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second-order conditions for spatio-temporally
sparse optimal control via second subderivatives

Nicolas Borchard∗ Gerd Wachsmuth†

Abstract We address second-order optimality conditions for optimal control problems involving
sparsity functionals which induce spatio-temporal sparsity patterns. We employ the notion of
(weak) second subderivatives. With this approach, we are able to reproduce the results from
Casas, Herzog, and Wachsmuth (ESAIM COCV, 23, 2017, p. 263–295). Our analysis yields a slight
improvement of one of these results and also opens the door for the sensitivity analysis of this
class of problems.
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1 introduction

We are interested in second-order optimality condition for optimization problems of the form

(1.1) Minimize 𝐹 (𝑢) + 𝜇 𝑗𝑖 (𝑢) w.r.t. 𝑢 ∈ 𝑈ad,

where 𝐹 : 𝑈ad → ℝ is assumed to be smooth,

𝑈ad := {𝑢 ∈ 𝐿2(Ω × (0,𝑇 )) | 𝛼 ≤ 𝑢 ≤ 𝛽 a.e.}

is the feasible set with constants 𝛼 < 𝛽 , 𝜇 > 0 is a scaling parameter and 𝑗𝑖 is one of the sparsity
functionals

𝑗1(𝑢) := ∥𝑢∥𝐿1 (Ω𝑇 ) :=
∫
Ω×(0,𝑇 )

|𝑢 (𝑥, 𝑡) | d(𝑥, 𝑡),(1.2a)

𝑗2(𝑢) := ∥𝑢∥𝐿2 (0,𝑇 ;𝐿1 (Ω) ) :=
[∫ 𝑇

0
∥𝑢 (·, 𝑡)∥2

𝐿1 (Ω) d𝑡
] 1/2

,(1.2b)

𝑗3(𝑢) := ∥𝑢∥𝐿1 (Ω;𝐿2 (0,𝑇 ) ) :=
∫
Ω
∥𝑢 (𝑥, ·)∥𝐿2 (0,𝑇 ) d𝑥 .(1.2c)

For a special choice of 𝐹 , problem (1.1) has been considered in [5]. Therein, the smooth part 𝐹 involves
the solution map of a semilinear parabolic equation, see Section 4 for details.
Sufficient optimality conditions of second-order typically provide quadratic growth in the neigh-

borhood of a minimizer. This is of uttermost importance for the stability of the minimizer under
perturbations, for the convergence of optimization methods and for the numerical analysis of dis-
cretization schemes, see [10] and the references therein. Another important role is played by necessary
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conditions of second-order. They will be satisfied by every local minimizer and the “distance” between
the necessary and the sufficient conditions can serve as a judgement concerning their sharpness.

There is a rich literature for second-order conditions for PDE-constrained optimal control problems.
We refer again to [10] and the references therein. The first contribution concerning second-order
conditions for optimal control problems with nonsmooth sparsity functionals is [4]. Therein, the
𝐿1-norm (as in (1.2a)) was considered, which has a significantly simpler structure than the functionals
𝑗𝑖 from (1.2). As already said, the other functionals from (1.2) were already investigated in [5]. Further
contributions which address more complicated state equations are [8, 19].

The structure of second-order conditions depend crucially on the presence of an 𝐿2-Tikhonov term
in the objective. If such a term is included, the problem can be analyzed in 𝐿2, one obtains a quadratic
growth condition in 𝐿2 for the control and the gap between the necessary and sufficient conditions of
second order is as small as possible, see, e.g., [9]. In absence of the Tikhonov term, the first contribution
for PDE control is [3]. Therein, the author proves a second-order sufficient condition which guarantees
a quadratic growth in the state variable, but necessary conditions of second order are not available.
Under a structural assumption on the adjoint state, [11] provides a second-order condition which gives
quadratic growth in 𝐿1 for the control, again, no necessary conditions of second order were addressed.
By using the notion of second subderivatives, it was demonstrated in [12], that (under the structural
assumption) the problem should be analyzed in the space of measures and the authors were able to
characterize quadratic growth in 𝐿1 for the control via second-order conditions.
In the present paper, we focus on the situation in which a Tikhonov term is present (within the

smooth part 𝐹 ) and enables us to analyze the problem in 𝐿2. In this setting, we mainly reproduce the
results of [5]. However, our approach has three advantages. First, we were able to prove quadratic
growth in an 𝐿2(Ω × (0,𝑇 ))-ball in the case of 𝑗 = 𝑗3, whereas the growth was only known to hold in
an 𝐿∞(Ω;𝐿2(0,𝑇 ))-ball before. This is important for the numerical analysis of such problems. We note
that optimality in an 𝐿2(Ω × (0,𝑇 ))-ball has been shown in [7, Theorem 4.2] for a problem without
control constraints and in [6, Theorem 4.16] for a problem with infinite time horizon. Second, our
sufficient condition in the case 𝑢 = 0 and 𝑗 = 𝑗2 seems to be weaker. More comments concerning
these two points can be found in Section 4. Finally, since we prove second-order epi-differentiability
of the functionals 𝑗𝑖 (under mild assumptions), the sensitivity analysis from [13] is applicable to the
problem at hand and can be used to prove (directional) differentiability of the solution w.r.t. possible
perturbations of the data. We also mention that we identified two issues with the analysis in [5], see
Lemma 3.8 and Example 3.14.

In order to analyze problem (1.1), we use the reformulation

(1.3) Minimize 𝐹 (𝑢) +𝐺𝑖 (𝑢) w.r.t. 𝑢 ∈ 𝐿2(Ω × (0,𝑇 )),

where

(1.4) 𝐺𝑖 (𝑢) = 𝛿𝑈ad (𝑢) + 𝜇 𝑗𝑖 (𝑢)

with the indicator function 𝛿𝑈ad : 𝐿2(Ω × (0,𝑇 )) → {0,∞} of the feasible set. Since the functionals 𝐺𝑖

are nonsmooth (and even discontinuous everywhere), it is not clear how (directional) second-order
derivatives should be defined. In [5], the authors used an ad-hoc approach, i.e., they defined reasonable
expressions for the second-order derivatives and proved that they can be used to arrive at second-
order optimality conditions. We follow the approach of [12, 20] and utilize the weak second-order
subderivative of 𝐺𝑖 at 𝑢 w.r.t.𝑤 ∈ 𝐿2(Ω × (0,𝑇 )) defined for all directions 𝑣 ∈ 𝐿2(Ω) via

𝐺 ′′
𝑖 (𝑢,𝑤 ; 𝑣) := inf

{
lim inf
𝑘→∞

𝐺𝑖 (𝑢 + 𝑡𝑘𝑣𝑘 ) −𝐺𝑖 (𝑢) − 𝑡𝑘 ⟨𝑤, 𝑣𝑘⟩
𝑡2
𝑘
/2

����� 𝑡𝑘 ↘ 0, 𝑣𝑘 ⇀ 𝑣

}
.

We prove that this weak second subderivative coincides with the expressions given in [5]. Further, we
prove that the functionals 𝐺𝑖 are strongly twice epi-differentiable (see Definition 2.4) and this enables
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us to use abstract results concerning second-order optimality conditions. Due to these preparations,
one can easily apply the theory to obtain second-order conditions for problems in which, e.g., the
functional 𝐹 is defined via different PDEs.
The paper is structured as follows. In Section 2 we give details concerning no-gap second-order

conditions via the calculus of subderivatives. We review the second-order theory (Section 2.1) and also
give some new results of first and second order (Section 2.2 and Section 2.3). Section 3 is devoted to
the computation of the weak second subderivatives of 𝐺𝑖 and to the verification of the strong twice
epi-differentiability of 𝐺𝑖 . Finally, these findings are applied to a semilinear parabolic control problem
in Section 4.

2 no-gap second-order conditions

In this section, we consider the minimization problem

(P) Minimize Φ(𝑥) := 𝐹 (𝑥) +𝐺 (𝑥) w.r.t. 𝑥 ∈ 𝑋 .

Here, 𝐺 : 𝑋 → ℝ̄ := (−∞,∞] and 𝐹 : dom(𝐺) → ℝ are given. We are going to provide optimality
conditions for (P) by using subderivatives of 𝐺 .

We are interested in necessary and sufficient conditions of second order, such that the gap between
both conditions is as small as in finite dimensions. In Section 2.1, we present the second-order theory
from [20], which is a slight generalization of the theory from [12]. Afterwards, we introduce a first-order
subderivative in Section 2.2 and provide associated results and calculus rules. Finally, in Section 2.3,
we present some new results of second order.

Throughout this section, we always consider the following situation.
Assumption 2.1 (Standing Assumptions and Notation).

(i) 𝑋 is the (topological) dual space of a separable Banach space 𝑌 ,

(ii) 𝑥 ∈ dom(𝐺) is fixed,

(iii) There exist 𝐹 ′(𝑥) ∈ 𝑌 and a bounded bilinear form 𝐹 ′′(𝑥) : 𝑋 × 𝑋 → ℝ with

(2.1) lim
𝑘→∞

𝐹 (𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝐹 (𝑥) − 𝑡𝑘𝐹 ′(𝑥)ℎ𝑘 − 1
2𝑡

2
𝑘
𝐹 ′′(𝑥)ℎ2

𝑘

𝑡2
𝑘

= 0

for all sequences (𝑡𝑘 ) ⊂ ℝ+ := (0,∞), (ℎ𝑘 ) ⊂ 𝑋 satisfying 𝑡𝑘 ↘ 0, ℎ𝑘
★
⇀ ℎ ∈ 𝑋 and 𝑥 + 𝑡𝑘ℎ𝑘 ∈

dom(𝐺).

Note that we use the abbreviations 𝐹 ′(𝑥)ℎ := ⟨𝐹 ′(𝑥), ℎ⟩ and 𝐹 ′′(𝑥)ℎ2 := 𝐹 ′′(𝑥) (ℎ,ℎ) for all ℎ ∈ 𝑋 in
(2.1), and that (2.1) is automatically satisfied if 𝐹 admits a second-order Taylor expansion of the form

(2.2) 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐹 ′(𝑥)ℎ − 1
2𝐹

′′(𝑥)ℎ2 = o(∥ℎ∥2
𝑋 ) as ∥ℎ∥𝑋 → 0.

2.1 review of second-order theory

First, we review the theory from [12, 20]. As a second derivative for the functional 𝐺 , we use the
so-called weak-★ second subderivative.
Definition 2.2 (Weak-★ Second Subderivative). Let 𝑥 ∈ dom(𝐺) and 𝑤 ∈ 𝑌 be given. The weak-★
second subderivative 𝐺 ′′(𝑥,𝑤 ; ·) : 𝑋 → [−∞,∞] of 𝐺 at 𝑥 for𝑤 is defined via

𝐺 ′′(𝑥,𝑤 ;ℎ) := inf
{

lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥) − 𝑡𝑘 ⟨𝑤,ℎ𝑘⟩
𝑡2
𝑘
/2

����� 𝑡𝑘 ↘ 0, ℎ𝑘
★
⇀ ℎ

}
.
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In the case that 𝐺 is convex, the parameter 𝑤 in 𝐺 ′′(𝑥,𝑤 ; ·) will often be taken from the convex
subdifferential 𝜕𝐺 (𝑥) ⊂ 𝑋★. In the case that 𝑋 is not reflexive, we identify 𝑌 with a proper subspace
of 𝑋★ = 𝑌★★ (in the canonical way). In [20, Remark 2.3] an example is given which shows that the
existence of𝑤 ∈ 𝑌 ∩ 𝜕𝐺 (𝑥) is an additional regularity assumption, since it requires the existence of
subgradients of 𝐺 in the smaller pre-dual space 𝑌 .

We review some properties of 𝐺 ′′(𝑥,𝑤 ; ·).
Lemma 2.3 ([20, Lemma 2.4]). We assume that𝐺 is convex and 𝑥 ∈ dom(𝐺). For𝑤 ∈ 𝑌 ∩ 𝜕𝐺 (𝑥) we have

∀ℎ ∈ 𝑋 : 𝐺 ′′(𝑥,𝑤 ;ℎ) ≥ 0,

whereas in case𝑤 ∈ 𝑌 \ 𝜕𝐺 (𝑥) we have

∃ℎ ∈ 𝑋 \ {0} : 𝐺 ′′(𝑥,𝑤 ;ℎ) = −∞.

In the next definition, we ensure the existence of recovery sequences.
Definition 2.4 (Second-Order Epi-Differentiability). Let𝑥 ∈ dom(𝐺) and𝑤 ∈ 𝑌 be given. The functional
𝐺 is said to be weak-★ twice epi-differentiable (respectively, strictly twice epi-differentiable, respectively,
strongly twice epi-differentiable) at 𝑥 for𝑤 in a direction ℎ ∈ 𝑋 , if for all (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0 there
exists a sequence (ℎ𝑘 ) ⊂ 𝑋 satisfying ℎ𝑘

★
⇀ ℎ (respectively, ℎ𝑘

★
⇀ ℎ and ∥ℎ𝑘 ∥𝑋 → ∥ℎ∥𝑋 , respectively,

ℎ𝑘 → ℎ) and

(2.3) 𝐺 ′′(𝑥,𝑤 ;ℎ) = lim
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥) − 𝑡𝑘 ⟨𝑤,ℎ𝑘⟩
𝑡2
𝑘
/2

.

The functional 𝐺 is called weak-★/strictly/strongly twice epi-differentiable at 𝑥 for 𝑤 if it is weak-
★/strictly/strongly twice epi-differentiable at 𝑥 for𝑤 in all directions ℎ ∈ 𝑋 .

We note that a slightly weaker property would be sufficient to apply the second-order theory below.
In fact, for every ℎ ∈ 𝑋 we only need one pair of sequences (𝑡𝑘 ) and (ℎ𝑘 ) with the properties as in
Definition 2.4, see [12, Definition 3.4, Theorem 4.3]. However, many functionals𝐺 are actually weak-
★/strictly/strongly twice epi-differentiable and this stronger property is also useful for a differential
sensitivity analysis, see [13].

Next, we state the second-order optimality conditions for (P). We start with the necessary condition
from [20, Theorem 2.8].
Theorem 2.5 (Second-Order Necessary Condition). Suppose that 𝑥 is a local minimizer of (P) such that

(2.4) Φ(𝑥) ≥ Φ(𝑥) + 𝑐2 ∥𝑥 − 𝑥 ∥2
𝑋 ∀𝑥 ∈ 𝑋, ∥𝑥 − 𝑥 ∥𝑋 ≤ 𝜀

holds for some 𝑐 ≥ 0 and some 𝜀 > 0. Assume further that one of the following conditions is satisfied.

(i) The map ℎ ↦→ 𝐹 ′′(𝑥)ℎ2 is sequentially weak-★ upper semicontinuous.

(ii) The functional 𝐺 is strongly twice epi-differentiable at 𝑥 for −𝐹 ′(𝑥).

Then

(2.5) 𝐹 ′′(𝑥)ℎ2 +𝐺 ′′(𝑥,−𝐹 ′(𝑥);ℎ) ≥ 𝑐 ∥ℎ∥2
𝑋 ∀ℎ ∈ 𝑋 .

We continue with the sufficient condition, see [20, Theorem 2.9].
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Theorem 2.6 (Second-Order Sufficient Condition). Assume that the map ℎ ↦→ 𝐹 ′′(𝑥)ℎ2 is sequentially
weak-★ lower semicontinuous and that

(2.6) 𝐹 ′′(𝑥)ℎ2 +𝐺 ′′(𝑥,−𝐹 ′(𝑥);ℎ) > 0 ∀ℎ ∈ 𝑋 \ {0}.

Suppose further that

(NDC)
for all (𝑡𝑘 ) ⊂ ℝ+, (ℎ𝑘 ) ⊂ 𝑋 with 𝑡𝑘 ↘ 0, ℎ𝑘

★
⇀ 0 and ∥ℎ𝑘 ∥𝑋 = 1, we have

lim inf
𝑘→∞

(
1
𝑡2
𝑘

(
𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)

)
+ ⟨𝐹 ′(𝑥), ℎ𝑘/𝑡𝑘⟩ +

1
2𝐹

′′(𝑥)ℎ2
𝑘

)
> 0.

Then 𝑥 satisfies the growth condition (2.4) with some constants 𝑐 > 0 and 𝜀 > 0.
In case 𝐺 is convex, a first-order condition is actually hidden in (2.6), see Lemma 2.3 and also

Corollary 2.22 below. The acronym (NDC) stands for “non-degeneracy condition”, see [12, Theorem 4.4].
Sufficient conditions for (NDC) are given in [12, Lemma 5.1]. A slight generalization of their case (ii)
applies to our problem (1.3).
Lemma 2.7. Suppose that 𝐺 is convex, 𝑋 is a Hilbert space and −𝐹 ′(𝑥) ∈ 𝜕𝐺 (𝑥). We further require that
ℎ ↦→ 𝐹 ′′(𝑥)ℎ2 is a Legendre form, i.e., it is sequentially weakly lower semicontinuous and

ℎ𝑘 ⇀ ℎ and 𝐹 ′′(𝑥)ℎ2
𝑘
→ 𝐹 ′′(𝑥)ℎ2 =⇒ ℎ𝑘 → ℎ

holds for all sequences (ℎ𝑘 ) ⊂ 𝑋 . Then, (NDC) is satisfied.

Proof. Let sequences (𝑡𝑘 ) and (ℎ𝑘 ) as in (NDC) be given. Due to convexity, we have

1
𝑡2
𝑘

(
𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)

)
+ ⟨𝐹 ′(𝑥), ℎ𝑘/𝑡𝑘⟩ ≥ 0.

Thus, it is sufficient to verify lim inf𝑘→∞ 𝐹
′′(𝑥)ℎ2

𝑘
> 0. From the sequential weak lower semicontinuity

and ℎ𝑘 ⇀ 0, we already get lim inf𝑘→∞ 𝐹
′′(𝑥)ℎ2

𝑘
≥ 0. The case lim inf𝑘→∞ 𝐹

′′(𝑥)ℎ2
𝑘
= 0 cannot appear,

since this would lead to ℎ𝑘 → 0 (at least on a subsequence) in contradiction to ∥ℎ𝑘 ∥𝑋 = 1. This finishes
the proof. □

We note that [12, Lemma 5.1(ii)] is also formulated for so-called Legendre-★ forms on dual spaces
of reflexive spaces (see [15, Definition 4.1.2] for the terminology). However, it was shown in [15,
Theorem 4.3.9] that this setting already implies that the underlying space is (isomorphic to) a Hilbert
space.
Finally, we recall a result which is helpful for the calculation of second subderivatives via dense

subsets.
Lemma 2.8 ([13, Lemma 3.2]). Let 𝑥 ∈ dom(𝐺) and 𝑤 ∈ 𝑌 be given. We suppose the existence of a set
𝑉 ⊂ 𝑋 and a functional 𝑄 : 𝑋 → [−∞,∞] such that

(i) for all ℎ ∈ 𝑋 we have 𝐺 ′′(𝑥,𝑤 ;ℎ) ≥ 𝑄 (ℎ),

(ii) for all ℎ ∈ 𝑉 and all (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0, there exists a sequence (ℎ𝑘 ) ⊂ 𝑋 satisfying ℎ𝑘
★
⇀ ℎ,

∥ℎ𝑘 ∥𝑋 → ∥ℎ∥𝑋 , and

𝑄 (ℎ) = lim
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥) − ⟨𝑤,ℎ𝑘⟩
𝑡2
𝑘
/2

∈ [−∞,∞],

(iii) for all ℎ ∈ 𝑋 with 𝑄 (ℎ) < ∞ there exists a sequence (ℎ𝑙 ) ⊂ 𝑉 with ℎ𝑙
★
⇀ ℎ, ∥ℎ𝑙 ∥𝑋 → ∥ℎ∥𝑋 and

𝑄 (ℎ) ≥ lim inf𝑙→∞𝑄 (ℎ𝑙 ).
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Then, 𝑄 = 𝐺 ′′(𝑥,𝑤 ; ·) and 𝐺 is strictly twice epi-differentiable at 𝑥 for𝑤 . If, moreover, the sequences in
(ii) and (iii) can be chosen strongly convergent, then 𝐺 is even strongly twice epi-differentiable at 𝑥 for𝑤 .

Since we use a setting which is slightly different from [13, Lemma 3.2], we give a sketch of the proof.

Proof. Let ℎ ∈ 𝑋 be given. From (i) and (ii), we immediately get that 𝑄 (ℎ) = 𝐺 ′′(𝑥,𝑤 ;ℎ) for all ℎ ∈ 𝑉 .
From (i) we further get 𝐺 ′′(𝑥,𝑤 ;ℎ) = ∞ if 𝑄 (ℎ) = ∞. For such sequences, we can take ℎ𝑘 ≡ ℎ to

obtain (2.3). Now, let ℎ ∈ 𝑋 with 𝑄 (ℎ) < ∞ and (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0 be arbitrary. Let (ℎ𝑙 ) ⊂ 𝑉 be
the sequence from (iii). According to (ii), we find sequences (ℎ𝑙

𝑘
)𝑘 ⊂ 𝑋 with ℎ𝑙

𝑘

★
⇀ ℎ𝑙 , ∥ℎ𝑙

𝑘
∥𝑋 → ∥ℎ𝑙 ∥𝑋 ,

and

𝑄 (ℎ𝑙 ) = lim
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑙𝑘 ) −𝐺 (𝑥) − ⟨𝑤,ℎ𝑙
𝑘
⟩

𝑡2
𝑘
/2

∈ [−∞,∞] .

In order to handle the limits ±∞, we equip [−∞,∞] with the metric 𝑑 (𝑥1, 𝑥2) = |atan(𝑥1) − atan(𝑥2) |.
Now we can continue as in the proof of [13, Lemma 3.2], and create a diagonal sequence (ℎ̂𝑘 ) ⊂ 𝑉 such
that ℎ̂𝑘

★
⇀ ℎ, ∥ℎ̂𝑘 ∥𝑋 → ∥ℎ∥𝑋 and

𝑄 (ℎ) ≥ lim inf
𝑙→∞

𝑄 (ℎ𝑙 ) ≥ lim
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ̂𝑘 ) −𝐺 (𝑥) − ⟨𝑤, ℎ̂𝑘⟩
𝑡2
𝑘
/2

.

Finally, (i) allows to bound the left-hand side by 𝐺 ′′(𝑥,𝑤 ;ℎ) from above, while the right-hand side
is bounded from below by this term via its definition. This shows that (ℎ̂𝑘 ) is a strictly convergent
recovery sequence. Since ℎ ∈ 𝑋 and (𝑡𝑘 ) ⊂ ℝ+ were arbitrary, this shows that 𝐺 is strictly twice
epi-differentiable at 𝑥 for𝑤 .
The strong twice epi-differentiability can be proven along the same lines. □

2.2 new results of first order

In this section, we define a subderivative of first order and investigate its relations with the second
subderivative from Definition 2.2. We start with the definition.
Definition 2.9 (Weak-★ (First) Subderivative). Let 𝑥 ∈ dom(𝐺) be given. The weak-★ (first) subderiva-
tive of 𝐺 at 𝑥 in a direction ℎ ∈ 𝑋 is defined by

(2.7) 𝐺↓ (𝑥 ;ℎ) := inf
{
lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

���� 𝑡𝑘 ↘ 0, ℎ𝑘
★
⇀ ℎ

}
.

We note that a similar derivative is the “lower directional epiderivative” in [2, (2.68)] if we apply
this definition to the space 𝑋 equipped with its weak-★ topology. However, this definition cannot be
stated by using sequences, but one has to use weak-★ convergent nets, which is inconvenient, since
weak-★ convergent nets can be unbounded. We further mention that the finite-dimensional analogue
is a classical object in variational analysis, see, e.g., [17, Definition 8.1].

In [20, Lemma 2.5] it was shown that the implication

𝐺 ′(𝑥 ;ℎ) > ⟨𝑤,ℎ⟩ ⇒ 𝐺 ′′(𝑥,𝑤 ;ℎ) = +∞ ∀ℎ ∈ 𝑋

holds under the assumptions that𝐺 is convex and that the directional derivative𝐺 ′(𝑥 ; ·) is sequentially
weak-★ lower semicontinuous.

By utilizing the weak-★ first subderivative, we are able to circumvent these additional assumptions.
The finite-dimensional analogue was considered in [1, (2.5)].
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Lemma 2.10. For all 𝑥 ∈ dom(𝐺) and𝑤 ∈ 𝑌 we have

𝐺↓ (𝑥 ;ℎ) > ⟨𝑤,ℎ⟩ ⇒ 𝐺 ′′(𝑥,𝑤 ;ℎ) = +∞ ∀ℎ ∈ 𝑋,
𝐺↓ (𝑥 ;ℎ) < ⟨𝑤,ℎ⟩ ⇒ 𝐺 ′′(𝑥,𝑤 ;ℎ) = −∞ ∀ℎ ∈ 𝑋 .

Proof. Let ℎ ∈ 𝑋 with 𝐺↓ (𝑥 ;ℎ) > ⟨𝑤,ℎ⟩ be arbitrary. For all sequences (𝑡𝑘 ) ⊂ ℝ+, (ℎ𝑘 ) ⊂ 𝑋 with
ℎ𝑘

★
⇀ ℎ and 𝑡𝑘 ↘ 0 we have

lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥) − 𝑡𝑘 ⟨𝑤,ℎ𝑘⟩
𝑡𝑘

= lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

− lim
𝑘→∞

⟨𝑤,ℎ𝑘⟩

≥ 𝐺↓ (𝑥 ;ℎ) − ⟨𝑤,ℎ⟩ > 0,

where we used Definition 2.9 for “≥”. Since an additional factor 𝑡−1
𝑘

appears in the definition of
𝐺 ′′(𝑥,𝑤 ;ℎ), this implies 𝐺 ′′(𝑥,𝑤 ;ℎ) = +∞. The other implication follows by a similar argument. □

The next lemma provides some properties of the subderivative. In particular, it shows that the sub-
derivative coincides with the directional derivative under certain assumptions on𝐺 . Interestingly, these
are the conditions appearing in [20, Lemma 2.5] and, therefore, this result follows from Lemmas 2.10
and 2.11.
Lemma 2.11. Let 𝑥 ∈ dom(𝐺) be given.

(i) Let a direction ℎ ∈ 𝑋 be given, for which the directional derivative𝐺 ′(𝑥 ;ℎ) ∈ [−∞,∞] exists. Then,

𝐺 ′(𝑥 ;ℎ) ≥ 𝐺↓ (𝑥 ;ℎ).

(ii) If 𝐺 is convex, then 𝐺↓ (𝑥 ; ·) : 𝑋 → [−∞,∞] is convex.

(iii) If 𝐺 is convex, then for all𝑤 ∈ 𝑌 we have

𝑤 ∈ 𝜕𝐺 (𝑥) ⇔ 𝐺↓ (𝑥 ;ℎ) ≥ ⟨𝑤,ℎ⟩ ∀ℎ ∈ 𝑋 .

(iv) Suppose that 𝐺 is convex and that 𝐺 ′(𝑥 ; ·) : 𝑋 → [−∞,∞] is sequentially weak-★ lower semicon-
tinuous. Then,

𝐺 ′(𝑥 ;ℎ) = 𝐺↓ (𝑥 ;ℎ) ∀ℎ ∈ 𝑋 .

Proof. (i): The inequality 𝐺 ′(𝑥 ;ℎ) ≥ 𝐺↓ (𝑥 ;ℎ) follows directly from the definitions.
(ii): Let ℎ1, ℎ2 ∈ 𝑋 and 𝜆 ∈ (0, 1) be given. We have to show

𝐺↓ (𝑥 ; 𝜆ℎ1 + (1 − 𝜆)ℎ2) ≤ 𝜆𝐺↓ (𝑥 ;ℎ1) + (1 − 𝜆)𝐺↓ (𝑥 ;ℎ2),

where we use the convention ∞ + (−∞) := (−∞) + ∞ := ∞. Let (𝑡 𝑗,𝑘 )𝑘 ⊂ ℝ+ and (ℎ̃ 𝑗,𝑘 )𝑘 ⊂ 𝑋 with
𝑡 𝑗,𝑘 ↘ 0 and ℎ̃ 𝑗,𝑘

★
⇀ ℎ 𝑗 be arbitrary, where 𝑗 ∈ {1, 2}. We select subsequences, denoted by (𝑡 𝑗,𝑘 )𝑘 and

(ℎ 𝑗,𝑘 )𝑘 , such that

lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡 𝑗,𝑘ℎ̃ 𝑗,𝑘 ) −𝐺 (𝑥)
𝑡 𝑗,𝑘

= lim
𝑘→∞

𝐺 (𝑥 + 𝑡 𝑗,𝑘ℎ 𝑗,𝑘 ) −𝐺 (𝑥)
𝑡 𝑗,𝑘

∈ [−∞,∞]

for 𝑗 ∈ {1, 2}, i.e., these subsequences realize the limit inferior. We set 𝑡𝑘 :=
(
𝜆/𝑡1,𝑘 + (1 − 𝜆)/𝑡2,𝑘

)−1 ↘ 0
and 𝑔𝑘 := 𝜆ℎ1,𝑘 + (1 − 𝜆)ℎ2,𝑘

★
⇀ 𝜆ℎ1 + (1 − 𝜆)ℎ2. By convexity of 𝐺 we get

𝐺 (𝑥 + 𝑡𝑘𝑔𝑘 ) = 𝐺
(
𝑥 + 𝜆𝑡𝑘

𝑡1,𝑘
(𝑡1,𝑘ℎ1,𝑘 ) +

(1 − 𝜆)𝑡𝑘
𝑡2,𝑘

(𝑡2,𝑘ℎ2,𝑘 )
)

≤ 𝜆𝑡𝑘

𝑡1,𝑘
𝐺 (𝑥 + 𝑡1,𝑘ℎ1,𝑘 ) +

(1 − 𝜆)𝑡𝑘
𝑡2,𝑘

𝐺 (𝑥 + 𝑡2,𝑘ℎ2,𝑘 ).
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Together with the definition of the subderivative, we find

𝐺↓ (𝑥 ; 𝜆ℎ1 + (1 − 𝜆)ℎ2)

≤ lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘𝑔𝑘 ) −𝐺 (𝑥)
𝑡𝑘

≤ lim inf
𝑘→∞

(
𝜆
𝐺 (𝑥 + 𝑡1,𝑘ℎ1,𝑘 ) −𝐺 (𝑥)

𝑡1,𝑘
+ (1 − 𝜆)

𝐺 (𝑥 + 𝑡2,𝑘ℎ2,𝑘 ) −𝐺 (𝑥)
𝑡2,𝑘

)
≤ 𝜆 lim

𝑘→∞

𝐺 (𝑥 + 𝑡1,𝑘ℎ1,𝑘 ) −𝐺 (𝑥)
𝑡1,𝑘

+ (1 − 𝜆) lim
𝑘→∞

𝐺 (𝑥 + 𝑡2,𝑘ℎ2,𝑘 ) −𝐺 (𝑥)
𝑡2,𝑘

= 𝜆 lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡1,𝑘ℎ̃1,𝑘 ) −𝐺 (𝑥)
𝑡1,𝑘

+ (1 − 𝜆) lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡2,𝑘ℎ̃2,𝑘 ) −𝐺 (𝑥)
𝑡2,𝑘

.

In the last inequality, the convention∞ + (−∞) = ∞ is crucial. Since this holds for all sequences as
above, we can take the infimum over these sequences and this yields the desired convexity.
(iii): “⇒”: Let (𝑡𝑘 ) ⊂ ℝ+ and (ℎ𝑘 ) ⊂ 𝑋 with 𝑡𝑘 ↘ 0 and ℎ𝑘

★
⇀ ℎ ∈ 𝑋 be arbitrary. The definition of

the subdifferential yields
𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (ℎ)

𝑡𝑘
≥ ⟨𝑤,ℎ𝑘⟩.

Due to𝑤 ∈ 𝑌 , we can pass to the limit inferior 𝑘 → ∞. Afterwards, we take the infimum over all such
sequences (𝑡𝑘 ), (ℎ𝑘 ) and this yields the claim.
“⇐”: If𝑤 ≤ 𝐺↓ (𝑥 ; ·), we get𝑤 ≤ 𝐺 ′(𝑥 ; ·) from (i) and (together with the convexity of𝐺) this implies

⟨𝑤,ℎ⟩ ≤ 𝐺 ′(𝑥 ;ℎ) ≤ 𝐺 (𝑥 + ℎ) −𝐺 (𝑥) for arbitrary ℎ ∈ 𝑋 , i.e.,𝑤 ∈ 𝜕𝐺 (𝑥).
(iv): In view of (i), it is sufficient to prove “≤”. Let (𝑡𝑘 ) ⊂ ℝ+ and (ℎ𝑘 ) ⊂ 𝑋 with 𝑡𝑘 ↘ 0 and

ℎ𝑘
★
⇀ ℎ ∈ 𝑋 be arbitrary. We get

𝐺 ′(𝑥 ;ℎ) ≤ lim inf
𝑘→∞

𝐺 ′(𝑥 ;ℎ𝑘 ) ≤ lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

,

by the sequential weak-★ lower semicontinuity of𝐺 ′(𝑥 ; ·) and the convexity of𝐺 . Taking the infimum
over all sequences yields the desired inequality. □

A simple argument leads to a first-order condition.
Theorem 2.12 (First-Order Necessary Condition). Suppose that 𝑥 is a local minimizer of (P). Then,
𝐹 ′(𝑥)ℎ +𝐺↓ (𝑥 ;ℎ) ≥ 0 for all ℎ ∈ 𝑋 . If 𝐺 is additionally convex, this condition is equivalent to −𝐹 ′(𝑥) ∈
𝜕𝐺 (𝑥).

Proof. Let sequences (𝑡𝑘 ) ⊂ ℝ+, (ℎ𝑘 ) ⊂ 𝑋 with 𝑡𝑘 ↘ 0 and ℎ𝑘
★
⇀ ℎ be given. From (2.1) we get

lim
𝑘→∞

𝐹 (𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝐹 (𝑥) − 𝑡𝑘𝐹 ′(𝑥)ℎ𝑘
𝑡𝑘

= 0.

Thus,

lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

≥ lim inf
𝑘→∞

𝐹 (𝑥) − 𝐹 (𝑥 + 𝑡𝑘ℎ𝑘 )
𝑡𝑘

= lim
𝑘→∞

−𝐹 ′(𝑥)ℎ𝑘 = −𝐹 ′(𝑥)ℎ.

The first part of the claim follows by taking the infimum w.r.t. all these sequences. The second claim
follows from Lemma 2.11(iii) with𝑤 = −𝐹 ′(𝑥), since 𝐹 ′(𝑥) ∈ 𝑌 . □

Next, we provide a sum rule for 𝐺↓.
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Lemma 2.13. Suppose that 𝐺 = 𝑔1 + 𝑔2 with 𝑔1, 𝑔2 : 𝑋 → ℝ̄. For all 𝑥 ∈ dom(𝐺) we have

𝐺↓ (𝑥 ;ℎ) ≥ 𝑔↓1 (𝑥 ;ℎ) + 𝑔↓2 (𝑥 ;ℎ)

for all ℎ ∈ 𝑋 for which the right-hand side is not ∞ + (−∞) (or (−∞) + ∞). Additionally, assume that 𝑋
is reflexive and

(i) 𝑔1 Lipschitz continuous in a neighborhood of 𝑥 and convex,

(ii) 𝑔2 is strongly (once) epi-differentiable at 𝑥 in the sense that for all ℎ ∈ 𝑋 and sequences (𝑡𝑘 ) ⊂ ℝ+

with 𝑡𝑘 ↘ 0 there exists a sequence (ℎ𝑘 ) ⊂ 𝑋 with ℎ𝑘 → ℎ in 𝑋 such that

𝑔
↓
2 (𝑥 ;ℎ) = lim

𝑘→∞

𝑔2(𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝑔2(𝑥)
𝑡𝑘

.

Then,
𝐺↓ (𝑥 ;ℎ) = 𝑔↓1 (𝑥 ;ℎ) + 𝑔↓2 (𝑥 ;ℎ) ∀ℎ ∈ 𝑋 .

Proof. The inequality “≥” follows by the definition of the first subderivative by using lim inf𝑛→∞(𝑎𝑛 +
𝑏𝑛) ≥ lim inf𝑛→∞ 𝑎𝑛 + lim inf𝑛→∞ 𝑏𝑛 , whenever the right-hand side is not∞ + (−∞).
We show the other inequality under the additional assumptions. Let (𝑡𝑘 ) ⊂ ℝ+ be arbitrary with

𝑡𝑘 ↘ 0 and let (ℎ𝑘 ) ⊂ 𝑋 with ℎ𝑘 → ℎ be given according to (ii). We have

lim
𝑘→∞

𝑔1(𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝑔1(𝑥)
𝑡𝑘

= lim
𝑘→∞

𝑔1(𝑥 + 𝑡𝑘ℎ) − 𝑔1(𝑥)
𝑡𝑘

+ lim
𝑘→∞

𝑔1(𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝑔1(𝑥 + 𝑡𝑘ℎ)
𝑡𝑘

= 𝑔′1 (𝑥 ;ℎ) + 0,

where we used the convexity for the existence of the directional derivative and the Lipschitz continuity
is applied for the second addend. Thus,

𝐺↓ (𝑥 ;ℎ) ≤ lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

= lim
𝑘→∞

𝑔1(𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝑔1(𝑥)
𝑡𝑘

+ lim inf
𝑘→∞

𝑔2(𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝑔2(𝑥)
𝑡𝑘

= 𝑔′1 (𝑥 ;ℎ) + 𝑔↓2 (𝑥 ;ℎ) .

Finally, we note that 𝑔′1 (𝑥 ; ·) is convex and Lipschitz continuous, thus sequentially weakly lower semi-
continuous. Since𝑋 is reflexive, this implies sequential weak-★ lower semicontinuity and Lemma 2.11(iv)
implies 𝑔′1 (𝑥 ;ℎ) = 𝑔↓1 (𝑥 ;ℎ) for all ℎ ∈ 𝑋 . □

Finally, we give two lemmas in reflexive spaces. The first of these results is similar to [16, Proposi-
tion 6.2].
Lemma 2.14. We assume that the space 𝑋 is reflexive and that 𝐺 : 𝑋 → ℝ̄ is convex. For all 𝑥 ∈ dom(𝐺)
and ℎ ∈ 𝑋 we have

(2.8) 𝐺↓ (𝑥 ;ℎ) = inf
{
lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

���� 𝑡𝑘 ↘ 0, ℎ𝑘 → ℎ

}
.

Moreover, there exist sequences (𝑡𝑘 ) ⊂ ℝ+ and (ℎ𝑘 ) ⊂ 𝑋 with 𝑡𝑘 ↘ 0, ℎ𝑘 → ℎ and

𝐺↓ (𝑥 ;ℎ) = lim
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

.

In particular, 𝐺↓ (𝑥 ; ·) is lower semicontinuous.
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Note that (2.8) shows that the weak-★ subderivative coincides with the strong subderivative (defined
as in Definition 2.9 with strong convergence instead of weak-★ convergence).

Proof. We denote the right-hand side of (2.8) by 𝑅(ℎ). It is clear that 𝑅 ≥ 𝐺↓ (𝑥 ; ·). By arguing as in
Lemma 2.11(ii), we can check that 𝑅 is convex. Next, we verify that the infimum in the definition of 𝑅
is attained. For an arbitrary ℎ ∈ 𝑋 , the definition of 𝑅(ℎ) implies the existence of double sequences
(𝑡𝑘,𝑛) ⊂ ℝ+, (ℎ𝑘,𝑛) ⊂ 𝑋 and (𝑟𝑘 ) ⊂ [−∞,∞] such that

lim
𝑛→∞

∥ℎ𝑘,𝑛 − ℎ∥𝑋 = 0 ∀𝑘 ∈ ℕ, lim
𝑛→∞

𝑡𝑘,𝑛 = 0 ∀𝑘 ∈ ℕ,

lim
𝑛→∞

𝐺 (𝑥 + 𝑡𝑘,𝑛ℎ𝑘,𝑛) −𝐺 (𝑥)
𝑡𝑘,𝑛

= 𝑟𝑘 ∀𝑘 ∈ ℕ, lim
𝑘→∞

𝑟𝑘 = 𝑅(ℎ) .

To handle the limits ±∞, we again use the metric 𝑑 (𝑥1, 𝑥2) = |atan(𝑥1) − atan(𝑥2) | on [−∞,∞]. For
each 𝑘 ∈ ℕ, we select 𝑛(𝑘) ∈ ℕ such that

∥ℎ𝑘,𝑛 (𝑘 ) − ℎ∥𝑋 ≤ 1
𝑘
, 𝑡𝑘,𝑛 (𝑘 ) ≤

1
𝑘
, 𝑑

(
𝐺 (𝑥 + 𝑡𝑘,𝑛 (𝑘 )ℎ𝑘,𝑛 (𝑘 ) ) −𝐺 (𝑥)

𝑡𝑘,𝑛 (𝑘 )
, 𝑟𝑘

)
≤ 1
𝑘
.

This shows that the sequences (𝑡𝑘 ) := (𝑡𝑘,𝑛 (𝑘 ) ), (ℎ𝑘 ) := (ℎ𝑘,𝑛 (𝑘 ) ) satisfy

ℎ𝑘 → ℎ, 𝑡𝑘 ↘ 0, 𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

→ 𝑅(ℎ) .

Hence, the infimum in the definition of 𝑅 is always attained.
The lower semicontinuity of 𝑅 follows by a similar diagonal-sequence argument. Together with the

convexity, we get that 𝑅 is weakly lower semicontinuous.
Now, let the sequences (𝑡𝑘 ) ⊂ ℝ+, (ℎ𝑘 ) ⊂ 𝑋 with 𝑡𝑘 ↘ 0 and ℎ𝑘 ⇀ ℎ be arbitrary. From the

convexity of 𝐺 and the definition of 𝑅 we get

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

≥ lim inf
𝑠↘0

𝐺 (𝑥 + 𝑠ℎ𝑘 ) −𝐺 (𝑥)
𝑠

≥ 𝑅(ℎ𝑘 ) .

The weak lower semicontinuity of 𝑅 implies

lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

≥ lim inf
𝑘→∞

𝑅(ℎ𝑘 ) ≥ 𝑅(ℎ) .

Taking the infimum over all such sequences shows 𝐺↓ (𝑥 ;ℎ) ≥ 𝑅(ℎ) for all ℎ ∈ 𝑋 . This shows
𝐺↓ (𝑥 ; ·) = 𝑅 and the claim follows. □

The reflexivity of𝑋 is only used to get the equivalence of weak-★ convergence andweak convergence.
This is needed in order to apply the result that convex and lower semicontinuous functionals are
weakly lower semicontinuous. Without reflexivity, we would get a similar assertion for the weak
subderivative of 𝐺 defined via

(2.9) 𝐺∼(𝑥 ;ℎ) = inf
{
lim inf
𝑘→∞

𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡𝑘

���� 𝑡𝑘 ↘ 0, ℎ𝑘 ⇀ ℎ

}
.

However, if 𝑋 is not reflexive, we cannot extract weakly convergent subsequences and, consequently,
𝐺∼ seems to be of little use.

Lemma 2.14 enables us to prove a very interesting characterization of nonemptyness of the subdif-
ferential.
Lemma 2.15. Let 𝑋 be reflexive and 𝐺 : 𝑋 → ℝ̄ convex. For all 𝑥 ∈ dom(𝐺), the assertions
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(i) 𝐺↓ (𝑥 ; 0) = 0.

(ii) 𝜕𝐺 (𝑥) ≠ ∅.

are equivalent. In case that these assumptions hold, we also have

(2.10) 𝐺↓ (𝑥 ;ℎ) = sup{⟨𝑤,ℎ⟩𝑋 | 𝑤 ∈ 𝜕𝐺 (𝑥)} ∀ℎ ∈ 𝑋 .

Proof. “(i)⇒(ii)”: From Lemma 2.11(ii) and Lemma 2.14, we know that 𝐺↓ (𝑥 ; ·) is convex and lower
semicontinuous. Further, for all ℎ ∈ 𝑋 we have

0 = 𝐺↓ (𝑥 ; 0) ≤ lim inf
𝑛→∞

𝐺↓ (𝑥 ; 1
𝑛
ℎ) = lim inf

𝑛→∞
1
𝑛
𝐺↓ (𝑥 ;ℎ) =


+∞ if 𝐺↓ (𝑥 ;ℎ) = +∞,
0 if 𝐺↓ (𝑥 ;ℎ) ∈ ℝ,

−∞ if 𝐺↓ (𝑥 ;ℎ) = −∞.

This implies that 𝐺↓ (𝑥 ; ·) never attains the value −∞. Thus, we can invoke [14, Proposition I.3.1, p. 14]
and get

𝐺↓ (𝑥 ;ℎ) = sup
{
𝑐 + ⟨𝑤,ℎ⟩𝑋 | 𝑐 ∈ ℝ, 𝑤 ∈ 𝑌, ∀ℎ̂ ∈ 𝑋 : 𝑐 + ⟨𝑤, ℎ̂⟩𝑋 ≤ 𝐺↓ (𝑥 ; ℎ̂)

}
,

i.e., 𝐺↓ (𝑥 ; ·) is the pointwise supremum of its continuous, affine minorants. Since 𝐺↓ (𝑥 ; ·) is positively
homogeneous, one can check

𝐺↓ (𝑥 ;ℎ) = sup{⟨𝑤,ℎ⟩𝑋 | 𝑤 ∈ 𝑌, ∀ℎ̂ ∈ 𝑋 : ⟨𝑤, ℎ̂⟩𝑋 ≤ 𝐺↓ (𝑥 ; ℎ̂)}.

In order to conclude, it remains to check that𝑤 ∈ 𝜕𝐺 (𝑥) if and only if𝑤 ≤ 𝐺↓ (𝑥 ; ·), and this is precisely
the assertion of Lemma 2.11(iii). This shows (ii). Note that this part of the proof also shows validity of
(2.10).
“(ii)⇒(i)”: This follows directly from Lemma 2.11(iii). □

One might wonder whether (2.10) implies the conditions Lemma 2.15(i), (ii). It is clear that a linear
and unbounded functional 𝐺 satisfies (2.10), but Lemma 2.15(i), (ii) are violated. The next example
shows that lower semicontinuity also does not help. It provides a convex and lower semicontinuous
function on a Hilbert space such that its subderivative at 0 is identically −∞. This example is similar
to [20, Remark 2.3].
Example 2.16. We consider the Hilbert space ℓ2 and the closed, convex set

𝐶 :=
{
𝑥 ∈ ℓ2 �� |𝑥𝑛 | ≤ 𝑛−2 ∀𝑛 ∈ ℕ

}
.

We define the function 𝑓 : ℓ2 → ℝ̄ via

𝑓 (𝑥) :=
{∑∞

𝑛=1 𝑥𝑛 for 𝑥 ∈ 𝐶
+∞ else.

It is clear that 𝑓 is convex. Since 𝑛−2 is summable, we have dom(𝑓 ) = 𝐶 and this set is closed. Next, we
show that 𝑓 is continuous on its domain and this implies that 𝑓 is lower semicontinuous. To this end,
let a sequence (𝑥𝑚) ⊂ 𝐶 be given such that 𝑥𝑚 → 𝑥0 in ℓ2. Clearly, 𝑥0 ∈ 𝐶 . For an arbitrary 𝜀 > 0, there
exists 𝑁 ∈ ℕ with

∑∞
𝑛=𝑁+1 𝑛

−2 ≤ 𝜀. Due to 𝑥𝑚 → 𝑥0, there exists𝑀 ∈ ℕ with
∑𝑁

𝑛=1 | (𝑥𝑚 − 𝑥0)𝑛 | ≤ 𝜀 for
all𝑚 ≥ 𝑀 . This implies

|𝑓 (𝑥𝑚) − 𝑓 (𝑥0) | ≤
𝑁∑︁
𝑛=1

| (𝑥𝑚 − 𝑥0)𝑛 | +
∞∑︁

𝑛=𝑁+1
| (𝑥𝑚)𝑛 | + |(𝑥0)𝑛 | ≤ 3𝜀.
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for all𝑚 ≥ 𝑀 . Since 𝜀 > 0 was arbitrary, this shows 𝑓 (𝑥𝑚) → 𝑓 (𝑥0), i.e., 𝑓 is continuous on its domain.
Together with the closedness of dom(𝑓 ), the lower semicontinuity of 𝑓 follows.

As announced, we demonstrate that 𝑓 ↓ (0; ·) ≡ −∞. We start by considering ℎ0 ∈ 𝑐𝑐 , where 𝑐𝑐 ⊂ ℓ2

is the (dense) subspace consisting of finite sequences. We choose 𝑡𝑚 :=𝑚−3 ↘ 0 and

ℎ𝑚 := ℎ0 −
1
𝑚

𝑚2∑︁
𝑛=𝑚+1

𝑒𝑛,

where 𝑒𝑛 is the 𝑛-th unit sequence. Note that ∥ℎ𝑚 − ℎ0∥2
ℓ2 = 1 − 1/𝑚 and (ℎ𝑚 − ℎ0, 𝑣)ℓ2 → 0 for all

𝑣 ∈ 𝑐𝑐 . Thus, ℎ𝑚 ⇀ ℎ0. For𝑚 large enough, we have 𝑡𝑚ℎ𝑚 ∈ 𝐶 . Thus,

𝑓 ↓ (0;ℎ0) ≤ lim inf
𝑚→∞

𝑓 (0 + 𝑡𝑚ℎ𝑚) − 𝑓 (0)
𝑡𝑚

= lim inf
𝑚→∞

∞∑︁
𝑛=1

(ℎ𝑚)𝑛

= lim inf
𝑚→∞

∞∑︁
𝑛=1

(ℎ0)𝑛 −
𝑚2 −𝑚
𝑚

= −∞.

Thus, 𝑓 ↓ (0; ·) equals −∞ on the dense subspace 𝑐𝑐 . Since 𝑓 ↓ (0; ·) is lower semicontinuous due to
Lemma 2.14, we get 𝑓 ↓ (0; ·) ≡ −∞. Finally, we can apply Lemma 2.15 to get 𝜕𝑓 (0) = ∅, although this
can be also seen by elementary considerations. We also note that (2.10) still holds, since sup ∅ = −∞.

A simple example shows that (2.10) can also fail.
Example 2.17. Let 𝑋 = ℝ and consider 𝑓 : ℝ → ℝ̄,

𝑓 (𝑥) :=
{
+∞ if 𝑥 < 0,
−
√
𝑥 if 𝑥 ≥ 0.

It is clear that 𝑓 is convex and lower semicontinuous. Further, we can check that

𝑓 ↓ (0;ℎ) =
{
+∞ if ℎ < 0,
−∞ if ℎ ≥ 0.

Thus, Lemma 2.15(i) is violated. Consequently, Lemma 2.15 implies 𝜕𝑓 (0) = ∅. We also see that (2.10)
fails.

2.3 new results of second order

Finally, we present some new results concerning the second-order optimality conditions.
Surprisingly, one can check that the quadratic growth condition implies (NDC). Note that this has

not been realized in the previous works [12, 20].
Theorem 2.18 (Quadratic Growth Implies (NDC)). We assume that the quadratic growth condition (2.4)
is satisfied at 𝑥 with some constants 𝑐 > 0 and 𝜀 > 0. Then, (NDC) is satisfied.

Proof. Let sequences (𝑡𝑘 ) ⊂ ℝ+, (ℎ𝑘 ) ⊂ 𝑋 as in (NDC) be given. From (2.4) we get

𝑐

2 =
1
𝑡2
𝑘

(𝑐
2 ∥𝑡𝑘ℎ𝑘 ∥

2
𝑋

)
≤ 𝐹 (𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝐹 (𝑥)

𝑡2
𝑘

+ 𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡2
𝑘
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for 𝑘 large enough. Taking the limit inferior and using (2.1), we get

𝑐

2 ≤ lim inf
𝑘→∞

(
𝐹 (𝑥 + 𝑡𝑘ℎ𝑘 ) − 𝐹 (𝑥)

𝑡2
𝑘

+ 𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡2
𝑘

)
= lim inf

𝑘→∞

(
𝑡𝑘𝐹

′(𝑥)ℎ𝑘 + 1
2𝑡

2
𝑘
𝐹 ′′(𝑥)ℎ2

𝑘

𝑡2
𝑘

+ 𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)
𝑡2
𝑘

)
= lim inf

𝑘→∞

(
1
𝑡2
𝑘

(
𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)

)
+ ⟨𝐹 ′(𝑥), ℎ𝑘/𝑡𝑘⟩ +

1
2𝐹

′′(𝑥)ℎ2
𝑘

)
.

Since this holds for all sequences (as above), we obtain that (NDC) is satisfied. □

This theorem even shows that the limit inferior in (NDC) is uniformly positive. It is also interesting
to note that this is always the case whenever (NDC) is satisfied.
Lemma 2.19 (Uniform Positivity in (NDC)). Suppose that (NDC) is satisfied. Then, there exists 𝑐 > 0 such
that

(NDC’)
for all (𝑡𝑘 ) ⊂ ℝ+, (ℎ𝑘 ) ⊂ 𝑋 with 𝑡𝑘 ↘ 0, ℎ𝑘

★
⇀ 0 and ∥ℎ𝑘 ∥𝑋 = 1, we have

lim inf
𝑘→∞

(
1
𝑡2
𝑘

(
𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)

)
+ ⟨𝐹 ′(𝑥), ℎ𝑘/𝑡𝑘⟩ +

1
2𝐹

′′(𝑥)ℎ2
𝑘

)
≥ 𝑐

2

holds.

Proof. We define

𝑐

2 := inf
{

lim inf
𝑘→∞

(
𝐺 (𝑥 + 𝑡𝑘ℎ𝑘 ) −𝐺 (𝑥)

𝑡2
𝑘

+ ⟨𝐹 ′(𝑥), ℎ𝑘⟩
𝑡𝑘

+ 1
2𝐹

′′(𝑥)ℎ2
𝑘

) ����� 𝑡𝑘 ↘ 0, ℎ𝑘
★
⇀ 0,

∥ℎ𝑘 ∥𝑋 = 1

}
.

In case 𝑐 = ∞, there is nothing to show. Otherwise, we have 𝑐 ∈ [0,∞). By definition, there are
sequences of sequences ((𝑡𝑘,𝑛)𝑛)𝑘 , ((ℎ𝑘,𝑛)𝑛)𝑘 with 𝑡𝑘,𝑛 ↘ 0 and ℎ𝑘,𝑛

★
⇀ 0 as 𝑛 → ∞ and ∥ℎ𝑘,𝑛 ∥𝑋 = 1

such that
𝑐𝑘

2 := lim inf
𝑛→∞

(
𝐺 (𝑥 + 𝑡𝑘,𝑛ℎ𝑘,𝑛) −𝐺 (𝑥)

𝑡2
𝑘,𝑛

+
〈
𝐹 ′(𝑥), ℎ𝑘,𝑛

〉
𝑡𝑘,𝑛

+ 1
2𝐹

′′(𝑥)ℎ2
𝑘,𝑛

)
satisfies 𝑐𝑘 → 𝑐 . Now, we can argue as in the proof of [13, Lemma 2.12(ii)] to obtain diagonal sequences
(𝑡𝑘,𝑛 (𝑘 ) ) and (ℎ𝑘,𝑛 (𝑘 ) ) with 𝑡𝑘,𝑛 (𝑘 ) ↘ 0 and ℎ𝑘,𝑛 (𝑘 )

★
⇀ 0 as 𝑘 → ∞, ∥ℎ𝑘,𝑛 (𝑘 ) ∥𝑋 = 1 and

lim
𝑘→∞

(
𝐺 (𝑥 + 𝑡𝑘,𝑛 (𝑘 )ℎ𝑘,𝑛 (𝑘 ) ) −𝐺 (𝑥)

𝑡2
𝑘,𝑛 (𝑘 )

+
〈
𝐹 ′(𝑥), ℎ𝑘,𝑛 (𝑘 )

〉
𝑡𝑘,𝑛 (𝑘 )

+ 1
2𝐹

′′(𝑥)ℎ2
𝑘,𝑛 (𝑘 )

)
=
𝑐

2 .

From (NDC), we infer 𝑐 > 0 and this yields the claim. □

By combining the previous theorem with Theorems 2.5 and 2.6, we arrive at our main theorem on
no-gap second-order conditions.
Theorem 2.20 (No-Gap Second-Order Optimality Condition). Assume that the map ℎ ↦→ 𝐹 ′′(𝑥)ℎ2

is sequentially weak-★ lower semicontinuous and that one of the conditions (i) and (ii) in Theorem 2.5
is satisfied. Then, the second-order condition (2.6) and (NDC) hold if and only if the quadratic growth
condition (2.4) is satisfied at 𝑥 with constants 𝑐 > 0 and 𝜀 > 0.

We can recast the above second-order conditions in a familiar form including the first-order condition
and a critical cone.
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Corollary 2.21. Let the assumptions of Theorem 2.20 and (NDC) be satisfied. The quadratic growth condition
(2.4) with constants 𝑐 > 0 and 𝜀 > 0 is satisfied if and only if

𝐹 ′(𝑥)ℎ +𝐺↓ (𝑥 ;ℎ) ≥ 0 ∀ℎ ∈ 𝑋,(2.11a)
𝐹 ′′(𝑥)ℎ2 +𝐺 ′′(𝑥,−𝐹 ′(𝑥);ℎ) > 0 ∀ℎ ∈ K \ {0},(2.11b)

where the critical cone K is defined via

K := {ℎ ∈ 𝑋 | 𝐹 ′(𝑥)ℎ +𝐺↓ (𝑥 ;ℎ) = 0}.

Moreover, if 𝑥 is a local minimizer of (P), then (2.11) holds with “≥” instead of “>” in (2.11b).

Proof. Let (2.4) be satisfied with 𝑐 ≥ 0 and 𝜀 > 0. From Theorem 2.5, we get (2.5). Clearly, (2.11b) (with
“≥” instead of “>” in case 𝑐 = 0) follows. Since (2.5) implies 𝐺 ′′(𝑥,−𝐹 ′(𝑥);ℎ) > −∞ for all ℎ ∈ 𝑋 ,
Lemma 2.10 can be applied to obtain (2.11a). This shows the “only if” part of the first assertion and the
second assertion.

It remains to prove the “if” part of the first assertion. To this end, let (2.11) be satisfied. We show that
this implies (2.6). Let ℎ ∈ 𝑋 \ {0} be given. In case ℎ ∈ K \ {0}, (2.6) follows from (2.11b). Otherwise,
ℎ ∉ K and (2.11a) give 𝐹 ′(𝑥)ℎ +𝐺↓ (𝑥 ;ℎ) > 0. Thus, (2.6) is implied by Lemma 2.10. Finally, Theorem 2.6
shows that (2.4) holds. □

In the case that 𝐺 is convex, we can use the assertions of Lemma 2.11 to reformulate (2.11a) via the
subdifferential.
Corollary 2.22. In addition to the assumptions of Theorem 2.20, we assume that (NDC) holds and that 𝐺
is convex. The quadratic growth condition (2.4) with constants 𝑐 > 0 and 𝜀 > 0 is satisfied if and only if

𝐹 ′(𝑥) + 𝜕𝐺 (𝑥) ∋ 0(2.12a)
𝐹 ′′(𝑥)ℎ2 +𝐺 ′′(𝑥,−𝐹 ′(𝑥);ℎ) > 0 ∀ℎ ∈ K \ {0},(2.12b)

where the critical cone K is defined via

K := {ℎ ∈ 𝑋 | 𝐹 ′(𝑥)ℎ +𝐺↓ (𝑥 ;ℎ) = 0}.

Moreover, if 𝑥 is a local minimizer of (P), then (2.12) holds with “≥” instead of “>” in (2.12b).

Proof. We just have to check that (2.11a) and (2.12a) are equivalent, and this follows from Lemma 2.11(iii).
□

In the situation of Corollary 2.22, let the first-order condition (2.12a) be satisfied. Using the equiva-
lencewith (2.11a),we getK = {ℎ ∈ 𝑋 | 𝐹 ′(𝑥)ℎ+𝐺↓ (𝑥 ;ℎ) ≤ 0}. Since𝐺↓ (𝑥 ; ·) is convex by Lemma 2.11(ii),
this results in the convexity of K . In case that 𝐺↓ (𝑥 ; ·) is additionally (sequentially) weak-★ lower
semicontinuous, K is also (sequentially) weak-★ closed.

For later reference, we remark that the proofs of the last two corollaries show that

(2.13) 𝐺 ′′(𝑥,−𝐹 ′(𝑥);ℎ) = +∞ ∀ℎ ∈ 𝑋 \ K

holds whenever 𝐺 is convex and −𝐹 ′(𝑥) ∈ 𝜕𝐺 (𝑥).
Finally, we also provide a sum rule for 𝐺 ′′.

Lemma 2.23 (Sum Rule forWeak-★ Second Subderivative). Let𝑔1, 𝑔2 : 𝑋 → (−∞,∞] and 𝑥 ∈ dom(𝑔1)∩
dom(𝑔2). Furthermore ℎ ∈ 𝑋 and𝑤1,𝑤2 ∈ 𝑌 .
Then, it holds

(2.14) (𝑔1 + 𝑔2)′′(𝑥,𝑤1 +𝑤2;ℎ) ≥ 𝑔′′1 (𝑥,𝑤1;ℎ) + 𝑔′′2 (𝑥,𝑤2;ℎ),

whenever the right-hand side is not ∞ + (−∞).

Proof. This follows from the definitions, see also the first part of the proof of Lemma 2.13. □
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3 second subderivatives of sparsity functionals

Our plan is to apply the theory from Section 2 to the problem (1.3). Throughout, we are using the
spaces 𝑋 = 𝑌 = 𝐿2(Ω𝑇 ). Here, Ω𝑇 := Ω × (0,𝑇 ), where Ω ⊂ ℝ𝑑 is assumed to be non-empty, open, and
bounded, and 𝑇 > 0. Since the space 𝐿2(Ω𝑇 ) is reflexive, the weak topology and the weak-★ topology
coincide. Thus, we will work with weak convergence throughout. In particular, 𝑣𝑘 ⇀ 𝑣 always refers
to weak convergence in 𝐿2(Ω𝑇 ) (unless stated otherwise). Note that we will also write 𝑢 ∈ 𝑈ad instead
of 𝑥 to denote the potential minimizer, which is fixed throughout.

We use the functions 𝐺𝑖 from (1.4), i.e.,

𝐺𝑖 (𝑢) = 𝜇 𝑗𝑖 (𝑢) + 𝛿𝑈ad .

Here, 𝛿𝑈ad : 𝐿2(Ω𝑇 ) → {0,∞} is the indicator function (in the sense of convex analysis) of the feasible
set𝑈ad and 𝑗𝑖 is one of the functionals defined in (1.2), scaled by 𝜇 > 0. Since the functions 𝑗𝑖 are finite
everywhere on 𝐿2(Ω𝑇 ), we get dom(𝐺𝑖) = 𝑈ad. At this point, we do not specify the function 𝐹 , we just
require that 𝐹 togetherwith 𝐹 ′(𝑢) ∈ 𝐿2(Ω𝑇 ) and the bounded bilinear form 𝐹 ′′(𝑢) : 𝐿2(Ω𝑇 )×𝐿2(Ω𝑇 ) →
ℝ satisfies the Taylor-like expansion (2.1).
We further recall that the set of feasible controls is defined by

𝑈ad = {𝑢 ∈ 𝐿2(Ω𝑇 ) | 𝛼 ≤ 𝑢 (𝑥, 𝑡) ≤ 𝛽 f.a.a. (𝑥, 𝑡) ∈ Ω𝑇 },

where 𝛼, 𝛽 ∈ ℝ are given with 𝛼 < 𝛽 . This set is convex, closed and bounded. It is well known that the
tangent cone (in the sense of convex analysis) of𝑈ad ⊂ 𝐿2(Ω𝑇 ) at 𝑢 ∈ 𝑈ad is given by

(3.1) T𝑈ad (𝑢) = {𝑣 ∈ 𝐿2(Ω𝑇 ) | 𝑣 (𝑥, 𝑡) ≥ 0 if 𝑢 (𝑥, 𝑡) = 𝛼 and 𝑣 (𝑥, 𝑡) ≤ 0 if 𝑢 (𝑥, 𝑡) = 𝛽}

and concerning the normal cone we have for all 𝑣 ∈ 𝐿2(Ω𝑇 ) the equivalence

(3.2) 𝑣 ∈ N𝑈ad (𝑢) ⇔


𝑣 (𝑥, 𝑡) ≤ 0 if 𝑢 (𝑥, 𝑡) = 𝛼,
𝑣 (𝑥, 𝑡) ≥ 0 if 𝑢 (𝑥, 𝑡) = 𝛽,
𝑣 (𝑥, 𝑡) = 0 if 𝑢 (𝑥, 𝑡) ∈ (𝛼, 𝛽)

f.a.a. (𝑥, 𝑡) ∈ Ω𝑇 .

We expect that the results below can be extended to the case in which the bounds 𝛼 and 𝛽 are not
constants. For simplicity of the presentation, we only consider the case of constant control bounds.

In all results of this section, we do not use any special properties of (0,𝑇 ) and Ω. Thus, they could
be replaced by arbitrary finite and complete measure spaces. In particular, we could swap the roles of
(0,𝑇 ) and Ω. This yields analogous results for the functionals

𝑗4(𝑢) := ∥𝑢∥𝐿2 (Ω;𝐿1 (0,𝑇 ) ) :=
[∫

Ω
∥𝑢 (𝑥, ·)∥2

𝐿1 (0,𝑇 ) d𝑥
] 1/2

,

𝑗5(𝑢) := ∥𝑢∥𝐿1 ( (0,𝑇 ) ;𝐿2 (Ω) ) :=
∫ 𝑇

0
∥𝑢 (·, 𝑡)∥𝐿2 (Ω) d𝑡,

which involve sparsity w.r.t. time.
We start with the first-order analysis of problem (1.3). Since these preliminary results hold for all 𝑗𝑖

or 𝐺𝑖 , 𝑖 ∈ {1, 2, 3}, we will just write 𝑗 or 𝐺 .
Lemma 3.1. It holds

(3.3a) 𝛿
↓
𝑈ad

(𝑢; ·) = 𝛿T𝑈ad (𝑢 )

and

(3.3b) 𝐺↓ (𝑢; ·) = 𝜇 𝑗 ′(𝑢; ·) + 𝛿T𝑈ad (𝑢 ) .
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Proof. In order to check (3.3a), we use Lemma 2.14 and get

𝛿
↓
𝑈ad

(𝑢; 𝑣) = inf
{
lim inf
𝑘→∞

𝛿𝑈ad (𝑢 + 𝑡𝑘𝑣𝑘 )
𝑡𝑘

���� 𝑡𝑘 ↘ 0, 𝑣𝑘 → 𝑣

}
.

Now, it is straightforward to check that the right-hand side coincides with 𝛿T𝑈ad (𝑢 ) (𝑣).
To show (3.3b), we can apply Lemma 2.13 with 𝑔1 = 𝜇 𝑗 and 𝑔2 = 𝛿𝑈ad . We verify the needed required

properties. The space 𝐿2(Ω𝑇 ) is reflexive. Lemma 2.13(i) holds due to

| 𝑗𝑖 (𝑢2) − 𝑗𝑖 (𝑢1) | ≤ 𝑗𝑖 (𝑢2 − 𝑢1) ≤ 𝐶𝑖 ∥𝑢2 − 𝑢1∥𝐿2 (Ω𝑇 ) ∀𝑢1, 𝑢2 ∈ 𝐿2(Ω𝑇 ) .

For the convex and closed set 𝑈ad, the Bouligand tangent cone T𝑈ad (𝑢) coincides with the so-called
inner tangent cone, see [2, Proposition 2.55]. By the definition of the inner tangent cone, this result
reads

T𝑈ad (𝑢) =
{
𝑣 ∈ 𝐿2(Ω𝑇 )

�� ∀(𝑡𝑘 ) ⊂ ℝ+, 𝑡𝑘 ↘ 0 : ∃(𝑢𝑘 ) ⊂ 𝑈ad : (𝑢𝑘 − 𝑢)/𝑡𝑘 → 𝑣
}

and this is precisely property Lemma 2.13(ii).
Applying Lemma 2.13 and (3.3a) yields

𝐺↓ (𝑢; 𝑣) = 𝜇 𝑗↓ (𝑢; 𝑣) + 𝛿↓
𝑈ad

(𝑢; 𝑣) = 𝜇 𝑗 ′(𝑢; 𝑣) + 𝛿T𝑈ad (𝑢 ) (𝑣),

where the last equality follows from Lemma 2.11(iv) as 𝑗 fulfills the required properties. □

Next, we see that the critical cone K from Corollary 2.22 coincides with the critical cone 𝐶𝑢 as
defined in [5, (4.1)].
Lemma 3.2. Let 𝑢 ∈ 𝑈ad be given. Then the sets

K := {𝑣 ∈ 𝐿2(Ω𝑇 ) | 𝐹 ′(𝑢)𝑣 +𝐺↓ (𝑢; 𝑣) = 0},
𝐶𝑢 := {𝑣 ∈ T𝑈ad (𝑢) | 𝐹 ′(𝑢)𝑣 + 𝜇 𝑗 ′(𝑢; 𝑣) = 0}

coincide.

Proof. For 𝑣 ∈ K , (3.3b) yields 𝐹 ′(𝑢)𝑣 + 𝜇 𝑗 ′(𝑢; 𝑣) + 𝛿T𝑈ad (𝑢 ) (𝑣) = 0. We have 𝛿T𝑈ad (𝑢 ) (𝑣) ∈ {0,∞}, but
the value ∞ would contradict the previous equality. This shows 𝑣 ∈ 𝐶𝑢 .

Now, let 𝑣 ∈ 𝐶𝑢 be given. From 𝑣 ∈ T𝑈ad (𝑢) and by using (3.3b) again, we get

0 = 𝐹 ′(𝑢)𝑣 + 𝜇 𝑗 ′(𝑢; 𝑣) = 𝐹 ′(𝑢)𝑣 + 𝜇 𝑗 ′(𝑢; 𝑣) + 𝛿T𝑈ad (𝑢 ) (𝑣) = 𝐹
′(𝑢)𝑣 +𝐺↓ (𝑢; 𝑣) . □

We transfer the first-order necessary conditions (2.12a) for 𝑢 ∈ 𝑈ad to our situation. Since 𝑗 is
continuous, the sum rule for the subdifferential applies, i.e.,

𝜕𝐺 (𝑢) = 𝜇𝜕 𝑗 (𝑢) + 𝜕𝛿𝑈ad (𝑢) = 𝜇𝜕 𝑗 (𝑢) + N𝑈ad (𝑢) .

Thus, the first-order condition (2.12a) is equivalent to the existence of 𝜆𝑢 ∈ 𝜕 𝑗 (𝑢) with

(3.4) 0 ∈ 𝐹 ′(𝑢) + 𝜇𝜆𝑢 + N𝑈ad (𝑢).

Finally, we characterize the directions from the critical cone.
Lemma 3.3. Suppose that 𝜆𝑢 ∈ 𝜕 𝑗 (𝑢) satisfies (3.4) and let 𝑣 ∈ T𝑈ad (𝑢) be given. Then, 𝑣 ∈ 𝐶𝑢 if and only
if

(𝐹 ′(𝑢) + 𝜇𝜆𝑢)𝑣 = 0 a.e. in Ω𝑇 ,(3.5a)
𝑗 ′(𝑢; 𝑣) = ⟨𝜆𝑢, 𝑣⟩.(3.5b)
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Proof. Let 𝑣 ∈ 𝐶𝑢 be given. With𝑤 := (𝐹 ′(𝑢) + 𝜇𝜆𝑢)𝑣 ∈ 𝐿1(Ω𝑇 ) we have

0 = 𝐹 ′(𝑢)𝑣 + 𝜇 𝑗 ′(𝑢; 𝑣) ≥ ⟨𝐹 ′(𝑢) + 𝜇𝜆𝑢, 𝑣⟩ =
∫
Ω𝑇

𝑤 d(𝑥, 𝑡) ≥ 0

by definition of𝐶𝑢 , the properties of the subdifferential, and (3.4) as 𝑣 ∈ T𝑈ad (𝑢). This shows (3.5b) and
that the integral over𝑤 is zero. From the characterizations of the tangent cone and the normal cone,
we get𝑤 ≥ 0 a.e. in Ω𝑇 . Thus, (3.5a) follows.

The converse implication follows immediately. □

3.1 second subderivative of 𝑗1

At the beginning, we recall the subdifferential of 𝑗1. For a functional 𝜆 ∈ 𝐿2(Ω𝑇 ) we have 𝜆 ∈ 𝜕 𝑗1(𝑢) if
and only if

(3.6) 𝜆(𝑥, 𝑡) ∈ Sign(𝑢 (𝑥, 𝑡)) f.a.a. (𝑥, 𝑡) ∈ Ω𝑇 ,

with the set-valued signum function

(3.7) Sign(𝜃 ) :=


{+1} if 𝜃 > 0,
{−1} if 𝜃 < 0,
[−1, +1] if 𝜃 = 0.

Moreover, the directional derivative 𝑗1(𝑢; ·) : 𝐿2(Ω𝑇 ) → ℝ is given by

(3.8) 𝑗 ′1 (𝑢; 𝑣) =
∫
{𝑢>0}

𝑣 d(𝑥, 𝑡) −
∫
{𝑢<0}

𝑣 d(𝑥, 𝑡) +
∫
{𝑢=0}

|𝑣 | d(𝑥, 𝑡) .

In order to apply the characterization of the critical cone from Lemma 3.3, we analyze condition (3.5b)
for 𝑗 = 𝑗1.
Lemma 3.4. Let 𝜆𝑢 ∈ 𝜕 𝑗1(𝑢) be given. For 𝑣 ∈ 𝐿2(Ω𝑇 ), we have ⟨𝜆𝑢, 𝑣⟩ = 𝑗 ′1 (𝑢; 𝑣) if and only if

𝜆𝑢 (𝑥, 𝑡) =
{
+1, if 𝑢 (𝑥, 𝑡) = 0 and 𝑣 (𝑥, 𝑡) > 0
−1, if 𝑢 (𝑥, 𝑡) = 0 and 𝑣 (𝑥, 𝑡) < 0

f.a.a. (𝑥, 𝑡) ∈ Ω𝑇 .

Proof. This follows easily from

𝑗 ′1 (𝑢; 𝑣) − ⟨𝜆𝑢, 𝑣⟩ =
∫
{𝑢=0}

|𝑣 | − 𝜆𝑢𝑣 d(𝑥, 𝑡),

since the integrand is non-negative a.e. due to (3.6). □

For the verification of the strong twice epidifferentiability, we use the recovery sequence from [4,
Theorem 3.7].
Lemma 3.5. Assume −𝐹 ′(𝑢) ∈ 𝜕𝐺1(𝑢) and let 𝑣 ∈ 𝐶𝑢 be given. Furthermore, let (𝑡𝑘 ) ⊂ ℝ+ be an arbitrary
sequence with 𝑡𝑘 ↘ 0. We define the sequence (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) via (pointwise)

(3.9) 𝑣𝑘 :=
{

0 if 𝑢 ∈ (𝛼, 𝛼 + √
𝑡𝑘 ) ∪ (𝛽 − √

𝑡𝑘 , 𝛽) ∪ (−√𝑡𝑘 , 0) ∪ (0,√𝑡𝑘 ),
𝑃𝑡𝑘 (𝑣) otherwise,

where 𝑃𝑡𝑘 : ℝ → ℝ denotes the projection onto the interval
[
− 1√

𝑡𝑘
, 1√

𝑡𝑘

]
. Then, we have

𝑣𝑘 → 𝑣 in 𝐿2(Ω𝑇 ),(3.10a)
𝑣𝑘 ∈ 𝐶𝑢,(3.10b)

𝑢 + 𝑡𝑘𝑣𝑘 ∈ 𝑈ad,(3.10c)
𝑗1(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗1(𝑢) = 𝑡𝑘 𝑗 ′1 (𝑢; 𝑣𝑘 ).(3.10d)
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Proof. It holds 𝑣𝑘 (𝑥, 𝑡) → 𝑣 (𝑥, 𝑡) pointwise and |𝑣𝑘 (𝑥, 𝑡) | ≤ |𝑣 (𝑥, 𝑡) |. Due to 𝑣 ∈ 𝐿2(Ω𝑇 ), Lebesgue’s
dominated convergence theorem yields (3.10a).

By construction, we get (3.10c).
To show (3.10b) we first note that 𝑣𝑘 ∈ T𝑈ad (𝑢) follows from (3.10c). Next, we fix 𝜆𝑢 ∈ 𝜕 𝑗 (𝑢) such that

(3.4) holds. From Lemma 3.3, we get that 𝑣 satisfies (3.5). Using {𝑣𝑘 ≠ 0} ⊂ {𝑣 ≠ 0} by construction,
we immediately get that (3.5a) holds with 𝑣 replaced by 𝑣𝑘 . Next, (3.5b) enables us to apply Lemma 3.4
to 𝑣 . Due to {𝑣𝑘 > 0} ⊂ {𝑣 > 0} and {𝑣𝑘 < 0} ⊂ {𝑣 < 0}, we can consequently invoke Lemma 3.4 with
𝑣𝑘 to obtain ⟨𝜆𝑢, 𝑣𝑘⟩ = 𝑗 ′1 (𝑢; 𝑣𝑘 ). Thus, Lemma 3.3 can be applied to 𝑣𝑘 to get 𝑣𝑘 ∈ 𝐶𝑢 .

Lastly, we prove (3.10d). Easy calculations show that 𝑢 (𝑥, 𝑡) > 0 implies 𝑢 (𝑥, 𝑡) + 𝑡𝑘𝑣𝑘 (𝑥, 𝑡) ≥ 0.
Analogously, 𝑢 (𝑥, 𝑡) + 𝑡𝑘𝑣𝑘 (𝑥, 𝑡) < 0 holds whenever 𝑢 (𝑥, 𝑡) < 0. This yields

𝑗1(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗1(𝑢) =
∫
Ω𝑇

|𝑢 + 𝑡𝑘𝑣𝑘 | − |𝑢 | d(𝑥, 𝑡)

= 𝑡𝑘

(∫
{𝑢>0}

𝑣𝑘 d(𝑥, 𝑡) −
∫
{𝑢<0}

𝑣𝑘 d(𝑥, 𝑡) +
∫
{𝑢=0}

|𝑣𝑘 | d(𝑥, 𝑡)
)
,

which shows the claim. □

Theorem 3.6. We assume −𝐹 ′(𝑢) ∈ 𝜕𝐺1(𝑢). Then,

𝐺 ′′
1 (𝑢,−𝐹 ′(𝑢); 𝑣) = 0 ∀𝑣 ∈ 𝐶𝑢

holds and 𝐺1 is strongly twice epi-differentiable at 𝑢 for −𝐹 ′(𝑢).

Proof. Lemma 2.3 yields𝐺 ′′
1 (𝑢,−𝐹 ′(𝑢); 𝑣) ≥ 0. Now, let 𝑣 ∈ 𝐶𝑢 and (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0 be arbitrary.

For the sequence (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) defined in (3.9) we get

lim
𝑘→∞

𝐺1(𝑢 + 𝑡𝑘𝑣𝑘 ) −𝐺1(𝑢) − 𝑡𝑘 ⟨−𝐹 ′(𝑢), 𝑣𝑘⟩
𝑡2
𝑘
/2

= lim
𝑘→∞

2
𝑡2
𝑘

(
𝛿𝑈ad (𝑢 + 𝑡𝑘𝑣𝑘 ) + 𝜇 𝑗1(𝑢 + 𝑡𝑘𝑣𝑘 ) − 0 − 𝜇 𝑗1(𝑢) + 𝑡𝑘 ⟨𝐹 ′(𝑢), 𝑣𝑘⟩

)
= lim

𝑘→∞

2
𝑡𝑘

(
𝜇 𝑗 ′1 (𝑢; 𝑣𝑘 ) + ⟨𝐹 ′(𝑢), 𝑣𝑘⟩

)
(by (3.10c) and (3.10d))

= lim
𝑘→∞

2
𝑡𝑘

0 = 0. (by (3.10b))

This shows 𝐺 ′′
1 (𝑢,−𝐹 ′(𝑢); 𝑣) = 0 and also the strong twice epi-differentiability in direction 𝑣 ∈ 𝐶𝑢 . For

𝑣 ∈ 𝐿2(Ω𝑇 ) \𝐶𝑢 , we have𝐺 ′′
1 (𝑢,−𝐹 ′(𝑢); 𝑣) = ∞, see (2.13), and, hence, we can use 𝑣𝑘 ≡ 𝑣 as a recovery

sequence. □

3.2 second subderivative of 𝑗2

As in [5, Section 3.2], we define 𝑗Ω : 𝐿2(Ω) → ℝ via

𝑗Ω (𝑢) := ∥𝑢∥𝐿1 (Ω) =

∫
Ω
|𝑢 (𝑥) | d𝑥 .

The directional derivative 𝑗 ′Ω (𝑢; ·) : 𝐿2(Ω) → ℝ is given by

(3.11) 𝑗 ′Ω (𝑢; 𝑣) =
∫
{𝑢>0}

𝑣 (𝑥) d𝑥 −
∫
{𝑢<0}

𝑣 (𝑥) d𝑥 +
∫
{𝑢=0}

|𝑣 (𝑥) | d𝑥 .
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Now we can write 𝑗2 as

(3.12) 𝑗2(𝑢) =
(∫ 𝑇

0
𝑗Ω (𝑢 (𝑡))2 d𝑡

) 1/2
.

The directional derivative 𝑗 ′2(𝑢; ·) : 𝐿2(Ω𝑇 ) → ℝ is given by

(3.13) 𝑗 ′2(𝑢; 𝑣) =
{
𝑗2(𝑣), if 𝑢 = 0,

1
𝑗2 (𝑢 )

∫ 𝑇

0 𝑗 ′Ω (𝑢 (𝑡); 𝑣 (𝑡))∥𝑢 (𝑡)∥𝐿1 (Ω) d𝑡, if 𝑢 ≠ 0,

see [5, Proposition 3.5]. Furthermore, it holds 𝜆 ∈ 𝜕 𝑗2(𝑢) if and only if 𝜆 ∈ 𝐿2(0,𝑇 ;𝐿∞(Ω)) and

𝑢 ≠ 0 : 𝜆(𝑥, 𝑡) ∈ Sign(𝑢 (𝑥, 𝑡))
∥𝑢 (𝑡)∥𝐿1 (Ω)

𝑗2(𝑢)
a.e. in Ω𝑇

𝑢 = 0 : ∥𝜆∥𝐿2 (0,𝑇 ;𝐿∞ (Ω) ) ≤ 1,
(3.14)

see [5, Proposition 3.4]. Note that 𝐿2(0,𝑇 ;𝐿∞(Ω)) is not a Bochner–Lebesgue space, but the (canonical)
dual of 𝐿2(0,𝑇 ;𝐿1(Ω)), which consists of weak-★measurable functions. Here, we used the set-valued
signum function from (3.7). Next, we recall a lower Taylor expansion of 𝑗2(𝑢 + 𝑣).
Lemma 3.7 ([5, Lemma 5.7]). We assume 𝑢 ≠ 0. There exist 𝐶 > 0 and 𝜀 > 0 such that

(3.15) 𝑗2(𝑢 + 𝑣) ≥ 𝑗2(𝑢) + 𝑗 ′2(𝑢; 𝑣) + 1
2 𝑗2(𝑢)

{∫ 𝑇

0
𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))

2 d𝑡 − 𝑗 ′2(𝑢; 𝑣𝑘 )2
}
−𝐶

∥𝑣 ∥3
𝐿2 (Ω𝑇 )

𝑗2(𝑢)2

holds for all ∥𝑣 ∥𝐿2 (Ω𝑇 ) ≤ 𝜀.
We provide a corrected version of [5, Lemma 5.6].

Lemma 3.8. Let (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) be a sequence with 𝑣𝑘 ⇀ 𝑣 in 𝐿2(Ω𝑇 ) and 𝑗 ′2(𝑢; 𝑣𝑘 ) → 𝑗 ′2(𝑢; 𝑣). Then, the
functions𝑤𝑘 ∈ 𝐿2(0,𝑇 ), defined via𝑤𝑘 (𝑡) = 𝜒𝑀 (𝑡) 𝑗 ′Ω (𝑢 (𝑡), 𝑣𝑘 (𝑡)), converge weakly in 𝐿2(0,𝑇 ) towards
𝑤 ∈ 𝐿2(0,𝑇 ),𝑤 (𝑡) = 𝜒𝑀 (𝑡) 𝑗 ′Ω (𝑢 (𝑡), 𝑣 (𝑡)), where𝑀 := {𝑡 ∈ (0,𝑇 ) | ∥𝑢 (𝑡)∥𝐿1 (Ω) ≠ 0}.

Proof. It is sufficient to consider the case 𝑢 ≠ 0 since𝑀 = ∅ if 𝑢 = 0. We define the functions

�̂�𝑘 := 𝜒𝑁+𝑣𝑘 − 𝜒𝑁−𝑣𝑘 + 𝜒𝑁0 |𝑣𝑘 |, �̂� := 𝜒𝑁+𝑣 − 𝜒𝑁−𝑣 + 𝜒𝑁0 |𝑣 |,

with the sets

𝑁+ := {(𝑥, 𝑡) ∈ Ω𝑇 | ∥𝑢 (𝑡)∥𝐿1 (Ω) ≠ 0, 𝑢 (𝑥, 𝑡) > 0},
𝑁0 := {(𝑥, 𝑡) ∈ Ω𝑇 | ∥𝑢 (𝑡)∥𝐿1 (Ω) ≠ 0, 𝑢 (𝑥, 𝑡) = 0},
𝑁− := {(𝑥, 𝑡) ∈ Ω𝑇 | ∥𝑢 (𝑡)∥𝐿1 (Ω) ≠ 0, 𝑢 (𝑥, 𝑡) < 0}.

Our first goal is to check �̂�𝑘 ⇀ �̂� in 𝐿2(Ω𝑇 ). Clearly, we already have weak convergence in the first
two addends and it remains to consider 𝜒𝑁0 |𝑣𝑘 |. Since this sequence is bounded in the reflexive space
𝐿2(Ω𝑇 ), we get weak convergence of a subsequence (without relabeling), i.e., 𝜒𝑁0 |𝑣𝑘 | ⇀ 𝑧 in 𝐿2(Ω𝑇 ).
For an arbitrary measurable set 𝑄 ⊂ Ω𝑇 , this yields∫

𝑄

𝑧 d(𝑥, 𝑡) = lim
𝑘→∞

∫
𝑄

𝜒𝑁0 |𝑣𝑘 | d(𝑥, 𝑡) ≥ lim
𝑘→∞

����∫
𝑄

𝜒𝑁0𝑣𝑘 d(𝑥, 𝑡)
���� = ����∫

𝑄

𝜒𝑁0𝑣 d(𝑥, 𝑡)
����.

Consequently, 𝑧 ≥ 𝜒𝑁0 |𝑣 | a.e. on Ω𝑇 . Utilizing the formula for 𝑗 ′2 and the assumption, we get

lim
𝑘→∞

𝑗 ′2(𝑢; 𝑣𝑘 ) = 𝑗 ′2(𝑢; 𝑣) = 1
𝑗2(𝑢)

∫
Ω𝑇

(
𝜒𝑁+𝑣 − 𝜒𝑁−𝑣 + 𝜒𝑁0 |𝑣 |

)
∥𝑢 (𝑡)∥𝐿1 (Ω) d(𝑥, 𝑡) .
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On the other hand,

lim
𝑘→∞

𝑗 ′2(𝑢; 𝑣𝑘 ) = lim
𝑘→∞

1
𝑗2(𝑢)

∫
Ω𝑇

(
𝜒𝑁+𝑣𝑘 − 𝜒𝑁−𝑣𝑘 + 𝜒𝑁0 |𝑣𝑘 |

)
∥𝑢 (𝑡)∥𝐿1 (Ω) d(𝑥, 𝑡)

=
1

𝑗2(𝑢)

∫
Ω𝑇

(
𝜒𝑁+𝑣 − 𝜒𝑁−𝑣 + 𝑧

)
∥𝑢 (𝑡)∥𝐿1 (Ω) d(𝑥, 𝑡) .

Since the limit is unique, we get

0 =

∫
Ω𝑇

(
𝑧 − 𝜒𝑁0 |𝑣 |

)
∥𝑢 (𝑡)∥𝐿1 (Ω) d(𝑥, 𝑡).

Since the integrand is nonnegative, it has to vanish a.e. on Ω𝑇 . The function 𝑧 satisfies 𝑧 = 0 a.e. on
Ω𝑇 \𝑁0 and we have ∥𝑢 (𝑡)∥𝐿1 (Ω) > 0 for a.a. (𝑥, 𝑡) ∈ 𝑁0. Hence, 𝑧 = 𝜒𝑁0 |𝑣 | a.e. on Ω𝑇 . This shows that
the weak limit 𝑧 of 𝜒𝑁0 |𝑣𝑘 | is uniquely determined, consequently, the usual subsequence-subsequence
argument yields the convergence of the entire sequence. Thus, have shown that �̂�𝑘 ⇀ �̂� in 𝐿2(Ω𝑇 ).

Finally, the sequence𝑤𝑘 is just the image of �̂�𝑘 under the bounded linearmapping
∫
Ω
· d𝑥 : 𝐿2(Ω𝑇 ) →

𝐿2(0,𝑇 ), i.e.,𝑤𝑘 (𝑡) =
∫
Ω
�̂�𝑘 (𝑥, 𝑡) d𝑥 . Thus, we get the desired𝑤𝑘 ⇀ 𝑤 in 𝐿2(0,𝑇 ). □

Let us briefly comment on the flaw in [5, Lemma 5.6]. Therein, the assertion of Lemma 3.8 was
proved for𝑀 being the entire interval (0,𝑇 ). This cannot be true since the assumptions do not contain
any information on 𝑣𝑘 (·, 𝑡) if ∥𝑢 (𝑡)∥𝐿1 (Ω) = 0, see (3.13). Concerning the proof, note that [5, (5.24)]
reads “0 − 0 → 0” for all (𝑥, 𝑡) with ∥𝑢 (𝑡)∥𝐿1 (Ω) = 0, but afterwards, the authors divide by 0. Finally,
we mention that [5, Lemma 5.6] is only used in the proof of [5, Theorem 5.5] and this proof can be
repaired by using Lemma 3.8 above, see also the arguments in the proof of Lemma 3.9 below. Thus, [5,
Theorem 5.5] remains correct.

The next lemma will be used to provide a lower bound for the second subderivative.
Lemma 3.9. Let (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) be a sequence which satisfies 𝑣𝑘 ⇀ 𝑣 ∈ 𝐶𝑢 and 𝜇 𝑗 ′2(𝑢; 𝑣𝑘 ) + 𝐹 ′(𝑢)𝑣𝑘 → 0.
Then

lim inf
𝑘→∞

∫ 𝑇

0
𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))

2 d𝑡 − 𝑗 ′2(𝑢; 𝑣𝑘 )2 ≥
∫ 𝑇

0
𝑗 ′Ω (𝑢 (𝑡); 𝑣 (𝑡))

2 d𝑡 − 𝑗 ′2(𝑢; 𝑣)2.

Proof. It holds

𝜇 | 𝑗 ′2(𝑢; 𝑣𝑘 ) − 𝑗 ′2(𝑢; 𝑣) | ≤ |𝜇 𝑗 ′2(𝑢; 𝑣𝑘 ) + 𝐹 ′(𝑢)𝑣𝑘 | + |𝐹 ′(𝑢) (𝑣 − 𝑣𝑘 ) | + |−𝐹 ′(𝑢)𝑣 − 𝜇 𝑗 ′2(𝑢; 𝑣) |.

The first addend converges to zero by assumption, the second one by the weak convergence and the
third one is zero as 𝑣 ∈ 𝐶𝑢 . This implies 𝑗 ′2(𝑢; 𝑣𝑘 ) → 𝑗 ′2(𝑢; 𝑣). Hence, the subtrahend in the postulated
inequality converges. For the minuend we use∫ 𝑇

0
𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))

2 d𝑡 =
∫
𝑀

𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))
2 d𝑡 +

∫
𝐴

𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))
2 d𝑡,

with𝑀 as in Lemma 3.8 and 𝐴 := (0,𝑇 ) \𝑀 . Combining Lemma 3.8 with the sequential weak lower
semicontinuity of ∥·∥2

𝐿2 (𝑀 ) yields

lim inf
𝑘→∞

∫
𝑀

𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))
2 d𝑡 ≥

∫
𝑀

𝑗 ′Ω (𝑢 (𝑡); 𝑣 (𝑡))
2 d𝑡 .

Taking into account (3.11), 𝑗 ′Ω simplifies on the remaining set 𝐴 and we get

lim inf
𝑘→∞

∫
𝐴

𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))
2 d𝑡 = lim inf

𝑘→∞

∫
𝐴

(∫
Ω
|𝑣𝑘 (𝑥, 𝑡) | d𝑥

)2
d𝑡

≥
∫
𝐴

(∫
Ω
|𝑣 (𝑥, 𝑡) | d𝑥

)2
d𝑡 =

∫
𝐴

𝑗 ′Ω (𝑢 (𝑡); 𝑣 (𝑡))
2 d𝑡 .
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The inner integral is continuous and convex as is also the square, leading to sequential weak lower
semicontinuity. Adding both inequalities completes the proof. □

One could ask why we did it this way because
∫ 𝑇

0 𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))
2 d𝑡 looks convex but this is not

true. The reason is that 𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡)) is convex w.r.t. 𝑣𝑘 , but squaring destroys convexity since
𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡)) can be negative.
The next lemma is similar, but it provides an equality whenever the sequence 𝑣𝑘 converges strongly.

Lemma 3.10. For 𝑣𝑘 → 𝑣 in 𝐿2(Ω𝑇 ) we have
∫ 𝑇

0 𝑗 ′Ω (𝑢; 𝑣𝑘 )2 d𝑡 →
∫ 𝑇

0 𝑗 ′Ω (𝑢; 𝑣)2 d𝑡 .

Proof. The estimates | 𝑗 ′Ω (𝑢; 𝑣𝑘 ) − 𝑗 ′Ω (𝑢; 𝑣) | ≤ ∥𝑣𝑘 − 𝑣 ∥𝐿1 (Ω) and | 𝑗 ′Ω (𝑢; 𝑣) | ≤ ∥𝑣 ∥𝐿1 (Ω) follow easily by
(3.11). Using those estimates, we get����∫ 𝑇

0
𝑗 ′Ω (𝑢; 𝑣𝑘 )2 d𝑡 −

∫ 𝑇

0
𝑗 ′Ω (𝑢; 𝑣)2 d𝑡

���� ≤ ∫ 𝑇

0

�� 𝑗 ′Ω (𝑢; 𝑣𝑘 )2 − 𝑗 ′Ω (𝑢; 𝑣)2�� d𝑡
≤

∫ 𝑇

0

�� 𝑗 ′Ω (𝑢; 𝑣𝑘 ) − 𝑗 ′Ω (𝑢; 𝑣)
���� 𝑗 ′Ω (𝑢; 𝑣𝑘 )

�� d𝑡 + ∫ 𝑇

0

�� 𝑗 ′Ω (𝑢; 𝑣𝑘 ) − 𝑗 ′Ω (𝑢; 𝑣)
���� 𝑗 ′Ω (𝑢; 𝑣)

�� d𝑡
≤

√︄∫ 𝑇

0

�� 𝑗 ′Ω (𝑢; 𝑣𝑘 ) − 𝑗 ′Ω (𝑢; 𝑣)
��2 d𝑡

(√︄∫ 𝑇

0

�� 𝑗 ′Ω (𝑢; 𝑣𝑘 )
��2 d𝑡 +

√︄∫ 𝑇

0

�� 𝑗 ′Ω (𝑢; 𝑣)
��2 d𝑡

)
≤

√︄∫ 𝑇

0
∥𝑣𝑘 − 𝑣 ∥2

𝐿1 (Ω) d𝑡
(√︄∫ 𝑇

0
∥𝑣𝑘 ∥2

𝐿1 (Ω) d𝑡 +

√︄∫ 𝑇

0
∥𝑣 ∥2

𝐿1 (Ω) d𝑡
)

= 𝑗2(𝑣𝑘 − 𝑣) ( 𝑗2(𝑣𝑘 ) + 𝑗2(𝑣)) .

The second inequality follows from the binomial formula, the third one by Hölder’s inequality, the
fourth one uses our previous estimates. Since 𝑣𝑘 → 𝑣 , 𝑗2(𝑣𝑘 ) is bounded and 𝑗2(𝑣𝑘 − 𝑣) converges to
zero. This finishes the proof. □

The next lemma enables us to invoke Lemma 3.3 for the characterization of the critical cone 𝐶𝑢 .
Lemma 3.11. Let 𝜆𝑢 ∈ 𝜕 𝑗2(𝑢) be given. For 𝑣 ∈ 𝐿2(Ω𝑇 ), we have ⟨𝜆𝑢, 𝑣⟩ = 𝑗 ′2(𝑢; 𝑣) if and only if

𝑢 ≠ 0 : 𝜆𝑢 (𝑥, 𝑡) ∈ Sign(𝑣 (𝑥, 𝑡))
∥𝑢 (𝑡)∥𝐿1 (Ω)

𝑗2(𝑢)
a.e. in {𝑢 = 0}(3.16a)

𝑢 = 0, 𝑣 ≠ 0 : 𝜆𝑢 (𝑥, 𝑡) ∈ Sign(𝑣 (𝑥, 𝑡))
∥𝑣 (𝑡)∥𝐿1 (Ω)

𝑗2(𝑣)
a.e. in Ω𝑇 .(3.16b)

Proof. We first consider the case𝑢 ≠ 0. From (3.14) we already have 𝜆𝑢 (𝑥, 𝑡) = 𝑠𝑢 (𝑥, 𝑡)∥𝑢 (𝑡)∥𝐿1 (Ω)/ 𝑗2(𝑢)
with 𝑠𝑢 (𝑥, 𝑡) ∈ Sign(𝑢 (𝑥, 𝑡)) for a.a. (𝑥, 𝑡) ∈ Ω𝑇 . Further,

𝑗 ′2(𝑢; 𝑣) − ⟨𝜆𝑢, 𝑣⟩ =
1

𝑗2(𝑢)

∫ 𝑇

0

[
𝑗 ′Ω (𝑢 (𝑡); 𝑣 (𝑡)) −

∫
Ω
𝑠𝑢 (𝑥, 𝑡)𝑣 (𝑥, 𝑡) d𝑥

]
∥𝑢 (𝑡)∥𝐿1 (Ω) d𝑡 .

Since the condition on 𝑠𝑢 can be rewritten as 𝑠𝑢 (𝑡) ∈ 𝜕 𝑗Ω (𝑢 (𝑡)), we can argue exactly as in Lemma 3.4.
It remains to consider 𝑢 = 0, 𝑣 ≠ 0. Due to 𝑢 = 0, we get 𝑗 ′2(𝑢; 𝑣) = 𝑗2(𝑣). Considering (3.14) again,

the condition in (3.16b) is equivalent to 𝜆𝑢 ∈ 𝜕 𝑗2(𝑣). Thus, it remains to show the equivalence of
⟨𝜆𝑢, 𝑣⟩ = 𝑗2(𝑣) and 𝜆𝑢 ∈ 𝜕 𝑗2(𝑣).
“⇒”: From (3.14), we get ∥𝜆𝑢 ∥𝐿2 (0,𝑇 ;𝐿∞ (Ω) ) ≤ 1. Thus, 𝑗2(𝑤) ≥ ⟨𝜆𝑢,𝑤⟩ for all 𝑤 ∈ 𝐿2(Ω𝑇 ). Conse-

quently, 𝑗2(𝑤) − 𝑗2(𝑣) ≥ ⟨𝜆𝑢,𝑤 − 𝑣⟩ for all𝑤 ∈ 𝐿2(Ω𝑇 ).
“⇐”: This follows from taking𝑤 = 2𝑣 and𝑤 = 0 in the subgradient inequality. □

The final lemma addresses the construction of a recovery sequence.
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Lemma 3.12. Assume𝑢 ≠ 0,−𝐹 ′(𝑢) ∈ 𝜕𝐺2(𝑢) and let 𝑣 ∈ 𝐶𝑢 be given. For an arbitrary sequence (𝑡𝑘 ) ⊂ ℝ+

with 𝑡𝑘 ↘ 0, the sequence (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) defined in (3.9) satisfies

𝑣𝑘 → 𝑣 in 𝐿2(Ω𝑇 ),(3.17a)
𝑣𝑘 ∈ 𝐶𝑢,(3.17b)

𝑢 + 𝑡𝑘𝑣𝑘 ∈ 𝑈ad,(3.17c)
𝑗Ω (𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗Ω (𝑢) = 𝑡𝑘 𝑗 ′Ω (𝑢; 𝑣𝑘 ) a.e. on (0,𝑇 ) .(3.17d)

Proof. As the sequence is the same as in Lemma 3.5, (3.17a) and (3.17c) have already been proven there,
and (3.17d) can be shown analogously.

It remains to verify (3.17b). As in Lemma 3.5, we argue via Lemma 3.3 and we analogously get that
(3.5a) is valid with 𝑣 replaced by 𝑣𝑘 . It remains to show that 𝑗 ′2(𝑢; 𝑣) = ⟨𝜆𝑢, 𝑣⟩ implies 𝑗 ′2(𝑢; 𝑣𝑘 ) = ⟨𝜆𝑢, 𝑣𝑘⟩.
To this end, we can argue as in Lemma 3.5 by utilizing (3.16a) from Lemma 3.11. □

Note that the case 𝑢 = 0 has been excluded in Lemma 3.12. The reason is that condition (3.16b) is
incompatible with pointwise changes of 𝑣 , see also Example 3.14 below.

Now, we are able to prove the main result of this section.
Theorem 3.13.We assume −𝐹 ′(𝑢) ∈ 𝜕𝐺2(𝑢). In case 𝑢 ≠ 0, we have

𝐺 ′′
2 (𝑢,−𝐹 ′(𝑢); 𝑣) =

𝜇

𝑗2(𝑢)

(∫ 𝑇

0
𝑗 ′Ω (𝑢 (𝑡); 𝑣 (𝑡))2 d𝑡 − 𝑗 ′2(𝑢; 𝑣)2

)
for all 𝑣 ∈ 𝐶𝑢 and 𝐺2 is strongly twice epi-differentiable at 𝑢 for −𝐹 ′(𝑢).

In case 𝑢 = 0, we have

𝐺 ′′
2 (𝑢,−𝐹 ′(𝑢); 𝑣) ≥ 0 ∀𝑣 ∈ 𝐶𝑢 and 𝐺 ′′

2 (𝑢,−𝐹 ′(𝑢); 𝑣) = ∞ ∀𝑣 ∈ 𝐿2(Ω𝑇 ) \𝐶𝑢 .

Proof. We first consider 𝑢 ≠ 0. Let 𝑣 ∈ 𝐶𝑢 be given. The first step is to show that the above right-hand
side is a lower bound for the expression

𝐿 := lim inf
𝑘→∞

𝐺2(𝑢 + 𝑡𝑘𝑣𝑘 ) −𝐺2(𝑢) − 𝑡𝑘 ⟨−𝐹 ′(𝑢), 𝑣𝑘⟩
𝑡2
𝑘
/2

for every pair of sequences (𝑡𝑘 ) ⊂ ℝ+ and (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) with 𝑡𝑘 ↘ 0 and 𝑣𝑘 ⇀ 𝑣 . It is clear that we
only have to consider sequences with 𝑢 + 𝑡𝑘𝑣𝑘 ∈ 𝑈ad. As (𝑡𝑘 ) is a zero sequence and (𝑣𝑘 ) converges
weakly, (3.15) holds 𝑘 large enough. We use the abbreviation

Θ(𝑢, 𝑣𝑘 ) := 1
𝑗2(𝑢)

(∫ 𝑇

0
𝑗 ′Ω (𝑢 (𝑡); 𝑣𝑘 (𝑡))

2 d𝑡 − 𝑗 ′2(𝑢; 𝑣𝑘 )2
)
.

Note that Θ(𝑢, 𝑣𝑘 ) ≥ 0 due to Hölder’s inequality. With Lemma 3.7, we get

𝐿 = lim inf
𝑘→∞

2
𝑡2
𝑘

(
𝜇 [ 𝑗2(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗2(𝑢)] + 𝑡𝑘 ⟨𝐹 ′(𝑢), 𝑣𝑘⟩

)
≥ lim inf

𝑘→∞

2
𝑡2
𝑘

(
𝜇

[
𝑡𝑘 𝑗

′
2(𝑢; 𝑣𝑘 ) +

𝑡2
𝑘

2 Θ(𝑢, 𝑣𝑘 ) −
𝐶𝑡3

𝑘
∥𝑣𝑘 ∥3

𝐿2 (Ω𝑇 )
𝑗2(𝑢)2

]
+ 𝑡𝑘 ⟨𝐹 ′(𝑢), 𝑣𝑘⟩

)
.

As ∥𝑣𝑘 ∥𝐿2 (Ω𝑇 ) is bounded and 𝑗2(𝑢) > 0 holds, the cubic term in brackets vanishes as 𝑘 → ∞. This
yields

𝐿 ≥ lim inf
𝑘→∞

(
2
𝑡𝑘

(
𝜇 𝑗 ′2(𝑢; 𝑣𝑘 ) + ⟨𝐹 ′(𝑢), 𝑣𝑘⟩

)
+ 𝜇Θ(𝑢, 𝑣𝑘 )

)
.
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Note that −𝐹 ′(𝑢) ∈ 𝜕𝐺2(𝑢) and 𝑢 + 𝑡𝑘𝑣𝑘 ∈ 𝑈ad yield 𝜇 𝑗 ′2(𝑢; 𝑣𝑘 ) + ⟨𝐹 ′(𝑢), 𝑣𝑘⟩ ≥ 0. Now, we distinguish
two cases.

Case 1: lim inf𝑘→∞ 𝜇 𝑗
′
2(𝑢; 𝑣𝑘 ) + ⟨𝐹 ′(𝑢), 𝑣𝑘⟩ > 0. Because of the factor 2/𝑡𝑘 we get 𝐿 = ∞. The desired

inequality is fulfilled.
Case 2: lim inf𝑘→∞ 𝜇 𝑗

′
2(𝑢; 𝑣𝑘 ) + ⟨𝐹 ′(𝑢), 𝑣𝑘⟩ = 0. We choose subsequences of (𝑡𝑘 ) and (𝑣𝑘 ) (without

relabeling) which realize the limit inferior, i.e., 𝜇 𝑗 ′2(𝑢; 𝑣𝑘 ) + ⟨𝐹 ′(𝑢), 𝑣𝑘⟩ → 0. In this situation, Lemma 3.9
can be applied and yields the desired

𝐿 ≥ 𝜇

𝑗2(𝑢)

(∫ 𝑇

0
𝑗 ′Ω (𝑢 (𝑡); 𝑣 (𝑡))

2 d𝑡 − 𝑗 ′2(𝑢; 𝑣)2
)
.

We will now show that this lower bound is realized for an arbitrary sequence (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0
if (𝑣𝑘 ) is chosen as in Lemma 3.12. For the purpose of shortening, let 𝑆 (𝑢, 𝑘) := 𝑗2(𝑢 + 𝑡𝑘𝑣𝑘 ) + 𝑗2(𝑢). We
note that 2/𝑆 (𝑢, 𝑘) → 1/ 𝑗2(𝑢). We get

lim
𝑘→∞

𝐺2(𝑢 + 𝑡𝑘𝑣𝑘 ) −𝐺2(𝑢) − 𝑡𝑘 ⟨−𝐹 ′(𝑢), 𝑣𝑘⟩
𝑡2
𝑘
/2

= lim
𝑘→∞

2
𝑡2
𝑘

(𝜇 [ 𝑗2(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗2(𝑢)] + 𝑡𝑘𝐹 ′(𝑢)𝑣𝑘 ) (by (3.17c))

= lim
𝑘→∞

2
(
𝜇
[
𝑗2(𝑢 + 𝑡𝑘𝑣𝑘 )2 − 𝑗2(𝑢)2] + 𝑡𝑘𝑆 (𝑢, 𝑘)𝐹 ′(𝑢)𝑣𝑘 )

𝑡2
𝑘
𝑆 (𝑢, 𝑘)

=
1

𝑗2(𝑢)
lim
𝑘→∞

𝜇
∫ 𝑇

0 𝑗Ω (𝑢 + 𝑡𝑘𝑣𝑘 )2 − 𝑗Ω (𝑢)2 d𝑡 + 𝑡𝑘𝑆 (𝑢, 𝑘)𝐹 ′(𝑢)𝑣𝑘
𝑡2
𝑘

(by (3.12))

=
1

𝑗2(𝑢)
lim
𝑘→∞

𝜇
∫ 𝑇

0 𝑡𝑘 𝑗
′
Ω (𝑢; 𝑣𝑘 )2 + 2 𝑗Ω (𝑢) 𝑗 ′Ω (𝑢; 𝑣𝑘 ) d𝑡 + 𝑆 (𝑢, 𝑘)𝐹 ′(𝑢)𝑣𝑘

𝑡𝑘
(by (3.17d))

=
𝜇

𝑗2(𝑢)
lim
𝑘→∞

∫ 𝑇

0 𝑡𝑘 𝑗
′
Ω (𝑢; 𝑣𝑘 )2 + 2 𝑗Ω (𝑢) 𝑗 ′Ω (𝑢; 𝑣𝑘 ) d𝑡 − 𝑆 (𝑢, 𝑘) 𝑗 ′2(𝑢; 𝑣𝑘 )

𝑡𝑘
(by (3.17b))

=
𝜇

𝑗2(𝑢)
lim
𝑘→∞

1
𝑡𝑘

(∫ 𝑇

0
𝑡𝑘 𝑗

′
Ω (𝑢; 𝑣𝑘 )2 d𝑡 + [2 𝑗2(𝑢) − 𝑆 (𝑢, 𝑘)] 𝑗 ′2(𝑢; 𝑣𝑘 )

)
(by (3.13))

=
𝜇

𝑗2(𝑢)
lim
𝑘→∞

(∫ 𝑇

0
𝑗 ′Ω (𝑢; 𝑣𝑘 )2 d𝑡 − 𝑗2(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗2(𝑢)

𝑡𝑘
𝑗 ′2(𝑢; 𝑣𝑘 )

)
.

The expression 𝑗 ′2(𝑢; ·) is continuous and 𝑗2 (𝑢+𝑡𝑘 𝑣𝑘 )− 𝑗2 (𝑢 )
𝑡𝑘

→ 𝑗 ′2(𝑢; 𝑣) holds (cf. Lemma 2.13 as 𝑗2 is
convex and Lipschitz continuous and therefore Hadamard differentiable). Together with Lemma 3.10,
this yields the claim.

In case 𝑢 = 0, the assertion directly follows from Lemma 2.3 and (2.13). □

The next example shows that the situation𝑢 = 0 is surprisingly difficult, even in case 𝐹 ′(𝑢) ∈ 𝐿∞(Ω𝑇 ).

Example 3.14. We use the setting 𝑇 = 1, Ω = (0, 1), i.e., Ω𝑇 = (0, 1)2. Further, for some 𝜌 ∈ (0, 1) we set

𝐷 := {(𝑥, 𝑡) ∈ Ω𝑇 | 0 < 𝑥 < 𝑡𝜌 < 1}.

Next, we fix 𝑢 = 0 and we assume that the smooth part of the objective satisfies 𝐹 ′(𝑢) ≡ −1 on 𝐷 while
|𝐹 ′(𝑢) | < 1 on Ω𝑇 \ 𝐷 . Finally, we set 𝛼 := −1, 𝛽 := 1 and 𝜇 = 1.
First, we show that the critical cone is nonempty. We define the measurable function 𝑣 : Ω𝑇 → ℝ via

𝑣 (𝑥, 𝑡) :=
{
𝑡−𝜌 if (𝑥, 𝑡) ∈ 𝐷
0 else.
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Due to
∥𝑣 ∥2

𝐿2 (Ω𝑇 ) =

∫ 𝑇

0

∫ 𝑡𝜌

0
𝑡−2𝜌 d𝑥 d𝑡 =

∫ 𝑇

0
𝑡−𝜌 d𝑡 = 1

1 − 𝜌 ,

we have 𝑣 ∈ 𝐿2(Ω𝑇 ). Now, we can check

𝑗 ′2(𝑢; 𝑣) = 𝑗2(𝑣) =
(∫ 𝑇

0
∥𝑣 (𝑡)∥2

𝐿1 (Ω) d𝑡
) 1/2

= 1

and
−𝐹 ′(𝑢)𝑣 =

∫
𝐷

𝑣 d(𝑥, 𝑡) =
∫ 𝑇

0

∫ 𝑡𝜌

0

1
𝑡𝜌

d𝑥 d𝑡 = 1.

Thus, 𝐹 ′(𝑢)𝑣 + 𝑗 ′2(𝑢; 𝑣) = 0 and we trivially have 𝑣 ∈ T𝑈ad (𝑢) = 𝐿2(Ω𝑇 ). Hence, 𝑣 ∈ 𝐶𝑢 .
Next, we show that every 𝑣 ∈ 𝐶𝑢 \ {0} is unbounded, i.e., 𝑣 ∉ 𝐿∞(Ω𝑇 ). Indeed, for an arbitrary

𝑣 ∈ 𝐶𝑢 \ {0} we have

𝑗2(𝑣) = 𝑗 ′2(𝑢; 𝑣) = −𝐹 ′(𝑢)𝑣 ≤
∫ 𝑇

0
∥𝑣 (𝑡)∥𝐿1 (Ω) d𝑡 ≤ ∥∥𝑣 (𝑡)∥𝐿1 (Ω) ∥𝐿2 (0,𝑇 ) = 𝑗2(𝑣) .

Hence, both inequalities are actually equalities. This implies 𝑣 ≥ 0 a.e. on 𝐷 , 𝑣 = 0 a.e. on Ω𝑇 \ 𝐷 and
that ∥𝑣 (𝑡)∥𝐿1 (Ω) is a constant, say, 𝑐 > 0. For a.e. 𝑡 ∈ (0, 1), we get 𝑐 =

∫
Ω
𝑣 (𝑥, 𝑡) d𝑥 =

∫ 𝑡𝜌

0 𝑣 (𝑥, 𝑡) d𝑥 and
this shows 𝜆1({𝑥 ∈ Ω | 𝑣 (𝑥, 𝑡) ≥ 𝑐/𝑡𝜌 }) > 0, where 𝜆𝑑 denotes the 𝑑-dimensional Lebesgue measure.
Consequently, Fubini implies that for any 𝜏 ∈ (0, 1), we have

𝜆2({(𝑥, 𝑡) ∈ Ω𝑇 | 𝑣 (𝑥, 𝑡) ≥ 𝑐/𝜏}) =
∫ 𝑇

0
𝜆1({𝑥 ∈ Ω | 𝑣 (𝑥, 𝑡) ≥ 𝑐/𝜏}) d𝑡

≥
∫ 𝜏 1/𝜌

0
𝜆1({𝑥 ∈ Ω | 𝑣 (𝑥, 𝑡) ≥ 𝑐/𝑡𝜌 }) d𝑡 > 0.

This shows that 𝑣 ∉ 𝐿∞(Ω𝑇 ). In particular, for any 𝑣 ∈ 𝐶𝑢 \ {0} and any 𝑡 > 0, we have 𝑢 + 𝑡𝑣 ∉ 𝑈ad.
Further, this shows that the assertion of Lemma 3.12 is not valid in case 𝑢 = 0, even if 𝐹 ′(𝑢) ∈ 𝐿∞(Ω𝑇 ).
Finally, let a sequence (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0 be arbitrary and we consider the approximation

𝑣𝑘 := 𝑃 [−1/𝑡𝑘 ,1/𝑡𝑘 ] (𝑣) of the above 𝑣 . It is clear that 𝑣𝑘 → 𝑣 in 𝐿2(Ω𝑇 ) and 𝑢 + 𝑡𝑘𝑣𝑘 ∈ 𝑈ad. A simple
calculation shows (for 𝑡𝑘 small enough)

𝑗2(𝑣𝑘 ) =
(∫ 𝑡

1/𝜌
𝑘

0
∥𝑣𝑘 (𝑡)∥2

𝐿1 (Ω) d𝑡 +
∫ 1

𝑡
1/𝜌
𝑘

∥𝑣𝑘 (𝑡)∥2
𝐿1 (Ω) d𝑡

) 1
2
=

(∫ 𝑡
1/𝜌
𝑘

0

𝑡2𝜌

𝑡2
𝑘

d𝑡 +
∫ 1

𝑡
1/𝜌
𝑘

1 d𝑡
) 1

2

=

(
𝑡

1/𝜌
𝑘

2𝜌 + 1 + 1 − 𝑡 1/𝜌
𝑘

) 1/2

=

(
1 − (2𝜌/(2𝜌 + 1))𝑡 1/𝜌

𝑘

) 1/2

and

−𝐹 ′(𝑢)𝑣𝑘 =

∫ 1

0

∫
Ω
𝑣𝑘 d𝑥 d𝑡 =

∫ 𝑡
1/𝜌
𝑘

0
𝑡𝜌/𝑡𝑘 d𝑡 +

∫ 1

𝑡
1/𝜌
𝑘

1 d𝑥 d𝑡 = 1 − 𝜌

𝜌 + 1𝑡
1/𝜌
𝑘
.

Thus, the curvature term is

lim
𝑘→∞

𝐺2(𝑢 + 𝑡𝑘𝑣𝑘 ) −𝐺2(𝑢) + 𝑡𝑘𝐹 ′(𝑢)𝑣𝑘
𝑡2
𝑘
/2

= lim
𝑘→∞

(
1 − 2𝜌

2𝜌+1𝑡
1/𝜌
𝑘

) 1/2
−

(
1 − 𝜌

𝜌+1𝑡
1/𝜌
𝑘

)
𝑡𝑘/2 = 0.

This shows that 𝐺 ′′
2 (𝑢,−𝐹 ′(𝑢); 𝑣) = 0 and that (𝑣𝑘 ) serves as a recovery sequence. However, it is not

clear whether a similar approach works for all 𝑣 ∈ 𝐶𝑢 and whether 𝐺 ′′
2 (𝑢,−𝐹 ′(𝑢); 𝑣) = 0 for all 𝑣 ∈ 𝐶𝑢 .
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3.3 second subderivative of 𝑗3

As in [5, p. 273,292], we define the sets

Ω𝑢 := {𝑥 ∈ Ω | ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) ≠ 0},(3.18a)
Ω0
𝑢 := {𝑥 ∈ Ω | ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) = 0} = Ω \ Ω𝑢,(3.18b)

Ω𝜎 := {𝑥 ∈ Ω | ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) ≥ 𝜎}, ∀𝜎 > 0.(3.18c)

From [5, Proposition 3.8], we recall the directional derivative of 𝑗3

(3.19) 𝑗 ′3(𝑢; 𝑣) =
∫
Ω0
�̄�

∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) d𝑥 +
∫
Ω�̄�

1
∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

∫ 𝑇

0
𝑢𝑣 d𝑡 d𝑥

and 𝜆 ∈ 𝜕 𝑗3(𝑢) is equivalent to 𝜆 ∈ 𝐿∞(Ω;𝐿2(0,𝑇 )) and

∥𝜆(𝑥)∥𝐿2 (0,𝑇 ) ≤ 1 f.a.a. 𝑥 ∈ Ω0
𝑢(3.20a)

𝜆(𝑥, 𝑡) = 𝑢 (𝑥, 𝑡)
∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

f.a.a. 𝑥 ∈ Ω𝑢 and 𝑡 ∈ (0,𝑇 ) .(3.20b)

Lemma 3.15. For any measurable𝑀 ⊂ Ω𝑢 , the mapping 𝑞𝑀 : 𝐿2(Ω𝑇 ) → ℝ given by

𝑞𝑀 (𝑣) :=
∫
𝑀

1
∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

[∫ 𝑇

0
𝑣2(𝑥, 𝑡) d𝑡 −

(∫ 𝑇

0

𝑢 (𝑥, 𝑡)𝑣 (𝑥, 𝑡)
∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

d𝑡
)2]

d𝑥

is convex, lower semicontinuous, and therefore sequentially weakly lower semicontinuous.

Proof. For fixed 𝜎 > 0, we define𝑀𝜎 := 𝑀 ∩ Ω𝜎 and 𝑏𝜎 : 𝐿2(Ω𝑇 )2 → ℝ,

𝑏𝜎 (𝑣,𝑤) :=
∫
𝑀𝜎

1
∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

[∫ 𝑇

0
𝑣𝑤 d𝑡 − 1

∥𝑢 (𝑥)∥2
𝐿2 (0,𝑇 )

(∫ 𝑇

0
𝑢𝑣 d𝑡

) (∫ 𝑇

0
𝑢𝑤 d𝑡

)]
d𝑥 .

This is a symmetric and real-valued bilinear form. From Hölder’s inequality we get

(3.21) 1
∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

[∫ 𝑇

0
𝑣2(𝑥, 𝑡) d𝑡 −

(∫ 𝑇

0

𝑢 (𝑥, 𝑡)𝑣 (𝑥, 𝑡)
∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

d𝑡
)2]

≥ 0

for all 𝑥 ∈ Ω𝑢 . Hence, 𝑏𝜎 (𝑣, 𝑣) ≥ 0 and, therefore, 𝑣 ↦→ 𝑏𝜎 (𝑣, 𝑣) is convex. For the continuity of 𝑏𝜎 , we
note

|𝑏𝜎 (𝑣, 𝑣) | ≤
∫
𝑀𝜎

∥𝑣 ∥2
𝐿2 (0,𝑇 )

∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )
d𝑥 ≤

∥𝑣 ∥2
𝐿2 (Ω𝑇 )
𝜎

.

Together with the symmetry, we get that 𝑏𝜎 is bounded, hence continuous.
The monotone convergence theorem yields 𝑞(𝑣) = lim𝜎↘0 𝑏𝜎 (𝑣, 𝑣) = sup𝜎>0 𝑏𝜎 (𝑣, 𝑣). Since the

supremum of convex and lower semicontinuous functions is again convex and lower semicontinuous,
this establishes the claim. □

The next lemma follows since 𝐿2(0,𝑇 ) is a Hilbert space.
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Lemma 3.16.We define the function Ψ : 𝐿2(0,𝑇 ) → ℝ by Ψ(𝑓 ) := ∥ 𝑓 ∥𝐿2 (0,𝑇 ) . For every 𝑓 ≠ 0 and
𝑔 ∈ 𝐿2(0,𝑇 ), we have

Ψ′(𝑓 )𝑔 =
1

∥ 𝑓 ∥𝐿2 (0,𝑇 )

∫ 𝑇

0
𝑓 𝑔 d𝑡,(3.22a)

Ψ′′(𝑓 )𝑔2 =
1

∥ 𝑓 ∥𝐿2 (0,𝑇 )

{∫ 𝑇

0
𝑔2 d𝑡 − 1

∥ 𝑓 ∥2
𝐿2 (0,𝑇 )

(∫ 𝑇

0
𝑓 𝑔 d𝑡

)2}
,(3.22b)

Ψ′′′(𝑓 )𝑔3 =
3

∥ 𝑓 ∥3
𝐿2 (0,𝑇 )

{
1

∥ 𝑓 ∥2
𝐿2 (0,𝑇 )

(∫ 𝑇

0
𝑓 𝑔 d𝑡

)3

−
(∫ 𝑇

0
𝑔2 d𝑡

) (∫ 𝑇

0
𝑓 𝑔 d𝑡

)}
.(3.22c)

Furthermore,

(3.22d)
��Ψ′′′(𝑓 )𝑔3�� ≤ 6∥𝑔∥3

𝐿2 (0,𝑇 )

∥ 𝑓 ∥2
𝐿2 (0,𝑇 )

.

The next lemma will be used to show a lower bound for the second subderivative of 𝑗3.
Lemma 3.17. We assume 𝑢 ≠ 0 and let sequences (𝑡𝑘 ) ⊂ ℝ+ and (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) be given such that 𝑡𝑘 ↘ 0
and 𝑣𝑘 ⇀ 𝑣 . Then, it holds

(3.23)

lim inf
𝑘→∞

𝑗3(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3(𝑢) − 𝑡𝑘 𝑗 ′3(𝑢; 𝑣𝑘 )
𝑡2
𝑘
/2

≥
∫
Ω�̄�

1
∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )


∫ 𝑇

0
𝑣 (𝑥, 𝑡)2 d𝑡 −

(∫ 𝑇

0 𝑢 (𝑥, 𝑡)𝑣 (𝑥, 𝑡) d𝑡
)2

∥𝑢 (𝑥)∥2
𝐿2 (0,𝑇 )

 d𝑥 .

Proof. First we extract subsequences that realize the limit inferior, afterwards we extract subsequences
(again without relabeling) such that

(3.24) ∀𝑘 ∈ ℕ : 𝑡𝑘 ≤ 1
𝑘4 .

For every 𝑁 ∈ ℕ we define the set𝑀𝑁 and the functional 𝑗3,𝑁 via

𝑀𝑁 :=
{
𝑥 ∈ Ω1/𝑁

��� ∀𝑘 ≥ 𝑁 : ∥𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) ≤ 𝑡−1/4
𝑘

}
,

𝑗3,𝑁 (𝑢) :=
∫
𝑀𝑁

∥𝑢 (𝑥, ·)∥𝐿2 (0,𝑇 ) d𝑥 .

Our first goal is to show that the analogue of (3.23) holds for the functional 𝑗3,𝑁 for fixed 𝑁 ∈ ℕ with
𝑁 ≥ 2. For all 𝑥 ∈ 𝑀𝑁 , 𝑘 ≥ 𝑁 and 𝜃 ∈ [0, 1] we get with (3.18c) and (3.24)

∥𝑢 (𝑥) + 𝜃𝑡𝑘𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) ≥ ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) − 𝜃 ∥𝑡𝑘𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 )

≥ 1
𝑁

− 𝑡𝑘 ∥𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) ≥
1
𝑁

− 𝑡3/4
𝑘

≥ 1
𝑁

− 1
𝑘3 ≥ 1

2𝑁

and therefore

0 ≤
𝑡𝑘 ∥𝑣𝑘 (𝑥)∥3

𝐿2 (0,𝑇 )

∥𝑢 (𝑥) + 𝜃𝑡𝑘𝑣𝑘 (𝑥)∥2
𝐿2 (0,𝑇 )

≤ 4𝑁 2𝑡 1/4
𝑘
.
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Using Ψ from Lemma 3.16 we perform a Taylor expansion and obtain 𝜃 ∈ [0, 1] (depending on 𝑘 ≥ 𝑁

and 𝑥 ∈ 𝑀𝑁 ) such that

Ψ(𝑢 (𝑥) + 𝑡𝑘𝑣𝑘 (𝑥)) − Ψ(𝑢 (𝑥)) − 𝑡𝑘Ψ′(𝑢 (𝑥))𝑣𝑘 (𝑥)

=
𝑡2
𝑘

2 Ψ′′(𝑢 (𝑥))𝑣𝑘 (𝑥)2 +
𝑡3
𝑘

6 Ψ′′′(𝑢 (𝑥) + 𝜃𝑡𝑘𝑣𝑘 (𝑥))𝑣𝑘 (𝑥)3.

Together with (3.22d) and the above estimate, we get

Ψ(𝑢 (𝑥) + 𝑡𝑘𝑣𝑘 (𝑥)) − Ψ(𝑢 (𝑥)) − 𝑡𝑘Ψ′(𝑢 (𝑥))𝑣𝑘 (𝑥) ≥
𝑡2
𝑘

2 Ψ′′(𝑢 (𝑥))𝑣𝑘 (𝑥)2 − 4𝑡2
𝑘
𝑁 2𝑡 1/4

𝑘
.

Since this estimate holds for all 𝑥 ∈ 𝑀𝑁 , we can integrate and obtain

𝑗3,𝑁 (𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3,𝑁 (𝑢) − 𝑡𝑘 𝑗 ′3,𝑁 (𝑢)𝑣𝑘 ≥
𝑡2
𝑘

2 𝑞𝑀𝑁
(𝑣𝑘 ) − 4𝑡2

𝑘
𝑁 2𝑡 1/4

𝑘

∫
𝑀𝑁

1 d𝑥

with 𝑞𝑀𝑁
from Lemma 3.15. Now, we divide by 𝑡2

𝑘
/2 and, using Lemma 3.15, we pass to the limit 𝑘 → ∞

to obtain
lim inf
𝑘→∞

𝑗3,𝑁 (𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3,𝑁 (𝑢) − 𝑡𝑘 𝑗 ′3,𝑁 (𝑢)𝑣𝑘
𝑡2
𝑘
/2

≥ 𝑞𝑀𝑁
(𝑣) .

Since 𝑗3 − 𝑗3,𝑁 is a convex function, we get

lim inf
𝑘→∞

𝑗3(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3(𝑢) − 𝑡𝑘 𝑗 ′3(𝑢)𝑣𝑘
𝑡2
𝑘
/2

≥ lim inf
𝑘→∞

𝑗3,𝑁 (𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3,𝑁 (𝑢) − 𝑡𝑘 𝑗 ′3,𝑁 (𝑢)𝑣𝑘
𝑡2
𝑘
/2

≥ 𝑞𝑀𝑁
(𝑣) .

It remains to pass to the limit 𝑁 → ∞. Note that the set 𝑀𝑁 is increasing in 𝑁 . Moreover, for the
Lebesgue measure of Ω𝑢 \𝑀𝑁 we get

𝜆𝑑 (Ω𝑢 \𝑀𝑁 ) = 𝜆𝑑
(
Ω𝑢 \ Ω1/𝑁

)
+ 𝜆𝑑

(
Ω1/𝑁 \𝑀𝑁

)
= 𝜆𝑑

(
Ω𝑢 \ Ω1/𝑁

)
+ 𝜆𝑑

({
𝑥 ∈ Ω1/𝑁

��� ∃𝑘 ≥ 𝑁 : ∥𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) > 𝑡
−1/4
𝑘

})
≤ 𝜆𝑑

(
Ω𝑢 \ Ω1/𝑁

)
+

∑︁
𝑘≥𝑁

𝜆𝑑
({
𝑥 ∈ Ω

��� ∥𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) > 𝑡
−1/4
𝑘

})
.

Next, we use Chebyshev’s inequality and (3.24) to get

𝜆𝑑 (Ω𝑢 \𝑀𝑁 ) ≤ 𝜆𝑑
(
Ω𝑢 \ Ω1/𝑁

)
+

∑︁
𝑘≥𝑁

𝑡
1/2
𝑘

∫
Ω
∥𝑣𝑘 (𝑥)∥2

𝐿2 (0,𝑇 ) d𝑥

≤ 𝜆𝑑
(
Ω𝑢 \ Ω1/𝑁

)
+

∑︁
𝑘≥𝑁

𝑘−2∥𝑣𝑘 ∥2
𝐿2 (Ω𝑇 ) .

The first addend trivially vanishes for 𝑁 → ∞. Furthermore, ∥𝑣𝑘 ∥𝐿2 (Ω𝑇 ) is bounded due to weak
convergence and the series

∑
𝑛≥1 𝑛

−2 converges absolutely. Therefore, we get the convergence 𝜆𝑑 (Ω𝑢 \
𝑀𝑁 ) → 0 for 𝑁 → ∞.

In order to finish the proof, we write

lim inf
𝑘→∞

𝑗3(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3(𝑢) − 𝑡𝑘 𝑗 ′3(𝑢; 𝑣𝑘 )
𝑡2
𝑘
/2

≥ 𝑞𝑀𝑁
(𝑣) =

∫
Ω�̄�

𝜒𝑀𝑁
(𝑥)

∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )


∫ 𝑇

0
𝑣2 d𝑡 −

(∫ 𝑇

0 𝑢𝑣 d𝑡
)2

∥𝑢 (𝑥)∥2
𝐿2 (0,𝑇 )

 d𝑥 .
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It is easy to see by (3.21) that the integrand is nonnegative for every 𝑁 ∈ ℕ. Since𝑀𝑁 is increasing,
the sequence of integrands converges monotonely towards the integrand in (3.23). An application of
the monotone convergence theorem finishes the proof. □

The next lemma prepares the application of Lemma 3.3, in particular, it characterizes (3.5b) for 𝑗 = 𝑗3.
For convenience, we recall that the directional derivative of 𝑗3 was given in (3.19).
Lemma 3.18. Let 𝜆𝑢 ∈ 𝜕 𝑗3(𝑢) be given. For 𝑣 ∈ 𝐿2(Ω𝑇 ), we have ⟨𝜆𝑢, 𝑣⟩ = 𝑗 ′3(𝑢; 𝑣) if and only if

𝜆𝑢 (𝑥, 𝑡) =
𝑣 (𝑥, 𝑡)

∥𝑣 (𝑥)∥𝐿2 (0,𝑇 )
f.a.a. 𝑥 ∈ Ω0

𝑢 with ∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) ≠ 0.(3.25)

Proof. The implication “⇐” is clear.
Let ⟨𝜆𝑢, 𝑣⟩ = 𝑗 ′3(𝑢; 𝑣) be fulfilled. With (3.20) to get

0 = 𝑗 ′3(𝑢; 𝑣) − ⟨𝜆𝑢, 𝑣⟩ =
∫
Ω0
�̄�

∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) −
∫ 𝑇

0
𝜆𝑢𝑣 d𝑡 d𝑥

≥
∫
Ω0
�̄�

∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) (1 − ∥𝜆𝑢 (𝑥)∥𝐿2 (0,𝑇 ) ) d𝑥 ≥ 0.

Hence, ∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) ∥𝜆𝑢 (𝑥)∥𝐿2 (0,𝑇 ) =
∫ 𝑇

0 𝜆𝑢𝑣 d𝑡 and ∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) (1 − ∥𝜆𝑢 (𝑥)∥𝐿2 (0,𝑇 ) ) = 0 for a.a. 𝑥 ∈
Ω0
𝑢 . This yields (3.25). □

For 𝑗3, we cannot use the same construction (3.9) as for 𝑗1 and 𝑗2, since this would lead to problems
on the set Ω0

𝑢 , cf. Example 3.14. In order to get 𝑣𝑘 ∈ 𝐶𝑢 , we have to modify the construction. We follow
[5, Theorem 4.3, Case III].
Lemma 3.19. We assume −𝐹 ′(𝑢) ∈ 𝜕𝐺 (𝑢) ∩𝐿∞(Ω𝑇 ). Let (𝑡𝑘 ) ⊂ ℝ+ be an arbitrary sequence with 𝑡𝑘 ↘ 0
and 𝑣 ∈ 𝐶𝑢 . We define the sequence (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) on the set Ω𝑢 × (0,𝑇 ) via

𝑣𝑘 :=


0 if 𝑢 ∈ (𝛼, 𝛼 + √

𝑡𝑘 ) ∪ (𝛽 − √
𝑡𝑘 , 𝛽) ∪ (−√𝑡𝑘 , 0) ∪ (0,√𝑡𝑘 ),

0 if ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) <
√
𝑡𝑘 ,

𝑃𝑡𝑘 (𝑣) otherwise,

where 𝑃𝑡𝑘 : ℝ → ℝ denotes the projection onto the interval
[
− 1√

𝑡𝑘
, 1√

𝑡𝑘

]
, and on Ω0

𝑢 × (0,𝑇 ) we define

𝑣𝑘 :=
{

0 if ∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) >
1√
𝑡𝑘

𝑣 otherwise.

Then, this sequence satisfies (for 𝑘 large enough)

𝑣𝑘 → 𝑣 in 𝐿2(Ω𝑇 ),(3.26a)
𝑣𝑘 ∈ 𝐶𝑢,(3.26b)

𝑢 + 𝑡𝑘𝑣𝑘 ∈ 𝑈ad,(3.26c)

∥𝑢 (𝑥) + 𝑡𝑘𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) − ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) = 𝑡𝑘

∫ 𝑇

0 2𝑢𝑣𝑘 + 𝑡𝑘𝑣2
𝑘

d𝑡
𝐾𝑘 (𝑥)

for 𝑥 ∈ Ω𝑢,(3.26d)

∥𝑢 (𝑥) + 𝑡𝑘𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) − ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) = 𝑡𝑘 ∥𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) for 𝑥 ∈ Ω0
𝑢,(3.26e)

where 𝐾𝑘 (𝑥) := ∥𝑢 (𝑥) + 𝑡𝑘𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) + ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) .
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Proof. For (3.26a), we argue like in Lemma 3.5. We have pointwise convergence 𝑣𝑘 → 𝑣 and 𝑣 ∈ 𝐿2(Ω𝑇 )
dominates 𝑣𝑘 . The dominated convergence theorem yields the claim.

Next we address (3.26c). The case Ω𝑢 × (0,𝑇 ) can be handled as in the proof of Lemma 3.5. The only
interesting case is (𝑥, 𝑡) ∈ Ω0

𝑢 × (0,𝑇 ) if 𝑣𝑘 (𝑥, 𝑡) ≠ 0. In this case we have 𝑢 (𝑥, 𝑡) = 0, 𝑣𝑘 (𝑥, 𝑡) = 𝑣 (𝑥, 𝑡)
and ∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) ≤ 1√

𝑡𝑘
. With (3.25), we get

|𝑢 (𝑥, 𝑡) + 𝑡𝑘𝑣𝑘 (𝑥, 𝑡) | = 𝑡𝑘 |𝑣 (𝑥, 𝑡) | = 𝑡𝑘 |𝜆𝑢 (𝑥, 𝑡) |∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) ≤
√
𝑡𝑘 ∥𝜆𝑢 ∥𝐿∞ (Ω0

�̄�×(0,𝑇 ) ) .

By combining (3.4) with (3.2), we get 𝜆𝑢 = −𝐹 ′(𝑢)/𝜇 on the set Ω0
𝑢 . Together with 𝐹 ′(𝑢) ∈ 𝐿∞(Ω𝑇 ),

we get |𝑢 (𝑥, 𝑡) + 𝑡𝑘𝑣𝑘 (𝑥, 𝑡) | ≤ 𝐶
√
𝑡𝑘 for some constant 𝐶 > 0. As 𝑢 (𝑥, 𝑡) = 0, we have 𝛼 ≤ 0 ≤ 𝛽 .

If on the one hand 𝛼 < 0 < 𝛽 , we have 𝛼 ≤ 𝑢 (𝑥, 𝑡) + 𝑡𝑘𝑣𝑘 (𝑥, 𝑡) ≤ 𝛽 for 𝑘 large enough. If on the
other hand 𝛼 = 0 < 𝛽 holds, then 0 ≤ 𝑢 (𝑥, 𝑡) + 𝑡𝑘𝑣𝑘 (𝑥, 𝑡) follows from 𝑣 ∈ 𝐶𝑢 . The upper bound
𝑢 (𝑥, 𝑡) + 𝑡𝑘𝑣𝑘 (𝑥, 𝑡) ≤ 𝛽 holds for 𝑘 large enough as in the other case. Finally, the case 𝛼 < 0 = 𝛽 is
similar. This verifies (3.26c) and we also get 𝑣𝑘 ∈ T𝑈ad (𝑢).
In order to obtain (3.26b), we use Lemma 3.3 in combination with Lemma 3.18. As in the proof of

Lemma 3.5, we analogously get that (3.5a) is valid with 𝑣 replaced by 𝑣𝑘 . From Lemma 3.3, we get that
(3.25) holds. The special definition of 𝑣𝑘 on Ω0

𝑢 × (0,𝑇 ) ensures that (3.25) is also satisfied if we replace
𝑣 by 𝑣𝑘 . Thus, 𝑗 ′3(𝑢; 𝑣𝑘 ) = ⟨𝜆𝑢, 𝑣𝑘⟩ and Lemma 3.3 gives (3.26b).
The identities (3.26d) and (3.26e) hold as 𝐿2(0,𝑇 ) is a Hilbert space. □

Finally, the next lemma provides the convergence of some integrals.
Lemma 3.20. We assume −𝐹 ′(𝑢) ∈ 𝜕𝐺 (𝑢) ∩ 𝐿∞(Ω𝑇 ). Let 𝑣 ∈ 𝐶𝑢 be given such that

(3.27)
∫
Ω�̄�

∥𝑣 (𝑥)∥2
𝐿2 (0,𝑇 )

∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )
d𝑥 < ∞.

For a given sequence (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0 we consider the sequence (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) as defined in
Lemma 3.19. We further denote 𝐾𝑘 (𝑥) := ∥𝑢 (𝑥) + 𝑡𝑘𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) + ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) . Then, it holds∫

Ω�̄�

∫ 𝑇

0 𝑣2
𝑘

d𝑡
𝐾𝑘 (𝑥)

d𝑥 →
∫
Ω�̄�

∫ 𝑇

0 𝑣2 d𝑡
2∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

d𝑥,(3.28a)

∫
Ω�̄�

(∫ 𝑇

0 𝑢𝑣𝑘 d𝑡
)2

𝐾𝑘 (𝑥)2∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )
d𝑥 →

∫
Ω�̄�

(∫ 𝑇

0 𝑢𝑣 d𝑡
)2

4∥𝑢 (𝑥)∥3
𝐿2 (0,𝑇 )

d𝑥,(3.28b)

𝑡𝑘

∫
Ω�̄�

∫ 𝑇

0 𝑣2
𝑘

d𝑡
∫ 𝑇

0 𝑢𝑣𝑘 d𝑡
𝐾𝑘 (𝑥)2∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

d𝑥 → 0.(3.28c)

Proof. In the proof of Lemma 3.19, we have seen that 𝑣𝑘 → 𝑣 pointwise almost everywhere. Let us
denote by 𝑁 ⊂ Ω𝑇 the null set on which the sequence does not converge. Then, we know that for
almost all 𝑥 ∈ Ω, the set {𝑡 ∈ (0,𝑇 ) | 𝑣𝑘 (𝑥, 𝑡) ̸→ 𝑣 (𝑥, 𝑡)} is measurable and also a null set. Together
with |𝑣𝑘 | ≤ |𝑣 | pointwise a.e. and ∥𝑣 (𝑥)∥𝐿2 (0,𝑇 ) < ∞ for a.a. 𝑥 ∈ Ω we get ∥𝑣𝑘 (𝑥) − 𝑣 (𝑥)∥𝐿2 (0,𝑇 ) → 0
for a.a. 𝑥 ∈ Ω from the dominated convergence theorem. This shows that the integrands in (3.28)
converge pointwise a.e. on Ω𝑢 .

In order to apply the dominated convergence theorem, we only need integrable bounds. These can
be easily obtained with |𝑣𝑘 | ≤ |𝑣 |, the estimates 𝐾𝑘 (𝑥) ≥ 𝑡𝑘 ∥𝑣𝑘 (𝑥)∥𝐿2 (0,𝑇 ) , 𝐾𝑘 (𝑥) ≥ ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) and
(3.27). □
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Theorem 3.21.We assume −𝐹 ′(𝑢) ∈ 𝜕𝐺3(𝑢) ∩ 𝐿∞(Ω𝑇 ). For all 𝑣 ∈ 𝐶𝑢 we have

𝐺 ′′
3 (𝑢,−𝐹 ′(𝑢); 𝑣) =


∫
Ω�̄�

𝜇

∥𝑢 (𝑥 ) ∥
𝐿2 (0,𝑇 )

[∫ 𝑇

0 𝑣2 d𝑡 −
(∫ 𝑇

0
𝑢𝑣

∥𝑢 (𝑥 ) ∥
𝐿2 (0,𝑇 )

d𝑡
)2

]
d𝑥, 𝑢 ≠ 0,

0, 𝑢 = 0.

Moreover, 𝐺3 is strongly twice epi-differentiable at 𝑢 for −𝐹 ′(𝑢).
Note that the value 𝐺 ′′(𝑢,−𝐹 ′(𝑢); 𝑣) = ∞ is possible for 𝑢 ≠ 0 and 𝑣 ∈ 𝐶𝑢 .

Proof. We first consider the case 𝑢 ≠ 0. We are going to use Lemma 2.8 with

𝑄 (𝑣) := 𝛿𝐶�̄�
(𝑣) +

∫
Ω�̄�

𝜇

∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )

[∫ 𝑇

0
𝑣2 d𝑡 −

(∫ 𝑇

0

𝑢𝑣

∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )
d𝑡

)2]
d𝑥

and 𝑉 = {𝑣 ∈ 𝐶𝑢 | (3.27) holds.}. We have to check the assumptions of Lemma 2.8.
Step 1, Lemma 2.8(i): For 𝑣 ∉ 𝐶𝑢 , we have𝐺 ′′

3 (𝑢,−𝐹 ′(𝑢); 𝑣) = ∞ = 𝑄 (𝑣), see Lemma 2.10. Let 𝑣 ∈ 𝐶𝑢
be arbitrary and consider sequences (𝑡𝑘 ) ⊂ ℝ+ and (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) with 𝑡𝑘 ↘ 0 and 𝑣𝑘 ⇀ 𝑣 . We use
−𝐹 ′(𝑢) ∈ 𝜕𝐺3(𝑢) to get 0 ≤ ⟨𝐹 ′(𝑢), 𝑣𝑘⟩ +𝐺 ′

3(𝑢; 𝑣𝑘 ) = ⟨𝐹 ′(𝑢), 𝑣𝑘⟩ +𝛿 ′𝑈ad
(𝑢; 𝑣𝑘 ) +𝜇 𝑗 ′3(𝑢; 𝑣𝑘 ). Consequently,

lim inf
𝑘→∞

𝐺3(𝑢 + 𝑡𝑘𝑣𝑘 ) −𝐺3(𝑢) − 𝑡𝑘 ⟨−𝐹 ′(𝑢), 𝑣𝑘⟩
𝑡2
𝑘
/2

= lim inf
𝑘→∞

2
𝑡2
𝑘

(
𝜇 [ 𝑗3(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3(𝑢)] + 𝛿𝑈ad (𝑢 + 𝑡𝑘𝑣𝑘 ) + 𝑡𝑘 ⟨𝐹 ′(𝑢), 𝑣𝑘⟩

)
≥ lim inf

𝑘→∞

2
𝑡2
𝑘

(
𝜇 [ 𝑗3(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3(𝑢)] + 𝑡𝑘

{
𝛿 ′𝑈ad

(𝑢; 𝑣𝑘 ) + ⟨𝐹 ′(𝑢), 𝑣𝑘⟩
})
.

≥ lim inf
𝑘→∞

2𝜇
𝑡2
𝑘

(
𝑗3(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3(𝑢) − 𝑡𝑘 𝑗 ′3(𝑢; 𝑣𝑘 )

)
≥

∫
Ω�̄�

𝜇

∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )


∫ 𝑇

0
𝑣 (𝑥, 𝑡)2 d𝑡 −

(∫ 𝑇

0 𝑢 (𝑥, 𝑡)𝑣 (𝑥, 𝑡) d𝑡
)2

∥𝑢 (𝑥)∥2
𝐿2 (0,𝑇 )

 d𝑥 = 𝑄 (𝑣),

where we used (3.23) in the last step. Taking the infimum with respect to the sequences (𝑡𝑘 ), (𝑣𝑘 ) yields
𝐺 ′′

3 (𝑢,−𝐹 ′(𝑢); 𝑣) ≥ 𝑄 (𝑣) for all 𝑣 ∈ 𝐿2(Ω𝑇 ).
Step 2, Lemma 2.8(ii): We consider arbitrary 𝑣 ∈ 𝑉 and (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0. Let (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 )

be defined as in Lemma 3.19. We have

lim
𝑘→∞

𝐺3(𝑢 + 𝑡𝑘𝑣𝑘 ) −𝐺3(𝑢) − 𝑡𝑘 ⟨−𝐹 ′(𝑢), 𝑣𝑘⟩
𝑡2
𝑘
/2

= lim
𝑘→∞

2
𝑡2
𝑘

(
𝜇 [ 𝑗3(𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝑗3(𝑢)] − 𝑡𝑘𝜇 𝑗 ′3(𝑢; 𝑣𝑘 )

)
(by (3.26b), (3.26c))

= lim
𝑘→∞

2𝜇
𝑡2
𝑘

∫
Ω�̄�

∥𝑢 + 𝑡𝑘𝑣𝑘 ∥𝐿2 (0,𝑇 ) − ∥𝑢∥𝐿2 (0,𝑇 ) − 𝑡𝑘

∫ 𝑇

0 𝑢𝑣𝑘 d𝑡
∥𝑢∥𝐿2 (0,𝑇 )

d𝑥 (by (3.19), (3.26e))

= lim
𝑘→∞

2𝜇
𝑡2
𝑘

∫
Ω�̄�

∫ 𝑇

0 2𝑡𝑘𝑢𝑣𝑘 + 𝑡2
𝑘
𝑣2
𝑘

d𝑡
𝐾𝑘

− 𝑡𝑘

∥𝑢∥𝐿2 (0,𝑇 )

∫ 𝑇

0
𝑢𝑣𝑘 d𝑡 d𝑥 (by (3.26d))

= lim
𝑘→∞

2𝜇
∫
Ω�̄�

∫ 𝑇

0 𝑣2
𝑘

d𝑡
𝐾𝑘

+ 1
𝑡𝑘

(
2
𝐾𝑘

− 1
∥𝑢∥𝐿2 (0,𝑇 )

) ∫ 𝑇

0
𝑢𝑣𝑘 d𝑡 d𝑥
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= lim
𝑘→∞

2𝜇
∫
Ω�̄�

∫ 𝑇

0 𝑣2
𝑘

d𝑡
𝐾𝑘

+ 1
𝑡𝑘

( ∥𝑢∥𝐿2 (0,𝑇 ) − ∥𝑢 + 𝑡𝑘𝑣𝑘 ∥𝐿2 (0,𝑇 )
𝐾𝑘 ∥𝑢∥𝐿2 (0,𝑇 )

) ∫ 𝑇

0
𝑢𝑣𝑘 d𝑡 d𝑥

= lim
𝑘→∞

2𝜇
∫
Ω�̄�

∫ 𝑇

0 𝑣2
𝑘

d𝑡
𝐾𝑘

− ©­«
∫ 𝑇

0 2𝑢𝑣𝑘 + 𝑡𝑘𝑣2
𝑘

d𝑡
𝐾2
𝑘
∥𝑢∥𝐿2 (0,𝑇 )

ª®¬
∫ 𝑇

0
𝑢𝑣𝑘 d𝑡 d𝑥 (by (3.26d))

= lim
𝑘→∞

2𝜇
∫
Ω�̄�

∫ 𝑇

0 𝑣2
𝑘

d𝑡
𝐾𝑘

−
2
(∫ 𝑇

0 𝑢𝑣𝑘 d𝑡
)2

𝐾2
𝑘
∥𝑢∥𝐿2 (0,𝑇 )

− 𝑡𝑘

∫ 𝑇

0 𝑣2
𝑘

d𝑡
∫ 𝑇

0 𝑢𝑣𝑘 d𝑡
𝐾2
𝑘
∥𝑢∥𝐿2 (0,𝑇 )

d𝑥

=

∫
Ω�̄�

𝜇

∥𝑢∥𝐿2 (0,𝑇 )

[∫ 𝑇

0
𝑣2 d𝑡 −

(∫ 𝑇

0

𝑢𝑣

∥𝑢∥𝐿2 (0,𝑇 )
d𝑡

)2]
d𝑥 . (by (3.28))

Step 3, Lemma 2.8(iii): For arbitrary 𝑣 ∈ 𝐶𝑢 we define the sequence (𝑣𝑙 ) ⊂ 𝐿2(Ω𝑇 ) via

𝑣𝑙 (𝑥, 𝑡) :=
{

0 if 0 < ∥𝑢 (𝑥)∥𝐿2 (0,𝑇 ) <
1
𝑙
,

𝑣 (𝑥, 𝑡) else.

It is clear that 𝑣𝑙 → 𝑣 in 𝐿2(Ω𝑇 ) and 𝑣𝑙 ∈ T𝑈ad (𝑢). We are going to use Lemmas 3.4 and 3.18 to check
𝑣𝑙 ∈ 𝐶𝑢 . The property (3.5a) holds for 𝑣𝑙 by construction. Lemma 3.18 yields (3.25) for 𝑣 . Now, it is
straightforward to check that (3.25) also holds for 𝑣 replaced by 𝑣𝑙 . Therefore, Lemma 3.18 yields
⟨𝜆𝑢, 𝑣𝑙 ⟩ = 𝑗 ′3(𝑢; 𝑣𝑙 ). Lemma 3.3 yields 𝑣𝑙 ∈ 𝐶𝑢 for all 𝑙 ∈ ℕ.
Due to ∫

Ω�̄�

∥𝑣𝑙 (𝑥)∥2
𝐿2 (0,𝑇 )

∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )
d𝑥 =

∫
Ω1/𝑙

∥𝑣 (𝑥)∥2
𝐿2 (0,𝑇 )

∥𝑢 (𝑥)∥𝐿2 (0,𝑇 )
d𝑥 ≤ 𝑙 ∥𝑣 ∥2

𝐿2 (Ω𝑇 ) < ∞,

we have 𝑣𝑙 ∈ 𝑉 .
From (3.21) we get 𝑄 (𝑣) ≥ 𝑄 (𝑣𝑙 ) and therefore 𝑄 (𝑣) ≥ lim inf𝑙→∞𝑄 (𝑣𝑙 ).
Now, we are in position to apply Lemma 2.8 and this yields the claim in case 𝑢 ≠ 0.
Finally, it remains to consider the case 𝑢 = 0. Lemma 2.3 yields𝐺 ′′

3 (0,−𝐹 ′(0); 𝑣) ≥ 0. We consider
an arbitrary sequence (𝑡𝑘 ) ⊂ ℝ+ with 𝑡𝑘 ↘ 0 and choose (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) as in Lemma 3.19. We get

lim
𝑘→∞

𝐺3(0 + 𝑡𝑘𝑣𝑘 ) −𝐺3(0) − 𝑡𝑘 ⟨−𝐹 ′(0), 𝑣𝑘⟩
𝑡2
𝑘
/2

= lim
𝑘→∞

𝜇𝑡𝑘 𝑗3(𝑣𝑘 ) + 𝑡𝑘 ⟨𝐹 ′(0), 𝑣𝑘⟩
𝑡2
𝑘
/2

= lim
𝑘→∞

𝜇 𝑗 ′3(0; 𝑣𝑘 ) + ⟨𝐹 ′(0), 𝑣𝑘⟩
𝑡𝑘/2

= 0,

using (3.26c), 𝑗3(𝑣𝑘 ) = 𝑗 ′3(0; 𝑣𝑘 ) (see (3.19)) and (3.26b). This finishes the proof. □

4 application to a parabolic control problem

In this section, we apply the findings from Section 3 to the optimal control problem

(OCP)
Minimize 𝐽 (𝑢) = 𝐹 (𝑢) + 𝜇 𝑗 (𝑢),

w.r.t. 𝑢 ∈ 𝑈ad,

where the smooth part 𝐹 is given by

𝐹 (𝑢) =
∫
Ω𝑇

𝐿(𝑥, 𝑡, 𝑦𝑢 (𝑥, 𝑡)) d(𝑥, 𝑡) + 𝜈2 ∥𝑢∥
2
𝐿2 (Ω𝑇 )
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and 𝑦𝑢 ∈𝑊 (0,𝑇 ) := {𝑦 ∈ 𝐿2(0,𝑇 ;𝐻 1
0(Ω)) | 𝜕𝑡𝑦 ∈ 𝐿2(0,𝑇 ;𝐻−1(Ω))} is the (weak) solution of the state

equation

(4.1) 𝜕𝑡𝑦𝑢 +𝐴𝑦𝑢 + 𝑎(·, 𝑦𝑢) = 𝑢 in Ω𝑇 , 𝑦𝑢 = 0 on Σ𝑇 , 𝑦𝑢 (·, 0) = 𝑦0 in Ω

As in Section 3, Ω𝑇 := Ω × (0,𝑇 ), where Ω ⊂ ℝ𝑑 is assumed to be non-empty, open, and bounded,
and 𝑇 > 0. Moreover, Σ𝑇 := Γ × (0,𝑇 ). The nonsmooth part 𝑗 is one of the functionals in (1.2) and we
define 𝐺 as in (1.4), i.e., 𝐺 := 𝛿𝑈ad + 𝜇 𝑗 . Note that dom(𝐺) = 𝑈ad. We further assume 𝜇 > 0, 𝜈 ≥ 0 and
the bounds 𝛼, 𝛽 ∈ ℝ satisfy 𝛼 < 𝛽 .

The above control problem has been analyzed in [5]. In order to compare our results, we rely on the
same standing assumptions, which are assumed to hold throughout this section.
Assumption 4.1. We assume that𝐴, 𝑎, 𝐿 together with exponents 𝑝, 𝑞 ∈ [2,∞] satisfy [5, Assumptions 1–
3]. In particular, 𝐴 is an elliptic differential operator and the Nemytskii operators 𝑎 and 𝐿 satisfy the
usual continuity, differentiability and growth conditions depending on 𝑝 and 𝑞.

From this assumption, we get the following two differentiability results.
Lemma 4.2 ([5, Theorem 2.1]). For all 𝑢 ∈ 𝐿𝑝 (0,𝑇 ;𝐿𝑞 (Ω)) the equation (4.1) has a unique solution
𝑦𝑢 ∈ 𝑊 (0,𝑇 ) ∩ 𝐿∞(Ω𝑇 ). Moreover, the solution mapping 𝐻 : 𝐿𝑝 (0,𝑇 ;𝐿𝑞 (Ω)) → 𝑊 (0,𝑇 ) ∩ 𝐿∞(Ω𝑇 ),
defined by 𝐻 (𝑢) := 𝑦𝑢 , is of class 𝐶2. For all elements 𝑢, 𝑣 ∈ 𝐿𝑝 (0,𝑇 ;𝐿𝑞 (Ω)), the function 𝑧𝑣 = 𝐻 ′(𝑢)𝑣 is
the solutions of the problem

(4.2) 𝜕𝑧

𝜕𝑡
+𝐴𝑧 + 𝜕𝑎

𝜕𝑦
(·, 𝑦𝑢)𝑧 = 𝑣 in Ω𝑇 , 𝑧 = 0 on Σ𝑇 , 𝑧 (·, 0) = 0 in Ω,

respectively.

Lemma 4.3 ([5, Theorem 2.3]). The map 𝐹 : 𝐿𝑝 (0,𝑇 ;𝐿𝑞 (Ω)) → ℝ is of class 𝐶2. Moreover, for all
𝑢, 𝑣, 𝑣1, 𝑣2 ∈ 𝐿𝑝 (0,𝑇 ;𝐿𝑞 (Ω)) we have

𝐹 ′(𝑢)𝑣 =
∫
Ω𝑇

(𝜑𝑢 + 𝜈𝑢)𝑣 d(𝑥, 𝑡)(4.3a)

𝐹 ′′(𝑢) (𝑣1, 𝑣2) =
∫
Ω𝑇

{(
𝜕2𝐿

𝜕𝑦2 (𝑥, 𝑡, 𝑦𝑢) − 𝜑𝑢
𝜕2𝑎

𝜕𝑦2 (𝑥, 𝑡, 𝑦𝑢)
)
𝑧𝑣1𝑧𝑣2 + 𝜈𝑣1𝑣2

}
d(𝑥, 𝑡),(4.3b)

where 𝑧𝑣𝑖 = 𝐻
′(𝑢)𝑣𝑖 , 𝑖 = 1, 2, and 𝜑𝑢 ∈𝑊 (0,𝑇 ) ∩ 𝐿∞(Ω𝑇 ) is the solution of

− 𝜕𝜑
𝜕𝑡

+𝐴∗𝜑 + 𝜕𝑎

𝜕𝑦
(·, 𝑦𝑢)𝜑 =

𝜕𝐿

𝜕𝑦
(·, 𝑦𝑢), 𝜑 = 0 on Σ𝑇 , 𝜑 (·,𝑇 ) = 0 in Ω,

where 𝐴∗ is the adjoint operator of 𝐴.

In view of Theorem 3.21, we note that 𝜑𝑢, 𝑢 ∈ 𝐿∞(Ω𝑇 ) implies 𝐹 ′(𝑢) ∈ 𝐿∞(Ω𝑇 ).
For later reference, we state the following very important estimate and the compactness of the

mapping 𝑣 ↦→ 𝑧𝑣 .
Lemma 4.4. Let 𝑢 ∈ 𝑈ad be given. Then, there exists 𝐶𝑍 > 0 satisfying

(4.4) ∥𝑧𝑣 ∥𝐿2 (Ω𝑇 ) ≤ 𝐶𝑍 ∥𝑣 ∥𝐿2 (Ω𝑇 ) ∀𝑣 ∈ 𝐿2(Ω𝑇 ) .

Additionally, if 𝑣𝑘 ⇀ 𝑣 in 𝐿2(Ω𝑇 ) holds, then 𝑧𝑣𝑘 → 𝑧𝑣 in 𝐿2(Ω𝑇 ).
The norm estimate (4.4) follows from standard parabolic estimates and the compactness is a conse-

quence of the celebrated Aubin–Lions lemma, see, e.g., [18].
Finally, we cite the next continuity result for the second derivative of 𝐹 .
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Lemma 4.5 ([5, Lemma 5.2]). Let 𝑢 ∈ 𝑈ad be given. For all 𝜌 > 0 there exists 𝜀 > 0 such that

|𝐹 ′′(𝑢)𝑣2 − 𝐹 ′′(𝑢)𝑣2 | ≤ 𝜌 ∥𝑧𝑣 ∥2
𝐿2 (Ω𝑇 ) ∀𝑣 ∈ 𝐿2(Ω𝑇 ), 𝑢 ∈ 𝑈ad, ∥𝑢 − 𝑢∥𝐿2 (Ω𝑇 ) ≤ 𝜀,

where 𝑧𝑣 = 𝐻 ′(𝑢)𝑣 .
Now, we are in position to check that Assumption 2.1 is satisfied.

Theorem 4.6. The functional 𝐹 maps dom(𝐺) = 𝑈ad to ℝ. Let 𝑢 ∈ 𝑈ad be fixed. The (bi)linear functionals
𝐹 ′(𝑢) and 𝐹 ′′(𝑢) defined on 𝐿𝑝 (0,𝑇 ;𝐿𝑞 (Ω)) can be extended to continuous (bi)linear functionals on
𝐿2(Ω𝑇 ). Then, 𝐹 satisfies the assumptions in Assumption 2.1 with 𝑋 = 𝐿2(Ω𝑇 ) and 𝑥 = 𝑢 ∈ 𝑈ad.

Proof. Since 𝑋 = 𝐿2(Ω𝑇 ) is a separable Hilbert space, Assumption 2.1(i) holds.
It remains to check Assumption 2.1(iii). We already mentioned that 𝜑𝑢, 𝑢 ∈ 𝐿∞(Ω𝑇 ), thus 𝐹 ′(𝑢) ∈

𝐿∞(Ω𝑇 ) ⊂ 𝐿2(Ω𝑇 ). Next, we check that the bilinear form 𝐹 ′′(𝑢) can be extended to 𝐿2(Ω𝑇 ). Due to the
assumptions made on 𝐿 and 𝑎, one can show that the term in parentheses in (4.3b) belongs to 𝐿∞(Ω𝑇 ).
Thus, together with Lemma 4.4, we get

(4.5)
|𝐹 ′′(𝑢) (𝑣1, 𝑣2) | ≤ 𝐶 ∥𝑧𝑣1 ∥𝐿2 (Ω𝑇 ) ∥𝑧𝑣2 ∥𝐿2 (Ω𝑇 ) + 𝜈 ∥𝑣1∥𝐿2 (Ω𝑇 ) ∥𝑣2∥𝐿2 (Ω𝑇 )

≤
(
𝐶𝐶2

𝑍 + 𝜈
)
∥𝑣1∥𝐿2 (Ω𝑇 ) ∥𝑣2∥𝐿2 (Ω𝑇 ) .

Together with the density of 𝐿𝑝 (0,𝑇 ;𝐿𝑞 (Ω)) in 𝐿2(Ω𝑇 ), we can extend 𝐹 ′′(𝑢) continuously to 𝐿2(Ω𝑇 ).
We still have to check (2.1). Let (𝑡𝑘 ) ⊂ ℝ+ and (𝑣𝑘 ) ⊂ 𝐿2(Ω𝑇 ) with 𝑡𝑘 ↘ 0, 𝑣𝑘 ⇀ 𝑣 ∈ 𝐿2(Ω𝑇 ) and

𝑢 + 𝑡𝑘𝑣𝑘 ∈ dom(𝐺) = 𝑈ad be given. For an arbitrary 𝜌 > 0, we utilize Lemmas 4.4 and 4.5 (together
with 𝑡𝑘 ↘ 0 and the boundedness of (𝑣𝑘 ) in 𝐿2(Ω𝑇 )) to get

|𝐹 ′′(𝑢 + 𝜃𝑘𝑡𝑘𝑣𝑘 )𝑣2
𝑘
− 𝐹 ′′(𝑢)𝑣2

𝑘
| ≤ 𝜌

for all 𝜃𝑘 ∈ [0, 1] and all𝑘 large enough (depending on 𝜌). Next, we use a second-order Taylor expansion
and obtain intermediate points (𝜃𝑘 ) ⊂ [0, 1] such that�����𝐹 (𝑢 + 𝑡𝑘𝑣𝑘 ) − 𝐹 (𝑢) − 𝑡𝑘𝐹 ′(𝑢)𝑣𝑘 − 1

2𝑡
2
𝑘
𝐹 ′′(𝑢)𝑣2

𝑘

𝑡2
𝑘

����� = 1
2 |𝐹

′′(𝑢 + 𝜃𝑘𝑡𝑘𝑣𝑘 )𝑣2
𝑘
− 𝐹 ′′(𝑢)𝑣2

𝑘
|

≤ 𝜌

for all 𝑘 large enough (depending on 𝜌). Since 𝜌 > 0 was arbitrary, this shows (2.1). □

Moreover, the following holds for the nonsmooth part of the objective. As in Section 3, the functional
𝐺 can represent any of the functionals 𝐺𝑖 , 𝑖 = 1, 2, 3.
Lemma 4.7. Let 𝑢 be given such that −𝐹 ′(𝑢) ∈ 𝜕𝐺 (𝑢). In case 𝑗 = 𝑗2, we additionally assume 𝑢 ≠ 0. Then,
the functional 𝐺 is strongly twice epidifferentiable at 𝑢 w.r.t. −𝐹 ′(𝑢). Moreover, 𝐺 ′′(𝑢,−𝐹 ′(𝑢); 𝑣) = ∞ for
all 𝑣 ∈ 𝐿2(Ω𝑇 ) \𝐶𝑢 .

Proof. The strong twice epidifferentiability follows from Theorems 3.6, 3.13 and 3.21. In case𝐺 = 𝐺3
we also need −𝐹 ′(𝑢) ∈ 𝐿∞(Ω𝑇 ), which was provided after Lemma 4.3. The final assertion is (2.13). □

Nowwe can prove the second-order necessary conditions. Recall that expressions for𝐺 ′′(𝑢,−𝐹 ′(𝑢); ·)
where given in Theorems 3.6, 3.13 and 3.21.
Theorem 4.8 (Second-Order Necessary Conditions). Let 𝜈 ≥ 0 be given and let 𝑢 ∈ 𝐿2(Ω𝑇 ) be a
local minimizer of (OCP). In case 𝑗 = 𝑗2, we additionally assume 𝑢 ≠ 0. Then, −𝐹 ′(𝑢) ∈ 𝜕𝐺 (𝑢) and
𝐹 ′′(𝑢)𝑣2 +𝐺 ′′(𝑢,−𝐹 ′(𝑢); 𝑣) ≥ 0 holds for all 𝑣 ∈ 𝐶𝑢 .
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Proof. We apply Theorem 2.5 with the setting 𝑋 = 𝐿2(Ω𝑇 ), 𝑥 := 𝑢, 𝐹 := 𝐹 , 𝐺 := 𝛿𝑈ad + 𝜇 𝑗𝑖 , for some
𝑖 = 1, 2, 3, 𝑐 := 0. Hence, (2.4) holds. The first-order condition Theorem 2.12 yields −𝐹 ′(𝑢) ∈ 𝜕𝐺 (𝑢).
Additionally, Theorem 2.5 (ii) is satisfied, see Lemma 4.7. □

Let us compare this result with [5, Theorem 4.3]. We have already seen that the critical cones in both
results coincide, see Lemma 3.2. Further, it can be checked that the expressions for 𝐺 ′′(𝑢,−𝐹 ′(𝑢); 𝑣)
given in Theorems 3.6, 3.13 and 3.21 coincide with the corresponding expressions for 𝑗 ′′𝑖 (𝑢; 𝑣2) given in
[5, (4.5)–(4.7)]. Hence, both results coincide. Note that [5, Theorem 4.3] also addresses the case 𝑢 = 0 if
𝑗 = 𝑗2, but the proof is flawed. Indeed, it is claimed (without any justification) that for arbitrary 𝑣 ∈ 𝐶𝑢
we have 𝑣𝑘 := P[−𝑘,𝑘 ] (𝑣) ∈ 𝐶𝑢 , but Example 3.14 shows that this might fail.

In order to apply the second-order sufficient assumptions, we need an additional lemma.
Lemma 4.9. In case 𝜈 > 0, the mapping

𝐿2(Ω𝑇 ) ∋ 𝑣 ↦→ 𝐹 ′′(𝑢)𝑣2 =

∫
Ω𝑇

(
𝜕2𝐿

𝜕𝑦2 (𝑥, 𝑡, 𝑦𝑢) − 𝜑𝑢
𝜕2𝑎

𝜕𝑦2 (𝑥, 𝑡, 𝑦𝑢)
)
𝑧2
𝑣 d(𝑥, 𝑡) + 𝜈 ∥𝑣 ∥2

𝐿2 (Ω𝑇 )

is a Legendre form.

Proof. Due to the compactness result Lemma 4.4, the first addend in 𝐹 ′′(𝑢)𝑣2 is sequentially weakly
continuous. Applying [2, Proposition 3.76] yields the claim. □

In case 𝜈 = 0, the map 𝑣 ↦→ 𝐹 ′′(𝑢)𝑣2 is sequentially weakly continuous and, thus, not a Legendre
form.
Theorem 4.10 (Second-Order Sufficient Condition).We assume 𝜈 > 0. Further suppose that 𝑢 ∈ 𝑈ad
satisfies −𝐹 ′(𝑢) ∈ 𝜕𝐺 (𝑢) and

(4.6) 𝐹 ′′(𝑢)𝑣2 +𝐺 ′′(𝑢,−𝐹 ′(𝑢); 𝑣) > 0 ∀𝑣 ∈ 𝐶𝑢 \ {0}.

Then, there exist 𝜀, 𝛿 > 0 such that

(4.7) 𝐽 (𝑢) ≥ 𝐽 (𝑢) + 𝛿4 ∥𝑢 − 𝑢∥2
𝐿2 (Ω𝑇 ) ∀𝑢 ∈ 𝑈ad, ∥𝑢 − 𝑢∥𝐿2 (Ω𝑇 ) ≤ 𝜀.

Proof. We will show the requirements for the application of Theorem 2.6. Lemma 4.9 yields the
sequential weak lower semicontinuity of 𝑣 ↦→ 𝐹 ′′(𝑢)𝑣2. Condition (2.6) follows from (4.6) and −𝐹 ′(𝑢) ∈
𝜕𝐺 (𝑢), cf. the proof of Corollary 2.21. Lemma 4.9 in combination with Lemma 2.7 shows that (NDC)
holds. Now, the claim follows from Theorem 2.6. □

Let us compare this result with the second-order results in [5, Section 5] in the case 𝜈 > 0. For the
functional 𝑗1 we obtain an identical result.

For the functional 𝑗2, we get the same result in case 𝑢 ≠ 0. Note that Theorem 2.6 is still applicable
in case 𝑢 = 0, although we do not know the precise values of𝐺 ′′

2 (𝑢,−𝐹 ′(𝑢); ·). Our sufficient condition
reads

𝐹 ′′(𝑢)𝑣2 +𝐺 ′′(𝑢,−𝐹 ′(𝑢); 𝑣) > 0 ∀𝑣 ∈ 𝐶𝑢 \ {0}

and due to 𝐺 ′′(𝑢,−𝐹 ′(𝑢); 𝑣) ≥ 0, this condition is weaker than the sufficient condition

𝐹 ′′(𝑢)𝑣2 > 0 ∀𝑣 ∈ 𝐶𝑢 \ {0}

given in [5, Theorem 5.8], see also [5, (4.6)].
For the functional 𝑗3, [5, Theorem 5.12] shows the quadratic growth only in an 𝐿∞(Ω;𝐿2(0,𝑇 ))-ball,

whereas our result implies the growth in the larger 𝐿2(Ω𝑇 )-ball.
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We also note that [5, Section 5] contains sufficient optimality conditions in case 𝜈 = 0 which were
not under investigation here. In fact, in this case, the theory from Section 2 cannot be applied in
the space 𝐿2(Ω𝑇 ), since (NDC) cannot be satisfied. For a similar problem with 𝜇 = 0, i.e., without a
sparsity-inducing term, it was shown in [12] that (under a certain regularity assumption) a second-order
analysis can be performed in a space of measures. In [20, Section 5.1], this analysis was extended to
𝜇 > 0 in case of the functional 𝑗1. The extension to 𝑗2 and 𝑗3 is subject to future work.
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