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a topological derivative-based algorithm to solve
optimal control problems with 𝐿0(Ω) control cost

Daniel Wachsmuth∗

Abstract In this paper, we consider optimization problems with 𝐿0-cost of the controls. Here,
we take the support of the control as independent optimization variable. Topological derivatives
of the corresponding value function with respect to variations of the support are derived. These
topological derivatives are used in a novel gradient descent algorithm with Armijo line-search.
Under suitable assumptions, the algorithm produces a minimizing sequence.

Keywords Topological derivative, control support optimization, sparse optimal control, 𝐿0 opti-
mization.
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1 introduction

In this paper we are interested in the following optimal control problem: Minimize

(1.1) min 1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥2
𝐿2 (Ω) + 𝛽 ∥𝑢∥0

over all (𝑦,𝑢) satisfying

(1.2)
−Δ𝑦 = 𝑢 on Ω

𝑦 = 0 on 𝜕Ω

and

(1.3) 𝑢𝑎 ≤ 𝑢 ≤ 𝑢𝑏 .

Here, ∥𝑢∥0 is the measure of the support of 𝑢. This optimal control problem can be interpreted in
the context of optimal actuator placement: Find a (possibly small) measurable set 𝐴 ⊆ Ω such that
controls supported on 𝐴 can still minimize a certain objective functional. We remark that the elliptic
equation in (1.2) can be replaced by other types of partial differential equations, for example parabolic
or hyperbolic equations. A control support optimization subject to the wave equation with terminal
contraints is performed in [30, 31].
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In this work, we will take the support of the control 𝑢 as own optimization variable 𝐴 ⊆ Ω. In
addition, we will allow for a more general control problem as above. The abstract problem we are
interested in is: Minimize with respect to 𝑢 ∈ 𝐿2(Ω) and measurable 𝐴 ⊆ Ω the functional

(1.4) 𝐽 (𝑢,𝐴) := 1
2 ∥𝑆 (𝜒𝐴𝑢) − 𝑦𝑑 ∥

2
𝑌 +

∫
Ω
𝑔(𝑢 (𝑥)) + 𝜒𝐴 (𝑥)𝛽 (𝑥) d𝑥,

where 𝑆 : 𝐿2(Ω) → 𝑌 is a solution operator of a linear partial differential equation, 𝑌 is a Hilbert space,
𝑦𝑑 ∈ 𝑌 is given, 𝑔 : ℝ → ℝ̄ is a strongly convex function, and 𝛽 ∈ 𝐿1(Ω). Then for fixed measurable
𝐴 ⊆ Ω the map 𝑢 ↦→ 𝐽 (𝑢,𝐴) is convex, which is crucial for our analysis. As already mentioned, we can
allow for time-dependent differential equations as well, see Examples 2.2 and 2.3 below.
The main contribution of this paper is to derive an algorithm to solve (1.4). In contrast to existing

approaches [27, 28, 39], the algorithm proposed in this paper produces a minimizing sequence for (1.4).
Such an algorithm is not available in the literature.
Given 𝐴 ⊆ Ω measurable, the functional 𝑢 ↦→ 𝐽 (𝑢,𝐴) admits minimizers, and we can study the

value function

(1.5) 𝐽 (𝐴) := min
𝑢∈𝐿2 (Ω)

𝐽 (𝑢,𝐴),

where the minimization is carried out over measurable sets 𝐴 ⊆ Ω. We will investigate topological
derivatives of the value function. In additions, we are interested in the shape optimization problem

(1.6) min
𝐴⊆Ω

𝐽 (𝐴) .

The topological derivative 𝐷𝐽 (𝐴) is the main result of Theorem 4.2. It can be extended to non-strongly
convex 𝑔, see Theorem 5.5. These results generalize available results in the literature [3, 28, 30, 31],
as we allow for non-smooth 𝑔 and incorporate control constraints. In comparison to [3, 28], we will
use less smoothness assumptions, in particular no continuity of controls and adjoints is required. An
optimality condition for (1.6) can be given in terms of the topological derivatives as follows: If 𝐵 is a
solution of (1.6) then 𝐷𝐽 (𝐵) ≥ 0, see Theorem 4.3.
The concept of topological derivatives goes back to the seminal work [36]. It was applied to an

optimal control problem in [37], where the topological derivative with respect to changes of the domain
but not of the control domain was computed. In these works, asymptotic analysis with respect to radius
of small inclusions/exclusions was performed. For an introduction and overview of available results
regarding topological derivatives, we refer to the monographs [32, 33] and the recent introductory
exposition [4].

While topological perturbations of source terms is a well understood topic, see, e.g., [4, Theorem 2.1],
this is not true for topological perturbations of the control domain in control problems like (1.6). The
topological derivative of a value function of an optimal control problem subject to the wave equation
with terminal constraints was given in [30, 31] for 𝐴 = Ω without proof. Topological derivatives
of value functions of optimal control problems were derived in [28] for problems without control
constraints, however the result and its proof are wrong. In particular, their topological derivative
evaluated at 𝐴 is zero on the complement of 𝐴 for 𝐿2-controls in space, [28, Corollary 4.1], which was
corrected in the mean-time with a new version on arxiv. In addition, the underlying abstract theory
only allows to compute the topological derivative at one fixed point, which necessitates continuity
assumptions on that point 𝑥 ∈ Ω. In our proof, we get the topological derivative at almost all 𝑥 ∈ Ω at
once using the Lebesgue differentiation theorem. Moreover, we can allow for control constraints and
non-smooth functions 𝑔.
In addition to the development of the topological derivative, we also investigate an algorithm to

solve the problem at hand. In the algorithm, variations of a given set 𝐴𝑘 ⊆ Ω are performed at points,
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where the topological derivative 𝐷𝐽 (𝐴𝑘 ) has the wrong sign. Let 𝜌𝑘 := 𝐷𝐽 (𝐴𝑘 )− be the residual in
the optimality condition for (1.6), and set 𝑅𝑘 := {𝑥 : 𝜌𝑘 ≠ 0}. Then the new iterate 𝐴𝑘+1 is defined as
𝐴𝑘+1 := 𝐴𝑘△𝐷𝑘,𝑡 , where △ denotes the symmetric difference of sets. The set 𝐷𝑘,𝑡 ⊆ 𝑅𝑘 is chosen such
that

∥𝜌𝑘 ∥𝐿1 (𝐷𝑘,𝑡 ) ≥ 𝑡 ∥𝜌𝑘 ∥𝐿1 (Ω) , |𝐷𝑘,𝑡 | ≤ 𝑡 |𝑅𝑘 |,

where 𝑡 ∈ (0, 1] is determined by a linesearch strategy to guarantee a sufficient decrease of 𝐽 (𝐴𝑘+1).
These choices enable a satisfying convergence theory: the method produces a minimizing sequence,
see Theorem 6.7. A related algorithm can be found in [13, 14]. We comment on the differences to our
method in Remark 6.1.

Our choice of 𝐷𝑘,𝑡 is different to the classical topological optimization algorithm, where one sets

𝐷𝑘,𝑡 := {𝑥 : |𝜌𝑘 (𝑥) | ≥ 𝑡 ∥𝜌𝑘 ∥𝐿∞ (Ω) }.

The parameter 𝑡 is determined to enforce a volume constraint, see, e.g., [12, 20, 21], or to ensure decrease
of the functional, e.g., [10, 26, 23, 24]. An alternative algorithmic idea is to introduce topological changes
near local maxima of |𝜌𝑘 |, see e.g., [1, 7]. No convergence results are given in these works.

Another method was introduced in [5]: there a (simplified) level-set method was suggested, where
the evolution of the level-set function is done using the topological derivative. This method is applied
to a wide variety of problems, see e.g., [3, 5, 19, 34]. An convergence proof can be found in [3]. However,
for the proof the functional has to be replaced by its 𝐻𝑠-lower semicontinuous envelope.

Topological optimization problems are related to binary control or 0-1-optimization problems. This
connection is exploited in [2, 6]. An trust-region method to solve such problems is analyzed in the
recent contributions [22, 29], where it is proven that a certain criticality measure converges to zero
during the iteration, which is comparable to our result.

Let us emphasize that the convergence analysis in this paper is enabled by the particular structure of
the problem. It is expected that the analysis carries over to related problems (e.g., source identification
problems). However, it is unclear how to transfer these results to harder problems, where the optimiza-
tion variables appear in the main part of the operator as in, e.g., material or topology optimization
problems. In fact, the question of convergence of topological derivative-based methods is mentioned
as an open problem in [34, Section 5].

notation

We will denote the Lebesgue measure of a measurable set 𝐴 ⊆ ℝ𝑑 by |𝐴|. For 𝑟 > 0 and 𝑥 ∈ ℝ𝑑 , let
𝐵𝑟 (𝑥) be the open ball with radius 𝑟 centered at 𝑥 . Its Lebesgue measure will be denoted by |𝐵𝑟 |. We set
ℝ̄ := ℝ ∪ {+∞}. For a function 𝑔 : ℝ → ℝ̄, we set dom𝑔 := {𝑢 ∈ ℝ : 𝑔(𝑢) < +∞}. The subdifferential
of a convex function 𝑔 at𝑢 will be denoted by 𝜕𝑔(𝑢). We will write 𝑥+ := max(𝑥, 0) and 𝑥− := min(𝑥, 0)
for 𝑥 ∈ ℝ.

convention

In the following, we will always take Lebesgue measurable subsets of Ω only, without explicitly
mentioning.

2 assumptions and preliminary results

Throughout this paper, we will work with the following assumptions concerning the problem (1.4)

(A1) Ω ⊆ ℝ𝑑 is Lebesgue measurable with |Ω | < ∞.
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(A2) 𝑌 is a real Hilbert space, 𝑆 ∈ L(𝐿2(Ω), 𝑌 ), 𝑦𝑑 ∈ 𝑌 .

(A3) 𝑔 : ℝ → ℝ̄ is proper, convex, lower semi-continuous. In addition, 𝑔(𝑢) ≥ 0 for all 𝑢 ∈ ℝ, and
𝑔(𝑢) = 0 if and only if 𝑢 = 0.

(A4) There is 𝜇 > 0 such that

𝜇

2𝜆(1 − 𝜆) |𝑢 − 𝑣 |2 + 𝑔(𝜆𝑢 + (1 − 𝜆)𝑣) ≤ 𝜆𝑔(𝑢) + (1 − 𝜆)𝑔(𝑣)

for all 𝑢, 𝑣 ∈ dom𝑔, 𝜆 ∈ (0, 1).

(A5) There is 𝑞 > 6 such that 𝑆∗𝑆 ∈ L(𝐿2(Ω), 𝐿𝑞 (Ω)) and 𝑆∗𝑦𝑑 ∈ 𝐿𝑞 (Ω), where 𝑆∗ ∈ L(𝑌, 𝐿2(Ω))
denotes the Hilbert space-adjoint of 𝑆 .

(A6) 𝛽 ∈ 𝐿1(Ω).

Let us comment on these assumptions. As we plan to use the Lebesgue differentiation theorem,
we assume that the underlying measure space is induced by the Lebesgue measure of ℝ𝑑 in (A1).
Conditions (A2), (A3), (A4) imply the well-posedness of the problem min𝑢∈𝐿2 (Ω) 𝐽 (𝑢,𝐴) for fixed 𝐴.
Assumption (A4) is strong convexity of the function 𝑔. The results of the paper are still valid in the
non-strongly convex case (𝜇 = 0) under slightly strengthened assumptions on 𝑔 and 𝑆 , we will comment
on this in Section 5. Condition (A5) is a mild assumption on the smoothing properties of the operators
𝑆 and 𝑆∗. It implies that certain remainder terms in the expansion of topological derivatives are of
higher order, see Theorem 4.2.
We will explicitly mention in upcoming, important results (theorems and propositions), which of

these assumptions are used. If the strong convexity assumption is not mentioned then 𝜇 can be taken
equal to zero.
Example 2.1. Let us comment on the fulfillment of these assumptions for the introductory example
(1.1)–(1.3). Let Ω ⊆ ℝ𝑑 be a bounded domain. The partial differential equation (1.2) is uniquely solvable
in the weak sense, so that the mapping 𝑆 : 𝑢 ↦→ 𝑦 is linear and continuous from 𝐿2(Ω) to 𝐻 1

0(Ω).
The functional (1.1) requires the choice 𝑌 := 𝐿2(Ω), so that 𝑆 will be considered as operator on 𝐿2(Ω),
which makes 𝑆 self-adjoint. Due to the classical result [38], 𝑆 is continuous from 𝐿2(Ω) to 𝐿∞(Ω) if
𝑑 ≤ 3. By [9, Theorem 18], 𝑆 and 𝑆∗ are in L(𝐿2(Ω), 𝐿10/3(Ω)) and L(𝐿10/3(Ω)), 𝐿10(Ω)) for all 𝑑 ≤ 10.
And (A2) and (A5) are satisfied for this example provided 𝑦𝑑 ∈ 𝐿10/3(Ω) and 𝑑 ≤ 10.
Example 2.2. The following distributed control problem subject to a parabolic equation can also be
put into the framework above: Minimize

∫
𝑄

1
2 (𝑦 − 𝑦𝑑 )2 + 𝑔(𝑢) d𝑥 d𝑡 subject to the parabolic equation

𝑦𝑡 −Δ𝑦 = 𝑢 in𝑄 , 𝑦 = 0 on (0,𝑇 ) ×𝜕𝐷 , and 𝑦 (·, 0) = 0 on𝐷 , where𝐷 ⊆ ℝ𝑑 is a bounded domain,𝑇 > 0,
and 𝑄 := (0,𝑇 ) × 𝐷 . We set 𝑌 := 𝐿2(𝑄). The corresponding solution operator 𝑆 is continuous from
𝐿2(𝑄) to 𝐿2(0,𝑇 ;𝐻 1

0(𝐷)) ∩ 𝐻 1(0,𝑇 ;𝐻−1(𝐷)). Its adjoint operator 𝑆∗ is given as the solution operator
of the adjoint equation, i.e., 𝑝 = 𝑆∗𝑧, where 𝑝 solves −𝑝𝑡 −Δ𝑝 = 𝑧, 𝑝 (𝑇 ) = 0. According to [11, Theorem
2.3], 𝑆 and 𝑆∗ are in L(𝐿2(𝑄), 𝐿10/3(𝑄)) and L(𝐿10/3(𝑄)), 𝐿10(𝑄)) for all 𝑑 ≤ 8. If 𝑦𝑑 ∈ 𝐿10/3(𝑄) then
(A2) and (A5) are fulfilled for all 𝑑 ≤ 8. Note that in this example the control domain Ω has to be set
to Ω := 𝑄 = (0,𝑇 ) × 𝐷 .
Example 2.3. One can also consider distributed control of the wave equation, where we are interested
in minimizing the same functional as in Example 2.2 subject to the wave equation 𝑦𝑡𝑡 − Δ𝑦 = 𝑢 in
𝑄 , 𝑦 = 0 on (0,𝑇 ) × 𝜕𝐷 , and 𝑦 (·, 0) = 𝑦𝑡 (·, 0) = 0 on 𝐷 , where 𝐷 ⊆ ℝ𝑑 is a bounded domain, 𝑇 > 0,
and 𝑄 := (0,𝑇 ) × 𝐷 . Given 𝑢 ∈ 𝐿2(𝑄), there is a unique weak solution 𝑦 ∈ 𝐿∞(0,𝑇 ;𝐻 1

0(𝐷)), where
𝐿∞(0,𝑇 ;𝐻 1

0(𝐷)) is continuously embedded into 𝐿𝑞 (𝑄) for all 𝑞 < ∞ if 𝑑 ≤ 2. And (A2) and (A5) are
fulfilled for 𝑑 ≤ 2. Using improved regularity results and Strichartz estimates, see, e.g., [18, Section
7.2], it should be possible to relax the requirement on 𝑑 .
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2.1 existence of minimizers of 𝐽 for fixed 𝐴

Let 𝐴 ⊆ Ω be given. Here, we consider the problem

(P𝐴) min
𝑢∈𝐿2 (Ω)

𝐽 (𝑢,𝐴) .

where 𝐽 is given by (1.4). Note that due to the construction of 𝐽 and (A3), we have

(2.1) 𝐽 (𝜒𝐴𝑢,𝐴) ≤ 𝐽 (𝑢,𝐴)

for all 𝑢 ∈ 𝐿2(Ω). Due to strong convexity of 𝑔 and 𝑔(0) = 0 by (A3), (A4), we have

(2.2) 𝑔(𝑢) ≥ 𝜇

2 |𝑢 |
2 ∀𝑢 ∈ dom𝑔.

Proposition 2.4. Assume (A1), (A2), (A3), (A4). Let 𝐴 ⊆ Ω be given. Then there is a uniquely determined
minimizer 𝑢𝐴 of (P𝐴). Moreover,

(2.3) 𝜒𝐴𝑢𝐴 = 𝑢𝐴 .

Proof. Due to (2.2), minimizing sequences of 𝐽 (·, 𝐴) are bounded in 𝐿2(Ω). In addition, 𝑢 ↦→ 𝐽 (𝑢,𝐴) is
weakly lower semi-continuous from 𝐿2(Ω) to ℝ because of (A2) and (A3). The existence of solutions
follows now by standard arguments. Uniqueness of solutions is a consequence of strong convexity of
g (A4). The last claim follows from (2.1). □

In all what follows, we will not make use of the unique solvability of (P𝐴). We will just use that 𝑢𝐴
is any solution of (P𝐴).

2.2 optimality conditions for (P𝐴)

Let 𝐴 ⊆ Ω be given, and let 𝑢𝐴 be a solution of (P𝐴). Let us denote the associated state by

(2.4) 𝑦𝐴 := 𝑆 (𝜒𝐴𝑢)

and adjoint state by

(2.5) 𝑝𝐴 := 𝑆∗(𝑦𝐴 − 𝑦𝑑 ) = 𝑆∗(𝑆 (𝜒𝐴𝑢) − 𝑦𝑑 ) .

Let 𝑢 ∈ 𝐿2(Ω) and 𝐵 ⊆ Ω be given. Let 𝑦 := 𝑆 (𝜒𝐵𝑢). Then by elementary calculations, we find

(2.6)

1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝑌 − 1
2 ∥𝑦𝐴 − 𝑦𝑑 ∥2

𝑌 = (𝑦𝐴 − 𝑦𝑑 , 𝑦 − 𝑦𝐴)𝑌 + 1
2 ∥𝑦 − 𝑦𝐴∥2

𝑌

= (𝑝𝐴, 𝜒𝐵𝑢 − 𝜒𝐴𝑢𝐴) +
1
2 ∥𝑦 − 𝑦𝐴∥2

𝑌 .

For 𝐵 = 𝐴, we get

1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝑌 − 1
2 ∥𝑦𝐴 − 𝑦𝑑 ∥2

𝑌 = (𝑝𝐴, 𝜒𝐴 (𝑢 − 𝑢𝐴)) +
1
2 ∥𝑦 − 𝑦𝐴∥2

𝑌 .

Hence, 𝜒𝐴𝑝𝐴 ∈ 𝐿2(Ω) is the Fréchet derivative of 𝑢 ↦→ 1
2 ∥𝑆 (𝜒𝐴𝑢) − 𝑦𝑑 ∥

2
𝑌
at 𝑢𝐴.
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Proposition 2.5. Assume (A1), (A2), (A3). Let 𝐴 ⊆ Ω and let 𝑢𝐴 be a solution of (P𝐴). Let 𝑝𝐴 be given by
(2.5). Then it holds

(2.7) −𝜒𝐴 (𝑥)𝑝𝐴 (𝑥) ∈ 𝜕𝑔(𝑢 (𝑥)) for almost all 𝑥 ∈ Ω

and

(2.8) 𝑢𝐴 (𝑥) = arg min
𝑢∈ℝ

𝜒𝐴 (𝑥)𝑝𝐴 (𝑥) · 𝑢 + 𝑔(𝑢) for almost all 𝑥 ∈ Ω.

Proof. Let us denote 𝐺 (𝑢) :=
∫
Ω
𝑔(𝑢 (𝑥)) d𝑥 . As argued above, 𝜒𝐴𝑝𝐴 ∈ 𝐿2(Ω) is the Fréchet derivative

of 𝑢 ↦→ 1
2 ∥𝑆 (𝜒𝐴𝑢) − 𝑦𝑑 ∥

2
𝑌
at 𝑢𝐴. Then by well-known results, see, e.g., [17, Proposition II.2.2], we get

−𝜒𝐴𝑝𝐴 ∈ 𝜕𝐺 (𝑢𝐴). Using [35, Corollary 3E], this is equivalent to the pointwise a.e. inclusion (2.7), which
in turn is equivalent to (2.8). □

Condition (2.8) can be interpreted as Pontryagin’s maximum principle for (P𝐴).

2.3 boundedness results for solutions of (P𝐴)
In this section, we will derive bounds on (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) that are uniform with respect to 𝐴 ⊆ Ω.
Lemma 2.6. There is𝑀 > 0 such that

∥𝑦𝐴 − 𝑦𝑑 ∥𝑌 + ∥𝑢𝐴∥𝐿2 (Ω) ≤ 𝑀

for all 𝐴 ⊆ Ω.

Proof. This follows directly from 𝐽 (𝐴,𝑢𝐴) ≤ 𝐽 (𝐴, 0) and (2.2). □

Corollary 2.7. There is 𝑃 > 0 such that

∥𝑢𝐴∥𝐿𝑞 (Ω) ≤ 𝑃, ∥𝑝𝐴∥𝐿𝑞 (Ω) ≤ 𝑃

for all 𝐴 ⊆ Ω, where 𝑞 is from (A5).

Proof. First, we have

∥𝑝𝐴∥𝐿𝑞 (Ω) ≤ ∥𝑆∗𝑆 ∥L(𝐿2 (Ω),𝐿𝑞 (Ω) ) ∥𝑢𝐴∥𝐿2 (Ω) + ∥𝑆∗𝑦𝑑 ∥𝐿𝑞 (Ω)

≤ ∥𝑆∗𝑆 ∥L(𝐿2 (Ω),𝐿𝑞 (Ω) )𝑀 + ∥𝑆∗𝑦𝑑 ∥𝐿𝑞 (Ω)

by (A5) with𝑀 as in Lemma 2.6. Using (2.8) with 𝑢 = 0, (A3), and (2.2), we have for almost all 𝑥 ∈ Ω

𝜇

2 |𝑢𝐴 (𝑥) |
2 ≤ 𝑔(𝑢𝐴 (𝑥)) ≤ −𝜒𝐴 (𝑥)𝑝𝐴 (𝑥)𝑢𝐴 (𝑥)

which implies 𝜇

2 |𝑢𝐴 (𝑥) | ≤ |𝑝𝐴 (𝑥) | and ∥𝑢𝐴∥𝐿𝑞 (Ω) ≤ 2𝜇−1∥𝑝𝐴∥𝐿𝑞 (Ω) . □

3 analysis of the value function

In this section, we will investigate stability properties of 𝐴 ↦→ (𝑢𝐴, 𝑦𝐴, 𝑝𝐴), where 𝑦𝐴 and 𝑝𝐴 solve
(2.4) and (2.5). The goal is to derive formulas for the topological derivative of 𝐴 ↦→ 𝐽 (𝐴), where 𝐽 (𝐴)
is the value function defined in (1.5) by

𝐽 (𝐴) = min
𝑢∈𝐿2 (Ω)

𝐽 (𝑢,𝐴) .

For brevity, we refer to tuples (𝑢𝐴, 𝑦𝐴, 𝑝𝐴), where 𝑢𝐴 solves (P𝐴) and 𝑦𝐴, 𝑝𝐴 are given by (2.4) and (2.5)
as solutions of (P𝐴).
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3.1 sensitivity analysis of (P𝐴) with respect to 𝐴

Let us start with the following preliminary expansion.
Lemma 3.1. Let𝐴, 𝐵 ⊆ Ω, and let (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵) be solutions of (P𝐴) and (P𝐵). Then it holds

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌

=

∫
Ω
𝑔(𝑢𝐴) − 𝑔(𝑢𝐵) + 𝜒𝐴𝑝𝐴 (𝑢𝐴 − 𝑢𝐵) + (𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝑝𝐴𝑢𝐵) d𝑥 .

Proof. Doing the expansion of 𝑦 ↦→ 1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝑌
similarly as in (2.6), we have

(3.1) 𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 =

∫
Ω
𝑔(𝑢𝐴) − 𝑔(𝑢𝐵) + 𝑝𝐴 (𝜒𝐴𝑢𝐴 − 𝜒𝐵𝑢𝐵) + (𝜒𝐴 − 𝜒𝐵)𝛽 d𝑥 .

In addition, we have∫
Ω
𝑝𝐴 (𝜒𝐴𝑢𝐴 − 𝜒𝐵𝑢𝐵) d𝑥 =

∫
Ω
𝜒𝐴𝑝𝐴 (𝑢𝐴 − 𝑢𝐵) − (𝜒𝐵 − 𝜒𝐴)𝑝𝐴𝑢𝐵 d𝑥,

which is the claim. □

Lemma 3.2. Let𝐴, 𝐵 ⊆ Ω, and let (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵) be solutions of (P𝐴) and (P𝐵). Then it holds

𝜇∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (Ω) + ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 ≤
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝑝𝐴𝑢𝐵 − 𝑝𝐵𝑢𝐴) d𝑥

with 𝜇 ≥ 0 as in (A4).

Proof. Due to Lemma 3.1, we have

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌

=

∫
Ω
𝑔(𝑢𝐴) − 𝑔(𝑢𝐵) + 𝜒𝐴𝑝𝐴 (𝑢𝐴 − 𝑢𝐵) + (𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝑝𝐴𝑢𝐵) d𝑥

as well as

𝐽 (𝐵,𝑢𝐵) − 𝐽 (𝐴,𝑢𝐴) +
1
2 ∥𝑦𝐴 − 𝑦𝐵 ∥2

𝑌

=

∫
Ω
𝑔(𝑢𝐵) − 𝑔(𝑢𝐴) + 𝜒𝐵𝑝𝐵 (𝑢𝐵 − 𝑢𝐴) + (𝜒𝐵 − 𝜒𝐴) (𝛽 + 𝑝𝐵𝑢𝐴) d𝑥 .

Adding both equations gives

∥𝑦𝐴 − 𝑦𝐵 ∥2
𝑌 =

∫
Ω
(𝜒𝐴𝑝𝐴 − 𝜒𝐵𝑝𝐵) (𝑢𝐴 − 𝑢𝐵) + (𝜒𝐴 − 𝜒𝐵) (𝑝𝐴𝑢𝐵 − 𝑝𝐵𝑢𝐴) d𝑥 .

Due the inequality in (A4) and the optimality condition (2.7), we have

(3.2)
∫
Ω
(𝜒𝐴𝑝𝐴 − 𝜒𝐵𝑝𝐵) (𝑢𝐴 − 𝑢𝐵) d𝑥 ≤ −𝜇∥𝑢𝐴 − 𝑢𝐵 ∥2

𝐿2 (Ω) ,

and the claim is proven. □
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Note that the previous result remains true with 𝜇 = 0 in the non-strongly convex case. Now we can
prove the main result of this section, which is a stability estimate of solutions of (P𝐴) with respect to
variations of 𝐴 (or 𝜒𝐴). In the proof, we will use the fact that for characteristic functions

∥𝜒𝐴 − 𝜒𝐵 ∥𝐿𝑠 (Ω) = ∥𝜒𝐴 − 𝜒𝐵 ∥
1
𝑠

𝐿1 (Ω) ∀𝑠 ∈ (1,∞).

Theorem 3.3. Assume (A1), (A2), (A3), (A4), (A5). Then there is a constant𝐾 > 0 such that for all𝐴, 𝐵 ⊆ Ω

∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) + ∥𝑢𝐴 − 𝑢𝐵 ∥𝐿2 (Ω) + ∥𝑦𝐵 − 𝑦𝐴∥𝑌 ≤ 𝐾 ∥𝜒𝐴 − 𝜒𝐵 ∥
1
2 −

1
𝑞

𝐿1 (Ω) ,

where (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵) are solutions of (P𝐴) and (P𝐵), and 𝑞 is from (A5).

Proof. From (A5), we find

∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) ≤ ∥𝑆∗𝑆 ∥L(𝐿2 (Ω),𝐿𝑞 (Ω) ) ∥𝑢𝐴 − 𝑢𝐵 ∥𝐿2 (Ω) .

Define 𝜇′ := 𝜇/∥𝑆∗𝑆 ∥2
L(𝐿2 (Ω),𝐿𝑞 (Ω) ) . Let 𝑠 be such that 1

𝑠
+ 1

𝑞
+ 1

2 = 1. From the inequality of Lemma 3.2,
we obtain with Hölder’s inequality

𝜇′

2 ∥𝑝𝐴 − 𝑝𝐵 ∥2
𝐿𝑞 (Ω) +

𝜇

2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (Ω) + ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌

≤ 𝜇∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (Ω) + ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌

≤
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝑝𝐴𝑢𝐵 − 𝑝𝐵𝑢𝐴) d𝑥

≤ ∥𝜒𝐴 − 𝜒𝐵 ∥𝐿𝑠 (Ω) (∥𝑝𝐴∥𝐿𝑞 (Ω) ∥𝑢𝐵 − 𝑢𝐴∥𝐿2 (Ω) + ∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) ∥𝑢𝐴∥𝐿2 (Ω) )

≤ (𝑃 +𝑀)∥𝜒𝐴 − 𝜒𝐵 ∥
1
𝑠

𝐿1 (Ω) (∥𝑢𝐵 − 𝑢𝐴∥𝐿2 (Ω) + ∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) ),

where 𝑃 and𝑀 are from Corollary 2.7 and Lemma 2.6, and the claim is proven. □

3.2 expansions of the value function

Let us define 𝐻 : ℝ ×ℝ → ℝ̄ by
𝐻 (𝑢, 𝑝) := 𝑝 · 𝑢 + 𝑔(𝑢) .

This function reminds of the Hamiltonian of optimal control problems. In the sequel, we need its
infimum with respect to 𝑢,

min
𝑢∈ℝ

𝐻 (𝑢, 𝑝) = min
𝑢∈ℝ

(𝑝 · 𝑢 + 𝑔(𝑢)) = − sup
𝑢∈ℝ

(−𝑝 · 𝑢 − 𝑔(𝑢)) = −𝑔∗(−𝑝),

where 𝑔∗ is the convex conjugate to 𝑔. The existence of this minimum follows from the properties of 𝑔
in (A3) and the coercivity estimate (2.2). Let us denote this function by 𝐻 , i.e.,

𝐻 (𝑝) := min
𝑢∈ℝ

𝐻 (𝑢, 𝑝) = −𝑔∗(−𝑝) .

If (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) is a solution of (P𝐴) then we have 𝐻 (𝑝𝐴 (𝑥)) = 𝐻 (𝑢𝐴 (𝑥), 𝑝𝐴 (𝑥)) for almost all 𝑥 ∈ 𝐴 by
(2.8). We will need some Lipschitz estimates of 𝐻 .
Lemma 3.4. Let 𝐴, 𝐵 ⊆ Ω, and let (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵) be solutions of (P𝐴) and (P𝐵). Then we
have

∥𝐻 (𝑝𝐴) − 𝐻 (𝑝𝐵)∥𝐿𝑞/2 (Ω) ≤ 𝑃 ∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) ≤ 𝑃𝐾 ∥𝜒𝐴 − 𝜒𝐵 ∥
1
2 −

1
𝑞

𝐿1 (Ω) ,

where 𝑃 and 𝐾 are from Corollary 2.7 and Theorem 3.3, respectively.
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Proof. Let 𝑝1, 𝑝2 ∈ ℝ be given. Let 𝑢𝑖 = arg min𝑣∈[𝑢𝑎,𝑢𝑏 ] 𝐻 (𝑝𝑖 , 𝑣) for 𝑖 = 1, 2. Then we get by the
properties of 𝐻

𝐻 (𝑝1) ≤ 𝐻 (𝑝1, 𝑢2) = (𝑝1 − 𝑝2)𝑢2 + 𝐻 (𝑝2, 𝑢2) = (𝑝1 − 𝑝2)𝑢2 + 𝐻 (𝑝2) .

This implies
𝐻 (𝑝2) ≤ −(𝑝1 − 𝑝2)𝑢1 + 𝐻 (𝑝1)

by exchanging (𝑝1, 𝑢1) and (𝑝2, 𝑢2) in the above estimate. Summarizing, we obtain

|𝐻 (𝑝1) − 𝐻 (𝑝2) | ≤ |𝑝1 − 𝑝2 | max( |𝑢1 |, |𝑢2 |).

Using Corollary 2.7 yields the claim. □

We will proceed with the following expansion of the value function. Note that in the non-strongly
convex case the claim is valid with 𝜇 = 0.
Lemma 3.5. Let𝐴, 𝐵 ⊆ Ω, and let (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵) be solutions of (P𝐴) and (P𝐵). Then it holds

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
𝜇

2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (𝐴∩𝐵) +

1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 ≤
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝐻 (𝑝𝐴)) d𝑥,

where 𝜇 ≥ 0 as in (A4).

Proof. From Lemma 3.1 we get

(3.3) 𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌

=

∫
Ω
𝑔(𝑢𝐴) − 𝑔(𝑢𝐵) + 𝜒𝐴𝑝𝐴 (𝑢𝐴 − 𝑢𝐵) + (𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝑝𝐴𝑢𝐵) d𝑥 .

We will now split the integral on the right-hand side into integrals on 𝐴 ∩ 𝐵, 𝐴 \ 𝐵, and 𝐵 \𝐴. This
is sufficient as the integrand vanishes outside of 𝐴 ∪ 𝐵. For the integral on 𝐴 ∩ 𝐵, we can use the
optimality condition (2.7) and the (possibly strong) convexity of 𝑔 to obtain∫

𝐴∩𝐵
𝑔(𝑢𝐴) − 𝑔(𝑢𝐵) + 𝜒𝐴𝑝𝐴 (𝑢𝐴 − 𝑢𝐵) d𝑥 ≤ −𝜇2 ∥𝑢𝐵 − 𝑢𝐴∥2

𝐿2 (𝐴∩𝐵) .

Moreover, 𝑢𝐵 vanishes on 𝐴 \ 𝐵, while 𝑢𝐴 vanishes on 𝐵 \𝐴. This allows to simplify

(3.4)
∫
Ω
𝑔(𝑢𝐴) − 𝑔(𝑢𝐵) + 𝜒𝐴𝑝𝐴 (𝑢𝐴 − 𝑢𝐵) + (𝜒𝐴 − 𝜒𝐵)𝑝𝐴𝑢𝐵 d𝑥

≤ −𝜇2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (𝐴∩𝐵) +

∫
𝐴\𝐵

𝑔(𝑢𝐴) + 𝑝𝐴𝑢𝐴 d𝑥 −
∫
𝐵\𝐴

𝑔(𝑢𝐵) + 𝑝𝐴𝑢𝐵 d𝑥

Using 𝐻 and 𝐻 , we can write

(3.5)
∫
𝐴\𝐵

𝑔(𝑢𝐴) + 𝑝𝐴𝑢𝐴 d𝑥 −
∫
𝐵\𝐴

𝑔(𝑢𝐵) + 𝑝𝐴𝑢𝐵 d𝑥

=

∫
𝐴\𝐵

𝐻 (𝑝𝐴) d𝑥 −
∫
𝐵\𝐴

𝐻 (𝑢𝐵, 𝑝𝐴) d𝑥 ≤
∫
𝐴\𝐵

𝐻 (𝑝𝐴) d𝑥 −
∫
𝐵\𝐴

𝐻 (𝑝𝐴) d𝑥 .

Applying (3.4) and (3.5), in (3.3), results in the upper bound

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
𝜇

2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (𝐴∩𝐵) +

1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 ≤
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝐻 (𝑝𝐴)) d𝑥,

which is the claim. □
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The next result gives an expansion of the value function 𝐽 (𝐴) together with an remainder term that
is of higher order in ∥𝜒𝐴 − 𝜒𝐵 ∥𝐿1 (Ω) .
Theorem 3.6. Assume (A1), (A2), (A3), (A4), (A5), (A6). Let𝐴, 𝐵 ⊆ Ω, and let (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵)
be solutions of (P𝐴) and (P𝐵). Then it holds����𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) − ∫

Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝐻 (𝑝𝐵)) d𝑥

����
+ 𝜇2 ∥𝑢𝐵 − 𝑢𝐴∥2

𝐿2 (𝐴∩𝐵) +
1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 ≤ 𝑃𝐾 ∥𝜒𝐴 − 𝜒𝐵 ∥
3( 1

2 −
1
𝑞
)

𝐿1 (Ω) ,

where 𝑃 , 𝐾 , 𝑞 are from Corollary 2.7, Theorem 3.3, and (A5), respectively.

Proof. Using the result of Lemma 3.5, we get

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
𝜇

2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (𝐴∩𝐵) +

1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌

≤
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝐻 (𝑝𝐵) − 𝐻 (𝑝𝐵) + 𝐻 (𝑝𝐴)) d𝑥 .

Using Lemma 3.4 and Theorem 3.3, we can estimate the integral involving 𝐻 (𝑝𝐴) − 𝐻 (𝑝𝐵) as

(3.6)
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝐻 (𝑝𝐴) − 𝐻 (𝑝𝐵)) d𝑥

≤ ∥𝜒𝐴 − 𝜒𝐵 ∥
1− 2

𝑞

𝐿1 (Ω) · 𝑃 ∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) ≤ 𝑃𝐾 ∥𝜒𝐴 − 𝜒𝐵 ∥
3( 1

2 −
1
𝑞
)

𝐿1 (Ω) .

This results in the upper bound

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
𝜇

2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (𝐴∩𝐵) +

1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌

≤
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝐻 (𝑝𝐵)) d𝑥 + 𝑃𝐾 ∥𝜒𝐴 − 𝜒𝐵 ∥

3( 1
2 −

1
𝑞
)

𝐿1 (Ω) .

To obtain a lower bound, we use the result of Lemma 3.5 but with the roles of 𝐴 and 𝐵 reversed (and
multiplying the resulting inequality by −1), which yields

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) −
𝜇

2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (𝐴∩𝐵) −

1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 ≥
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝐻 (𝑝𝐵)) d𝑥 .

Both inequalities together prove the claim. □

As a by-product of the previous proof, we get the strengthened stability estimate

∥𝑢𝐵 − 𝑢𝐴∥𝐿2 (𝐴∩𝐵) + ∥𝑦𝐵 − 𝑦𝐴∥𝑌 ≤ 𝐾 ′∥𝜒𝐴 − 𝜒𝐵 ∥
3
2 (

1
2 −

1
𝑞
)

𝐿1 (Ω) ,

which improves the exponent from Theorem 3.3 by a factor 3
2 .

Remark 3.7. If 𝑆∗ ∈ L(𝑌, 𝐿𝑞 (Ω)) then the estimate can improved to

∥𝑢𝐵 − 𝑢𝐴∥𝐿2 (𝐴∩𝐵) + ∥𝑦𝐵 − 𝑦𝐴∥𝑌 ≤ 𝐾 ′∥𝜒𝐴 − 𝜒𝐵 ∥
2( 1

2 −
1
𝑞
)

𝐿1 (Ω)

by estimating ∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) against ∥𝑦𝐴 − 𝑦𝐵 ∥𝑌 in the estimate (3.6).
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4 topological derivatives

Definition 4.1. Let 𝐵 ⊆ Ω. Then the topological derivative of 𝐽 at 𝐵 at the point 𝑥 is defined by

𝐷𝐽 (𝐵) (𝑥) =


lim
𝑟↘0

𝐽 (𝐵 ∪ 𝐵𝑟 (𝑥)) − 𝐽 (𝐵)
|𝐵𝑟 |

if 𝑥 ∉ 𝐵

lim
𝑟↘0

𝐽 (𝐵 \ 𝐵𝑟 (𝑥)) − 𝐽 (𝐵)
|𝐵𝑟 |

if 𝑥 ∈ 𝐵.

The existence of the topological derivative is now a consequence of the expansion in Theorem 3.6
and the Lebesgue differentiation theorem.
Theorem 4.2. Assume (A1), (A2), (A3), (A4), (A5), (A6). Let 𝐵 ⊆ Ω, and let (𝑢𝐵, 𝑦𝐵, 𝑝𝐵) be a solution of
(P𝐵).

Then for almost all 𝑥 ∈ Ω the topological derivative 𝐷𝐽 (𝐵) (𝑥) exists, and is given by

𝐷𝐽 (𝐵) (𝑥) = 𝜎 (𝐵, 𝑥) (𝛽 (𝑥) + 𝐻 (𝑝𝐵 (𝑥)))

with

𝜎 (𝐵, 𝑥) :=
{
+1 if 𝑥 ∉ 𝐵

−1 if 𝑥 ∈ 𝐵.

Proof. Let 𝑥0 ∈ 𝐵. Let 𝑟 > 0. Define 𝐴(𝑥0, 𝑟 ) := 𝐵 \ 𝐵𝑟 (𝑥0). Then it follows 𝜒𝐴(𝑥0,𝑟 ) − 𝜒𝐵 = −𝜒𝐵∩𝐵𝑟 (𝑥0 ) ,
which implies ∥𝜒𝐴(𝑥0,𝑟 ) − 𝜒𝐵 ∥𝐿1 (Ω) ≤ |𝐵𝑟 |. Using this in the result of Theorem 3.6, we find

(4.1)
����𝐽 (𝐴(𝑥0, 𝑟 )) − 𝐽 (𝐵) +

∫
𝐵∩𝐵𝑟 (𝑥0 )

𝛽 + 𝐻 (𝑝𝐵) d𝑥
���� ≤ 𝑃𝐾 |𝐵𝑟 |3(

1
2 −

1
𝑞
)
.

Let us now define
𝑣 (𝑥0, 𝑟 ) := 1

|𝐵𝑟 |

∫
𝐵𝑟 (𝑥0 )

𝜒𝐵 · (𝛽 + 𝐻 (𝑝𝐵)) d𝑥 .

By the Lebesgue differentiation theorem, we have

lim
𝑟↘0

𝑣 (𝑥, 𝑟 ) = 𝜒𝐵 (𝑥) · (𝛽 (𝑥) + 𝐻 (𝑝𝐵 (𝑥)))

for almost all 𝑥 ∈ Ω. This implies together with (4.1)

lim
𝑟↘0

𝐽 (𝐴(𝑥, 𝑟 )) − 𝐽 (𝐵)
|𝐵𝑟 |

= −(𝛽 (𝑥) + 𝐻 (𝑝𝐵 (𝑥)))

for almost all 𝑥 ∈ 𝐵. Here we used that 3( 1
2 − 1

𝑞
) > 1 by (A5). This proves the claim for 𝑥 ∈ 𝐵.

The claim for 𝑥 ∉ 𝐵 can be proven completely analogously: this time we set 𝐴(𝑥0, 𝑟 ) := 𝐵 ∪ 𝐵𝑟 (𝑥0)
for 𝑥0 ∉ 𝐵, which implies 𝜒𝐴(𝑥0,𝑟 ) − 𝜒𝐵 = 𝜒𝐵𝑟 (𝑥0 )\𝐵 , resulting in the different sign of the topological
derivative. □

Note that in contrast to other works, we do not need to impose continuity of 𝑢𝐵 near 𝑥0 as in [28,
Corollary 4.1], nor do we need to argue by Hölder continuity of the adjoint as in [3, Corollary 3.2].

We can now formulate a necessary optimality condition for (1.6) using the topological derivative.
Theorem 4.3. Assume (A1), (A2), (A3), (A4), (A5), (A6). Let 𝐵 be a solution of (1.6). Then

𝐷𝐽 (𝐵) (𝑥) ≥ 0 for a.a. 𝑥 ∈ Ω.
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Proof. The result follows immediately from Theorem 4.2. □

Remark 4.4. Using the celebrated Ekeland’s variational principle [16], the following result can be proven
for 𝜖-solutions: There is an 𝜖-solution, such that optimality conditions are satisfied up to 𝜖 . We briefly
sketch the proof.
Let 𝑉 be the metric space of characteristic functions 𝜒𝐵 , 𝐵 ⊆ Ω measurable, supplied with the

𝐿1(Ω)-metric, which makes it a complete space. Applying [16, Theorem 1.1] with 𝜖 > 0 and 𝜆 = 1 there
is 𝐵𝜖 ⊆ Ω such that

(4.2) 𝐽 (𝐵𝜖 ) ≤ inf
𝐵⊆Ω

𝐽 (𝐵) + 𝜖

and

(4.3) 𝐽 (𝐴) ≥ 𝐽 (𝐵𝜖 ) − 𝜖 ∥𝜒𝐴 − 𝜒𝐵𝜖
∥𝐿1 (Ω)

for all 𝐴 ⊆ Ω. Owing to (4.2) the set 𝐵𝜖 is then an 𝜖-solution of (1.6). Due to inequality (4.3), we can
consider variations of 𝐽 (𝐵𝜖 ) to obtain estimates of the topological derivative:

For 𝑥0 ∈ Ω and 𝑟 > 0, define𝐴(𝑥0, 𝑟 ) as in the proof of Theorem 4.2. Then 1
|𝐵𝑟 | (𝐽 (𝐴(𝑥0, 𝑟 ))− 𝐽 (𝐵𝜖 )) ≥

−𝜖 by (4.3), which results in 𝐷𝐽 (𝐵𝜖 ) (𝑥0) ≥ −𝜖 for almost all 𝑥0. This proves the existence of an 𝜖-
solution that satisfies the optimality condition up to an 𝜖 .

In addition, the defect in the optimality condition of Theorem 4.3 can be used to get an error estimate
as follows.
Corollary 4.5. Assume (A1), (A2), (A3), (A6). Let 𝐴 ⊆ Ω, let (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) be a solution of (P𝐴). Let the
defect 𝛿𝐴 be defined by

𝛿𝐴 :=
∫
𝐴

(
𝛽 + 𝐻 (𝑝𝐴)

)+ d𝑥 −
∫
Ω\𝐴

(
𝛽 + 𝐻 (𝑝𝐴)

)− d𝑥 = −
∫
Ω
(𝐷𝐽 (𝐵))− d𝑥 .

Then we have
𝐽 (𝐴) − inf

𝐵⊆Ω
𝐽 (𝐵) ≤ 𝛿𝐴,

and 𝐴 is a 𝛿𝐴-solution. If 𝐵 is a solution of (1.6) then we have the error estimate

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 + 𝜇2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (𝐴∩𝐵) ≤ 𝛿𝐴 .

Proof. Let 𝐵 ⊆ Ω and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵) be a solution of (P𝐵). By Lemma 3.5, we have

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
𝜇

2 ∥𝑢𝐵 − 𝑢𝐴∥2
𝐿2 (𝐴∩𝐵) +

1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌

≤
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝐻 (𝑝𝐴)) d𝑥,

=

∫
𝐴\𝐵

𝛽 + 𝐻 (𝑝𝐴) d𝑥 −
∫
𝐵\𝐴

𝛽 + 𝐻 (𝑝𝐴) d𝑥

≤
∫
𝐴

(
𝛽 + 𝐻 (𝑝𝐴)

)+ d𝑥 −
∫
Ω\𝐴

(
𝛽 + 𝐻 (𝑝𝐴)

)− d𝑥 = 𝛿𝐴 .

If 𝐵 is a solution of (1.6) then the claim follows. Otherwise, we take the supremum of −𝐽 (𝐵,𝑢𝐵) on the
left-hand side. □
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5 the non-strongly convex case

Let us briefly comment on the non-strongly convex case. That is, we no longer assume the strong
convexity of 𝑔 as in (A4). We will replace (A4) and (A5) by the following two assumptions.

(A4’) dom𝑔 is a bounded subset of ℝ,

(A5’) There is 𝑞 > 3 such that 𝑆∗ ∈ L(𝑌, 𝐿𝑞 (Ω)), where 𝑆∗ ∈ L(𝑌, 𝐿2(Ω)) denotes the Hilbert
space-adjoint of 𝑆 .

(A4’) implies the solvability of (P𝐴). In addition, solutions 𝑢𝐴 of (P𝐴) will be in 𝐿∞(Ω). Due to the
missing strong convexity, we have to replace the assumption on 𝑆∗𝑆 in (A5) by an assumption on 𝑆∗.
The 𝐿∞(Ω)-regularity of optimal controls will allow us to work with a smaller exponent 𝑞 in (A5’)
when compared to (A5). Condition (A5’) is fulfilled for Examples 2.1 and 2.2.

Note that we do not add assumptions that imply unique solvability of (P𝐴).
Proposition 5.1. Let 𝐴 ⊆ Ω be given. Then there is a minimizer 𝑢𝐴 of (P𝐴). Moreover, 𝜒𝐴𝑢𝐴 is also a
minimizer of (P𝐴).

Proof. Due to (A4’) minimizing sequences of 𝑢 ↦→ 𝐽 (𝐴,𝑢) are bounded in 𝐿∞(Ω). Then the proof of
existence follows as in Proposition 2.4. The last claim is a consequence of (2.1). □

In the sequel, we will assume that a solution 𝑢𝐴 of (P𝐴) satisfies 𝜒𝐴𝑢𝐴 = 𝑢𝐴. Due to the previous
result, this is not restriction at all, as for every minimizer 𝑢𝐴 also 𝜒𝐴𝑢𝐴 is a minimizer. Let us start with
a replacement of Lemma 2.6 and Corollary 2.7.
Lemma 5.2. There is𝑀 > 0 and 𝑃 ′ > 0 such that

∥𝑦𝐴 − 𝑦𝑑 ∥𝑌 ≤ 𝑀

and
∥𝑢𝐴∥𝐿∞ (Ω) ≤ 𝑃 ′, ∥𝑝𝐴∥𝐿𝑞 (Ω) ≤ 𝑃 ′

for all 𝐴 ⊆ Ω and all solutions (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) of (P𝐴). Here, 𝑞 is as in (A5’).

Proof. The bound of 𝑦𝐴 can be obtained as in Lemma 2.6, the bounds of 𝑢𝐴 and 𝑝𝐴 are consequences
of (A4’) and (A5’). □

Due to the missing strong convexity of 𝑔, we cannot expect stability of controls as in Theorem 3.3.
Here, we have the following replacement.
Theorem 5.3. Assume (A1), (A2), (A3), (A4’), (A5’). Then there is a constant 𝐾 ′ > 0 such that for all
𝐴, 𝐵 ⊆ Ω

∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) + ∥𝑦𝐵 − 𝑦𝐴∥𝑌 ≤ 𝐾 ′∥𝜒𝐴 − 𝜒𝐵 ∥
1
2 (1−

1
𝑞
)

𝐿1 (Ω) ,

where (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵) are solutions of (P𝐴) and (P𝐵), and 𝑞 is from (A5’).

Proof. From (A5’),we get ∥𝑝𝐴−𝑝𝐵 ∥𝐿𝑞 (Ω) ≤ ∥𝑆∗∥L(𝑌,𝐿𝑞 (Ω) ) ∥𝑦𝐴−𝑦𝐵 ∥𝐿2 (Ω) . Define 𝜇′ := 1/∥𝑆∗∥2
L(𝑌,𝐿𝑞 (Ω) ) .

Let 𝑞′ be such that 1
𝑞′ +

1
𝑞
= 1. From the inequality of Lemma 3.2, we obtain with Hölder’s inequality

𝜇′

2 ∥𝑝𝐴 − 𝑝𝐵 ∥2
𝐿𝑞 (Ω) +

1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 ≤
∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝑝𝐴𝑢𝐵 − 𝑝𝐵𝑢𝐴) d𝑥

≤ 2(𝑃 ′)2∥𝜒𝐴 − 𝜒𝐵 ∥
1− 1

𝑞

𝐿1 (Ω) ,

where 𝑃 ′ is from Lemma 5.2, and the claim is proven. □
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This stability result has to replace Theorem 3.3 in the proof of Theorem 3.6. The result corresponding
to the latter theorem now reads as follows. Note that due to (A4’), 𝐻 (𝑝) is well-defined and finite for
all 𝑝 ∈ ℝ.
Theorem 5.4. Assume (A1), (A2), (A3), (A4’), (A5’), (A6). Let𝐴, 𝐵 ⊆ Ω, and let (𝑢𝐴, 𝑦𝐴, 𝑝𝐴) and (𝑢𝐵, 𝑦𝐵, 𝑝𝐵)
be solutions of (P𝐴) and (P𝐵). Then it holds����𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) − ∫

Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝐻 (𝑝𝐵)) d𝑥

���� + 1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 ≤ 𝑃 ′𝐾 ′∥𝜒𝐴 − 𝜒𝐵 ∥
3
2 (1−

1
𝑞
)

𝐿1 (Ω) ,

where 𝑃 ′, 𝐾 ′, 𝑞 are from Lemma 5.2 and (A5’), respectively.

Proof. We can proceed exactly as in the proof of Theorem 3.6 but now with 𝜇 = 0. Only the estimate
(3.6) has to be modified. The estimate of Lemma 3.4 has to be changed to

(5.1) ∥𝐻 (𝑝𝐴) − 𝐻 (𝑝𝐵)∥𝐿𝑞 (Ω) ≤ 𝑃 ′∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω)

using the 𝐿∞(Ω)-bound of optimal controls in Lemma 5.2, as well as the estimate of 𝐻 from the proof
of Lemma 3.4. Then the error term of (3.6) can be estimated using (5.1) and Theorem 5.3 as∫

Ω
(𝜒𝐴 − 𝜒𝐵) (𝐻 (𝑝𝐴) − 𝐻 (𝑝𝐵)) d𝑥 ≤ ∥𝜒𝐴 − 𝜒𝐵 ∥

1− 1
𝑞

𝐿1 (Ω) · 𝑃
′∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) ≤ 𝑃 ′𝐾 ′∥𝜒𝐴 − 𝜒𝐵 ∥

3
2 (1−

1
𝑞
)

𝐿1 (Ω) .

The claimed estimate can now be obtained with the same arguments as in the proof of Theorem 3.6. □

Theorem 5.5. Assume (A1), (A2), (A3), (A4’), (A5’), (A6). Let 𝐵 ⊆ Ω.
Then for almost all 𝑥 ∈ Ω the topological derivative 𝐷𝐽 (𝐵) (𝑥) exists, and it is given by the expression

in Theorem 4.2.

6 optimization method based on the topological derivative

In this section, we introduce an optimization algorithm that is motivated by the work on the topological
derivative. Here, we work under the set of assumptions of Theorem 4.2 or Theorem 5.5.
Let 𝐴𝑘 ⊆ Ω be a given iterate together with solutions of (P𝐴𝑘

). Let us define the residual in the
optimality condition of Theorem 4.3 as

(6.1) 𝜌𝑘 := (𝐷𝐽 (𝐴𝑘 ))− .

Let us denote the support of 𝜌𝑘 by

𝑅𝑘 := {𝑥 : 𝜌𝑘 (𝑥) ≠ 0}.

New iterates 𝐴𝑘+1 will now be defined by adding/removing points to/from 𝐴𝑘 , where 𝜌𝑘 is non-zero.
That is, we will choose 𝐷𝑘,𝑡 ⊆ 𝑅𝑘 and denote the candidate for a new iterate by 𝐴𝑘△𝐷𝑘,𝑡 . Given
𝑡 ∈ (0, 1], we select 𝐷𝑘,𝑡 with the properties:

(6.2)
𝐷𝑘,𝑡 ⊆ 𝑅𝑘 : ∥𝜌𝑘 ∥𝐿1 (𝐷𝑘,𝑡 ) ≥ 𝑡 ∥𝜌𝑘 ∥𝐿1 (Ω) ,

|𝐷𝑘,𝑡 | ≤ 𝑡 |𝑅𝑘 |.

That is, we are looking for a set 𝐷𝑘,𝑡 with prescribed bound on its measure that captures a certain part
of the mass of the residual 𝜌𝑘 . Sets satisfying the conditions of (6.2) exist, and can be found by solving

(6.3) max
𝐷⊆𝑅𝑘 : |𝐷 | ≤𝑡𝑅𝑘

∥𝜌𝑘 ∥𝐿1 (𝐷 ) .
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In [13], such a problem is used to generate search directions. A related procedure to compute such
sets is given in [22, Procedure 1, Lemma 9]. Note that we need both conditions on 𝐷𝑘,𝑡 : the condition
on ∥𝜌𝑘 ∥𝐿1 (𝐷𝑘,𝑡 ) will give descent of values of the functional 𝐽 , while the condition on |𝐷𝑘,𝑡 | will help to
control the error in the expansion of the functional 𝐽 .
Remark 6.1. Let us comment on related algorithms based on topological derivatives.
In the seminal work [14] a similar idea was developed. In our notation, their algorithm reads: find

𝑡 > 0 and 𝐷𝑘,𝑡 ⊆ 𝑅𝑘 such that |𝐷𝑘,𝑡 | ≤ 𝑡 and ∥𝜌𝑘 ∥𝐿1 (𝐷 ) ≥ �̃�
2 𝑡

2, where �̃� is larger than the Lipschitz
constant of the Fréchet derivative of 𝐽 , when considered as a function from 𝐿1(Ω) to ℝ. This choice
of 𝐷𝑘,𝑡 guarantees a sufficient decrease of 𝐽 (𝐴𝑘 ). However, the knowledge of this Lipschitz constant
is necessary to implement this condition. In addition, this Lipschitz condition is not satisfied for our
problem, it would imply that the remainder term in Theorem 3.6 is of order ∥𝜒𝐴 − 𝜒𝐵 ∥2

𝐿1 (Ω) , while our
analysis works under a weaker estimate of the remainder.

Another popular algorithm is the choice 𝐷𝑘,𝑡 = {𝑥 : |𝜌𝑘 (𝑥) | ≥ 𝑡}, where 𝑡 ∈ (0, ∥𝜌𝑘 ∥𝐿∞ (Ω) ), see, e.g.,
[12, 20, 23, 24], where 𝑡 is chosen such that the new iterate respects a volume constraint or a descent
condition. This approach is successfully used in practice. From the viewpoint of optimization, it has
the following theoretical drawback: if 𝜌𝑘 is a constant function, then 𝐷𝑘,𝑡 is either empty or equal to
𝑅𝑘 , and a linesearch in 𝑡 is not guaranteed to succeed.

An algorithm based on trust-region ideas can be found in [22, 29]. In these works binary control
problems are considered. The method proposed there can also be applied to our problema, and would
lead to similar convergence results.
In [5] a simplified level-set method was introduced, where the level-set function is updated using

the topological derivative. The corresponding linesearch method was analyzed in [3]. There, small
values of the linesearch parameter may only lead to boundary variations.

Let us first prove that (6.3) can be used to find sets satisfying the condition (6.2) for fixed 𝑡 ∈ (0, 1].
Lemma 6.2. Let 𝑡 ∈ (0, 1]. There exist sets 𝐷𝑘,𝑡 satisfying conditions (6.2). Problem (6.3) is solvable, and
every solution 𝐷𝑘,𝑡 of (6.3) satisfies (6.2).

Proof. The existence of sets 𝐷𝑘,𝑡 satisfying conditions (6.2) with equality is a consequence of the
Lyapunov convexity theorem for vector measures [15, Corollary IX.5]. Consequently, solutions of (6.3)
satisfy (6.2). Let us proof the solvability of (6.3). Given 𝑠 ≥ 0 define

𝐵>𝑠 := {𝑥 : |𝜌𝑘 (𝑥) | > 𝑠}, 𝐵≥𝑠 := {𝑥 : |𝜌𝑘 (𝑥) | ≥ 𝑠}.

Then the monotonically decreasing functions 𝑠 ↦→ |𝐵>𝑠 | and 𝑠 ↦→ |𝐵≥𝑠 | are continuous from the right
and from the left, respectively. In addition, we have lim𝑠→+∞ |𝐵>𝑠 | = lim𝑠→+∞ |𝐵≥𝑠 | = 0.
Assume that there is 𝑠 ≥ 0 and a set 𝐵 with 𝐵>𝑠 ⊆ 𝐵 ⊆ 𝐵≥𝑠 and |𝐵 | = 𝑡𝑅𝑘 . We will now argue that 𝐵

is a solution of (6.3). Let us take 𝐷 ⊆ 𝑅𝑘 with |𝐷 | ≤ 𝑡𝑅𝑘 . Then we get using the definitions of 𝐵, 𝐵>𝑠 ,
𝐵≥𝑠 ∫

𝐷

|𝜌𝑘 | d𝑥 −
∫
𝐵

|𝜌𝑘 | d𝑥 =

∫
𝐷\𝐵

|𝜌𝑘 | d𝑥 −
∫
𝐵\𝐷

|𝜌𝑘 | d𝑥

≤ 𝑠 |𝐷 \ 𝐵 | − 𝑠 |𝐵 \ 𝐷 | = 𝑠 ( |𝐷 | − |𝐷 ∩ 𝐵 | − |𝐵)
= 𝑠 ( |𝐷 | − 𝑡𝑅𝑘 ) − 𝑠 |𝐷 ∩ 𝐵 | ≤ 0,

and 𝐵>𝑠 solves (6.3).
Hence, if there is 𝑠 ≥ 0 such that |𝐵>𝑠 | = 𝑡𝑅𝑘 or |𝐵≥𝑠 | = 𝑡𝑅𝑘 , then 𝐵>𝑠 or 𝐵≥𝑠 is a solution of (6.3).

If this is not the case, then there is 𝑠 > 0 such that |𝐵>𝑠 | < 𝑡𝑅𝑘 < |𝐵≥𝑠 |. Since the measure space is
atom-free, we can choose𝐶 ⊆ 𝐵≥𝑠 \ 𝐵>𝑠 with |𝐶 | = 𝑡𝑅𝑘 − |𝐵>𝑠 | by the Sierpinski theorem [8, Corollary
1.12.10]. And 𝐵>𝑠 ∪𝐶 is a solution of (6.3) as argued above. □
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The symmetric difference of 𝐴𝑘 and 𝐷𝑘,𝑡 is a candidate for the new iterate. Let us set

(6.4) 𝐴𝑘,𝑡 := 𝐴𝑘△𝐷𝑘,𝑡 .

The step-size 𝑡 in (6.3) will be determined by an Armijo-like line-search incorporating the descent
condition

(6.5) 𝐽 (𝐴𝑘,𝑡 ) ≤ 𝐽 (𝐴𝑘 ) + 𝜎
∫
Ω
|𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
| · 𝜌𝑘 d𝑥

where 𝜎 ∈ (0, 1) is a fixed parameter.
The validity of this approach is enabled by the following observation, which shows that (6.5) ensures

descent of 𝐽 .
Lemma 6.3. Let 𝐷𝑘,𝑡 satisfy (6.2), let 𝐴𝑘,𝑡 as in (6.4). Then it holds∫

Ω
|𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
| · 𝜌𝑘 d𝑥 = −∥𝜌𝑘 ∥𝐿1 (𝐷𝑘,𝑡 ) ≤ −𝑡 ∥𝜌𝑘 ∥𝐿1 (Ω) .

Proof. This follows directly from the properties of 𝜌𝑘 and 𝐷𝑘,𝑡 , see (6.1). □

Let us prove that there are step-sizes 𝑡 such that the descent condition is satisfied. Here, the following
estimate of 𝐽 (𝐴𝑘,𝑡 ) − 𝐽 (𝐴𝑘 ) will prove useful, which is a consequence of the results of the previous
sections.
Lemma 6.4. There is 𝐶 > 0 and 𝜈 > 0 such that for all 𝐴𝑘 ⊆ Ω, 𝑡 ∈ (0, 1], 𝐴𝑘,𝑡 as in (6.4), it holds

𝐽 (𝐴𝑘,𝑡 ) − 𝐽 (𝐴𝑘 ) ≤
∫
Ω
|𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
| · 𝜌𝑘 d𝑥 +𝐶 ∥𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
∥1+𝜈
𝐿1 (Ω) .

Proof. As a consequence of the expansion of 𝐽 in Theorems 3.6 and 5.4 and of the definition of 𝐷𝐽 in
Theorem 4.2, we get

𝐽 (𝐴𝑘,𝑡 ) − 𝐽 (𝐴𝑘 ) ≤
∫
Ω
(𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
)𝜎 (𝐴𝑘 )𝐷𝐽 (𝐴𝑘 ) d𝑥 +𝐶 ∥𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
∥1+𝜈
𝐿1 (Ω) ,

where 𝜎 (𝐴𝑘 ) is as in Theorem 4.2. Note that |𝜒𝐴𝑘,𝑡
− 𝜒𝐴𝑘

| = (𝜒𝐴𝑘,𝑡
− 𝜒𝐴𝑘

)𝜎 (𝐴𝑘 ), which proves the
claim. □

Now, we are in the position to prove the existence of step-sizes such that the descent condition (6.5)
is satisfied.
Lemma 6.5. Let 𝜎 ∈ (0, 1). Assume 𝜌𝑘 ≠ 0. Then there is 𝑡𝑘 > 0 such that for all 𝑡 ∈ (0, 𝑡𝑘 ] and all sets
𝐷𝑘,𝑡 satisfying (6.2) the set 𝐴𝑘,𝑡 := 𝐴𝑘△𝐷𝑘,𝑡 satisfies the descent condition (6.5).

Proof. Due to (6.2), we have

∥𝜒𝐴𝑘,𝑡
− 𝜒𝐴𝑘

∥𝐿1 (Ω) = |𝐴𝑘,𝑡△𝐴𝑘 | = |𝐷𝑘,𝑡 | ≤ 𝑡 |𝑅𝑘 |.

With the results of Lemmas 6.3 and 6.4, we get

(6.6) 𝐽 (𝐴𝑘,𝑡 ) − 𝐽 (𝐴𝑘 ) − 𝜎
∫
Ω
|𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
| · 𝜌𝑘 d𝑥

≤ (1 − 𝜎)
∫
Ω
|𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
| · 𝜌𝑘 d𝑥 +𝐶 ∥𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
∥1+𝜈
𝐿1 (Ω)

≤ −(1 − 𝜎)∥𝜌𝑘 ∥𝐿1 (Ω)𝑡 +𝐶 |𝑅𝑘 |1+𝜈𝑡 1+𝜈 .

Clearly, the right-hand side is negative for 𝑡 small enough. □
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Algorithm 1 Topological gradient descent algorithm
Choose 𝜏 ∈ (0, 1), 𝜎 ∈ (0, 1), 𝐴0 ⊆ Ω, 𝛿tol ≥ 0. Set 𝑘 := 0.
loop ⊲ Gradient descent

Compute a solution (𝑢𝑘 , 𝑦𝑘 , 𝑝𝑘 ) of (P𝐴𝑘
).

Compute 𝜌𝑘 as in (6.1).
if ∥𝜌𝑘 ∥𝐿1 (Ω) ≤ 𝛿tol then ⊲ Termination criterion

return 𝐴𝑘

end if
𝑡 := 1.
loop ⊲ Armijo line-search

Compute 𝐷𝑘,𝑡 as a solution of (6.3).
Compute 𝐽 (𝐴𝑘,𝑡 ) for 𝐴𝑘,𝑡 = 𝐴𝑘△𝐷𝑘,𝑡 .
if 𝐴𝑘,𝑡 satisfies (6.5) then

break
end if
𝑡 := 𝜏 · 𝑡 .

end loop
𝑡𝑘 := 𝑡 . ⊲ Update
𝐴𝑘+1 := 𝐴𝑘△𝐷𝑘,𝑡 .
𝑘 := 𝑘 + 1.

end loop

The resulting algorithm is Algorithm 1. Let us comment on it in detail. The algorithm stops if
∥𝜌𝑘 ∥𝐿1 (Ω) ≤ 𝛿tol for some prescribed tolerance 𝛿tol ≥ 0. This is motivated by Corollary 4.5: if ∥𝜌𝑘 ∥𝐿1 (Ω)
is less than some tolerance 𝛿tol > 0 then 𝐴𝑘 is a 𝛿tol-solution of (1.6). Due to Lemma 6.5, the Armijo
line-search will terminate in finitely many steps, and the algorithm is well-defined. If the algorithm
does not stop after finitely many iterations, then it will produce an infinite sequence of sets (𝐴𝑘 ), such
that (𝐽 (𝐴𝑘 )) is monotonically decreasing. We have the following basic convergence result.
Lemma 6.6. Let (𝐴𝑘 ) be an infinite sequence of iterates of Algorithm 1. Then it holds

∞∑︁
𝑘=0

𝑡𝑘 ∥𝜌𝑘 ∥𝐿1 (Ω) < +∞.

Proof. Due to the descent condition (6.5) and the result of Lemma 6.3, we have the chain of inequalities

𝐽 (𝐴𝑘+1) − 𝐽 (𝐴𝑘 ) ≤ 𝜎
∫
Ω
|𝜒𝐴𝑘+1 − 𝜒𝐴𝑘

| · 𝜌𝑘 d𝑥 ≤ −𝜎𝑡𝑘 ∥𝜌𝑘 ∥𝐿1 (Ω) < 0.

Since 𝐽 is bounded from below, we can sum the above inequalities for 𝑘 = 0, . . . , which proves the
claim. □

Theorem 6.7. Let (𝐴𝑘 ) be the iterates of Algorithm 1. Then exactly one of the following statements is true:

(i) The algorithm returns after𝑚 ∈ ℕ iterations with a 𝛿tol-solution 𝐴𝑚 of (1.6).

(ii) The algorithm produces an infinite sequence (𝐴𝑘 ) with lim𝑘→∞ ∥𝜌𝑘 ∥𝐿1 (Ω) = 0, and (𝐴𝑘 ) is a
minimizing sequence of (1.6).

In particular, if 𝛿tol > 0 then the algorithm terminates after finitely many iterations.
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Proof. Suppose the algorithm returns after𝑚 iterations. Then ∥𝜌𝑚 ∥𝐿1 (Ω) ≤ 𝛿tol, and by Corollary 4.5
the set 𝐴𝑚 is a 𝛿tol-solution 𝐴𝑚 of (1.6).
Now suppose that the algorithm produces an infinite sequence (𝐴𝑘 ) of iterates. Let 𝑘 be such that

𝑡𝑘 < 1. Due to the line-search procedure of Algorithm 1, it follows that 𝑡 := 𝑡𝑘/𝜏 ≤ 1 violates the descent
condition (6.5), that is

0 ≤ 𝐽 (𝐴𝑘,𝑡 ) − 𝐽 (𝐴𝑘 ) − 𝜎
∫
Ω
|𝜒𝐴𝑘,𝑡

− 𝜒𝐴𝑘
| · 𝜌𝑘 d𝑥 .

Using estimate (6.6), this implies

0 ≤ −(1 − 𝜎)∥𝜌𝑘 ∥𝐿1 (Ω)𝑡 +𝐶 |𝑅𝑘 |1+𝜈𝑡 1+𝜈 ,

or equivalently
(1 − 𝜎)∥𝜌𝑘 ∥𝐿1 (Ω) ≤ 𝐶 |𝑅𝑘 |1+𝜈𝑡 𝜈 = 𝐶 |𝑅𝑘 |1+𝜈𝜏−𝜈 𝑡 𝜈𝑘 .

Note that |𝑅𝑘 | ≤ |Ω |. Together with the result of Lemma 6.6, we obtain∑︁
𝑘 : 𝑡𝑘=1

∥𝜌𝑘 ∥𝐿1 (Ω) +
∑︁

𝑘 : 𝑡𝑘<1
∥𝜌𝑘 ∥

1+ 1
𝜈

𝐿1 (Ω) < +∞,

which results in lim𝑘→∞ ∥𝜌𝑘 ∥𝐿1 (Ω) = 0. Hence, the algorithm stops after finitely many iterations if
𝛿tol > 0. □

The sequence (𝜒𝐴𝑘
) of characteristic functions of the iterates admits weak-star converging subse-

quences in 𝐿∞(Ω) = 𝐿1(Ω)∗. However, the corresponding limits are not guaranteed to be characteristic
functions. If a subsequence converges weak-star to a characteristic function, i.e., 𝜒𝐴𝑘′ ⇀

∗ 𝜒𝐴 in 𝐿∞(Ω),
then the convergence is strong in every 𝐿𝑞 (Ω), 𝑞 < ∞, and the limit 𝐴 is a solution of (1.6). If (1.6) is
unsolvable then weak-star sequential limit points of (𝜒𝐴𝑘

) cannot be characteristic functions.
A similar convergence result for gradient descent without linesearch can be found in [13, Theorem

2.1], whereas convergence of a trust-region-type algorithm can be found in [29, Theorem 4.1].
Remark 6.8. Algorithm 1 can be generalized to optimization problems of the type min𝐴⊆Ω 𝐽 (𝐴), where
the minimum is taken over measurable subsets 𝐴. In order to apply the above analysis, we would need
the following “differentiability” condition on 𝐽 : there is 𝜂 : [0,∞) → [0,∞) with lim𝑡↘0

𝜂 (𝑡 )
𝑡

= 0 such
that for each 𝐴 ⊆ Ω there is 𝐷𝐽 (𝐴) ∈ 𝐿1(Ω) such that

(6.7)
����𝐽 (𝐵) − 𝐽 (𝐴) − ∫

Ω
(𝜒𝐵 − 𝜒𝐴)𝐷𝐽 (𝐴) d𝑥

���� ≤ 𝜂 ( |𝐵△𝐴|) ∀𝐵 ⊆ Ω.

Then the result of Lemma 6.5 is valid, where assumption (6.7) would act as a substitute for Lemma 6.4.
The statement of Theorem 6.7 has to be changed to: either 𝜌𝑚 = 0 for some finite𝑚 or lim𝑘→∞ ∥𝜌𝑘 ∥𝐿1 (Ω) =
0.

Note that condition (6.7) is weaker than the assumptions of [13, 14] and [29, Assumption 1.1(a)–(c)]. In
the latter reference that stronger assumption was used to prove a statement analogous to Theorem 6.7.

7 numerical experiments

7.1 optimal control problem with 𝐿0-control cost

Let us report about numerical results of the application of Algorithm 1 to the following problem:
Minimize

min 1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥2
𝐿2 (Ω) + 𝛽 ∥𝑢∥0
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over all (𝑦,𝑢) ∈ 𝐻 1
0(Ω) × 𝐿2(Ω) satisfying

−Δ𝑦 = 𝑢 a.e. on Ω

and
𝑢𝑎 ≤ 𝑢 ≤ 𝑢𝑏 a.e. on Ω.

This corresponds to the abstract setting with the choices 𝑆 := (−Δ)−1 : 𝐿2(Ω) → 𝐻 1
0(Ω) ↩→ 𝐿2(Ω),

𝑌 := 𝐿2(Ω), 𝑔(𝑢) := 𝛼
2𝑢

2 + 𝐼 [𝑢𝑎,𝑢𝑏 ] (𝑢), 𝛽 (𝑥) := 𝛽 . Here, 𝐼𝐶 denotes the indicator function of the convex
set 𝐶 , defined by 𝐼𝐶 (𝑥) = 0 for 𝑥 ∈ 𝐶 and 𝐼𝐶 (𝑥) = +∞ for 𝑥 ∉ 𝐶 . The assumptions are all satisfied. In
particular 𝑔 is strongly convex with modulus 𝜇 := 𝛼 . In the numerical experiment, we used Ω ⊆ ℝ2

bounded, so that assumptions (A5) and (A5’) are satisfied with 𝑞 = ∞ due to Stampacchia’s result [38].

7.1.1 example from [39]

We choose Ω = (0, 1)2. We used a standard finite-element discretization on a shape-regular mesh on Ω.
State and adjoint variables (i.e., 𝑦 , 𝑝) were discretized using continuous piecewise linear functions,
while the control variable was discretized using piecewise constant functions. Let us remark that for the
finest discretization, the control functions have 2, 000, 000 degrees of freedom. The subproblems (P𝐴)
were solved by a semismooth Newton implementation. The parameters in the line-search of Algorithm 1
were chosen to be 𝜏 = 0.5 and 𝜎 = 0.1. The algorithm was stopped if one of the following conditions
was fulfilled: ∥𝜌𝑘 ∥𝐿∞ (Ω) ≤ 10−12, the support of 𝜌𝑘 contained ≤ 3 elements, or the line-search failed to
find a valid step-size. Termination due to the latter condition can happen if the relevant quantities in
(6.5), are very small so that errors in the inexact solve of the sub-problem (P𝐴) are of the same order.

In addition, we used the following data

𝑦𝑑 (𝑥1, 𝑥2) = 10𝑥1 sin(5𝑥1) cos(7𝑥2), 𝛼 = 0.01, 𝛽 = 0.01, 𝑢𝑎 = −4, 𝑢𝑏 = +4,

which was also used in [27, 39]. The computed optimal control, which is obtained by the last iterate
of Algorithm 1 on the finest mesh, can be seen in Figure 1. Due to the presence of the 𝐿0-term in the
objective, the control is zero on a relatively large part of Ω.

Figure 1: Solution 𝑢 for ℎ = 1.41 · 10−3, Section 7.1.1

The results of the computations for different meshes can be seen in Table 1. There, ℎ denotes the
mesh-size of the triangulation, 𝐽 denotes the value of the functional 𝐽 at the final iterate, similarly
∥𝜒 ∥𝐿1 (Ω) is the size of the support of the optimal control, and ∥𝜌 ∥𝐿1 (Ω) is the error estimate from the
topological derivative at the final iteration. The values corresponding to the mesh-size ℎ = 2.83 · 10−3

are in agreement with those from [39]. For this example, all computations stopped due to the support
of 𝜌𝑘 containing less than 3 elements. In addition, for this example, the step-size 𝑡 = 1 was always
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accepted. Algorithm 1 was started with the initial choice 𝐴0 = Ω. As can be seen from Table 1, the
optimal values of 𝐽 and ∥𝜒 ∥𝐿1 (Ω) converge for ℎ ↘ 0, and ∥𝜌 ∥𝐿1 (Ω) → 0 for ℎ ↘ 0. According to
Theorem 6.7, this strongly suggests that the iterates are a minimizing sequence of (1.6). In the last
column of Table 1, we report about the number of iterations until the termination criterion is satisfied.
As can be seen, the numer of iterations rises midly after mesh refinement.

ℎ 𝐽 ∥𝜒𝐴∥𝐿1 (Ω) ∥𝜌 ∥𝐿1 (Ω) It

4.42 · 10−2 4.712 0.43896 4.33 · 10−3 2
2.21 · 10−2 5.054 0.44299 2.12 · 10−8 3
1.13 · 10−2 5.216 0.44352 2.09 · 10−8 3
5.66 · 10−3 5.299 0.44432 2.04 · 10−8 3
2.83 · 10−3 5.340 0.44455 2.11 · 10−11 4
1.41 · 10−3 5.360 0.44460 4.05 · 10−11 4

Table 1: Results of optimization, Section 7.1.1

Let us report about the influence of the choice of the initial guess 𝐴0 ⊆ Ω. Here we chose the
following set of parameters: 𝑦𝑑 was as above, and

𝛼 = 0.001, 𝛽 = 0.1, 𝑢𝑎 = −40, 𝑢𝑏 = +40.

For this example, the method returned the same solution independent of the initial guess. We depicted
the iteration history for different choices of 𝐴0 in Figure 2. In general, the method was faster when
starting from 𝐴0 = Ω than from 𝐴0 = ∅. As one can see from Figure 2, the convergence of ∥𝜌𝑘 ∥𝐿1 (Ω) is
stable with respect to mesh refinement.

Figure 2: Comparison of iteration history of ∥𝜌𝑘 ∥𝐿1 (Ω) for different choice of 𝐴0: 𝐴0 = ∅ (left), 𝐴0 = Ω
(right), Section 7.1.1

7.1.2 an unsolvable problem

Let us report about observations when applying our algorithm to an unsolvable problem. This problem
is taken from [39, Section 4.5]. It is very similar to the above problem. The partial differential equation
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is chosen in such a way that a constant control 𝑢 leads to a constant solution 𝑦 . The problem reads as
follows: Minimize the functional

1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝐿2 (Ω) +
𝛼

2 ∥𝑢∥2
𝐿2 (Ω) + 𝛽 ∥𝑢∥0,

where 𝑦 denotes the weak solution of the elliptic partial differential equation with Neumann boundary
conditions

−Δ𝑦 + 𝑦 = 𝑢 in Ω,
𝜕𝑦

𝜕𝑛
= 0 on 𝜕Ω.

Let 𝛼 > 0 and 𝛽 > 0 be given, and set

𝑦𝑑 (𝑥) = −
√︂
𝛽

𝛼
−
√︁

2𝛼𝛽.

As argued in [39, Section 4.5] this optimal control problem is unsolvable. This implies that there is also
no minimizer 𝐴 of the value function 𝐽 (𝐴).

ℎ 𝐽 ∥𝜒𝐴∥𝐿1 (Ω) ∥𝜌 ∥𝐿1 (Ω)

4.42 · 10−2 10.014 0.70703 6.15 · 10−9

2.21 · 10−2 10.014 0.70703 8.63 · 10−10

1.13 · 10−2 10.014 0.70701 9.29 · 10−10

5.66 · 10−3 10.014 0.70670 2.75 · 10−9

2.83 · 10−3 10.014 0.70674 2.49 · 10−9

1.41 · 10−3 10.014 0.70693 1.37 · 10−9

Table 2: Results of optimization, Section 7.1.2

In the computations, we used

𝛽 = 0.01, 𝛼 = 1000, Ω = (0, 1)2.

The results are shown in Table 2. There, the values of 𝐽 , ∥𝜒𝐴∥𝐿1 (Ω) , and ∥𝜌 ∥𝐿1 (Ω) are shown for the
final iterate on meshes with different mesh-sizes ℎ. In contrast to the results of [39], where resulting
controls had always support equal to Ω, the measure of the sets 𝐴𝑘 was in the order of 0.7 after a few
steps of Algorithm 1. In our experiments, the line-search took much more steps than in the previous
example, and only small modifications of the 𝐴𝑘 were accepted, resulting in very slow convergence.
While ∥𝜌𝑘 ∥𝐿1 (Ω) was very small after a few steps of the algorithm, the support of 𝜌𝑘 never gets as
small as for the previous example. For this example, we stopped the algorithm after 100 iterations. Still,
according to Theorem 6.7, the algorithm produces a minimizing sequence for the unsolvable example,
which is not the case for the thresholding method of [39].

7.2 binary control problems

Following the ideas of [2, 3, 22, 29], we will apply our algorithm to a binary control problem, where
controls can only take values in {0, +1}. We will use a problem considered in [2, 3], which reads:
Minimize

min 1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝐿2 (Ω) + 𝜈 ∥𝑢∥𝐿1 (Ω)
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over all (𝑦,𝑢) ∈ 𝐻 1
0(Ω) × 𝐿2(Ω) satisfying

−Δ𝑦 = 𝑢 a.e. on Ω

and
𝑢 (𝑥) ∈ {0, 1} f.a.a. 𝑥 ∈ Ω.

Hence, 𝑢 itself is a characteristic function. And the above problem can be written in our setting as:
Minimize

𝐽 (𝐴,𝑢) := 1
2 ∥𝑦 − 𝑦𝑑 ∥2

𝐿2 (Ω) + 𝜈
∫
𝐴

d𝑥

over all (𝑦,𝑢) ∈ 𝐻 1
0(Ω) × 𝐿2(Ω) satisfying

−Δ𝑦 = 𝜒𝐴𝑢 a.e. on Ω

and the (trivial) constraint
𝑢 = 1 a.e. on Ω.

This setting does not directly fit into our framework. Still we can compute the topological derivative as
follows. The solution of 𝑢 ↦→ 𝐽 (𝐴,𝑢) is given by 𝑢𝐴 ≡ 1, which greatly simplifies the computations of
Section 3. And we have the following result concering the topological derivative of the value function.
Theorem 7.1. The topological derivative 𝐷𝐽 (𝐵) (𝑥) of the value function of the binary control problem
exists for almost all 𝑥 ∈ Ω, and is given by

𝐷𝐽 (𝐵) (𝑥) = 𝜎 (𝐵, 𝑥) (𝛽 (𝑥) + 𝑝𝐵 (𝑥))

with 𝜎 (𝐵, 𝑥) as in Theorem 4.2.

Proof. The result of Lemma 3.1 in this situation has to be modified to

𝐽 (𝐴,𝑢𝐴) − 𝐽 (𝐵,𝑢𝐵) +
1
2 ∥𝑦𝐵 − 𝑦𝐴∥2

𝑌 =

∫
Ω
(𝜒𝐴 − 𝜒𝐵) (𝛽 + 𝑝𝐴) d𝑥 .

where we have used set 𝑔 = 0 and 𝜒𝐴𝑢𝐴 − 𝜒𝐵𝑢𝐵 = 𝜒𝐴 − 𝜒𝐵 in (3.1). Since 𝑝𝐴 − 𝑝𝐵 = 𝑆∗𝑆 (𝜒𝐴 − 𝜒𝐵), we
have the estimate ∥𝑝𝐴 − 𝑝𝐵 ∥𝐿𝑞 (Ω) ≤ 𝑐 ∥𝜒𝐴 − 𝜒𝐵 ∥𝐿2 (Ω) = 𝑐 ∥𝜒𝐴 − 𝜒𝐵 ∥1/2

𝐿1 (Ω) , which replaces the result of
Theorem 3.3. Now the claim can be proven as in the proof of Theorem 4.2. □

The topological derivative coincides with the result [2, Corollary 3.2]. The computation of the
topological derivative does not involve the solution of any optimization problem: given 𝐴, only 𝑦𝐴 and
𝑝𝐴 have to be computed.

Let us report about the results for the following choice of parameters, corresponding to Case 3 in [2,
Section 9]:

𝑦𝑑 = 0.05, 𝜈 = 0.002.

The computed control on the finest discretization can be seen in Figure 3, which agrees with [2, Figure
4]. The results of the optimization runs for different discretizations can be seen in Table 3. In all cases,
the algorithm stopped due to a failed line-search. Nevertheless, the error quantity ∥𝜌 ∥𝐿1 (Ω) is very
small, and is decreasing with decreasing mesh-size. According to Theorem 6.7 this indicates that the
algorithm produces a minimizing sequence.
We also implemented the level-set method from [3, 5]. All parameters were chosen as in [3]. We

took the same example as above and performed the computations on the grid with ℎ = 2.24 · 10−3.
The resulting iteration history of ∥𝜌𝑘 ∥𝐿1 (Ω) for our method and the level-set method can be seen in
Figure 4. In the level-set method, the domain 𝐴 is determined as 𝐴 := {𝑥 : 𝜓 (𝑥) ≥ 0}, where𝜓 is the
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ℎ 𝐽 ∥𝜒𝐴∥𝐿1 (Ω) ∥𝜌 ∥𝐿1 (Ω) It

6.99 · 10−2 1.799 1.63770 5.60 · 10−8 21
3.49 · 10−2 1.872 1.63794 4.16 · 10−9 25
1.79 · 10−2 1.909 1.63808 3.93 · 10−10 30
8.94 · 10−3 1.928 1.63806 5.36 · 10−11 36
4.47 · 10−3 1.938 1.63802 1.51 · 10−12 39
2.24 · 10−3 1.943 1.63802 3.28 · 10−12 35

Table 3: Results of optimization, Section 7.2

Figure 3: Solution for ℎ = 2.24 · 10−3, Section 7.2

level-set function. Here, it makes a difference, whether𝜓 is discretized by piecewise constant (P0) or
piecewise linear (P1) finite elements. We implemented both variants. Our method was implemented
using piecewise constant functions for the control. The computations in all three methods were stopped
as soon as ∥𝜌𝑘 ∥𝐿1 (Ω) < 10−11. The results can be seen in Figure 4: the black plus-signs correspond to the
piecewise constant (P0) case, while the blue x’s refer to the piecewise linear (P1) case of the level-set
method, where all integrals are computed exactly following the ideas of [25]. While the level-set
method in the piecewise linear case seems to be the fastest of these three methods, the comparison to
our method with piecewise constant discretization is a bit unfair, as the piecewise linear method can
resolve the interface much finer. Still our method is faster than the piecewise constant variant of the
level-set method.

8 conclusion

In this paper, we developed an algorithm to solve control problems with 𝐿0-cost. As showed in
Theorem 6.7, the algorithm produces aminimizing sequence,which is remarkable as the 𝐿0-optimization
problem is not convex. The algorithm was motivated by the concept of topological derivatives applied
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Figure 4: Comparison of Algorithm 1 (red circles) and level-set method [3] (black +’s: P0, blue x’s: P1):
Iteration history of ∥𝜌𝑘 ∥𝐿1 (Ω) , Section 7.2

to a suitable chosen sub-problem.
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