛿

(𝑦) is given by the entries 𝜕𝑦 𝑗
𝜕𝑦𝑖𝑔

∗
𝜀,𝛿

(𝑦) = 0 for 𝑖 ≠ 𝑗 and

𝜕2

𝑦 𝑗
𝑔∗
𝜀,𝛿

(𝑦) = 𝛿 Id2 +
{

0, if ∥𝑦 𝑗 ∥ < 𝛼0

𝜕𝑦 𝑗

[
1

𝜀

𝑦 𝑗

∥𝑦 𝑗 ∥ (∥𝑦 𝑗 ∥ − 𝛼0)2

]
, otherwise

= 𝛿 Id2 +


0, if ∥𝑦 𝑗 ∥ < 𝛼0

1

𝜀

Id2 −𝑦 𝑗𝑦
𝑇
𝑗
∥𝑦 𝑗 ∥−2

∥𝑦 𝑗 ∥ (∥𝑦 𝑗 ∥ − 𝛼0)2 + 1

𝜀

2𝑦 𝑗𝑦
𝑇
𝑗

∥𝑦 𝑗 ∥2
(∥𝑦 𝑗 ∥ − 𝛼0), otherwise.

Lemma d.3. Let 𝑔∗
𝜀,𝛿

be defined by (5.1) for some 𝜀, 𝛿 > 0. Moreover, let 𝑣 ∈ ℝ2𝑛1𝑛2
. Then for any 𝜏 > 0 and

𝑗 ∈ {1, . . . , 𝑛1𝑛2}, we have

[prox𝜏𝑔∗
𝜀,𝛿
(𝑣)] 𝑗 =


1

1+𝜏𝛿 𝑣 𝑗 , if ∥𝑣 𝑗 ∥ < (1 + 𝜏𝛿)𝛼0

2𝛼0−𝜀 (𝜏−1+𝛿 )+
√
𝜀2 (𝜏−1+𝛿 )2+4𝜀 (𝜏−1 ∥𝑣𝑗 ∥−(𝜏−1+𝛿 )𝛼0 )

2∥𝑣𝑗 ∥ 𝑣 𝑗 , otherwise.

Proof. Let 𝑦 := prox𝜏𝑔∗
𝜀,𝛿
(𝑣). Let 𝑗 ∈ {1, . . . , 𝑛1𝑛2}. Suppose first that ∥𝑦 𝑗 ∥ < 𝛼0 Using (d.7) and the the

definition of proximal operator, give the characterisation 𝑦 𝑗 − 𝑣 𝑗 + 𝜏𝛿𝑦 𝑗 = 0, i.e., 𝑦 𝑗 =
1

1+𝜏𝛿 𝑣 𝑗 . Thus
∥𝑣 𝑗 ∥ < (1 + 𝜏𝛿)𝛼0.

Suppose then that ∥𝑦 𝑗 ∥ ≥ 𝛼0. Again the partial derivative formula (d.7) and the definition of the

proximal operator give the characterisation

𝑦 𝑗 − 𝑣 𝑗 + 𝜏
(
𝛿𝑦 𝑗 +

1

𝜀

𝑦 𝑗

∥𝑦 𝑗 ∥
(∥𝑦 𝑗 ∥ − 𝛼0)2

)
= 0.

This is to say 𝑦 𝑗 = 𝑡𝑣 𝑗 for some 𝑡 > 0 satisfying

𝑡

(
1 + 𝜏

(
𝛿 + 1

𝜀

1

𝑡 ∥𝑣 𝑗 ∥
(𝑡 ∥𝑣 𝑗 ∥ − 𝛼0)2

))
= 1,

which translates into the second order equation in 𝑡 .

∥𝑣 𝑗 ∥𝑡2 + (𝜀 (𝜏−1 + 𝛿) − 2𝛼0)𝑡 + 𝛼2

0
∥𝑣 𝑗 ∥−1 − 𝜀𝜏−1 = 0.

This is solved by

𝑡 =
2𝛼0 − 𝜀 (𝜏−1 + 𝛿) ±

√︁
𝜀2(𝜏−1 + 𝛿)2 + 4𝜀 (𝜏−1∥𝑣 𝑗 ∥ − (𝜏−1 + 𝛿)𝛼0)

2∥𝑣 𝑗 ∥
.

Only the positive choice of sign satisfies the ansatz ∥𝑦 𝑗 ∥ ≥ 𝛼0, i.e., 𝑡 ∥𝑣 𝑗 ∥ ≥ 𝛼0. □
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