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local properties and augmented lagrangians in
fully nonconvex composite optimization

Alberto De Marchi∗ Patrick Mehlitz†

“In fact the great watershed in optimization isn’t between linearity and nonlinearity, but between
convexity and nonconvexity.”

— R. T. Rockafellar [51]
Abstract Abroad class of optimization problems can be cast in composite form, that is, considering
the minimization of the composition of a lower semicontinuous function with a differentiable
mapping. This paper investigates the versatile template of composite optimization without any
convexity assumptions. First- and second-order optimality conditions are discussed. We highlight
the difficulties that stem from the lack of convexity when dealing with necessary conditions in a
Lagrangian framework and when considering error bounds. Building upon these characterizations,
a local convergence analysis is delineated for a recently developed augmented Lagrangian method,
deriving rates of convergence in the fully nonconvex setting.

Keywords Augmented Lagrangian framework · Composite nonconvex optimization · Error
bounds · Local convergence properties · Second-order variational analysis

MSC (2020) 49J52 · 49J53 · 65K10 · 90C30 · 90C33

1 introduction

In this paper, we are concerned with finite-dimensional optimization problems of the form

(P) minimize
𝑥

𝜑 (𝑥) B 𝑓 (𝑥) + 𝑔(𝑐 (𝑥)),

where 𝑥 ∈ ℝ𝑛 is the decision variable, 𝑓 : ℝ𝑛 → ℝ and 𝑐 : ℝ𝑛 → ℝ𝑚 are smooth mappings, and
𝑔 : ℝ𝑚 → ℝ B ℝ ∪ {∞} is merely proper and lower semicontinuous. The data functions 𝑓 and 𝑔
are allowed to be nonconvex mappings, the nonsmooth cost 𝑔 is not necessarily continuous nor real-
valued, and the mapping 𝑐 is potentially nonlinear. Such setting of nonsmooth nonconvex composite
optimization was named generalized [54] (or extended [52]) nonlinear programming by Rockafellar,
and it is well known that the model problem (P) covers numerous applications from signal processing,
sparse optimization, compressed sensing, machine learning, and disjunctive programming. Let us
mention that the situation where 𝑔 is convex has been intensively studied in the literature, see e.g.
[52, 53, 54]. We do not make such an assumption and consider the far more challenging general setup.
Our motivation behind the potential nonconvexity of 𝑔 is driven by applications from sparse or

low-rank optimization. Although the (convex) ℓ1- and nuclear norm are known to promote sparse or
low-rank behavior, solutions are often not sparse enough in certain settings. In order to overcome this
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issue, one can rely on the ℓ0-quasi-norm or the matrix rank as “regularizers”, which are discontinuous
functions. Intermediate choices for 𝑔 like the ℓ𝑞-quasi-norm or the 𝑞-Schatten-quasi-norm for 𝑞 ∈ (0, 1)
are nonconvex but uniformly continuous, and have turned out to work well in numerical practice.
Another driving force behind this work comes from disjunctive programming, in particular from the
observation that constraints can be naturally formulated in a function-in-set format whereby sets
are nonconvex yet simple (to project onto). The template (P) lends itself to capture this scenario,
taking full advantage of 𝑔 as the indicator of a nonconvex set, comprising structures typical for, e.g.,
complementarity, switching, and vanishing constraints, see the classical monographs [40, 46] and the
more recent contributions [23, 41].
The possibility to include constraints in the model problem (P) becomes apparent with a direct

reformulation. Introducing an auxiliary variable 𝑧 ∈ ℝ𝑚 , (P) can be equivalently rewritten in the form

(PS) minimize
𝑥,𝑧

𝑓 (𝑥) + 𝑔(𝑧) subject to 𝑐 (𝑥) − 𝑧 = 0,

which has a separable objective function, without nontrivial compositions, and explicitly includes
some equality constraints. An analogous template has been studied in [17], demonstrating its modeling
versatility, mostly enabled by accepting potentially nonconvex 𝑔.

A fundamental technique for solving constrained optimization problems is the augmented Lagrangian
(AL) framework, which can effortlessly handle nonsmooth objectives, see e.g. [12, 14, 16, 17, 20, 28, 29, 53,
54, 56] for some recent contributions, and [10, 11, 15] for some fundamental literature which addresses
the setting of standard nonlinear programming. Particularly, Rockafellar extended the approach in
[53, 54] to the broad setting of (P) with 𝑔 convex, relying on some local duality to build a connection
with the proximal point algorithm (PPA), see [49, 50]. Embracing the fully nonconvex setting, we
are interested here in investigating AL methods for generalized nonlinear programming without any
convexity assumption. Although the shifted-penalty approach underpinning the seminal “method of
multipliers” still applies in our setting, it appears more difficult to leverage the perspective of PPA.
Moreover, the nonconvexity of 𝑔 leads to a lack of regularity, as its proximal mapping is potentially set-
valued. Here, we seek a better understanding of the variational properties of (P) and the convergence
guarantees of AL methods for this class of problems. Building upon the global characterization in
[16], we will focus on second-order optimality conditions and local analysis, portraying a convergence
theory for the fully nonconvex setting including rates-of-convergence results.

The following blanket assumptions are considered throughout, without further mention. Technical
definitions are given in Section 2.
Assumption 1.1. The following hold in (P):

(i) 𝑓 : ℝ𝑛 → ℝ and 𝑐 : ℝ𝑛 → ℝ𝑚 are twice continuously differentiable;

(ii) 𝑔 : ℝ𝑚 → ℝ is proper, lower semicontinuous, and prox-bounded;

(iii) inf 𝜑 ∈ ℝ.

The prox-boundedness assumption on 𝑔 in Assumption 1.1(ii) is included to ensure that, for some
suitable parameters, the proximal mapping of 𝑔 is well-defined, and so is the overall numerical scheme
considered in this work. However, such stipulation is not necessary. As suggested in [54], a “trust
region” can be specified to localize the proximal minimization and to support its attainment. While
avoiding the artificial unboundedness potentially introduced by relaxing the composition constraint,
this localization would affect some algorithmic and global aspects, but not the local behavior and
properties we are interested in here.
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1.1 related work and contributions

Since its inception [30, 47, 49], the AL framework has been extensively investigated and developed
[11, 15], also in infinite dimensions [38]. It was soon recognized that, in the convex setting, the method
of multipliers can be associated to the PPA applied to a dual problem, see [50]. Following this pattern,
local convexity enabled by some second-order optimality conditions allowed to reconcile the AL
scheme with an application of the PPA, and thereby establishing convergence, beyond the convex
setting [10, 53, 54]. However, when it comes to local convergence properties, available results remain
confined to the case with 𝑔 convex.

Contributions With this work, we extend recent results by Rockafellar from [53, 54], where composite
optimization problems with convex 𝑔 are considered, to the more general setting. In particular, we
study the implicit AL method from [16] and characterize its local convergence behavior. Particularly,
under suitable conditions, we show convergence of the full sequence with linear or superlinear rate in
Theorem 4.12. To proceed, we make use of problem-tailored second-order conditions which have been
developed recently in [8]. Moreover, the Lagrange multiplier has to be locally unique, see Lemma 3.13.
Sparsity-promoting terms and nonconvex constraint sets have turned out to work well in the AL

framework—at least from a global perspective, e.g. in [17, 35]. We are also interested in local properties
now, with a focus on the numerical method proposed in [16], which favorably avoids the use of slack
variables, see [6] for a recent study.

Local fast convergence of an AL method in composite optimization has been considered from the
viewpoint of variational analysis in the recent paper [28] in the context where 𝑔 is a continuous,
piecewise quadratic, convex function. This allows for a unified analysis as the standard second-order
sufficient condition already gives the necessary error bound condition (due to the result from Lemma 2.7
and the analysis in [42, 55]). A recent analysis of the local convergence of AL methods for (P) is that in
[29], restricted to convex 𝑔, which considers second-order sufficient conditions and establishes Q-linear
convergence of the primal-dual sequence, without assuming any constraint qualification (CQ).
Our analysis also took inspiration from [13, 36, 57] where, among other things, the local analysis

of AL methods for (smooth) optimization problems with geometric constraints of type 𝑐 (𝑥) ∈ 𝐾 for
some closed, convex set 𝐾 is considered in a Banach space setting. We, at least roughly, follow the
arguments in [57] and (apart from the fact that we are working in a fully finite-dimensional setting)
generalize the findings therein to nonsmooth composite problems.
Let us point out that desirable local convergence properties of AL methods in standard nonlinear

programming can be guaranteed with no more than a second-order sufficient condition, i.e., no addi-
tional CQ is necessary, see [22], and the second-order sufficient condition can even be replaced by a
weaker noncriticality assumption on the involved multipliers, as shown later in [33]. One reason for
this behavior is the inherent (convex) polyhedrality of the involved constraint set, see Example 3.4
below, which also gives (convex) polyhedrality of the associated set of Lagrange multipliers. The fact
that polyhedrality comes along with certain stability properties (in the sense of error bounds) is well
known from the seminal papers [48, 59]. In the general, nonpolyhedral situation, such a result is not
likely to hold, see [36], and an additional CQ might be necessary. Exemplary, this has been visualized
in the papers [27, 37] where AL methods in second-order cone programming have been investigated.
In order to obtain convergence rates, the authors do not only postulate the validity of a second-order
condition, but make use of an addition assumption. In [37], the authors exploit the strict Robinson
condition (which guarantees uniqueness of the underlying Lagrange multiplier) while in [27], a certain
multiplier mapping is assumed to be calm while, at the point of interest, uniqueness of the Lagrange
multiplier is also needed.
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Roadmap The remainder of the paper is organized as follows. Section 2 provides some preliminary
results from variational analysis and generalized differentiation. Section 3 is dedicated to the investiga-
tion of first-order necessary and second-order sufficient optimality conditions in nonconvex composite
optimization. Furthermore, we comment on a reasonable choice for an AL function and investigate
error bounds for a system of necessary optimality conditions associated with (P). In Section 4, we first
introduce the AL method of our interest before presenting some global convergence results which
complement the analysis provided in [16]. Then, local convergence results are presented. We start
by clarifying the existence and convergence of minimizers for the associated AL subproblems before
focusing on the derivation of rates-of-convergence results. Section 5 illustrates our findings by means of
two exemplary settings: sparsity-promoting nonlinear optimization and complementarity-constrained
optimization. The paper closes with some concluding remarks in Section 6.

2 preliminaries

This section provides notation, preliminaries, and known facts based on [43, 55], with some additional
basic results.

Withℝ andℝ B ℝ∪{∞} we indicate the real and extended-real line, respectively. The set of natural
numbers is denoted by ℕ. We equip the appearing Euclidean spaces possessing the standard Euclidean
inner product ⟨·, ·⟩ with the associated Euclidean norm ∥ · ∥. In product spaces, we make use of the
associated maximum norm. With 𝔹𝑟 (𝑥) we indicate the closed ball centered at 𝑥 ∈ ℝ𝑛 with radius
𝑟 > 0. Given a set 𝐴 ⊆ ℝ𝑛 , we use 𝑥 + 𝐴 B 𝐴 + 𝑥 B {𝑎 + 𝑥 ∈ ℝ𝑛 | 𝑎 ∈ 𝐴} for brevity. The notation
{𝑎𝑘 }𝑘∈𝐾 represents a sequence indexed by elements of the set 𝐾 ⊆ ℕ, and we write {𝑎𝑘 }𝑘∈𝐾 ⊆ 𝐴 to
indicate that 𝑎𝑘 ∈ 𝐴 for all indices 𝑘 ∈ 𝐾 . Whenever clear from context, we may simply write {𝑎𝑘 }
to indicate {𝑎𝑘 }𝑘∈ℕ. Notation 𝑎𝑘 →𝐾 𝑥 (𝑎𝑘 → 𝑥) is used to express convergence of {𝑎𝑘 }𝑘∈𝐾 (of {𝑎𝑘 })
to 𝑥 . If 𝑛 = 1, we use {𝑎𝑘 }𝑘∈𝐾 and {𝑎𝑘 } to emphasize that we are dealing with sequences of scalars.
We will adopt the little-o notation for asymptotics: given sequences {𝑎𝑘 } and {𝜀𝑘 } ⊂ (0,∞), we write
𝑎𝑘 ∈ o(𝜀𝑘 ) to indicate that lim𝑘→∞ |𝑎𝑘 |/𝜀𝑘 = 0.

A function 𝑓 : ℝ𝑛×ℝ𝑚 → ℝwith values 𝑓 (𝑥, 𝑧) is level-bounded in 𝑥 locally uniformly in 𝑧 if for each
𝛼 ∈ ℝ and 𝑧 ∈ ℝ𝑚 there exists 𝜀 > 0 such that the set {(𝑥, 𝑧) ∈ ℝ𝑛 ×ℝ𝑚 | 𝑓 (𝑥, 𝑧) ≤ 𝛼, ∥𝑧 − 𝑧∥ ≤ 𝜀} is
bounded. The effective domain of a function ℎ : ℝ𝑚 → ℝ is denoted by domℎ B {𝑧 ∈ ℝ𝑚 | ℎ(𝑧) < ∞}.
The set epiℎ B {(𝑧, 𝛼) ∈ ℝ𝑚 × ℝ | 𝛼 ≥ ℎ(𝑧)} is called the epigraph of ℎ. We say that ℎ is proper if
domℎ ≠ ∅ and lower semicontinuous if ℎ(𝑧) ≤ lim inf𝑧→𝑧 ℎ(𝑧) for all 𝑧 ∈ ℝ𝑚 . Note that ℎ is lower
semicontinuous if and only if epiℎ is closed. Given a point 𝑧 ∈ domℎ, we may avoid to assume ℎ
continuous and instead appeal to ℎ-attentive convergence of a sequence {𝑧𝑘 }, denoted as 𝑧𝑘 ℎ→ 𝑧

and given by 𝑧𝑘 → 𝑧 with ℎ(𝑧𝑘 ) → ℎ(𝑧). For some real number 𝜆 ≥ 1, we refer to ℎ as positively
homogeneous of degree 𝜆 if ℎ(𝛼𝑦) = 𝛼𝜆ℎ(𝑦) holds for all 𝑦 ∈ ℝ𝑚 and real numbers 𝛼 > 0. The conjugate
function ℎ∗ : ℝ𝑚 → ℝ associated with (proper and lower semicontinuous) ℎ is defined by

ℎ∗(𝑦) B sup
𝑧

{⟨𝑦, 𝑧⟩ − ℎ(𝑧)}.

We note that ℎ∗ is a convex function by definition since it is a supremum of affine functions.
For a proper and lower semicontinuous function ℎ : ℝ𝑚 → ℝ, a point 𝑧 ∈ ℝ𝑚 is called feasible if

𝑧 ∈ domℎ. A feasible point 𝑧 ∈ ℝ𝑚 is said to be locally optimal, or called a local minimizer, if there
exists 𝑟 > 0 such that ℎ(𝑧) ≤ ℎ(𝑧) holds for all feasible 𝑧 ∈ 𝔹𝑟 (𝑧). Additionally, if this inequality holds
for all feasible 𝑧 ∈ ℝ𝑚 , then 𝑧 is said to be (globally) optimal.
We use the notation Γ : ℝ𝑛 ⇒ ℝ𝑚 to indicate a point-to-set function Γ : ℝ𝑛 → 2ℝ𝑚 . The set

gph Γ B {(𝑥, 𝑦) ∈ ℝ𝑛×ℝ𝑚 | 𝑦 ∈ Γ(𝑥)} is called the graph of Γ. The set-valuedmapping Γ−1 : ℝ𝑚 ⇒ ℝ𝑛

given by gph Γ−1 B {(𝑦, 𝑥) ∈ ℝ𝑚 × ℝ𝑛 | (𝑥, 𝑦) ∈ gph Γ} is referred to as the inverse of Γ. The set
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ker Γ B {𝑥 ∈ ℝ𝑛 | 0 ∈ Γ(𝑥)} is the kernel of Γ. Recall that Γ is said to be a polyhedral mapping if gph Γ
can be represented as the union of finitely many convex polyhedral sets.

2.1 proximal mappings

Let ℎ : ℝ𝑚 → ℝ be proper and lower semicontinuous. Given a parameter value 𝜇 > 0, the proximal
mapping prox𝜇ℎ : ℝ𝑚 ⇒ ℝ𝑚 is defined by

(2.1) prox𝜇ℎ (𝑧) B arg min
𝑧′

{
ℎ(𝑧′) + 1

2𝜇 ∥𝑧
′ − 𝑧∥2

}
.

We say that ℎ is prox-bounded if ℎ + ∥ · ∥2/(2𝜇) is bounded below on ℝ𝑚 for some 𝜇 > 0, see [55, Def.
1.23]. The supremum of all such 𝜇 is the threshold 𝜇ℎ of prox-boundedness for ℎ. In particular, if ℎ is
bounded below by an affine function, then 𝜇ℎ = ∞. For any 𝜇 ∈ (0, 𝜇ℎ), the proximal mapping prox𝜇ℎ
is locally bounded as well as nonempty- and compact-valued, see [55, Thm 1.25]. The value function
of the minimization problem defining the proximal mapping is the Moreau envelope with parameter
𝜇 ∈ (0, 𝜇ℎ), denoted ℎ𝜇 : ℝ𝑚 → ℝ, namely

ℎ𝜇 (𝑧) B inf
𝑧′

{
ℎ(𝑧′) + 1

2𝜇 ∥𝑧
′ − 𝑧∥2

}
.

The projection mapping ΠΩ : ℝ𝑚 ⇒ ℝ𝑚 and the distance function distΩ : ℝ𝑚 → ℝ of a nonempty
set Ω ⊆ ℝ𝑚 are defined by

ΠΩ (𝑧) B arg min
𝑧′∈Ω

∥𝑧′ − 𝑧∥, dist(𝑧,Ω) B inf
𝑧′∈Ω
∥𝑧′ − 𝑧∥ .

The former is a set-valued mapping whenever Ω is nonconvex, whereas the latter is always single-
valued.

The following technical lemmas are used later on.
Lemma 2.1. Let ℎ : ℝ𝑚 → ℝ be proper, lower semicontinuous, and prox-bounded. Let domℎ be closed and
fix 𝑧 ∈ ℝ𝑚 . Then

lim
𝑧′→𝑧, 𝜇↓0

inf
𝑧∈domℎ

{
𝜇ℎ(𝑧) + 1

2 ∥𝑧 − 𝑧
′∥2

}
=

1
2 dist2(𝑧, domℎ) .

Proof. As domℎ is nonempty and closed, we find 𝑧 ∈ domℎ such that dist(𝑧, domℎ) = ∥𝑧 − 𝑧∥. For
every 𝑧′ ∈ ℝ𝑚 and 𝜇 > 0, this gives

inf
𝑧∈domℎ

{
𝜇ℎ(𝑧) + 1

2 ∥𝑧 − 𝑧
′∥2

}
≤ 𝜇ℎ(𝑧) + 1

2 ∥𝑧 − 𝑧
′∥2,

and taking the upper limit, we find

(2.2) lim sup
𝑧′→𝑧, 𝜇↓0

inf
𝑧∈domℎ

{
𝜇ℎ(𝑧) + 1

2 ∥𝑧 − 𝑧
′∥2

}
≤ 1

2 ∥𝑧 − 𝑧∥
2 =

1
2 dist2(𝑧, domℎ) .

Next, we define𝜓 : ℝ𝑚 × [0,∞) → ℝ ∪ {−∞} by means of

∀𝑧′ ∈ ℝ𝑚, ∀𝜇 ∈ [0,∞) : 𝜓 (𝑧′, 𝜇) B inf
𝑧∈domℎ

{
𝜇ℎ(𝑧) + 1

2 ∥𝑧 − 𝑧
′∥2

}
.

As ℎ is prox-bounded, 𝜓 takes finite values for all sufficiently small 𝜇, and these finite values are
attained, see [55, Thm 1.25]. Suppose that there are sequences {𝑧𝑘 }, {𝑧𝑘 } ⊆ ℝ𝑚 and {𝜇𝑘 } ⊆ [0,∞) with
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𝑧𝑘 → 𝑧 and 𝜇𝑘 → 0,𝜓 (𝑧𝑘 , 𝜇𝑘 ) = 𝜇𝑘ℎ(𝑧𝑘 ) + 1
2 ∥𝑧

𝑘 −𝑧𝑘 ∥2, and ∥𝑧𝑘 ∥ → ∞. On the one hand, boundedness
of {𝑧𝑘 } and {𝜇𝑘 } gives the existence of a constant 𝐶 > 0 such that

(2.3) ∀𝑘 ∈ ℕ : 𝜓 (𝑧𝑘 , 𝜇𝑘 ) ≤ 𝜇𝑘ℎ(𝑧) +
1
2 ∥𝑧 − 𝑧

𝑘 ∥2 ≤ 𝐶.

On the other hand, the prox-boundedness of ℎ implies that ℎ is minorized by a quadratic function, see
[55, Ex. 1.24]. Hence, there are constants 𝑐1, 𝑐2, 𝑐3 > 0 such that, for sufficiently large 𝑘 ∈ ℕ,

𝜓 (𝑧𝑘 , 𝜇𝑘 ) ≥ −𝜇𝑘𝑐1∥𝑧𝑘 ∥2 − 𝜇𝑘𝑐2∥𝑧𝑘 ∥ − 𝜇𝑘𝑐3 +
1
2 ∥𝑧

𝑘 − 𝑧𝑘 ∥2

≥
(

1
2 − 𝜇𝑘𝑐1

)
∥𝑧𝑘 ∥2 − (𝜇𝑘𝑐2 + ∥𝑧𝑘 ∥)∥𝑧𝑘 ∥ − 𝜇𝑘𝑐3.

Boundedness of {𝑧𝑘 } and 𝜇𝑘 → 0 thus yield 𝜓 (𝑧𝑘 , 𝜇𝑘 ) → ∞ since ∥𝑧𝑘 ∥ → ∞. This, however, is a
contradiction to (2.3). Hence, we can choose a compact set C ⊆ ℝ𝑚 such that, for each 𝜇 ≥ 0 small
enough and each 𝑧′ sufficiently close to 𝑧, we have

𝜓 (𝑧′, 𝜇) = inf
𝑧∈C∩domℎ

{
𝜇ℎ(𝑧) + 1

2 ∥𝑧 − 𝑧
′∥2

}
.

Thus, due to the lower semicontinuity of ℎ, we can apply [1, Thm 4.2.1(1)] in order to obtain

lim inf
𝑧′→𝑧, 𝜇↓0

inf
𝑧∈domℎ

{
𝜇ℎ(𝑧) + 1

2 ∥𝑧 − 𝑧
′∥2

}
≥ 𝜓 (𝑧, 0) = 1

2 dist2(𝑧, domℎ) .

Together with (2.2), the assertion follows. □

Lemma 2.2. Let ℎ : ℝ𝑚 → ℝ be proper, lower semicontinuous, and prox-bounded. Fix 𝑧 ∈ ℝ𝑚 as well as
sequences {𝜇𝑘 } ⊆ (0,∞), {𝑧𝑘 } ⊆ domℎ, and {𝑧𝑘 } ⊆ ℝ𝑚 such that 𝜇𝑘 ↓ 0, {𝑧𝑘 } is bounded, and

(2.4) lim sup
𝑘→∞

(
𝜇𝑘ℎ(𝑧𝑘 ) +

1
2 ∥𝑧

𝑘 − 𝑧𝑘 ∥2
)
≤ 0.

Then 𝜇𝑘ℎ(𝑧𝑘 ) → 0 and ∥𝑧𝑘 − 𝑧𝑘 ∥ → 0.

Proof. As in the proof of Lemma 2.1, we use [55, Ex. 1.24] to find constants 𝑐1, 𝑐2, 𝑐3 > 0 such that
ℎ(𝑧) ≥ −𝑐1∥𝑧∥2 − 𝑐2∥𝑧∥ − 𝑐3 holds for all 𝑧 ∈ ℝ𝑚 . Thus, we have

lim sup
𝑘→∞

((
1
2 − 𝜇𝑘𝑐1

)
∥𝑧𝑘 ∥2 − (𝜇𝑘𝑐2 + ∥𝑧𝑘 ∥)∥𝑧𝑘 ∥ − 𝜇𝑘𝑐3

)
≤ 0

from (2.4). By 𝜇𝑘 ↓ 0 and boundedness of {𝑧𝑘 }, this implies that {𝑧𝑘 } is bounded as well. Hence, {ℎ(𝑧𝑘 )}
is bounded below, which gives lim inf𝑘→∞ 𝜇𝑘ℎ(𝑧𝑘 ) ≥ 0. Now, (2.4) yields the claim. □

2.2 variational analysis and generalized differentiation

tangent and normal cones

We start by repeating the definition of some cones which are well known in variational analysis.
Therefore, we fix some closed set Ω ⊆ ℝ𝑚 and 𝑧 ∈ Ω. We refer to

𝑇Ω (𝑧) B
{
𝑣 ∈ ℝ𝑚

��∃{𝑡𝑘 } ⊂ (0,∞), ∃{𝑣𝑘 } ⊆ ℝ𝑚 : 𝑡𝑘 ↓ 0, 𝑣𝑘 → 𝑣, 𝑧 + 𝑡𝑘𝑣𝑘 ∈ Ω ∀𝑘 ∈ ℕ
}
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as the tangent cone to Ω at 𝑧, and we point out that it is always a closed cone. Furthermore, we make
use of

𝑁Ω (𝑧) B {𝑣 ∈ ℝ𝑚 | ∀𝑧 ∈ Ω : ⟨𝑣, 𝑧 − 𝑧⟩ ≤ o(∥𝑧 − 𝑧∥)},
𝑁Ω (𝑧) B {𝑣 ∈ ℝ𝑚 | ∃{𝑧𝑘 } ⊆ Ω, ∃{𝑣𝑘 } ⊆ ℝ𝑚 : 𝑧𝑘 → 𝑧, 𝑣𝑘 → 𝑣, 𝑣𝑘 ∈ 𝑁Ω (𝑧𝑘 ) ∀𝑘 ∈ ℕ}

which are called regular (or Fréchet) and limiting (or Mordukhovich) normal cone to Ω at 𝑧. Both of
these cones are closed, and 𝑁Ω (𝑧) is, additionally, convex. For a convex set Ω, we have

𝑁Ω (𝑧) = 𝑁Ω (𝑧) = {𝑣 ∈ ℝ𝑚 | ∀𝑧 ∈ Ω : ⟨𝑣, 𝑧 − 𝑧⟩ ≤ 0}.

We would like to point out the polar relation

(2.5) 𝑁Ω (𝑧) = 𝑇Ω (𝑧)◦,

Here, we made use of 𝐴◦ B {𝑣 ∈ ℝ𝑚 | ∀𝑧 ∈ 𝐴 : ⟨𝑣, 𝑧⟩ ≤ 0}, the polar cone of 𝐴 ⊆ ℝ𝑚 .

subdifferentials and stationarity

For a lower semicontinuous function ℎ : ℝ𝑚 → ℝ and 𝑧 ∈ domℎ,

�̂�ℎ(𝑧) B {𝑣 ∈ ℝ𝑚 | (𝑣,−1) ∈ 𝑁epiℎ (𝑧, ℎ(𝑧))},
𝜕ℎ(𝑧) B {𝑣 ∈ ℝ𝑚 | (𝑣,−1) ∈ 𝑁epiℎ (𝑧, ℎ(𝑧))},

𝜕∞ℎ(𝑧) B {𝑣 ∈ ℝ𝑚 | (𝑣, 0) ∈ 𝑁epiℎ (𝑧, ℎ(𝑧))}

are referred to as the the regular (or Fréchet), limiting (or Mordukhovich), and singular (or horizon)
subdifferential of ℎ at 𝑧. Whenever ℎ is Lipschitz continuous around 𝑧, then 𝜕∞ℎ(𝑧) = {0}. Let us
mention that, among others, the subdifferential operators �̂�, 𝜕, and 𝜕∞ are compatible with respect to
smooth additions. Indeed, for each continuously differentiable function ℎ0 : ℝ𝑚 → ℝ, it holds

�̂�(ℎ0 + ℎ) (𝑧) = ∇ℎ0(𝑧) + �̂�ℎ(𝑧), 𝜕(ℎ0 + ℎ) (𝑧) = ∇ℎ0(𝑧) + 𝜕ℎ(𝑧), 𝜕∞(ℎ0 + ℎ) (𝑧) = 𝜕∞ℎ(𝑧).

Whenever ℎ B 𝛿Ω , where 𝛿Ω is the (proper and lower semicontinuous) indicator function of the
nonempty, closed set Ω ⊆ ℝ𝑚 , vanishing on Ω and being∞ otherwise, we have dom𝛿Ω = Ω, and

�̂� 𝛿Ω (𝑧) = 𝑁Ω (𝑧), 𝜕 𝛿Ω (𝑧) = 𝜕∞ 𝛿Ω (𝑧) = 𝑁Ω (𝑧)

for 𝑧 ∈ Ω. The proximal mapping of 𝛿Ω is the projection ΠΩ , so that ΠΩ is locally bounded.
Lemma 2.3. Let ℎ : ℝ𝑚 → ℝ be proper, lower semicontinuous, and positively homogeneous of degree 2.
Then, for each 𝑧 ∈ domℎ and 𝑣 ∈ 𝜕ℎ(𝑧), ℎ(𝑧) = 1

2 ⟨𝑣, 𝑧⟩ is valid.

Proof. Let us note that the assertion is trivially true whenever 𝑧 = 0 holds, so let us assume that 𝑧 ≠ 0.
First, suppose that 𝑣 ∈ �̂�ℎ(𝑧). Due to [43, Thm 1.26], this yields

lim inf
𝑧→𝑧, 𝑧≠𝑧

ℎ(𝑧) − ℎ(𝑧) − ⟨𝑣, 𝑧 − 𝑧⟩
∥𝑧 − 𝑧∥ ≥ 0.

Considering 𝑧 B (1 ± 𝑡)𝑧 for 𝑡 ↓ 0 in the above limit, and exploiting positive homogeneity of degree 2
of ℎ, we find (±2ℎ(𝑧) ∓ ⟨𝑣, 𝑧⟩)/∥𝑧∥ ≥ 0 which yields ℎ(𝑧) = 1

2 ⟨𝑣, 𝑧⟩. To obtain the lemma’s assertion in
the more general case where 𝑣 ∈ 𝜕ℎ(𝑧), we combine the above findings with [43, Thm 1.28]. □
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A point 𝑧 ∈ domℎ is said to be M-stationary whenever 0 ∈ 𝜕ℎ(𝑧) is valid, and this constitutes a
necessary condition for the local minimality of 𝑧 for ℎ also known as Fermat’s rule, see [55, Thm 10.1]. It
should be noted that 0 ∈ �̂�ℎ(𝑧) serves as a (potentially sharper) necessary optimality condition as well.
Given some tolerance 𝜀 ≥ 0, an approximate M-stationarity concept for the minimization of ℎ refers to
dist(0, 𝜕ℎ(𝑧)) ≤ 𝜀 which we refer to as 𝜀-M-stationarity. By closedness of 𝜕ℎ(𝑧), 𝜀-M-stationarity with
𝜀 = 0 recovers the notion of M-stationarity.

Below, we introduce a stationarity concept that will be use later to qualify the iterates of our implicit
AL algorithm, see [16, Sec. 4.2]. Therefore, let us consider a parametric optimization problem with an
objective 𝑝 : ℝ𝑛 → ℝ and an oracle O : ℝ𝑛 ⇒ ℝ𝑚 given by

(2.6) 𝑝 (𝑥) B inf
𝑧∈ℝ𝑚

𝑃 (𝑥, 𝑧), O(𝑥) B arg min
𝑧∈ℝ𝑚

𝑃 (𝑥, 𝑧)

for a proper, lower semicontinuous function 𝑃 : ℝ𝑛 ×ℝ𝑚 → ℝ. Recalling that the notion of uniform
level-boundedness corresponds to a parametric extension of level-boundedness, see [55, Def. 1.16], we
suppose that 𝑃 is level-bounded in 𝑧 (second argument) locally uniformly in 𝑥 (first argument). Then,
from [55, Thm 10.13] we have for every 𝑥 ∈ dom𝑝 the inclusion

(2.7) 𝜕𝑝 (𝑥) ⊆ Υ(𝑥) B
⋃

𝑧∈O(𝑥 )
{𝜉 ∈ ℝ𝑛 | (𝜉, 0) ∈ 𝜕𝑃 (𝑥, 𝑧)} .

In the setting (2.6), because of the parametric nature of 𝑝 , the subdifferential mapping 𝜕𝑝 : ℝ𝑛 ⇒ ℝ𝑛 is
not a simple object in general, making M-stationarity difficult to check. Therefore, for the minimization
of 𝑝 , one can resort to the concept of Υ-stationarity, coined in [16, Def. 4.1].
Definition 2.4 (Υ-stationarity). Let 𝜀 ≥ 0 be fixed and let 𝑃 : ℝ𝑛 × ℝ𝑚 → ℝ be chosen as specified
above. Define 𝑝 : ℝ𝑛 → ℝ and Υ : ℝ𝑛 ⇒ ℝ𝑛 as in (2.6) and (2.7), respectively. Then, relatively to the
minimization of 𝑝 , a point 𝑥 ∈ dom 𝑝 is called 𝜀-Υ-stationary if dist(0, Υ(𝑥)) ≤ 𝜀. In the case 𝜀 = 0,
such a point 𝑥 is said to be Υ-stationary.

Notice that the inclusion 𝑥 ∈ dom 𝑝 is implicitly required to have the setΥ(𝑥) nonempty. Furthermore,
in the exact case, namely 𝜀 = 0, Υ-stationarity of 𝑥 coincides with 0 ∈ Υ(𝑥), by closedness of Υ(𝑥)
[55, Thm 10.13]. We shall point out that Υ-stationarity provides an intermediate qualification between
(the stronger) M-stationarity for 𝑝 and (the weaker) M-stationarity for 𝑃 , see [16, Prop. 4.1 and 4.2]
for details. Finally, it appears from (2.7) that an 𝜀-Υ-stationary point 𝑥 ∈ ℝ𝑛 can be associated to a
(possibly nonunique) certificate 𝑧 ∈ O(𝑥) that satisfies

dist(0, Υ(𝑥)) ≤ min
𝜉∈ℝ𝑛
{∥𝜉 ∥ | (𝜉, 0) ∈ 𝜕𝑃 (𝑥, 𝑧)} ≤ 𝜀.

Given such upper bound, the pair (𝑥, 𝑧) certificates the 𝜀-Υ-stationarity of 𝑥 for 𝑝 .

generalized derivatives of set-valued mapping

Let us fix a set-valued mapping Γ : ℝ𝑛 ⇒ ℝ𝑚 and some point (𝑥, 𝑧) ∈ gph Γ. We refer to the set-valued
mappings 𝐷Γ(𝑥, 𝑧) : ℝ𝑛 ⇒ ℝ𝑚 and 𝐷∗Γ(𝑥, 𝑧) : ℝ𝑚 ⇒ ℝ𝑛 , given by

𝐷Γ(𝑥, 𝑧) (𝑢) B {𝑣 ∈ ℝ𝑚 | (𝑢, 𝑣) ∈ 𝑇gph Γ (𝑥, 𝑧)},
𝐷∗Γ(𝑥, 𝑧) (𝑦∗) B {𝑥∗ ∈ ℝ𝑛 | (𝑥∗,−𝑦∗) ∈ 𝑁gph Γ (𝑥, 𝑧)},

as the graphical derivative and the limiting coderivative of Γ at (𝑥, 𝑧). Subsequently, we review some
stability properties of set-valued mappings, see e.g. [7, 55]. We say that Γ is metrically regular at (𝑥, 𝑧)
whenever there are neighborhoods𝑈 ⊆ ℝ𝑛 of 𝑥 and𝑉 ⊆ ℝ𝑚 of 𝑧 as well as a constant 𝜅 > 0 such that

∀𝑥 ∈ 𝑈 , ∀𝑧 ∈ 𝑉 : dist(𝑥, Γ−1(𝑧)) ≤ 𝜅 dist(𝑧, Γ(𝑥)).
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If just
∀𝑥 ∈ 𝑈 : dist(𝑥, Γ−1(𝑧)) ≤ 𝜅 dist(𝑧, Γ(𝑥))

holds, i.e., if 𝑧 B 𝑧 can be fixed in the estimate required for metric regularity, then Γ is calledmetrically
subregular at (𝑥, 𝑧). Furthermore, Γ is said to be strongly metrically subregular at (𝑥, 𝑧), whenever there
exist a neighborhood𝑈 ⊆ ℝ𝑛 of 𝑥 and a constant 𝜅 > 0 such that

∀𝑥 ∈ 𝑈 : ∥𝑥 − 𝑥 ∥ ≤ 𝜅 dist(𝑧, Γ(𝑥))

is valid. Recall that strong metric subregularity of Γ at (𝑥, 𝑧) is equivalent to ker𝐷Γ(𝑥, 𝑧) = {0} by the
so-called Levy–Rockafellar criterion, see [21, Thm 4E.1] and [39, Prop. 4.1]. Furthermore, Γ is metrically
regular at (𝑥, 𝑧) if and only if ker𝐷∗Γ(𝑥, 𝑧) = {0} by the so-called Mordukhovich criterion, see [55,
Thm 9.40].

Let 𝐹 : ℝ𝑛 → ℝ𝑚 be continuously differentiable and let Ω ⊆ ℝ𝑚 be closed. We consider the so-called
feasibility mapping Φ : ℝ𝑛 ⇒ ℝ𝑚 given by

(2.8) Φ(𝑥) B 𝐹 (𝑥) − Ω.

We fix some point 𝑥 ∈ ℝ𝑛 satisfying 𝐹 (𝑥) ∈ Ω, i.e., (𝑥, 0) ∈ gphΦ. It is well known that Φ is metrically
regular at (𝑥, 0) if and only if

(2.9) 𝑁Ω (𝐹 (𝑥)) ∩ ker 𝐹 ′(𝑥)⊤ = {0}

is valid, as we have

𝐷∗Φ(𝑥, 0) (𝑦) =
{
{𝐹 ′(𝑥)⊤𝑦} 𝑦 ∈ 𝑁Ω (𝐹 (𝑥)),
∅ otherwise

from the change-of-coordinates formula in [55, Ex. 6.7] and the representation

(2.10) gphΦ = {(𝑥,𝑤) ∈ ℝ𝑛 ×ℝ𝑚 | 𝐹 (𝑥) −𝑤 ∈ Ω}.

The following lemma, which is a direct consequence of [21, Thm 4B.1], provides a certain openness-type
property of the feasibility mapping from (2.8) around points of its graph where it is metrically regular.
Lemma 2.5. Fix (𝑥, 0) ∈ gphΦ where Φ, the mapping given in (2.8), is metrically regular. Then there exist
𝑠 > 0 and 𝜀 > 0 such that

𝔹𝑠 (0) ⊆ 𝐹 ′(𝑥) 𝔹1(0) −
(
𝑇Ω (𝑧) ∩ 𝔹1(0)

)
holds true for all 𝑥 ∈ 𝔹𝜀 (𝑥) and all 𝑧 ∈ Ω ∩ 𝔹𝜀 (𝐹 (𝑥)).

Proof. Since Φ is assumed to be metrically regular at (𝑥, 0), [21, Thm 4B.1] yields the existence of
constants 𝛿 > 0 and 𝑟 > 0 such that

∀(𝑥,𝑤) ∈ gphΦ ∩ 𝔹𝛿 (𝑥, 0), ∀𝑣 ∈ 𝔹1(0), ∃𝑢 ∈ 𝔹𝑟 (0) : 𝑣 ∈ 𝐷Φ(𝑥,𝑤) (𝑢) .

We apply [55, Ex. 6.7] once more to the representation (2.10) in order to find

𝐷Φ(𝑥,𝑤) (𝑢) = 𝐹 ′(𝑥)𝑢 −𝑇Ω (𝐹 (𝑥) −𝑤)

for (𝑥,𝑤) ∈ gphΦ. Hence, we have

∀(𝑥,𝑤) ∈ gphΦ ∩ 𝔹𝛿 (𝑥, 0) : 𝔹1(0) ⊆ 𝐹 ′(𝑥) 𝔹𝑟 (0) −𝑇Ω (𝐹 (𝑥) −𝑤).

By continuous differentiablity of 𝐹 , there is a constant 𝐶 > 0 such that ∥𝐹 ′(𝑥)∥ ≤ 𝐶 holds for all
𝑥 ∈ 𝔹𝛿 (𝑥). With the aid of 𝜅 := max(𝑟, 1 +𝐶𝑟 ), this yields

∀(𝑥,𝑤) ∈ gphΦ ∩ 𝔹𝛿 (𝑥, 0) : 𝔹1(0) ⊆ 𝐹 ′(𝑥) 𝔹𝜅 (0) −
(
𝑇Ω (𝐹 (𝑥) −𝑤) ∩ 𝔹𝜅 (0)

)
.
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Let us now choose 𝜀 ∈ (0, 𝛿/2) so small such that ∥𝐹 (𝑥) − 𝐹 (𝑥)∥ ≤ 𝛿/2 holds for all 𝑥 ∈ 𝔹𝜀 (𝑥).
Then, for arbitrary 𝑥 ∈ 𝔹𝜀 (𝑥) and 𝑧 ∈ Ω ∩ 𝔹𝜀 (𝐹 (𝑥)), we can set 𝑤 := 𝐹 (𝑥) − 𝑧 in order to find
(𝑥,𝑤) ∈ gphΦ ∩ 𝔹𝛿 (𝑥, 0), and the above guarantees

𝔹1/𝜅 (0) ⊆ 𝐹 ′(𝑥) 𝔹1(0) −
(
𝑇Ω (𝑧) ∩ 𝔹1(0)

)
.

Choosing 𝑠 := 1/𝜅, the assertion follows. □

subderivatives

Let us fix a lower semicontinuous function ℎ : ℝ𝑚 → ℝ. For 𝑧 ∈ domℎ and 𝑣 ∈ ℝ𝑚 , the lower limit

dℎ(𝑧) (𝑣) B lim inf
𝑡↓0, 𝑣′→𝑣

ℎ(𝑧 + 𝑡𝑣 ′) − ℎ(𝑧)
𝑡

is called the subderivative of ℎ at 𝑧 in direction 𝑣 , and the mapping 𝑣 ↦→ dℎ(𝑧) (𝑣), which, by definition,
is lower semicontinuous and positively homogeneous, is referred to as the subderivative of ℎ at 𝑧. We
note that epi dℎ(𝑧) = 𝑇epiℎ (𝑧, ℎ(𝑧)), see [55, Thm 8.2(a)]. Furthermore, for 𝑦 ∈ ℝ𝑚 ,

(2.11) d2ℎ(𝑧, 𝑦) (𝑣) B lim inf
𝑡↓0, 𝑣′→𝑣

ℎ(𝑧 + 𝑡𝑣 ′) − ℎ(𝑧) − 𝑡 ⟨𝑦, 𝑣 ′⟩
1
2𝑡

2

is called the second subderivative of ℎ at 𝑧 for 𝑦 in direction 𝑣 . The mapping 𝑣 ↦→ d2ℎ(𝑧, 𝑦) (𝑣), which, by
definition, is lower semicontinuous and positively homogeneous of degree 2, is referred to as the second
subderivative of ℎ at 𝑧 for 𝑦 . The recent study [8] presents an overview of calculus rules addressing
these variational tools.
Lemma 2.6. Let ℎ : ℝ𝑚 → ℝ be a lower semicontinuous function, and fix 𝑧 ∈ domℎ and 𝑦 ∈ ℝ𝑚 . Then
we have d2ℎ(𝑧, 𝑦) (0) ∈ {−∞, 0}.

Proof. Observe that d2ℎ(𝑧, 𝑦) (0) ≤ 0 holds by definition of the second subderivative simply by choosing
𝑣 ′ B 0 in (2.11). Positive homogeneity of degree 2 of the second subderivative guarantees validity of
d2ℎ(𝑧, 𝑦) (0) = 𝛼2d2ℎ(𝑧, 𝑦) (0) for each 𝛼 > 0, and this is only possible if d2ℎ(𝑧, 𝑦) (0) ∈ {−∞, 0}. □

For brevity of presentation, we do not formally introduce the notions of prox-regularity, subdiffer-
ential continuity, and twice epi-differentiability, which will be used in the next lemma. Instead, as the
precise meaning of these concepts is not exploited in this paper, we refer the interested reader to [55,
Def. 13.27, 13.28, and 13.6(b)] for proper definitions.
Lemma 2.7. Let ℎ : ℝ𝑚 → ℝ be a lower semicontinuous function, and fix 𝑧 ∈ domℎ and 𝑦 ∈ 𝜕ℎ(𝑧).
Assume that ℎ is prox-regular, subdifferentially continuous, and twice epi-differentiable at 𝑧 for 𝑦 . Then
we have

∀𝑣 ∈ ℝ𝑚 : 𝐷 (𝜕ℎ) (𝑧, 𝑦) (𝑣) = 1
2 𝜕d

2ℎ(𝑧, 𝑦) (𝑣),

and
∀𝑣,𝑤 ∈ ℝ𝑚 : 𝑤 ∈ 𝐷 (𝜕ℎ) (𝑧, 𝑦) (𝑣) =⇒ d2ℎ(𝑧, 𝑦) (𝑣) = ⟨𝑤, 𝑣⟩.

Proof. Recalling that d2ℎ(𝑧, 𝑦) is positively homogeneous of degree 2, the second property follows
with the aid of Lemma 2.3 from the first one, which is taken from [55, Thm 13.40]. □

3 fundamentals of composite optimization

We nowmove our attention to (P) and discuss relevant optimality and stationarity notions. Furthermore,
we investigate local characterizations using second-order tools, regularity concepts, and error bounds.
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3.1 stationarity concepts and lagrangian-type functions

Before dealing with optimality conditions, we consider some Lagrangian terminology and notions
useful for first-order analysis. Including an auxiliary variable 𝑧 ∈ ℝ𝑚 , we can lift (P) as (PS) involving
merely equality constraints but no (nontrivial) compositions. Introducing a Lagrange multiplier 𝑦 ∈ ℝ𝑚
for the constraints, we define a Lagrangian-type function LS : ℝ𝑛 ×ℝ𝑚 ×ℝ𝑚 → ℝ associated with
(PS) by means of

(3.1) LS(𝑥, 𝑧, 𝑦) B 𝑓 (𝑥) + 𝑔(𝑧) + ⟨𝑦, 𝑐 (𝑥) − 𝑧⟩.

Focusing on those terms of LS depending on 𝑥 , we call the function L : ℝ𝑛 ×ℝ𝑚 → ℝ given by

(3.2) L(𝑥, 𝑦) B 𝑓 (𝑥) + ⟨𝑦, 𝑐 (𝑥)⟩

the Lagrangian function of (P). Then, acting as a precursor of L, we refer to LS as the pre-Lagrangian
function of (P). These objects are tightly related to the so-called M-stationarity conditions of both
problems (PS) and (P), see Definition 3.1 below. In fact, these first-order optimality conditions can be
expressed in Lagrangian form as

0 ∈ 𝜕𝑥LS(𝑥, 𝑧, 𝑦), 0 ∈ 𝜕𝑧LS(𝑥, 𝑧, 𝑦), 0 ∈ 𝜕𝑦LS(𝑥, 𝑧, 𝑦)

or more explicitly as

0 = ∇𝑥L(𝑥, 𝑦), 𝑦 ∈ 𝜕𝑔(𝑧), 0 = 𝑐 (𝑥) − 𝑧.(3.3)

Equivalently, albeit omitting the auxiliary variable 𝑧 = 𝑐 (𝑥), these read

0 = ∇𝑥L(𝑥, 𝑦),(3.4a)
𝑦 ∈ 𝜕𝑔(𝑐 (𝑥)) .(3.4b)

Notice that (3.4b) implicitly requires the feasibility of 𝑥 for (P), namely 𝑐 (𝑥) ∈ dom𝑔, for otherwise
the subdifferential 𝜕𝑔(𝑐 (𝑥)) is empty.
Interpreting (P) as an unconstrained problem, first-order necessary optimality conditions using

the notion of M-stationarity pertain a point 𝑥 ∈ ℝ𝑛 such that 0 ∈ 𝜕𝜑 (𝑥). We now aim to rewrite
this condition in terms of initial problem data, i.e., first-order (generalized) derivatives of 𝑓 , 𝑐 , and
𝑔. Exploiting compatibility of the limiting subdifferential with respect to smooth additions, we find
0 ∈ ∇𝑓 (𝑥) + 𝜕(𝑔 ◦ 𝑐) (𝑥). It has been recognized, e.g. in [31, Sec. 3.2], that metric subregularity of the
set-valued mapping Ξ : ℝ𝑛 ×ℝ⇒ ℝ𝑚 ×ℝ given by

(3.5) Ξ(𝑥, 𝛼) B (𝑐 (𝑥), 𝛼) − epi𝑔

is enough to guarantee that a subdifferential chain rule can be used to approximate the limiting
subdifferential of 𝑔 ◦ 𝑐 from above in terms of the subdifferential of 𝑔 and the derivative of 𝑐 . More
precisely, if Ξ is metrically subregular at ((𝑥,𝑔(𝑐 (𝑥))), (0, 0)), then 𝜕(𝑔 ◦𝑐) (𝑥) ⊆ 𝑐′(𝑥)⊤𝜕𝑔(𝑐 (𝑥)). From
a Lagrangian perspective, this gives the existence of some Lagrange multiplier 𝑦 ∈ ℝ𝑚 such that the
stationarity conditions (3.4) hold. This stationarity characterization resembles, at least in spirit, the so
called Karush–Kuhn–Tucker (or KKT) conditions in nonlinear programming, see e.g. [10, 11].
These considerations lead to the following definition, which uses in accordance with (3.4) the

Lagrangian function L : ℝ𝑛 ×ℝ𝑚 → ℝ associated with (P), given by (3.2).
Definition 3.1 (M-stationarity). Relative to (P), a point 𝑥 ∈ ℝ𝑛 is called M-stationary if there exists a
multiplier 𝑦 ∈ ℝ𝑚 such that (3.4) holds. Let Λ(𝑥) denote the set of multipliers 𝑦 ∈ ℝ𝑚 such that the
M-stationarity conditions (3.4) are satisfied by (𝑥, 𝑦).
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As a reminder of the possible gap highlighted above, where metric subregularity of Ξ is invoked
to formulate first-order optimality conditions in Lagrangian terms, the notion given in Definition 3.1
could be referred to as KKT -stationarity, as in [16]. For simplicity, we stick to the nomenclature of
M-stationarity.
Following the nomenclature in [12, 56], LS would be referred to as the Lagrangian of (PS), as a

standalone problem, and not only as the pre-Lagrangian in view of (P). In fact, the definition of LS in
(3.1) complies with the classical concept of Lagrangian function for equality-constrained optimization
problems, such as (PS), and reflects the (nonsmooth, extended real-valued) objective (𝑥, 𝑧) ↦→ 𝑓 (𝑥)+𝑔(𝑧)
of (PS) and its equality constraints 𝑐 (𝑥) − 𝑧 = 0. However, containing (primal) nonsmooth terms, LS is
not differentiable. The object L defined in (3.2) corresponds to the ordinary Lagrangian function of
(P) as described in [54], and this is consistent with several other papers which exploit the variational
analysis approach to composite optimization, see e.g. [5, 8, 27, 28, 42, 44, 45] and, particularly, the
setting of standard nonlinear programming, see Example 3.4 below.
Above, we derived the M-stationarity conditions of (P) at some feasible point 𝑥 ∈ ℝ𝑛 by using the

chain rule for the limiting subdifferential which, in general, requires a qualification condition like
metric subregularity of Ξ from (3.5) at ((𝑥, 𝑔(𝑐 (𝑥))), (0, 0)). Note that (2.9) reduces to

(3.6) 𝜕∞𝑔(𝑐 (𝑥)) ∩ ker 𝑐′(𝑥)⊤ = {0}

when applied to Ξ at the given reference point, and the latter is equivalent to the mapping Ξ being
metrically regular at ((𝑥, 𝑔(𝑐 (𝑥))), (0, 0)), which also extends to a neighborhood of the point of interest.
Thus, (3.6) is sufficient for the subregularity requirement stated earlier. Clearly, (3.6) is valid whenever
𝑔 is locally Lipschitz continuous at 𝑐 (𝑥) or if 𝑐′(𝑥) has full row rank. As we know that 0 ∈ 𝜕𝜑 (𝑥)
provides a necessary optimality condition for the local optimality of 𝑥 , the M-stationarity conditions
from Definition 3.1 do so as well in the presence of a suitable CQ like (3.6) as outlined above.

Augmented Lagrangian We shall introduce augmented Lagrangian functions, which not only offer
the basic component for AL methods, but also closely relate to first-order optimality concepts. An AL
function for (P) can be obtained in two steps: augmenting the pre-Lagrangian LS with a penalty term,
and then marginalizing over the auxiliary variables.
For some penalty parameter 𝜇 > 0, the AL function LS

𝜇 : ℝ𝑛 × ℝ𝑚 × ℝ𝑚 → ℝ associated to (PS)
entails the sum of the pre-Lagrangian LS and a quadratic penalty for the constraint violation, scaled
by 𝜇. This leads to the definition of LS

𝜇 as

LS
𝜇 (𝑥, 𝑧, 𝑦) B LS(𝑥, 𝑧, 𝑦) + 1

2𝜇 ∥𝑐 (𝑥) − 𝑧∥
2.

Then, since (PS) involves the minimization over both original and auxiliary variables, whereas the
latter ones do not appear in the original problem (P), we consider the marginalization of LS over 𝑧,
which yields the augmented Lagrangian function L𝜇 : ℝ𝑛 ×ℝ𝑚 → ℝ associated to (P):

L𝜇 (𝑥, 𝑦) B inf
𝑧
LS
𝜇 (𝑥, 𝑧, 𝑦) = 𝑓 (𝑥) + inf

𝑧

{
𝑔(𝑧) + 1

2𝜇 ∥𝑐 (𝑥) + 𝜇𝑦 − 𝑧∥
2
}
− 𝜇2 ∥𝑦 ∥

2(3.7)

= 𝑓 (𝑥) + 𝑔𝜇 (𝑐 (𝑥) + 𝜇𝑦) − 𝜇2 ∥𝑦 ∥
2.

Notice that the minimization over 𝑧 is well-defined only for sufficiently small penalty parameters,
relative to the prox-boundedness threshold of 𝑔, in particular 𝜇 ∈ (0, 𝜇𝑔). Moreover, we highlight that
the Moreau envelope 𝑔𝜇 : ℝ𝑚 → ℝ of 𝑔 is real-valued and strictly continuous [55, Ex. 10.32], but not
continuously differentiable in general, as the proximal mapping of 𝑔 is possibly set-valued.
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With the AL tools at hand, one can readily recover the M-stationarity conditions (3.4) for (P).
Through the augmented pre-Lagrangian function LS

𝜇 of (P), the first-order optimality conditions in
the form of (3.3) can be written, for any 𝜇 > 0, as 0 ∈ 𝜕𝑥LS

𝜇 (𝑥, 𝑐 (𝑥), 𝑦), 0 ∈ 𝜕𝑧LS
𝜇 (𝑥, 𝑐 (𝑥), 𝑦), and

0 ∈ 𝜕𝑦LS
𝜇 (𝑥, 𝑐 (𝑥), 𝑦), which hold if and only if (𝑥, 𝑦) ∈ ℝ𝑛 ×ℝ𝑚 satisfies (3.4).

The following lemma, which is inspired by [13, Lem. 3.1], will come in handy later on.
Lemma 3.2. If 𝑥 ∈ ℝ𝑛 is feasible for (P), then L𝜇 (𝑥, 𝑦) ≤ 𝜑 (𝑥) for all 𝜇 > 0 and 𝑦 ∈ ℝ𝑚 .

Proof. By feasibility of 𝑥 , we have 𝑐 (𝑥) ∈ dom𝑔. Then, for all 𝜇 > 0 and 𝑦 ∈ ℝ𝑚 ,

𝑔𝜇 (𝑐 (𝑥) + 𝜇𝑦) = inf
𝑧

{
𝑔(𝑧) + 1

2𝜇 ∥𝑐 (𝑥) + 𝜇𝑦 − 𝑧∥
2
}
≤ 𝑔(𝑐 (𝑥)) + 1

2𝜇 ∥𝜇𝑦 ∥
2 = 𝑔(𝑐 (𝑥)) + 𝜇2 ∥𝑦 ∥

2

by selecting 𝑧 = 𝑐 (𝑥) ∈ dom𝑔. Hence,L𝜇 (𝑥, 𝑦) = 𝑓 (𝑥)+𝑔𝜇 (𝑐 (𝑥)+𝜇𝑦)− 𝜇2 ∥𝑦 ∥
2 ≤ 𝑓 (𝑥)+𝑔(𝑐 (𝑥)) = 𝜑 (𝑥),

concluding the proof. □

In view of the AL subproblems arising in Section 4 below, the subsequent remark considers the
notion of Υ-stationarity, discussed already in Section 2.2, to the AL function L𝜇 .
Remark 3.3. Motivated by the minimization of the AL function L𝜇 (·, 𝑦) where 𝑦 ∈ ℝ𝑚 is fixed, we are
interested in pairs (𝑥, 𝑧) ∈ ℝ𝑛 ×ℝ𝑚 which certificate 𝜀-Υ-stationarity of 𝑥 for L𝜇 (·, 𝑦), for some given
𝜀 ≥ 0. A simple calculation reveals that

Υ(𝑥) =
⋃

𝑧∈prox𝜇𝑔 (𝑐 (𝑥 )+𝜇𝑦 )

{
∇𝑥L(𝑥, 𝑦)

���� 𝑦 B 𝑦 + 𝑐 (𝑥) − 𝑧
𝜇

∈ 𝜕𝑔(𝑧)
}

holds in this situation. Clearly, 𝑧 ∈ prox𝜇𝑔 (𝑐 (𝑥) + 𝜇𝑦) always gives 𝑦 + (𝑐 (𝑥) − 𝑧)/𝜇 ∈ 𝜕𝑔(𝑧) by
Fermat’s rule (the converse is true for convex 𝑔), so 𝜀-Υ-stationarity boils down to the existence of
some 𝑧 ∈ prox𝜇𝑔 (𝑐 (𝑥) + 𝜇𝑦) such that ∥∇𝑥L(𝑥, 𝑦)∥ ≤ 𝜀 where 𝑦 B 𝑦 + (𝑐 (𝑥) − 𝑧)/𝜇. Note that
this implicitly demands 𝜇 ∈ (0, 𝜇𝑔). Obviously, for arbitrary 𝜇 > 0 and any pair (𝑥, 𝑧) certificating
Υ-stationarity (where 𝜀 B 0) of 𝑥 for L𝜇 (·, 𝑦) in the above sense such that 𝑧 = 𝑐 (𝑥) holds, 𝑥 is also
M-stationary. The converse is true whenever 𝑔 is a convex function, and, in this case, the proximal
mapping is single-valued.
Some of the concepts addressed in this section are visualized in the following example in terms of

standard nonlinear programming.
Example 3.4. Nonlinear programming can be cast in the form (P) via many reformulations. Let us
consider the setting

(NLP) minimize
𝑥

𝑓 (𝑥) subject to 𝑐 (𝑥) ∈ 𝐶

with 𝑔 ≡ 𝛿𝐶 being the indicator of a nonempty, closed, convex set 𝐶 B [𝑐𝑙 , 𝑐𝑢]. Allowing entries of 𝑐𝑙
and 𝑐𝑢 to take infinite values, namely 𝑐𝑙 ∈ (ℝ ∪ {−∞})𝑚 and 𝑐𝑢 ∈ (ℝ ∪ {∞})𝑚 , the model includes
equalities, inequalities, and bounds in a compact form, and the constraint set 𝐶 is convex polyhedral.
The pre-Lagrangian for (NLP) with auxiliary variable 𝑧 ∈ ℝ𝑚 and multiplier 𝑦 ∈ ℝ𝑚 reads

LS(𝑥, 𝑧, 𝑦) = 𝑓 (𝑥) + 𝛿𝐶 (𝑧) + ⟨𝑦, 𝑐 (𝑥) − 𝑧⟩.

The M-stationarity conditions of (NLP) can be expressed as

∇𝑓 (𝑥) + 𝑐′(𝑥)⊤𝑦 = 0, 𝑦 ∈ 𝑁𝐶 (𝑐 (𝑥)),
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where the inclusion coincides with the classical complementarity conditions and imposes the feasibility
condition 𝑐 (𝑥) ∈ 𝐶 as well. The Lagrangian L for (NLP) is L(𝑥, 𝑦) = 𝑓 (𝑥) + ⟨𝑦, 𝑐 (𝑥)⟩ and the AL L𝜇
is given by

L𝜇 (𝑥, 𝑦) = 𝑓 (𝑥) +
1

2𝜇 dist2
𝐶 (𝑐 (𝑥) + 𝜇𝑦) −

𝜇

2 ∥𝑦 ∥
2,

recovering all classical quantities. As𝐶 is convex in (NLP), the squared distance term in the AL function
is continuously differentiable, see e.g. [2, Cor. 12.30].
Remark 3.5. Yet another way to the definition of a Lagrangian-type function in composite optimization
with convex function 𝑔 has been promoted by Rockafellar in his recent papers [53, 54] where he
introduces the so-called generalized Lagrangian of (P) by marginalization of the pre-Lagrangian LS

given in (3.1). The marginalization step enters here because (PS) involves the minimization over both
original and auxiliary variables, whereas the latter ones do not appear in (P). Marginalization of LS

over 𝑧 results in the generalized Lagrangian ℓ : ℝ𝑛 ×ℝ𝑚 → ℝ ∪ {−∞} given by

ℓ (𝑥, 𝑦) B inf
𝑧
LS(𝑥, 𝑧, 𝑦) = 𝑓 (𝑥) + ⟨𝑦, 𝑐 (𝑥)⟩ + inf

𝑧
{𝑔(𝑧) − ⟨𝑦, 𝑧⟩} = L(𝑥, 𝑦) − 𝑔∗(𝑦),

whereL is the Lagrangian defined in (3.2). Clearly, it is∇𝑥L = ∇𝑥 ℓ . One could hope that the generalized
Lagrangian ℓ encapsulates all information needed to state the M-stationarity conditions (3.4) for (P),
exemplary as 0 ∈ 𝜕𝑥 ℓ (𝑥, 𝑦), 0 ∈ 𝜕𝑦 (−ℓ) (𝑥, 𝑦). The negative sign appearing for the multipliers relates to
the (generalized) saddle-point properties of the (generalized) Lagrangian. Expanding terms, this gives

0 = ∇𝑥L(𝑥, 𝑦),(3.8a)
𝑐 (𝑥) ∈ 𝜕𝑔∗(𝑦) .(3.8b)

If 𝑔 is convex, (3.8b) is equivalent to (3.4b), see [55, Prop. 11.3], so that M-stationarity can be fully
characterized via the derivatives of the generalized Lagrangian. Whenever 𝑔 is a nonconvex function,
however, this reasoning is no longer possible. Under additional assumptions on 𝑔 (and 𝑔∗), one may
apply the convex hull property, see e.g. [19, formula (2.7)], and a marginal function rule, see e.g. [7,
Thm 5.1] or [55, Thm 10.13], in order to find

𝜕𝑔∗(𝑦) ⊆ − conv 𝜕(−𝑔∗) (𝑦) ⊆ − conv{−𝑧 ∈ ℝ𝑚 | 𝑦 ∈ 𝜕𝑔(𝑧)} = conv(𝜕𝑔)−1(𝑦) .

Hence, whenever (𝜕𝑔)−1(𝑦) is convex, (3.8b) yields (3.4b) if the aforementioned calculus rules apply.
Consequently, under additional assumptions, (3.8) implies the M-stationarity conditions (3.4) even for
nonconvex 𝑔. However, the converse implication is likely to fail even in very simple situations, as
illustrated in the subsequently stated Example 3.6.
Example 3.6. We investigate the model problem

(3.9) minimize
𝑥

𝑓 (𝑥) + ∥𝑐 (𝑥)∥0,

where 𝑔 plays the role of the ℓ0-quasi-norm ∥ · ∥0 : ℝ𝑚 → ℝ, which simply counts the nonzero entries
of the argument vector. Clearly, ∥ · ∥0 is a merely lower semicontinuous function and is not convex.
For some point 𝑥 ∈ ℝ𝑛 , we will exploit the index sets

𝐼 0(𝑥) B {𝑖 ∈ {1, . . . ,𝑚} | 𝑐𝑖 (𝑥) = 0}, 𝐼±(𝑥) B {1, . . . ,𝑚} \ 𝐼 0(𝑥) .

One can easily check that

𝜕∥ · ∥0(𝑐 (𝑥)) = {𝑦 ∈ ℝ𝑚 | ∀𝑖 ∈ 𝐼±(𝑥) : 𝑦𝑖 = 0}

holds true. Hence, 𝑥 is M-stationary for (3.9) if and only if there is some 𝑦 ∈ ℝ𝑚 such that (3.4a) is
valid and, for all 𝑖 ∈ 𝐼±(𝑥), it is 𝑦𝑖 = 0. A simple calculation reveals that ∥ · ∥∗0 = 𝛿 {0} , which is why
condition (3.8b) reduces to 𝑦 = 0. This is a much stronger requirement on the multiplier than the one
demanded by M-stationarity.
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3.2 second-order sufficient optimality conditions

In this subsection, we briefly review the second-order sufficient optimality condition for (P) which has
been derived in [8, Sec. 6].

Let us fix a feasible point 𝑥 ∈ ℝ𝑛 of (P), and define the critical cone of (P) at 𝑥 by means of

C(𝑥) B {𝑢 ∈ ℝ𝑛 | 𝑓 ′(𝑥)𝑢 + d𝑔(𝑐 (𝑥)) (𝑐′(𝑥)𝑢) ≤ 0}.

Furthermore, for each 𝑢 ∈ C(𝑥), we make use of the directional multiplier set Λ(𝑥,𝑢) given by

Λ(𝑥,𝑢) B {𝑦 ∈ ℝ𝑚 | ∇𝑥L(𝑥, 𝑦) = 0, d𝑔(𝑐 (𝑥)) (𝑐′(𝑥)𝑢) = ⟨𝑦, 𝑐′(𝑥)𝑢⟩, d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) > −∞}.

Let us mention that this definition can be stated equivalently in terms of the so-called directional
proximal subdifferential of 𝑔, see [8, Sec. 3.2] for details.
Definition 3.7 (Second-order sufficient condition). For a feasible point 𝑥 ∈ ℝ𝑛 of (P), we say that the
Second-Order Sufficient Condition (SOSC for brevity) is valid, whenever

∀𝑢 ∈ C(𝑥) \ {0}, ∃𝑦 ∈ Λ(𝑥,𝑢) : ∇2
𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] + d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) > 0.

Let us fix a feasible point 𝑥 ∈ ℝ𝑛 of (P) where SOSC is valid. To avoid trivial situations, we assume
that C(𝑥) contains a non-vanishing direction 𝑢 ∈ ℝ𝑛 . Clearly, SOSC requires that Λ(𝑥,𝑢) is nonempty,
and since we have Λ(𝑥,𝑢) ⊆ Λ(𝑥) from [5, Prop. 2.9] and [8, Cor. 3.14], Λ(𝑥) is nonempty as well, i.e.,
𝑥 is M-stationary. Thus, checking validity of SOSC is only reasonable at M-stationary points.

The following result is a consequence of [8, Thm 6.1] and the associated discussions.
Proposition 3.8. Let 𝑥 ∈ ℝ𝑛 be a feasible point of (P) where SOSC is valid. Then there exist constants
𝜀 > 0 and 𝛽 > 0 such that the second-order growth condition

(3.10) ∀𝑥 ∈ 𝔹𝜀 (𝑥) : 𝜑 (𝑥) − 𝜑 (𝑥) ≥ 𝛽

2 ∥𝑥 − 𝑥 ∥
2

is valid. Particularly, 𝑥 is a strict local minimizer of (P).
Since the composite optimization problem (P) can be recast as the constrained problem

minimize
𝑥,𝜏

𝑓 (𝑥) + 𝜏 subject to (𝑐 (𝑥), 𝜏) ∈ epi𝑔,

Proposition 3.8 is also a consequence of [5, Thm 3.3] when taking into account the inequality

d2 𝛿epi𝑔 ((𝑐 (𝑥), 𝑔(𝑐 (𝑥))), (𝑦,−1)) (𝑐′(𝑥)𝑢,𝜐) ≥ d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢)

which holds for each 𝑢 ∈ ℝ𝑛 and 𝜐 ∈ ℝ, see [8, Prop. 3.13].
The following corollary provides a sufficient condition for SOSC which will be of interest later on.

Corollary 3.9. Let 𝑥 ∈ ℝ𝑛 be an M-stationary point for (P), and fix 𝑦 ∈ Λ(𝑥). Furthermore, let the condition

(3.11) ∀𝑢 ∈ C(𝑥) \ {0} : ∇2
𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] + d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) > 0

hold. Then SOSC and, thus, the second-order growth condition (3.10) are valid.

Proof. We will show that 𝑦 ∈ Λ(𝑥,𝑢) holds for each 𝑢 ∈ C(𝑥) \ {0}. Then it is clear that (3.11) implies
validity of SOSC, and the final assertion is just a consequence of Proposition 3.8.

Fix 𝑢 ∈ C(𝑥) \ {0}. Then (3.11) obviously implies d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) > −∞, and [8, formula (5)]
immediately yields d𝑔(𝑐 (𝑥)) (𝑐′(𝑥)𝑢) ≥ ⟨𝑦, 𝑐′(𝑥)𝑢⟩. By definition of the critical cone and∇𝑥L(𝑥, 𝑦) = 0,
we also have

d𝑔(𝑐 (𝑥)) (𝑐′(𝑥)𝑢) ≤ −𝑓 ′(𝑥)𝑢 = ⟨𝑦, 𝑐′(𝑥)𝑢⟩.
Thus, 𝑦 ∈ Λ(𝑥,𝑢) follows. □
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3.3 error bounds

Here, we aim to establish a connection between the second-order sufficient conditions from Defini-
tion 3.7 and an error bound property. Relating to stability properties and involving the distance to the
primal-dual solution set, error bounds are an essential ingredient for deriving rates of local convergence
for numerical methods addressing (P). In order to quantify the violation of the M-stationarity conditions
from Definition 3.1, it is (almost) natural to define the residual mapping

(3.12) Θ(𝑥, 𝑧, 𝑦) B ∥∇𝑥L(𝑥, 𝑦)∥ + ∥𝑐 (𝑥) − 𝑧∥ + dist(𝑦, 𝜕𝑔(𝑧)) .

Clearly, theM-stationarity conditions (3.4) for some (𝑥, 𝑦) ∈ ℝ𝑛×ℝ𝑚 are equivalent toΘ(𝑥, 𝑐 (𝑥), 𝑦) = 0.
We shall see now that, under certain assumptions, Θ allows us to quantify not only the violation of
(3.4), but also the distance to the (primal-dual) solution set.

The proof of the following proposition, which provides the foundations of our analysis in this
section, relates the error bound property of our interest with the strong metric subregularity of a
certain set-valued mapping. Moreover, the latter characterization is quantifiable via a condition which
can be stated in terms of initial problem data, thanks to the Levy–Rockafellar criterion.
Proposition 3.10. Let 𝑥 ∈ ℝ𝑛 be an M-stationary point of (P) and pick 𝑦 ∈ Λ(𝑥). Assume that the
qualification condition

(3.13) 0 = ∇2
𝑥𝑥L(𝑥, 𝑦)𝑢 + 𝑐′(𝑥)⊤𝜂, 𝜂 ∈ 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) =⇒ 𝑢 = 0, 𝜂 = 0

is valid. Then there are a constant 𝜚u > 0 and a neighborhood 𝑈 of (𝑥, 𝑐 (𝑥), 𝑦) such that, for each
(𝑥, 𝑧, 𝑦) ∈ 𝑈 ∩ (ℝ𝑛 × dom𝑔 ×ℝ𝑚), we have the upper estimate

(3.14) ∥𝑥 − 𝑥 ∥ + ∥𝑧 − 𝑐 (𝑥)∥ + ∥𝑦 − 𝑦 ∥ ≤ 𝜚u Θ(𝑥, 𝑧, 𝑦) .

Proof. We define a set-valued mapping 𝐺 : ℝ𝑛 ×ℝ𝑚 ×ℝ𝑚 ⇒ ℝ𝑛 ×ℝ𝑚 ×ℝ𝑚 by means of

𝐺 (𝑥, 𝑧, 𝑦) B (∇𝑥L(𝑥, 𝑦), 𝑐 (𝑥) − 𝑧, 𝑦) − {0} × {0} × 𝜕𝑔(𝑧) .

By continuous differentiability of the single-valued part of 𝐺 , one can easily check, e.g., by means of
the change-of-coordinates formula for tangents from [55, Ex. 6.7], that

𝐷𝐺 ((𝑥, 𝑐 (𝑥), 𝑦), (0, 0, 0)) (𝑢, 𝑣, 𝜂)
= (∇2

𝑥𝑥L(𝑥, 𝑦)𝑢 + 𝑐′(𝑥)⊤𝜂, 𝑐′(𝑥)𝑢 − 𝑣, 𝜂) − {0} × {0} × 𝐷 (𝜕𝑔) (𝑦, 𝑐 (𝑥)) (𝑣)

holds. Thus, (3.13) is equivalent to ker𝐷𝐺 ((𝑥, 𝑐 (𝑥), 𝑦), (0, 0, 0)) = {(0, 0, 0)}. By the Levy–Rockafellar
criterion, 𝐺 is strongly metrically subregular at (𝑥, 𝑐 (𝑥), 𝑦), and the latter is equivalent to the desired
error bound condition. □

Note that the proof of Proposition 3.10 actually shows that (3.13) is equivalent to the local validity of
the error bound property (3.14).
Corollary 3.11. Let 𝑥 ∈ ℝ𝑛 be an M-stationary point for (P), and fix 𝑦 ∈ Λ(𝑥). If the second-order condition
(3.11) is valid, and if we have

(3.15) ∀𝑢 ∈ ℝ𝑛, ∀𝜂 ∈ 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) : ⟨𝜂, 𝑐′(𝑥)𝑢⟩ ≥ d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢)

and

(3.16) 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (0) ∩ ker 𝑐′(𝑥)⊤ = {0},

then there are a constant 𝜚u > 0 and a neighborhood𝑈 of (𝑥, 𝑐 (𝑥), 𝑦) such that the upper estimate (3.14)
holds for each triplet (𝑥, 𝑧, 𝑦) ∈ 𝑈 ∩ (ℝ𝑛 × dom𝑔 ×ℝ𝑚).
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Proof. We just show that the qualification condition (3.13) is valid. Then the assertion follows from
Proposition 3.10.
Thus, pick 𝑢 ∈ ℝ𝑛 and 𝜂 ∈ ℝ𝑚 with 0 = ∇2

𝑥𝑥L(𝑥, 𝑦)𝑢 + 𝑐′(𝑥)⊤𝜂 and 𝜂 ∈ 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢).
Taking the scalar product of the equation with 𝑢 gives ∇2

𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] + ⟨𝜂, 𝑐′(𝑥)𝑢⟩ = 0, so that (3.15)
gives ∇2

𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] + d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) ≤ 0. If 𝑢 ∉ C(𝑥), we have

(3.17) d𝑔(𝑐 (𝑥)) (𝑐′(𝑥)𝑢) > −𝑓 ′(𝑥)𝑢 = ⟨𝑦, 𝑐′(𝑥)𝑢⟩

from ∇𝑥L(𝑥, 𝑦) = 0, which gives d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) = ∞, see [8, formula (5)], and, thus, a contradic-
tion. Hence, we have 𝑢 ∈ C(𝑥), and (3.11) gives 𝑢 = 0. Thus, 𝜂 ∈ 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (0) ∩ ker 𝑐′(𝑥)⊤, and
(3.16) yields 𝜂 = 0. Consequently, (3.13) is valid, and the assertion follows. □

Remark 3.12. Let us note that (3.15) is valid whenever 𝑔 is prox-regular, subdifferentially continuous,
and twice epi-differentiable at 𝑐 (𝑥) for 𝑦 , see Lemma 2.7. Due to [55, Ex. 13.30], each proper, lower
semicontinuous, convex function is prox-regular and subdifferentially continuous on its domain.
Exemplary, whenever 𝑔 is a convex piecewise linear-quadratic function or the indicator function of
the second-order cone, then it is twice epi-differentiable as well, see [55, Prop. 13.9] and [26, Thm 3.1].

Observe that validity of (3.13) is equivalent to validity of (3.16) and

(3.18) 0 = ∇2
𝑥𝑥L(𝑥, 𝑦)𝑢 + 𝑐′(𝑥)⊤𝜂, 𝜂 ∈ 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) =⇒ 𝑢 = 0.

The proof of Corollary 3.11 shows that validity of (3.11) and (3.15) implies that (3.18) holds. Let us
elaborate on (3.16). Similar considerations in a much more specific setting can be found in [42, Sec.
8] and [45, Sec. 4] where 𝑔 is assumed to be a convex function of special type. Notice that the results
obtained in [42, 45] are, expectedly, slightly stronger.
Lemma 3.13. Let 𝑥 ∈ ℝ𝑛 be an M-stationary point for (P), and fix 𝑦 ∈ Λ(𝑥). We investigate the mapping
𝐻 : ℝ𝑚 ⇒ ℝ𝑛 ×ℝ𝑚 given by

(3.19) ∀𝑦 ∈ ℝ𝑚 : 𝐻 (𝑦) B (∇𝑥L(𝑥, 𝑦), 𝑦) − {0} × 𝜕𝑔(𝑐 (𝑥)) .

Then (3.16) implies that 𝐻 is strongly metrically subregular at (𝑦, (0, 0)), and the converse holds true
whenever (𝜕𝑔)−1 is metrically subregular at (𝑦, 𝑐 (𝑥)).

Proof. Patterning the proof of Proposition 3.10, we find

𝐷𝐻 (𝑦, (0, 0)) (𝜂) = (𝑐′(𝑥)⊤𝜂, 𝜂) − {0} ×𝑇𝜕𝑔 (𝑐 (𝑥 ) ) (𝑦) .

Furthermore, we have 𝑇𝜕𝑔 (𝑐 (𝑥 ) ) (𝑦) ⊆ 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (0), and the converse holds true whenever (𝜕𝑔)−1

is metrically subregular at (𝑦, 𝑐 (𝑥)), see [7, Thm 3.2]. Thus, (3.16) implies

ker𝐷𝐻 (𝑦, (0, 0)) = {0},

and the converse holds true under the additional subregularity of (𝜕𝑔)−1. Hence, the assertion follows
from the Levy–Rockafellar criterion. □

Corollary 3.14. Let 𝑥 ∈ ℝ𝑛 be an M-stationary point for (P), and fix 𝑦 ∈ Λ(𝑥). Then the following
assertions hold.

(a) If (3.16) holds, then there is a neighborhood 𝑉 ⊆ ℝ𝑚 of 𝑦 such that Λ(𝑥) ∩𝑉 = {𝑦}. Particularly,
if Λ(𝑥) is convex (which happens if 𝜕𝑔(𝑐 (𝑥)) is convex), then Λ(𝑥) = {𝑦}.

(b) If Λ(𝑥) = {𝑦}, if the mapping 𝐻 from (3.19) is metrically subregular at (𝑦, (0, 0)), and if (𝜕𝑔)−1 is
metrically subregular at (𝑦, 𝑐 (𝑥)) (both subregularity assumptions are satisfied if 𝜕𝑔 is a polyhedral
mapping as this also gives polyhedrality of 𝐻 ), then (3.16) holds.
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Proof. Due to Lemma 3.13, the assumptions in statement (a) guarantee that 𝐻 from (3.19) is strongly
metrically subregular at (𝑦, (0, 0)). Hence, we find a neighborhood 𝑉 ⊆ ℝ𝑚 of 𝑦 and a constant 𝜅 > 0
such that

(3.20) ∀𝑦 ∈ 𝑉 : ∥𝑦 − 𝑦 ∥ ≤ 𝜅
(
∥∇𝑥L(𝑥, 𝑦)∥ + dist(𝑦, 𝜕𝑔(𝑐 (𝑥)))

)
.

Particularly, this estimate shows that whenever 𝑦 ∈ 𝑉 is different from 𝑦 , then 𝑦 ∉ Λ(𝑥). The additional
statement in assertion (a) readily follows.
For assertion (b), notice first that 𝐻−1(0, 0) = Λ(𝑥) is valid. Then metric subregularity of 𝐻 at
(𝑦, (0, 0)) together with Λ(𝑥) = {𝑦} show that (3.20) is valid for some neighborhood 𝑉 ⊆ ℝ𝑚 of 𝑦
and some constant 𝜅 > 0. Hence, 𝐻 is strongly metrically subregular at (𝑦, (0, 0)). Finally, metric
subregularity of (𝜕𝑔)−1 at (𝑦, 𝑐 (𝑥)) and Lemma 3.13 can be used to infer validity of (3.16). □

In the following remark, we comment on (3.18).
Remark 3.15. Let 𝑥 ∈ ℝ𝑛 be an M-stationary point for (P), and fix 𝑦 ∈ Λ(𝑥). Suppose that the second-
order condition (3.11) is valid, and that 0 ∈ dom d2𝑔(𝑐 (𝑥), 𝑦). We first note that this means that 𝑢 B 0
is the uniquely determined global minimizer of

(3.21) minimize
𝑢

1
2∇

2
𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] +

1
2d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢).

In order to see this, one has to observe two facts. First, for each 𝑢 ∉ C(𝑥), we have (3.17) which gives
d2𝑔(𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) = ∞ as mentioned earlier. Secondly, d2𝑔(𝑐 (𝑥), 𝑦) (0) = 0 follows from Lemma 2.6.

Under the assumptions of Lemma 2.7, the limiting subdifferential of the scaled second subderivative
𝑣 ↦→ 1

2 d2𝑔(𝑐 (𝑥), 𝑦) (𝑣) can be computed in terms of the graphical derivative of 𝜕𝑔 at (𝑐 (𝑥), 𝑦). Hence,
under some suitable assumptions, the chain rule from [43, Cor. 4.6] can be applied in order to derive
first-order necessary optimality conditions for problem (3.21), and these conditions take the following
shape:

0 = ∇2
𝑥𝑥L(𝑥, 𝑦)𝑢 + 𝑐′(𝑥)⊤𝜂, 𝜂 ∈ 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢).

That is why (3.18) demands, roughly speaking, that 𝑢 B 0 is the uniquely determined stationary point
of (3.21). This is clearly different from postulating that this point is the uniquely determined global
minimizer of this problem, i.e., (3.11). Equivalence of these conditions can only be guaranteed under
some additional convexity of the second subderivative.

Following [44, Def. 3.1], validity of (3.18) demands that the multiplier 𝑦 is so-called noncritical. The
concept of critical multipliers dates back to [32, 34] where it has been introduced for standard nonlinear
programs. In [34], it has been pointed out that the presence of critical multipliers slows down the
convergence of Newton-type methods when applied for the solution of stationarity systems, and this
observation can be extended to certain composite optimization problems as shown in [44, 45]. Let
us mention that [44, Thm 4.1] and [45, Thm 5.6] justify that (3.18) is equivalent to a local primal-dual
(upper) error bound, based on a not necessarily unique Lagrange multiplier, whenever 𝑔 is a function
whose epigraph is a convex polyhedral set or the indicator function of a so-called C2-cone reducible set,
and in the latter case, further assumptions are required. For brevity, we abstain here from investigating
further refinements of the error bound (3.14) to situations where the Lagrange multiplier is not uniquely
determined, but indicate that this is an interesting topic for future research.

The above puts our comments from Remark 3.12 into some new light. On the one hand, our arguments
highlight that in situations where the second subderivative of 𝑔 is not convex, (3.11) might be too
weak to yield the error bound of our interest. On the other hand, in the absence of any additional
assumptions, (3.13) may not be sufficient for (3.11) as uniqueness of stationary points says nothing
about the existence of a global minimizer for (3.21). However, the condition

(3.22) ∀𝑢 ∈ ℝ𝑛 \ {0}, ∀𝜂 ∈ 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) : ∇2
𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] + ⟨𝜂, 𝑐′(𝑥)𝑢⟩ > 0
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is clearly sufficient for (3.18) and, together with (3.16), gives (3.13).
The following example shows that (3.18) does not necessarily imply (3.11). Furthermore, Example 5.1

below visualizes that (3.11) does not necessarily imply (3.18). These two conditions are, thus, independent
in general as indicated in Remark 3.15.
Example 3.16.We consider (P) for the functions 𝑓 , 𝑐, 𝑔 : ℝ → ℝ given by 𝑓 (𝑥) B 1

2𝑥
2, 𝑐 (𝑥) B 𝑥 ,

𝑔(𝑧) B −𝑧2, and choose 𝑥 to be the origin in ℝ. Note that 𝑥 is M-stationary with Λ(𝑥) = {0}. Thus,
we consider the uniquely determined multiplier 𝑦 B 0. Obviously, 𝑥 is a strict local maximizer of (P)
which is why (3.11) fails to hold at 𝑥 for 𝑦 , see Corollary 3.9. Clearly, we have ∇2

𝑥𝑥L(𝑥, 𝑦) = 1, and
twice continuous differentiability of 𝑔 gives 𝐷 (𝜕𝑔) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) = {−2𝑢} for each 𝑢 ∈ ℝ. Hence,
one can easily check that (3.18) is valid.
Remark 3.17 (Geometric constraints). In the special case where 𝑔 B 𝛿𝐷 holds for some closed set
𝐷 ⊆ ℝ𝑚 , the qualification conditions (3.13), (3.16), (3.18), and (3.22) involve the graphical derivative of
the (limiting) normal cone mapping associated with 𝐷 . For several different choices of 𝐷 , including
convex cones (like the semidefinite or the second-order cone) or convex sets given via smooth convex
inequality constraints, explicit ready-to-use formulas for this variational object are available, see e.g.
[24, 58]. For diverse nonconvex sets𝐷 of special structure, like sparsity sets of type {𝑥 ∈ ℝ𝑛 | ∥𝑥 ∥0 ≤ 𝜅},
𝑘 ∈ {1, . . . , 𝑛 − 1}, the explicit computation of this tool is possible as well.

As we have seen above, the upper error bound in (3.14) only holds in the presence of comparatively
strong assumptions. Unfortunately, due to our definition of Θ in (3.12) which comprises the distance to
the subdifferential of𝑔, the converse lower error bound seems to demand even more prohibitive assump-
tions, as the following Remark 3.18 illustrates. Nonetheless, we will circumnavigate this potentially
crucial observation later on in Section 4 by the design of our algorithm.
Remark 3.18. Let 𝑥 ∈ ℝ𝑛 be an M-stationary point of (P) and pick 𝑦 ∈ Λ(𝑥). Then, relying on the
definition of Θ in (3.12), it appears indispensable for estimating the distance to the subdifferential to
assume its inner calmness, see [4, Def. 2.2] and [3, Sec. 2] for a discussion of this property. In particular,
𝜕𝑔 shall be inner calm at (𝑐 (𝑥), 𝑦), which entails the existence of 𝜅 > 0 and a neighborhood 𝑉 ⊆ ℝ𝑚

of 𝑐 (𝑥) such that
∀𝑧 ∈ 𝑉 : dist(𝑦, 𝜕𝑔(𝑧)) ≤ 𝜅∥𝑧 − 𝑐 (𝑥)∥.

With this property at hand and exploiting (3.4), for each triplet (𝑥, 𝑧, 𝑦) ∈ ℝ𝑛 × dom𝑔 ×ℝ𝑚 such that
𝑧 ∈ 𝑉 , the triangle inequality yields

Θ(𝑥, 𝑧, 𝑦) = ∥∇𝑥L(𝑥, 𝑦)∥ + ∥𝑐 (𝑥) − 𝑧∥ + dist(𝑦, 𝜕𝑔(𝑧))
≤ ∥∇𝑥L(𝑥, 𝑦) − ∇𝑥L(𝑥, 𝑦)∥ + ∥𝑐 (𝑥) − 𝑐 (𝑥)∥ + ∥𝑐 (𝑥) − 𝑧∥ + ∥𝑦 − 𝑦 ∥ + dist(𝑦, 𝜕𝑔(𝑧))
≤ ∥∇𝑥L(𝑥, 𝑦) − ∇𝑥L(𝑥, 𝑦)∥ + ∥𝑐 (𝑥) − 𝑐 (𝑥)∥ + (𝜅 + 1)∥𝑧 − 𝑐 (𝑥)∥ + ∥𝑦 − 𝑦 ∥.

Then, noting that ∇𝑥L and 𝑐 are locally Lipschitz continuous by Assumption 1.1(i), there are a constant
𝜚 l > 0 and a neighborhood𝑈 of (𝑥, 𝑐 (𝑥), 𝑦) such that, for each (𝑥, 𝑧, 𝑦) ∈ 𝑈 ∩ (ℝ𝑛 × dom𝑔 ×ℝ𝑚), we
obtain the lower estimate

𝜚 l Θ(𝑥, 𝑧, 𝑦) ≤ ∥𝑥 − 𝑥 ∥ + ∥𝑧 − 𝑐 (𝑥)∥ + ∥𝑦 − 𝑦 ∥,

which patterns the upper counterpart in (3.14).
However, inner calmness of the subdifferential is an impractical assumption, even for convex 𝑔,

and it would restrict our considerations mainly to points where 𝑔 is smooth in practice. Exemplary,
consider the absolute value function 𝑔 B | · |. Since 𝜕𝑔 is single-valued on ℝ \ {0}, one can easily check
that inner calmness of 𝜕𝑔 at (0, 𝑦) fails for every 𝑦 ∈ [−1, 1] = 𝜕𝑔(0).
In the following Section 4, we will not rely on any additional property of the subdifferential, but

leverage instead the algorithmic scheme to derive a lower error bound along the iterates, see Lemma 4.10
below.
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4 augmented lagrangian scheme and convergence

This section is devoted to describing a numerical scheme for solving (P) and to investigating its
convergence properties under suitable assumptions. In particular, we consider the implicit AL scheme
from [16, Alg. 4.1], so called because it makes use of the AL function L𝜇 : ℝ𝑛 ×ℝ𝑚 → ℝ associated to
(P), as defined in (3.7). It deviates in this respect from [17, Alg. 1], which builds upon (PS) and treats
the auxiliary variable explicitly, see [6] for a discussion on implicit variables (and concealed benefits
thereof) in optimization.

4.1 implicit approach

The numerical method considered for addressing (P) is stated in Algorithm 4.1. Fitting into the AL
framework [10, 11, 15], the main step of the iterative procedure involves minimizing the AL function
with respect to the primal variable. At the 𝑘-th iteration of the AL scheme, with some given penalty
parameter 𝜇𝑘 > 0 and multiplier estimate 𝑦𝑘 ∈ ℝ𝑚 , a subproblem involving the minimization of
L𝜇𝑘 (𝑥, 𝑦𝑘 ) over 𝑥 ∈ ℝ𝑛 has to be solved approximately. However, the AL function may lack regularity
since, for 𝑔 nonconvex, the Moreau envelope 𝑔𝜇 is in general not continuously differentiable. Therefore,
the concept of (approximate) Υ-stationarity introduced in Section 2.2 plays a role in characterizing
adequate solutions of this AL subproblem, see Remark 3.3 as well. Let us note that, in practice, such
points can be computed with the aid of a nonmonotone descent method, see [16, Sec. 5] for details. Then,
following classical update rules [11], the multiplier estimate 𝑦 and penalty parameter 𝜇 are adjusted,
along with the subproblem’s tolerance 𝜀.
Compared to the classical AL approach for the solution of nonlinear programs, see [10, 15], this

variant uses a safeguarded update rule for the Lagrange multipliers and has stronger global convergence
properties, as demonstrated in [38]. The safeguarded multiplier estimate 𝑦𝑘 is drawn from a bounded
set 𝑌 ⊆ ℝ𝑚 at Step 2. In practice, it is advisable to choose the safeguarded estimate 𝑦𝑘 as the projection
of the multiplier 𝑦𝑘−1 onto 𝑌 . We refer to [11, Sec. 4.1] for a detailed discussion.
The monotonicity test at Step 3 is adopted to monitor primal infeasibility along the iterates and

update the penalty parameter accordingly. Aimed at driving 𝑉𝑘 to zero, the penalty parameter 𝜇𝑘 is
reduced in case of insufficient improvement.

Algorithm 4.1: Safeguarded implicit AL method for (P)
Data: 𝜇0 ∈ (0, 𝜇𝑔), 𝜃 ∈ (0, 1), 𝜅 ∈ (0, 1), 𝑌 ⊆ ℝ𝑚 nonempty bounded

1 for 𝑘 = 0, 1, 2 . . . do
2 Select 𝑦𝑘 ∈ 𝑌 and 𝜀𝑘 ≥ 0
3 Compute a pair (𝑥𝑘 , 𝑧𝑘 ) certificating 𝜀𝑘 -Υ-stationary of 𝑥𝑘 for L𝜇𝑘 (·, 𝑦𝑘 ):

∥∇𝑥LS
𝜇𝑘
(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )∥ ≤ 𝜀𝑘 , 𝑧𝑘 ∈ prox𝜇𝑘𝑔 (𝑐 (𝑥

𝑘 ) + 𝜇𝑘𝑦𝑘 )

Set 𝑦𝑘 ← 𝑦𝑘 + 𝜇−1
𝑘
[𝑐 (𝑥𝑘 ) − 𝑧𝑘 ] and 𝑉𝑘 ← ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥

if 𝑘 = 0 or 𝑉𝑘 ≤ 𝜃𝑉𝑘−1 then 𝜇𝑘+1 ← 𝜇𝑘 , else 𝜇𝑘+1 ← 𝜅𝜇𝑘

Before investigating the convergence properties of Algorithm 4.1, we provide some characterizations
of the iterates {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )}. These are direct consequences of 𝑧𝑘 being a certificate of 𝜀𝑘 -Υ-stationarity
for 𝑥𝑘 , by Step 3, and of the dual update at Step 3, see Remark 3.3 as well.
Proposition 4.1. Let {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )} be a sequence generated by Algorithm 4.1. Then, for each 𝑘 ∈ ℕ,
𝑧𝑘 ∈ prox𝜇𝑘𝑔 (𝑐 (𝑥

𝑘 ) + 𝜇𝑘𝑦𝑘 ) ⊆ dom𝑔, ∥∇𝑓 (𝑥𝑘 ) + 𝑐′(𝑥𝑘 )⊤𝑦𝑘 ∥ ≤ 𝜀𝑘 , and 𝑦𝑘 ∈ 𝜕𝑔(𝑧𝑘 ).
Throughout the convergence analysis, based on, and extending, that of [16], it is assumed that

Algorithm 4.1 is well-defined, thus requiring that each subproblem at Step 3 admits an approximately
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stationary point. Moreover, the existence of some accumulation point 𝑥 for a sequence {𝑥𝑘 } generated
by Algorithm 4.1 requires, in general, coercivity or (level) boundedness arguments.
While asymptotic M-stationarity as given in [16, Def. 3.3] demands the existence of a sequence of,

in a certain sense, approximately M-stationary points for (P) converging to the point of interest, no
quantitative bound on this approximativity is required. However, for Algorithm 4.1 to terminate, there
is a need for an approximate version of the M-stationarity concept of Definition 3.1. We refer to the
notion delineated in [16, Def. 3.2], which comes along with an explicit bound quantifying violation of
M-stationarity, while aligning with the asymptotic stipulation.

4.2 global convergence

In this section, we are concerned with global convergence properties related to Algorithm 4.1, i.e., we
are going to study properties of accumulation points of sequences it generates, regardless of how it is
initialized. For that purpose, we will assume that Algorithm 4.1 is well-defined and produces an infinite
sequence of iterates.
Our first results pertain to a global optimization perspective on the subproblems at Step 3 of

Algorithm 4.1, compare [11, Ch. 5] and [38, Sec. 4]. Solving each subproblem up to approximate global
optimality, not necessarily with vanishing inner tolerance, one finds in the limit a global minimizer of
the infeasibility measure, see [13, Lem. 4.2] for a related result.
Lemma 4.2. Let {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )} be a sequence generated by Algorithm 4.1 with {𝜀𝑘 } bounded. Assume that
dom𝑔 is closed and that

(4.1) ∀𝑘 ∈ ℕ, ∀𝑥 ∈ ℝ𝑛 : L𝜇𝑘 (𝑥𝑘 , 𝑦𝑘 ) ≤ L𝜇𝑘 (𝑥, 𝑦𝑘 ) + 𝜀𝑘 .

Fix an accumulation point 𝑥 ∈ ℝ𝑛 of {𝑥𝑘 }. Then 𝑥 is a global minimizer of dist(𝑐 (·), dom𝑔). In particular,
𝑥 is feasible if the feasible set of (P) is nonempty.

Proof. Let us consider two cases. If {𝜇𝑘 } remains bounded away from zero, then Step 3 demands that
∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ → 0. As we have {𝑧𝑘 } ⊆ dom𝑔 from Proposition 4.1, it follows that

0 ≤ dist(𝑐 (𝑥𝑘 ), dom𝑔) ≤ ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ → 0.

Owing to dom𝑔 being closed, we obtain 𝑐 (𝑥) ∈ dom𝑔, proving that 𝑥 is feasible for (P).
Consider now the case 𝜇𝑘 ↓ 0. Let {𝑥𝑘 }𝑘∈𝐾 be a subsequence such that 𝑥𝑘 →𝐾 𝑥 . Then (4.1)

guarantees

∀𝑥 ∈ ℝ𝑛 : 𝑓 (𝑥𝑘 ) + 𝑔𝜇𝑘 (𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ) ≤ 𝑓 (𝑥) + 𝑔𝜇𝑘 (𝑐 (𝑥) + 𝜇𝑘𝑦𝑘 ) + 𝜀𝑘 .

Multiplying by 𝜇𝑘 , taking the lower limit as 𝑘 →𝐾 ∞, and using boundedness of {𝑓 (𝑥𝑘 )}𝑘∈𝐾 and {𝜀𝑘 }
yield

lim inf
𝑘→𝐾∞

𝜇𝑘𝑔
𝜇𝑘 (𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ) ≤ lim inf

𝑘→𝐾∞
𝜇𝑘𝑔

𝜇𝑘 (𝑐 (𝑥) + 𝜇𝑘𝑦𝑘 )

for each 𝑥 ∈ ℝ𝑛 . Together with Lemma 2.1, this gives

1
2 dist2(𝑐 (𝑥), dom𝑔) = lim inf

𝑘→𝐾∞
inf
𝑧

{
𝜇𝑘𝑔(𝑧) +

1
2 ∥𝑧 − (𝑐 (𝑥

𝑘 ) + 𝜇𝑘𝑦𝑘 )∥2
}

= lim inf
𝑘→𝐾∞

𝜇𝑘𝑔
𝜇𝑘 (𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ) ≤ lim inf

𝑘→𝐾∞
𝜇𝑘𝑔

𝜇𝑘 (𝑐 (𝑥) + 𝜇𝑘𝑦𝑘 )

= lim inf
𝑘→𝐾∞

inf
𝑧

{
𝜇𝑘𝑔(𝑧) +

1
2 ∥𝑧 − (𝑐 (𝑥) + 𝜇𝑘𝑦

𝑘 )∥2
}
=

1
2 dist2(𝑐 (𝑥), dom𝑔)

for all 𝑥 ∈ ℝ𝑛 , where we used boundedness of {𝑦𝑘 } and 𝜇𝑘 ↓ 0. This shows that 𝑥 globally minimizes
dist(𝑐 (·), dom𝑔). Then, by closedness of dom𝑔, if (P) is feasible, so is 𝑥 , concluding the proof. □
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Notice that, in the proof of Lemma 4.2, the requirement of closed dom𝑔 does not affect the case
with 𝜇𝑘 ↓ 0, and that we did not exploit the actual qualitative requirements regarding the subproblem
solver stated in Step 3, apart from the necessity of having a sequence {𝑧𝑘 } ⊂ dom𝑔 at hand. Indeed,
approximate global optimality of 𝑥𝑘 for the subproblem in the sense of (4.1) is all we needed. Conversely,
the upcoming two theorems rely on 𝑧𝑘 ∈ prox𝜇𝑘𝑔 (𝑐 (𝑥

𝑘 ) + 𝜇𝑘𝑦𝑘 ), additionally, but the specification
∥∇𝑥LS

𝜇𝑘
(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )∥ ≤ 𝜀𝑘 is still not required.

If, in addition to the assumptions of Lemma 4.2, the sequence {𝜀𝑘 } is chosen so that 𝜀𝑘 → 0,
then (primal) accumulation points of the sequence generated by Algorithm 4.1 correspond to global
minimizers of (P), see [13, Thm 4.12] for a related result.
Theorem 4.3. Let {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )} be a sequence generated by Algorithm 4.1 with 𝜀𝑘 → 0. Let (4.1) hold, and
assume that the feasible set of (P) is nonempty while dom𝑔 is closed. Then lim sup𝑘→∞(𝑓 (𝑥𝑘 ) +𝑔(𝑧𝑘 )) ≤
𝜑 (𝑥) holds for all feasible 𝑥 ∈ ℝ𝑛 . Moreover, every accumulation point 𝑥 ∈ ℝ𝑛 of {𝑥𝑘 } is globally optimal
for (P). For any index set 𝐾 ⊆ ℕ such that 𝑥𝑘 →𝐾 𝑥 , it is also 𝑧𝑘 →𝐾 𝑐 (𝑥) and 𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 ) →𝐾 𝜑 (𝑥).

Proof. Let 𝑥 ∈ ℝ𝑛 be a fixed feasible point of (P). Then, due to (4.1), Lemma 3.2, and Proposition 4.1,
we have

𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 ) − 𝜇𝑘2 ∥𝑦
𝑘 ∥2 ≤ 𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 ) + 1

2𝜇𝑘
∥𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ∥2 −

𝜇𝑘

2 ∥𝑦
𝑘 ∥2

= L𝜇𝑘 (𝑥𝑘 , 𝑦𝑘 ) ≤ L𝜇𝑘 (𝑥, 𝑦𝑘 ) + 𝜀𝑘 ≤ 𝜑 (𝑥) + 𝜀𝑘 < ∞

for all 𝑘 ∈ ℕ. If 𝜇𝑘 ↓ 0, then 𝜇𝑘 ∥𝑦𝑘 ∥2 → 0 by boundedness of {𝑦𝑘 }. In this case, 𝜀𝑘 → 0 and 𝑧𝑘 ∈ dom𝑔

imply that lim sup𝑘→∞(𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 )) ≤ 𝜑 (𝑥).
Let us now focus on the case where {𝜇𝑘 } is bounded away from zero. This is possible only if
∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ → 0 by Step 3. Similar as above, we find

𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 ) + 1
2𝜇𝑘
∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥2 + ⟨𝑦𝑘 , 𝑐 (𝑥𝑘 ) − 𝑧𝑘⟩ = L𝜇𝑘 (𝑥𝑘 , 𝑦𝑘 ) ≤ 𝜑 (𝑥) + 𝜀𝑘 .

Since {𝑦𝑘 } is bounded, ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ → 0, and 𝜀𝑘 → 0, we can take the upper limit in the above
estimate to find lim sup𝑘→∞(𝑓 (𝑥𝑘 ) +𝑔(𝑧𝑘 )) ≤ 𝜑 (𝑥). Finally, let 𝑥 be an accumulation point of {𝑥𝑘 } and
𝐾 ⊆ ℕ an index set such that 𝑥𝑘 →𝐾 𝑥 . Then, as (P) admits feasible points, 𝑥 is feasible by Lemma 4.2.

Let us show that ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ →𝐾 0 holds. If {𝜇𝑘 } remains bounded away from zero, this is obvious
by Step 3. In the case where 𝜇𝑘 ↓ 0, we can exploit feasibility of 𝑥 , boundedness of {𝑦𝑘 }, and Lemma 2.1
to find

𝜇𝑘𝑔(𝑧𝑘 ) +
1
2 ∥𝑧

𝑘 − 𝑐 (𝑥𝑘 ) − 𝜇𝑘𝑦𝑘 ∥2 →𝐾 0.

Boundedness of {𝑦𝑘 } and 𝜇𝑘 ↓ 0 allow us to apply Lemma 2.2 which yields 𝜇𝑘𝑔(𝑧𝑘 ) →𝐾 0 as well as
∥𝑧𝑘 − 𝑐 (𝑥𝑘 ) − 𝜇𝑘𝑦𝑘 ∥ →𝐾 0, and the latter gives ∥𝑧𝑘 − 𝑐 (𝑥𝑘 )∥ →𝐾 0.
Due to ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ →𝐾 0, continuity of 𝑐 gives 𝑧𝑘 →𝐾 𝑐 (𝑥). Now, lower semicontinuity of 𝑔 yields

𝜑 (𝑥) = 𝑓 (𝑥) + 𝑔(𝑐 (𝑥)) ≤ lim inf
𝑘→𝐾∞

𝑓 (𝑥𝑘 ) + lim inf
𝑘→𝐾∞

𝑔(𝑧𝑘 )

≤ lim inf
𝑘→𝐾∞

(𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 )) ≤ lim sup
𝑘→𝐾∞

(𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 )) ≤ 𝜑 (𝑥),

where the last inequality is due to the upper bound obtained previously in the proof. As 𝑥 is an arbitrary
feasible point of (P), we have shown that 𝑥 is globally optimal for (P). Finally, with the particular choice
𝑥 = 𝑥 , the previous inequalities give that 𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 ) →𝐾 𝜑 (𝑥), concluding the proof. □
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Under an additional assumption on the multiplier estimate 𝑦𝑘 in Step 2, a stronger result can be
proved that concerns the behavior of the iterates for infeasible problems. By resetting the multiplier
estimate when signs of infeasibility are detected, the algorithm tends to minimize the objective function
subject to minimal constraint violation, see e.g. [11, Thm 5.3] for a related result.
Theorem 4.4. Let {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )} be a sequence generated by Algorithm 4.1 with 𝜀𝑘 → 0. Let (4.1) hold,
suppose that dom𝑔 is closed, and that, for all 𝑘 ∈ ℕ, 𝑦𝑘+1 = 0 if 𝑦𝑘 ∉ 𝑌 . Let 𝑥 be an accumulation point
of {𝑥𝑘 }. Then 𝑥 is a global minimizer of dist(𝑐 (·), dom𝑔) and, for all (𝑥, 𝑧) ∈ ℝ𝑛 × dom𝑔 such that
∥𝑐 (𝑥) − 𝑧∥ = dist(𝑐 (𝑥), dom𝑔), it holds lim sup𝑘→∞(𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 )) ≤ 𝑓 (𝑥) + 𝑔(𝑧).

Proof. If dist(𝑐 (𝑥), dom𝑔) = 0, namely 𝑐 (𝑥) ∈ dom𝑔 by closedness of dom𝑔, then 𝑥 is feasible and the
claim follows from Theorem 4.3. So, let us assume that dist(𝑐 (𝑥), dom𝑔) > 0. Together with Step 3 and
Proposition 4.1, this implies that 𝜇𝑘 ↓ 0. Since 𝑥 is a global minimizer of dist(𝑐 (·), dom𝑔) by Lemma 4.2,
then

(4.2) ∀𝑘 ∈ ℕ : ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ ≥ dist(𝑐 (𝑥𝑘 ), dom𝑔) ≥ dist(𝑐 (𝑥), dom𝑔) .

Thus, by the dual update rule at Step 3, boundedness of 𝑌 , and 𝜇𝑘 ↓ 0, for all 𝑘 ∈ ℕ large enough it
is 𝑦𝑘 ∉ 𝑌 . Therefore, by the estimate choice stated in the premises, it is 𝑦𝑘 = 0 for all large enough
𝑘 ∈ ℕ. Then, for all 𝑥 ∈ ℝ𝑛 , we have that

𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 ) + 1
2𝜇𝑘
∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥2 = 𝑓 (𝑥𝑘 ) + 𝑔𝜇𝑘 (𝑐 (𝑥𝑘 )) = L𝜇𝑘 (𝑥𝑘 , 0)

≤ L𝜇𝑘 (𝑥, 0) + 𝜀𝑘 = 𝑓 (𝑥) + 𝑔𝜇𝑘 (𝑐 (𝑥)) + 𝜀𝑘

for all 𝑘 ∈ ℕ large enough. This holds, in particular, for 𝑥 ∈ ℝ𝑛 a global minimizer of dist(𝑐 (·), dom𝑔),
namely such that dist(𝑐 (𝑥), dom𝑔) = dist(𝑐 (𝑥), dom𝑔). Then there is some 𝑧 ∈ dom𝑔 such that
∥𝑐 (𝑥) − 𝑧∥ = dist(𝑐 (𝑥), dom𝑔), and (4.2) gives ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ ≥ ∥𝑐 (𝑥) − 𝑧∥. Hence, we find

𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 ) + 1
2𝜇𝑘
∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥2 ≤ 𝑓 (𝑥) + 𝑔𝜇𝑘 (𝑐 (𝑥)) + 𝜀𝑘

≤ 𝑓 (𝑥) + 𝑔(𝑧) + 1
2𝜇𝑘
∥𝑐 (𝑥) − 𝑧∥2 + 𝜀𝑘 ≤ 𝑓 (𝑥) + 𝑔(𝑧) +

1
2𝜇𝑘
∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥2 + 𝜀𝑘

for all 𝑘 ∈ ℕ large enough. Subtracting the squared norm term on both sides and taking the upper
limit yields the claim since 𝜀𝑘 → 0. □

In Lemma 4.2 and Theorems 4.3 and 4.4, it has been assumed that the AL subproblem can be
solved up to approximate global optimality. This, however, might be a delicate issue whenever 𝑓 or
𝑔 are nonconvex or 𝑐 is difficult enough. In practice, affordable solvers only have local scope and
return stationary points as candidate local minimizers. Nevertheless, (primal) accumulation points of a
sequence generated by Algorithm 4.1 can be shown to be at least asymptotically M-, or AM-, stationary
points for (P), see [16, Def. 3.3, Thm 4.1] for a detailed discussion. Notice that the (approximate) global
optimality is not relaxed to local optimality, but to mere (Υ-)stationarity, while the subsequential
𝑔-attentive convergence of certain iterates is required. We refer to [17, Ex. 3.4] for an illustration of the
importance of attentive convergence. It should be noted that a mild asymptotic regularity condition is
enough to guarantee that AM-stationary point of (P) are indeed M-stationary, see [16, Cor. 3.1] or [17,
Cor. 2.7] for related results. Thus, Algorithm 4.1 is likely to compute M-stationary points of (P).

A result analogous to Lemma 4.2 is available in this affordable setting, too, see [16, Prop. 4.5], whereas
[16, Prop. 4.3] provides some sufficient conditions for the feasibility of accumulation points.
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4.3 local convergence

In this section, we investigate the behavior of Algorithm 4.1 in the vicinity of stationary points of (P)
under various assumptions. Particularly, we are interested in the existence of strict local minimizers
of the AL subproblems in a neighborhood of a strict local minimizer to (P) and convergence rates
associated with Algorithm 4.1 in such situations.

4.3.1 existence of local minimizers

Let us consider the existence of local minimizers of the AL function L𝜇 (·, 𝑦) for 𝜇 > 0 sufficiently
small and an approximate multiplier 𝑦 ∈ 𝑌 , where 𝑌 ⊆ ℝ𝑚 is a bounded set, see Algorithm 4.1. Note
that, by construction, any such local minimizer would be an Υ-stationary point of L𝜇 (·, 𝑦), and Step 3
would be meaningful, see Remark 3.3 as well.

We fix some strict local minimizer 𝑥 ∈ ℝ𝑛 of (P) and proceed as suggested in [13, Sec. 7]. For
sufficiently small 𝑟 > 0, consider the localized AL subproblem

(4.3) minimize
𝑥∈ℝ𝑛

L𝜇𝑘 (𝑥, 𝑦𝑘 ) subject to 𝑥 ∈ 𝔹𝑟 (𝑥),

where 𝑦𝑘 ∈ 𝑌 is the chosen multiplier estimate and 𝜇𝑘 ∈ (0, 𝜇𝑔). Clearly, by continuity of the Moreau
envelope, see e.g. [55, Thm 1.25], (4.3) possesses a global minimizer 𝑥𝑘 ∈ ℝ𝑛 . Under suitable assumptions
it is possible to show ∥𝑥𝑘 − 𝑥 ∥ < 𝑟 for sufficiently small 𝜇𝑘 , and the localization in (4.3) becomes
superfluous. In fact, if 𝜇𝑘 ↓ 0, we are in position to verify 𝑥𝑘 → 𝑥 as desired.

As we will see in the subsequent lemma, strict local minimality of some feasible point 𝑥 ∈ ℝ𝑛 of (P)
serves as a sufficient condition for a sequence of asymptotically feasible points to converge to 𝑥 , see
[13, Cor. 6.2] for a related result under stronger assumptions.
Lemma 4.5. Let 𝑥 ∈ ℝ𝑛 be a strict local minimizer of (P). Then there exists 𝑟 > 0 such that, whenever
{𝑥𝑘 } ⊆ 𝔹𝑟 (𝑥) and {𝑧𝑘 } ⊆ dom𝑔 are sequences with ∥𝑐 (𝑥𝑘 )−𝑧𝑘 ∥ → 0 and lim sup𝑘→∞(𝑓 (𝑥𝑘 )+𝑔(𝑧𝑘 )) ≤
𝜑 (𝑥), then 𝑥𝑘 → 𝑥 and 𝑧𝑘 → 𝑐 (𝑥).

Proof. The stated assumptions guarantee the existence of 𝑟 > 0 such that

(4.4) ∀𝑥 ∈ 𝔹𝑟 (𝑥) \ {𝑥} : 𝜑 (𝑥) > 𝜑 (𝑥) .

Let us pick arbitrary sequences {𝑥𝑘 } and {𝑧𝑘 } satisfying the requirements. Suppose now that 𝑥𝑘 ↛ 𝑥 .
Hence, as {𝑥𝑘 } belongs to the compact set 𝔹𝑟 (𝑥), it possesses an accumulation point 𝑥 ∈ 𝔹𝑟 (𝑥) such
that 𝑥 ≠ 𝑥 . Let 𝐾 ⊆ ℕ be an index set such that 𝑥𝑘 →𝐾 𝑥 . Continuity of 𝑐 yields 𝑐 (𝑥𝑘 ) →𝐾 𝑐 (𝑥), and
∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ → 0 gives 𝑧𝑘 →𝐾 𝑐 (𝑥). Furthermore, continuity of 𝑓 and lower semicontinuity of 𝑔 can
be used to infer

𝜑 (𝑥) ≥ lim sup
𝑘→∞

(𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 )) ≥ lim inf
𝑘→𝐾∞

(𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 )) ≥ 𝜑 (𝑥),

but this contradicts (4.4). Thus, it must be 𝑥𝑘 → 𝑥 . Then, continuity of 𝑐 yields 𝑐 (𝑥𝑘 ) → 𝑐 (𝑥), and
𝑧𝑘 → 𝑐 (𝑥) follows from ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ → 0. □

Observe that SOSC from Definition 3.7 provides a sufficient condition for strict local minimality
which can be checked in terms of initial problem data, see Proposition 3.8. It is remarkable that, in
analogous ways, one can show that [13, Cor. 6.2] (stated in an infinite-dimensional setting) remains
true whenever the considered point of interest therein is supposed to be a strict local minimizer. One
does not need to assume validity of a second-order sufficient condition for that purpose.

The following is an analog of [13, Lem. 7.1].
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Lemma 4.6. Let 𝑥 ∈ ℝ𝑛 be a strict local minimizer of (P). Furthermore, let𝑌 ⊆ ℝ𝑚 be bounded. Then there
is a radius 𝑟 > 0 such that whenever {𝑦𝑘 } ⊆ 𝑌 , 𝜇𝑘 ↓ 0, 𝜀𝑘 → 0, and, for all 𝑘 ∈ ℕ, 𝑥𝑘 is an 𝜀𝑘 -minimizer
of (4.3) in the sense that

(4.5) ∀𝑥 ∈ 𝔹𝑟 (𝑥) : L𝜇𝑘 (𝑥𝑘 , 𝑦𝑘 ) ≤ L𝜇𝑘 (𝑥, 𝑦𝑘 ) + 𝜀𝑘 ,

then 𝑥𝑘 → 𝑥 .

Proof. Let 𝑟 > 0 be as in Lemma 4.5. For large enough 𝑘 ∈ ℕ, 𝜇𝑘 ∈ (0, 𝜇𝑔) holds, and we can fix
𝑧𝑘 ∈ prox𝜇𝑘𝑔 (𝑐 (𝑥

𝑘 ) + 𝜇𝑘𝑦𝑘 ). For any such 𝑘 ∈ ℕ, (4.5) and Lemma 3.2 yield

𝑓 (𝑥𝑘 ) + 𝑔(𝑧𝑘 ) + 1
2𝜇𝑘
∥𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ∥2 −

𝜇𝑘

2 ∥𝑦
𝑘 ∥2

= 𝑓 (𝑥𝑘 ) + 𝑔𝜇𝑘
(
𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘

)
− 𝜇𝑘2 ∥𝑦

𝑘 ∥2

= L𝜇𝑘 (𝑥𝑘 , 𝑦𝑘 ) ≤ L𝜇𝑘 (𝑥, 𝑦𝑘 ) + 𝜀𝑘 ≤ 𝜑 (𝑥) + 𝜀𝑘 < ∞.

Multiplying by 𝜇𝑘 , by the boundedness of {𝑦𝑘 } and {𝑓 (𝑥𝑘 )}, 𝜇𝑘 ↓ 0, and 𝜀𝑘 → 0, we obtain

lim sup
𝑘→∞

(
𝜇𝑘𝑔(𝑧𝑘 ) +

1
2 ∥𝑧

𝑘 − 𝑐 (𝑥𝑘 ) − 𝜇𝑘𝑦𝑘 ∥2
)
≤ 0.

We apply Lemma 2.2 to find ∥𝑧𝑘 − 𝑐 (𝑥𝑘 ) − 𝜇𝑘𝑦𝑘 ∥ → 0 and, thus, ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ → 0. Moreover, the
above estimate also guarantees lim sup𝑘→∞(𝑓 (𝑥𝑘 ) +𝑔(𝑧𝑘 )) ≤ 𝜑 (𝑥), again by boundedness of {𝑦𝑘 } and
𝜇𝑘 ↓ 0. Hence, Lemma 4.5 is applicable and yields the desired convergence. □

As a consequence of Lemma 4.6, we find the following result which parallels [13, Thm 7.2].
Theorem 4.7. Let 𝑥 ∈ ℝ𝑛 be a strict local minimizer of (P). Furthermore, let 𝑌 ⊆ ℝ𝑚 be bounded. Then
there is a radius 𝑟 > 0 such that, for every 𝑦 ∈ 𝑌 and 𝜇 ∈ (0, 𝜇𝑔), the function L𝜇 (·, 𝑦) admits a local
minimizer 𝑥 (𝜇, 𝑦) which lies in 𝔹𝑟 (𝑥). Moreover, 𝑥 (𝜇, 𝑦) → 𝑥 uniformly on 𝑌 as 𝜇 ↓ 0.

Proof. Let 𝑟 > 0 be as in Lemma 4.6. For 𝜇 ∈ (0, 𝜇𝑔), the Moreau envelope 𝑔𝜇 is a continuous function,
and this extends to L𝜇 (·, 𝑦) for arbitrary 𝑦 ∈ 𝑌 . Hence, this function possesses a global minimizer
over 𝔹𝑟 (𝑥) which we denote by 𝑥 (𝜇, 𝑦). As 𝜇 ↓ 0, we find 𝑥 (𝜇, 𝑦) → 𝑥 from Lemma 4.6, and this
convergence is uniform for 𝑦 ∈ 𝑌 . □

Let us note that Lemma 4.6 and Theorem 4.7 merely assume strict local minimality of the reference
point. As mentioned before, this holds true whenever SOSC in valid at the point of interest. Note that
SOSC does not demand uniqueness of the underlying Lagrange multiplier.

4.3.2 rates of convergence

Our rates-of-convergence analysis of Algorithm 4.1 is based on a primal-dual pair (𝑥, 𝑦) ∈ ℝ𝑛 ×ℝ𝑚
which solves the M-stationarity system (3.4) associated with (P) such that an (upper) error bound
condition is valid.

For brevity of notation, we will partially make use of the following assumptions.
Assumption 4.8 (Rates of convergence).

(i) Let 𝑥 ∈ ℝ𝑛 be an M-stationary point of (P), and let 𝑦 ∈ Λ(𝑥) be chosen such that there are a
constant 𝜚u > 0 and a neighborhood𝑈 of (𝑥, 𝑐 (𝑥), 𝑦) such that the upper error bound condition
(3.14) holds for each triplet (𝑥, 𝑧, 𝑦) ∈ 𝑈 ∩ (ℝ𝑛 × dom𝑔 ×ℝ𝑚).

(ii) Let {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )} be a sequence generated by Algorithm 4.1 with 𝜀𝑘 → 0.
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(iii) The primal-dual sequence {(𝑥𝑘 , 𝑦𝑘 )} converges to (𝑥, 𝑦).

(iv) For each 𝑘 ∈ ℕ large enough, 𝑦𝑘 = 𝑦𝑘−1 is valid.

Note that we already know, by Proposition 3.8 and Theorem 4.7, that the AL admits approximate
local minimizers and stationary points in a neighborhood of some M-stationary point 𝑥 ∈ ℝ𝑛 which
satisfies SOSC. We shall now see that, under the error bound conditions from Section 3.3 involving
a fixed multiplier 𝑦 ∈ Λ(𝑥), if the algorithm chooses these local minimizers (or any other points
sufficiently close to 𝑥), then we automatically obtain the convergence (𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) → (𝑥, 𝑐 (𝑥), 𝑦). In
this case, the sequence {𝑦𝑘 } is necessarily bounded, so it is reasonable to assume that the safeguarded
multipliers are eventually chosen as 𝑦𝑘 = 𝑦𝑘−1.
Let us recall that even validity of the second-order condition (3.11), which is more restrictive than

SOSC, may not be sufficient for the error bound condition, see Remark 3.15. However, Section 3.3
provides a number of sufficient conditions which still can be checked in terms of initial problem data,
so we will abstain here from postulating any more specific assumptions on the upper error bound.
Furthermore, we do not stipulate any lower error bound conditions, deviating from all other related
papers, where the lower estimate was never problematic, see Remark 3.18.
The following result, which is motivated by [57, Prop. 4.29], can be considered as (retrospective)

justification for Assumption 4.8(iii)–(iv) in the presence of Assumption 4.8(i)–(ii). Besides the error
bound condition, a CQ is needed. As we require an M-stationary point of (P), this is not too restrictive.
Proposition 4.9. Let Assumption 4.8(i)–(ii) hold and suppose that (at least) one of the following conditions
is valid:

(a) 𝑐′(𝑥) possesses full row rank𝑚;

(b) condition (3.6) is valid, dom𝑔 is closed, and 𝑔 is continuous relative to its domain.

Then there exists a radius 𝑟 > 0 such that, if 𝑥𝑘 ∈ 𝔹𝑟 (𝑥) for all sufficiently large 𝑘 ∈ ℕ, then we have the
convergences Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) → 0 and (𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) → (𝑥, 𝑐 (𝑥), 𝑦) as 𝑘 →∞.

Proof. Let 𝑟 > 0 be small enough so that (3.14) holds for all (𝑥, 𝑧, 𝑦) ∈ ℝ𝑛 ×dom𝑔×ℝ𝑚 with 𝑥 ∈ 𝔹𝑟 (𝑥).
Assume now that 𝑥𝑘 ∈ 𝔹𝑟 (𝑥) for all 𝑘 ∈ ℕ sufficiently large. The proof is divided into multiple steps.
We first show that 𝑐 (𝑥𝑘 ) − 𝑧𝑘 → 0 as 𝑘 →∞. Consider two cases. If {𝜇𝑘 } remains bounded away

from zero, this assertion readily follows from the penalty updating scheme at Step 3. Instead, if 𝜇𝑘 ↓ 0,
then we can argue from Proposition 4.1 that

(4.6) 𝑐′(𝑥𝑘 )⊤
[
𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘

]
→ 0

as 𝜇𝑘 ↓ 0, by boundedness of {∇𝑓 (𝑥𝑘 )}, {𝑦𝑘 }, and {𝜀𝑘 }. Let us now show 𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 −𝑧𝑘 → 0, which
readily yields 𝑐 (𝑥𝑘 ) − 𝑧𝑘 → 0 since {𝑦𝑘 } is bounded and 𝜇𝑘 ↓ 0. In case (a) where 𝑐′(𝑥) has full row
rank, the matrices 𝑐′(𝑥)𝑐′(𝑥)⊤ are uniformly invertible on 𝔹𝑟 (𝑥), potentially after shrinking 𝑟 , and (4.6)
gives 𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 → 0. Next, for case (b), assume that (3.6) holds while dom𝑔 is closed and 𝑔 is
continuous on its domain. Note that, for each 𝑘 ∈ ℕ, we even have 𝜇−1

𝑘
(𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ) ∈ �̂�𝑔(𝑧𝑘 ) by

definition of the prox-operator and compatibility of the regular subdifferential with smooth additions,
and this also gives (𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ,−𝜇𝑘 ) ∈ 𝑁epi𝑔 (𝑧𝑘 , 𝑔(𝑧𝑘 )). Recall that (3.6) is equivalent to the
metric regularity of Ξ from (3.5) at ((𝑥, 𝑔(𝑐 (𝑥))), (0, 0)). Lemma 2.5 now yields the existence of 𝑠 > 0
such that, for all sufficiently large 𝑘 ∈ ℕ, we have

(4.7) 𝔹𝑠 (0, 0) ⊆
[
𝑐′(𝑥𝑘 ) 0

0 1

]
𝔹1(0, 0) −

(
𝑇epi𝑔 (𝑧𝑘 , 𝑔(𝑧𝑘 )) ∩ 𝔹1(0, 0)

)
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as 𝑔 is continuous on dom𝑔. In order to see this, we need to make sure that (𝑧𝑘 , 𝑔(𝑧𝑘 )) is sufficiently
close to (𝑐 (𝑥), 𝑔(𝑐 (𝑥))) for large enough 𝑘 ∈ ℕ, and due to the continuity of 𝑔, this boils down to
showing that 𝑧𝑘 is sufficiently close to 𝑐 (𝑥) for large enough 𝑘 ∈ ℕ.
Along the tail of the sequence (without relabeling), we have that {𝑥𝑘 } is close to 𝑥 . For every 𝑘 , the

optimality of 𝑧𝑘 in the proximal minimization subproblem reads

∀𝑧 ∈ ℝ𝑚 : 𝜇𝑘𝑔(𝑧𝑘 ) +
1
2 ∥𝑐 (𝑥

𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ∥2 ≤ 𝜇𝑘𝑔(𝑧) +
1
2 ∥𝑐 (𝑥

𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧∥2.

Taking the specific choice 𝑧 B 𝑐 (𝑥) ∈ dom𝑔 and dividing both sides by 𝜇𝑘 > 0 results in

𝑔(𝑧𝑘 ) + 1
2𝜇𝑘
∥𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ∥2 ≤ 𝑔(𝑐 (𝑥)) +

1
2𝜇𝑘
∥𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑐 (𝑥)∥2 < ∞.

By invoking the triangle, Cauchy–Schwarz, and Young’s inequalities, this implies that

∥𝑧𝑘 − 𝑐 (𝑥)∥2 = ∥𝑧𝑘 − [𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ] − 𝑐 (𝑥) + [𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ] ∥2

≤ ∥𝑧𝑘 − [𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ] ∥2 + ∥𝑐 (𝑥) − [𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ] ∥2

+ 2∥𝑧𝑘 − [𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ] ∥∥𝑐 (𝑥) − [𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ] ∥
≤ 2∥𝑧𝑘 − [𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ] ∥2 + 2∥𝑐 (𝑥) − [𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 ] ∥2

≤ 4
[
𝜇𝑘𝑔(𝑐 (𝑥)) − 𝜇𝑘𝑔(𝑧𝑘 ) + ∥𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑐 (𝑥)∥2

]
.

Rearranging gives

𝜇𝑘𝑔(𝑧𝑘 ) +
1
4 ∥𝑧

𝑘 − 𝑐 (𝑥)∥2 ≤ 𝜇𝑘𝑔(𝑐 (𝑥)) + ∥𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑐 (𝑥)∥2.

Since 𝑐 (𝑥) ∈ dom𝑔, the term 𝜇𝑘𝑔(𝑐 (𝑥)) vanishes as 𝜇𝑘 ↓ 0, and so does 𝜇𝑘𝑦𝑘 . Therefore, possibly
shrinking the neighborhood considered around 𝑥 , the right-hand side remains bounded by some
arbitrarily small 𝐶 > 0 for all large 𝑘 ∈ ℕ, by continuous differentiability of 𝑐 , i.e.,

𝜇𝑘𝑔(𝑧𝑘 ) +
1
4 ∥𝑧

𝑘 − 𝑐 (𝑥)∥2 ≤ 𝐶

holds for all 𝑘 ∈ ℕ large enough. By virtue of the prox-boundedness of 𝑔, [18, Lem. 4.1] yields boun-
dedness of {𝑧𝑘 } and, thus, of {𝑔(𝑧𝑘 )} by continuity of 𝑔 on its domain which is assumed to be closed
(Heine’s theorem yields uniform continuity of 𝑔 on closed, bounded subsets of dom𝑔). As 𝜇𝑘 ↓ 0 and
𝐶 > 0 can be made arbitrarily small if only 𝑟 > 0 is chosen small enough, it follows that {𝑧𝑘 } is
arbitrarily close to 𝑐 (𝑥) for all large enough 𝑘 ∈ ℕ.
Pick 𝑤 ∈ 𝔹𝑠 (0) arbitrary. Then, for each sufficiently large 𝑘 ∈ ℕ, we can rely on (4.7) to find
(𝑢𝑘 , 𝛼𝑘 ) ∈ 𝔹1(0, 0) and (𝑣𝑘 , 𝛽𝑘 ) ∈ 𝑇epi𝑔 (𝑧𝑘 , 𝑔(𝑧𝑘 )) ∩𝔹1(0, 0) such that (𝑤, 0) = (𝑐′(𝑥𝑘 )𝑢𝑘 − 𝑣𝑘 , 𝛼𝑘 − 𝛽𝑘 ).
From (𝑣𝑘 , 𝛽𝑘 ) ∈ 𝑇epi𝑔 (𝑧𝑘 , 𝑔(𝑧𝑘 )), we find ⟨(𝑣𝑘 , 𝛽𝑘 ), (𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ,−𝜇𝑘 )⟩ ≤ 0 due to (2.5). Thus

⟨𝑤, 𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘⟩ = ⟨𝑐′(𝑥𝑘 )𝑢𝑘 − 𝑣𝑘 , 𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘⟩
= ⟨𝑢𝑘 , 𝑐′(𝑥𝑘 )⊤(𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 )⟩ − 𝜇𝑘𝛽𝑘 − ⟨(𝑣𝑘 , 𝛽𝑘 ), (𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ,−𝜇𝑘 )⟩
≥ ⟨𝑢𝑘 , 𝑐′(𝑥𝑘 )⊤(𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 )⟩ − 𝜇𝑘𝛽𝑘 → 0,

where we used boundedness of {𝑢𝑘 } and {𝛽𝑘 } as well as 𝜇𝑘 ↓ 0 and (4.6). Testing this expression with
𝑤 B ±𝑠 (𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 )/∥𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 ∥ gives 𝑐 (𝑥𝑘 ) + 𝜇𝑘𝑦𝑘 − 𝑧𝑘 → 0.
We now demonstrate that Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) → 0 as 𝑘 →∞. Observe that

∇𝑥L(𝑥𝑘 , 𝑦𝑘 ) = ∇𝑥LS(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) = ∇𝑥LS
𝜇𝑘
(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )
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holds for all 𝑘 ∈ ℕ by construction of the dual update rule in Step 3. Then the first summand in
Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) satisfies

∥∇𝑥L(𝑥𝑘 , 𝑦𝑘 )∥ = ∥∇𝑥LS
𝜇𝑘
(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )∥ ≤ 𝜀𝑘 ,

which converges to zero by Assumption 4.8(ii). Hence, as ∥𝑐 (𝑥𝑘 )−𝑧𝑘 ∥ → 0 was obtained previously, the
second term in (3.12) vanishes, too. For the third and last term, it remains to show that dist(𝑦𝑘 , 𝜕𝑔(𝑧𝑘 )) →
0. This, however, readily follows from Proposition 4.1.
Finally, recall that 𝑥𝑘 ∈ 𝔹𝑟 (𝑥) for all 𝑘 ∈ ℕ and that Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) → 0. Hence, the convergence
(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) → (𝑥, 𝑐 (𝑥), 𝑦) is an immediate consequence of (3.14). □

Subsequently, we will prove convergence rates for the sequence {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )} in the presence of
Assumption 4.8. Since the distance of (𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) to (𝑥, 𝑐 (𝑥), 𝑦) admits an estimate relative to the
residual termsΘ𝑘 B Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) by (3.14), we will largely base our analysis on the sequence {Θ𝑘 }, and
the results on the sequence {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )} will follow directly. However, this correspondence heavily
relies on a two-sided error bound, see the proof of Theorem 4.12 below. In stark contrast to Remark 3.18,
the following Lemma 4.10 shows that, along a sequence generated by Algorithm 4.1, a lower error bound
holds. This exploits the fact that, as a consequence of Proposition 4.1, the distance-to-subdifferential
in Θ does not play a role for the error bound at the iterates. Therefore, complementing the upper
estimate of Assumption 4.8(i), a two-sided error bound becomes algorithmically available, enabling the
derivation of convergence rates.
Lemma 4.10. Let 𝑥 ∈ ℝ𝑛 be an M-stationary point of (P) and 𝑦 ∈ Λ(𝑥) be arbitrary. Suppose Assump-
tion 4.8(ii)–(iv) hold. Then there are a constant 𝜚 l > 0 and a neighborhood 𝑈 of (𝑥, 𝑐 (𝑥), 𝑦) such that, for
each triplet (𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) ∈ 𝑈 ∩ (ℝ𝑛 × dom𝑔 ×ℝ𝑚), we have

(4.8) 𝜚 l Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) ≤ ∥𝑥𝑘 − 𝑥 ∥ + ∥𝑧𝑘 − 𝑐 (𝑥)∥ + ∥𝑦𝑘 − 𝑦 ∥.

Proof. For each triplet (𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) ∈ ℝ𝑛 × dom𝑔 ×ℝ𝑚 , we can exploit (3.4) and the triangle inequality
to obtain

Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) = ∥∇𝑥L(𝑥𝑘 , 𝑦𝑘 )∥ + ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥
≤ ∥∇𝑥L(𝑥𝑘 , 𝑦𝑘 ) − ∇𝑥L(𝑥, 𝑦)∥ + ∥𝑐 (𝑥𝑘 ) − 𝑐 (𝑥)∥ + ∥𝑧𝑘 − 𝑐 (𝑥)∥,

where the equality is due to Assumption 4.8(ii) and Proposition 4.1, which imply dist(𝑦𝑘 , 𝜕𝑔(𝑧𝑘 )) = 0
for all 𝑘 ∈ ℕ. Then, noting that ∇𝑥L and 𝑐 are locally Lipschitz continuous, the claim follows. □

Our next result, preparatory for Theorem 4.12 below, has been inspired by [57, Lem. 4.30].
Lemma 4.11. Let Assumption 4.8 hold and set Θ𝑘 B Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) for each 𝑘 ∈ ℕ. Then

(1 − 𝜚u𝜇𝑘 )Θ𝑘 ≤ 𝜀𝑘 + 𝜚u𝜇𝑘Θ𝑘−1

for all 𝑘 ∈ ℕ large enough, where 𝜚u > 0 is the constant from (3.14).

Proof. Due to Proposition 4.1, 𝑦𝑘 ∈ 𝜕𝑔(𝑧𝑘 ) holds for all 𝑘 ∈ ℕ. Then, by (3.12) and Step 3, we have

Θ𝑘 ≤ 𝜀𝑘 + ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ = 𝜀𝑘 + 𝜇𝑘 ∥𝑦𝑘 − 𝑦𝑘−1∥ ≤ 𝜀𝑘 + 𝜇𝑘 ∥𝑦𝑘 − 𝑦 ∥ + 𝜇𝑘 ∥𝑦𝑘−1 − 𝑦 ∥,

where the equality is due to the update rule at Step 3 and Assumption 4.8(iv). By Assumption 4.8(i),
since 𝑥𝑘 → 𝑥 and, due to Proposition 4.9, 𝑧𝑘 → 𝑐 (𝑥), we find ∥𝑦𝑘 − 𝑦 ∥ ≤ 𝜚uΘ𝑘 for all 𝑘 ∈ ℕ large
enough. Hence, Θ𝑘 ≤ 𝜀𝑘 + 𝜚u𝜇𝑘 (Θ𝑘 + Θ𝑘−1) holds for all 𝑘 ∈ ℕ large enough, and reordering gives the
assertion. □
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With the above lemma and the two-sided error bound enabled by Assumption 4.8(i) and Lemma 4.10,
one can deduce convergence rates for the sequence {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )}, see [57, Thm 4.31] as well. Notice
that the condition 𝜀𝑘 ∈ o(Θ𝑘−1) can be easily guaranteed in practice. For instance, one could compute
the next iterate (𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) with a precision 𝜀𝑘 ≤ 𝜈𝑘Θ𝑘−1 where {𝜈𝑘 } is a given null sequence. It
should be mentioned also that the value Θ𝑘 from (3.12) becomes algorithmically available thanks to
Proposition 4.1, and can readily be obtained by the dual update rule at Step 3.
Theorem 4.12. Let Assumption 4.8 hold and assume that 𝜀𝑘 ∈ o(Θ𝑘−1), where Θ𝑘 B Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) for
each 𝑘 ∈ ℕ. Then the following assertions hold.

(a) For every 𝑞 ∈ (0, 1), there exists 𝜇 (𝑞) such that, if 𝜇𝑘 ≤ 𝜇 (𝑞) for sufficiently large 𝑘 ∈ ℕ, then
(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) → (𝑥, 𝑐 (𝑥), 𝑦) Q-linearly with rate 𝑞.

(b) If 𝜇𝑘 ↓ 0, then (𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ) → (𝑥, 𝑐 (𝑥), 𝑦) Q-superlinearly.

Proof. Let 𝑘 ∈ ℕ be large enough so that 𝑦𝑘 = 𝑦𝑘−1. By Lemma 4.11, if 𝜇𝑘 is small enough so that
1 − 𝜚u𝜇𝑘 > 0, then

Θ𝑘
Θ𝑘−1

≤ 𝜚u𝜇𝑘
1 − 𝜚u𝜇𝑘

+ o(1).

The desired rates for {(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 )} are an easy consequence of the upper and lower estimates in (3.14)
and Lemma 4.10, as these give

∥𝑥𝑘 − 𝑥 ∥ + ∥𝑧𝑘 − 𝑐 (𝑥)∥ + ∥𝑦𝑘 − 𝑦 ∥
∥𝑥𝑘−1 − 𝑥 ∥ + ∥𝑧𝑘−1 − 𝑐 (𝑥)∥ + ∥𝑦𝑘−1 − 𝑦 ∥

≤ 𝜚u
𝜚 l

𝜚u𝜇𝑘
1 − 𝜚u𝜇𝑘

+ o(1)

for all 𝑘 ∈ ℕ large enough. □

The following result, analogous to [57, Cor. 4.32], establishes the boundedness of {𝜇𝑘 } away from zero
in the case of exact subproblem solutions, thus preventing the fast local convergence of Theorem 4.12(b).

Corollary 4.13. Let Assumption 4.8 hold and assume that the subproblems occurring at Step 3 of Algo-
rithm 4.1 are solved exactly, i.e., that 𝜀𝑘 = 0 for all 𝑘 ∈ ℕ. Then {𝜇𝑘 } remains bounded away from
zero.

Proof. For each 𝑘 ∈ ℕ, we make use of 𝑉𝑘 B ∥𝑐 (𝑥𝑘 ) − 𝑧𝑘 ∥ and Θ𝑘 B Θ(𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘 ). Let 𝑘 ∈ ℕ be large
enough so that 𝑦𝑘 = 𝑦𝑘−1. Arguing as in the proof of Lemma 4.11, we have for all 𝑘 ∈ ℕ that Θ𝑘 ≤ 𝑉𝑘
since 𝜀𝑘 = 0. Furthermore, using the triangle inequality, the convergences, 𝑥𝑘 → 𝑥 , 𝑧𝑘 → 𝑐 (𝑥), and
Assumption 4.8(iv), we obtain 𝑉𝑘 = 𝜇𝑘 ∥𝑦𝑘 − 𝑦𝑘−1∥ ≤ 𝜚u𝜇𝑘 (Θ𝑘 + Θ𝑘−1) from (3.14). Combining these
inequalities yields

𝑉𝑘

𝑉𝑘−1
≤ 𝜚u𝜇𝑘

(
Θ𝑘
Θ𝑘−1

+ 1
)
.

Finally, assuming that 𝜇𝑘 ↓ 0, we deduce from the proof of Theorem 4.12 that Θ𝑘/Θ𝑘−1 → 0, and then
𝑉𝑘/𝑉𝑘−1 → 0 follows. Hence, 𝑉𝑘/𝑉𝑘−1 ≤ 𝜃 for all 𝑘 ∈ ℕ sufficiently large, where 𝜃 ∈ (0, 1) is a fixed
parameter of Algorithm 4.1, so that Step 3 gives a contradiction, thus proving the assertion. □

In summary, local fast convergence of Algorithm 4.1, even for nonconvex functions 𝑔, can be obtained
in the presence of suitable second-order conditions (one ensuring the existence of minimizers of the
subproblems and another one to guarantee validity of an upper error bound) and a first-order CQ
which, in principle, gives us the full convergence of the primal-dual sequence.

In comparison with the noteworthy results from [22, 28], these assumptions may seem quite strong.
However, let us mention that in the settings discussed in these papers, the (convex) function 𝑔 under
consideration is chosen in such a way that the aforementioned two second-order conditions can
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already be merged into one, see Remark 3.12. Furthermore, it is likely that the additional postulation of
a first-order CQ could be avoided in these papers, too, since 𝑔 (or at least its derivative) is convex and/or
polyhedral enough while, for convex functions, the proximal operator is well-behaved. It remains a
question for future research whether, for example, a generalized polyhedral structure of 𝑔 (where
its domain and epigraph are unions of finitely many convex polyhedral sets) makes the additional
assumption of a first-order CQ superfluous.

5 some exemplary settings

In light of our theoretical findings for the general problem (P), this section examines two notable
illustrative settings: sparsity-promoting and complementarity-constrained optimization.

5.1 sparsity-promoting optimization

Here, we take a closer look at the sparsity-promoting optimization problem (3.9) which has been
already discussed in Example 3.6.

Let us fix some point 𝑥 ∈ ℝ𝑛 . For 𝑦 ∈ 𝜕∥ · ∥0(𝑐 (𝑥)), we make use of

𝐼 00(𝑥, 𝑦) B {𝑖 ∈ 𝐼 0(𝑥) | 𝑦𝑖 = 0}, 𝐼 0±(𝑥, 𝑦) B {𝑖 ∈ 𝐼 0(𝑥) | 𝑦𝑖 ≠ 0}

where 𝐼 0(𝑥) has been defined in Example 3.6. With the definition of 𝐼±(𝑥) therein, one obtains

(5.1) 𝑇gph 𝜕∥ · ∥0 (𝑐 (𝑥), 𝑦) =

(𝑣, 𝜂) ∈ ℝ
𝑚 ×ℝ𝑚

�������
∀𝑖 ∈ 𝐼±(𝑥) : 𝜂𝑖 = 0
∀𝑖 ∈ 𝐼 0±(𝑥, 𝑦) : 𝑣𝑖 = 0
∀𝑖 ∈ 𝐼 00(𝑥, 𝑦) : 𝑣𝑖𝜂𝑖 = 0

 .
This can be used to see that (3.16) reduces to the linear independence of the family (∇𝑐𝑖 (𝑥))𝑖∈𝐼 0 (𝑥 ) .

For 𝑢 ∈ ℝ𝑛 \ {0} and 𝜂 ∈ 𝐷 (𝜕∥ · ∥0) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢), we easily find

⟨𝜂, 𝑐′(𝑥)𝑢⟩ =
∑︁

𝑖∈𝐼± (𝑥 )
𝜂𝑖︸︷︷︸
=0

𝑐′𝑖 (𝑥)𝑢 +
∑︁

𝑖∈𝐼 0 (𝑥 )
𝜂𝑖𝑐
′
𝑖 (𝑥)𝑢︸   ︷︷   ︸
=0

= 0,

so that (3.22) reduces to

(5.2) ∀𝑢 ∈ {𝑢′ ∈ ℝ𝑛 | ∀𝑖 ∈ 𝐼 0±(𝑥, 𝑦) : 𝑐′𝑖 (𝑥)𝑢′ = 0} \ {0} : ∇2
𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] > 0,

and this corresponds to a classical second-order sufficient condition for the nonlinear program

minimize
𝑥

𝑓 (𝑥) subject to 𝑐𝑖 (𝑥) = 0 𝑖 ∈ 𝐼 0±(𝑥, 𝑦) .

From [8, Ex. 6.3], we find

C(𝑥) = {𝑢 ∈ ℝ𝑛 | 𝑓 ′(𝑥)𝑢 ≤ 0, ∀𝑖 ∈ 𝐼 0(𝑥) : 𝑐′𝑖 (𝑥)𝑢 = 0}.

However, for 𝑢 ∈ ℝ𝑛 satisfying 𝑐′𝑖 (𝑥)𝑢 = 0 for all 𝑖 ∈ 𝐼 0(𝑥), we already have

𝑓 ′(𝑥)𝑢 = −⟨𝑦, 𝑐′(𝑥)𝑢⟩ = −
∑︁

𝑖∈𝐼± (𝑥 )
𝑦𝑖︸︷︷︸
=0

𝑐′𝑖 (𝑥)𝑢 −
∑︁

𝑖∈𝐼 0 (𝑥 )
𝑦𝑖 𝑐
′
𝑖 (𝑥)𝑢︸ ︷︷ ︸
=0

= 0,

i.e., 𝑢 ∈ C(𝑥) due to 𝑦 ∈ 𝜕∥ · ∥(𝑐 (𝑥)), and this particularly holds for 𝑦 ∈ Λ(𝑥) which exists whenever
𝑥 is M-stationary. In the latter case, we thus obtain the simplified representation

(5.3) C(𝑥) = {𝑢 ∈ ℝ𝑛 | ∀𝑖 ∈ 𝐼 0(𝑥) : 𝑐′𝑖 (𝑥)𝑢 = 0}.
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Noting that 𝑦𝑖 = 0 holds for each 𝑖 ∈ 𝐼±(𝑥), [8, Ex. 6.3] shows that SOSC is implied by

∀𝑢 ∈ C(𝑥) \ {0}, ∃𝑦 ∈ Λ(𝑥) : ∇2
𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] > 0,

while
∃𝑦 ∈ Λ(𝑥), ∀𝑢 ∈ C(𝑥) \ {0} : ∇2

𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] > 0

is sufficient for (3.11), and these correspond to certain second-order sufficient optimality conditions for
the optimization problem

minimize
𝑥

𝑓 (𝑥) subject to 𝑐𝑖 (𝑥) = 0 𝑖 ∈ 𝐼 0(𝑥) .

Clearly, due to (5.3), both conditions are implied by (5.2). The following example shows that (5.2) can,
indeed, be stronger than (3.11).
Example 5.1. We consider (3.9) for the functions 𝑓 : ℝ2 → ℝ and 𝑐 : ℝ2 → ℝ2 given by

𝑓 (𝑥) B 1
2 (𝑥1 − 𝑥2)2 + 𝑥1 − 𝑥2, 𝑐 (𝑥) B

(
𝑥1 − 𝑥2
𝑥1 + 𝑥2

)
,

and choose 𝑥 to be the origin in ℝ2. Note that 𝐼 0(𝑥) = {1, 2} and Λ(𝑥) = {(−1, 0)}, i.e., 𝑦 B (−1, 0) is
the uniquely determined multiplier in this situation. As the critical cone C(𝑥) reduces to the origin,
(3.11) is trivially satisfied.

Observe that we have
∇2
𝑥𝑥L(𝑥, 𝑦) =

(
1 −1
−1 1

)
,

and for 𝑢 B (1, 1) and 𝜂 B (0, 0), we find 𝜂 ∈ 𝐷 (𝜕∥ · ∥0) (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) from (5.1). Furthermore,
∇2
𝑥𝑥L(𝑥, 𝑦)𝑢 + 𝑐′(𝑥)⊤𝜂 = 0 is valid. Hence, (3.18) does not hold, and this also shows that the stronger

condition (3.22) fails—the latter being equivalent to (5.2) in the present setting.

5.2 complementarity-constrained optimization

Let𝑚 B 2𝑝 for some 𝑝 ∈ ℕ and consider the special situation 𝑔 B 𝛿𝐶cc where 𝐶cc ⊆ ℝ2𝑝 is given by

𝐶cc B {𝑧 ∈ ℝ2𝑝 | ∀𝑖 ∈ {1, . . . , 𝑝} : 0 ≤ 𝑧𝑖 ⊥ 𝑧𝑝+𝑖 ≥ 0},

i.e., 𝐶cc is the standard complementarity set. Problem (P), thus, reduces to

(MPCC) minimize
𝑥

𝑓 (𝑥) subject to 𝑐 (𝑥) ∈ 𝐶cc,

amathematical problem with complementarity constraints (MPCC), see the classical monographs [40, 46].
Note that standard inequality and equality constraints can be added without any difficulty and are
omitted here for brevity of presentation.

For a feasible point 𝑥 ∈ ℝ𝑛 of (MPCC), we make use of the index sets

𝐼+0(𝑥) B {𝑖 ∈ {1, . . . , 𝑝} | 𝑐𝑖 (𝑥) > 0, 𝑐𝑝+1(𝑥) = 0},
𝐼 0+(𝑥) B {𝑖 ∈ {1, . . . , 𝑝} | 𝑐𝑖 (𝑥) = 0, 𝑐𝑝+𝑖 (𝑥) > 0},
𝐼 00(𝑥) B {𝑖 ∈ {1, . . . , 𝑝} | 𝑐𝑖 (𝑥) = 0, 𝑐𝑝+𝑖 (𝑥) = 0},

which provide a disjoint partition of {1, . . . , 𝑝}. As we have

𝜕𝑔(𝑐 (𝑥)) = 𝜕∞𝑔(𝑐 (𝑥)) = 𝑁𝐶cc (𝑐 (𝑥)) =

𝑦 ∈ ℝ
2𝑝

�������
∀𝑖 ∈ 𝐼+0(𝑥) : 𝑦𝑖 = 0
∀𝑖 ∈ 𝐼 0+(𝑥) : 𝑦𝑝+𝑖 = 0
∀𝑖 ∈ 𝐼 00(𝑥) : (𝑦𝑖 ≤ 0 ∧ 𝑦𝑝+𝑖 ≤ 0) ∨ 𝑦𝑖𝑦𝑝+𝑖 = 0

 ,
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we can specify the precise meaning of the CQ (3.6). Note that, as 𝛿𝐶cc is continuous on its closed domain
𝐶cc, (3.6) can be used in Proposition 4.9. We also note that

𝑁𝐶cc (𝑐 (𝑥)) =

𝑦 ∈ ℝ
2𝑝

�������
∀𝑖 ∈ 𝐼+0(𝑥) : 𝑦𝑖 = 0
∀𝑖 ∈ 𝐼 0+(𝑥) : 𝑦𝑝+𝑖 = 0
∀𝑖 ∈ 𝐼 00(𝑥) : 𝑦𝑖 ≤ 0, 𝑦𝑝+𝑖 ≤ 0

 .
Let us now assume that 𝑥 is an M-stationary point of (MPCC). Some calculations show that the

associated critical cone is given by

C(𝑥) =


𝑢 ∈ ℝ𝑛

����������
𝑓 ′(𝑥)𝑢 ≤ 0

∀𝑖 ∈ 𝐼+0(𝑥) : 𝑐′𝑝+𝑖 (𝑥)𝑢 = 0
∀𝑖 ∈ 𝐼 0+(𝑥) : 𝑐′𝑖 (𝑥)𝑢 = 0
∀𝑖 ∈ 𝐼 00(𝑥) : 0 ≤ 𝑐′𝑖 (𝑥)𝑢 ⊥ 𝑐′𝑝+𝑖 (𝑥)𝑢 ≥ 0


,

see [8, Sec. 5.1]. If Λ(𝑥) ∩ 𝑁𝐶cc (𝑐 (𝑥)) is nonempty, i.e., if 𝑥 is so-called strongly stationary, a simplified
representation of the critical cone is available which does not involve the ∇𝑓 (𝑥) anymore but depends
on a multiplier 𝑦 ∈ Λ(𝑥) ∩ 𝑁𝐶cc (𝑐 (𝑥)) and is given by

C(𝑥) =


𝑢 ∈ ℝ𝑛

������������������

𝑓 ′(𝑥)𝑢 ≤ 0
∀𝑖 ∈ 𝐼+0(𝑥) : 𝑐′𝑝+𝑖 (𝑥)𝑢 = 0
∀𝑖 ∈ 𝐼 0+(𝑥) : 𝑐′𝑖 (𝑥)𝑢 = 0
∀𝑖 ∈ 𝐼 00

−− (𝑥, 𝑦) : 𝑐′𝑖 (𝑥)𝑢 = 0, 𝑐′𝑝+𝑖 (𝑥) = 0
∀𝑖 ∈ 𝐼 00

−0(𝑥, 𝑦) : 𝑐′𝑖 (𝑥)𝑢 = 0, 𝑐′𝑝+𝑖 (𝑥)𝑢 ≥ 0
∀𝑖 ∈ 𝐼 00

0− (𝑥, 𝑦) : 𝑐′𝑖 (𝑥)𝑢 ≥ 0, 𝑐′𝑝+𝑖 (𝑥)𝑢 = 0
∀𝑖 ∈ 𝐼 00

∗ (𝑥, 𝑦) : 0 ≤ 𝑐′𝑖 (𝑥)𝑢 ⊥ 𝑐′𝑝+𝑖 (𝑥)𝑢 ≥ 0


,

see [41, Lem. 4.1]. Here, we used

𝐼 00
−− (𝑥, 𝑦) B {𝑖 ∈ 𝐼 00(𝑥) | 𝑦𝑖 < 0, 𝑦𝑝+𝑖 < 0}, 𝐼 00

−0(𝑥, 𝑦) B {𝑖 ∈ 𝐼 00(𝑥) | 𝑦𝑖 < 0, 𝑦𝑝+𝑖 = 0},
𝐼 00
0− (𝑥, 𝑦) B {𝑖 ∈ 𝐼 00(𝑥) | 𝑦𝑖 = 0, 𝑦𝑝+𝑖 < 0}, 𝐼 00

∗ (𝑥, 𝑦) B {𝑖 ∈ 𝐼 00(𝑥) | 𝑦𝑖 = 0, 𝑦𝑝+𝑖 = 0},

which provide a disjoint partition of 𝐼 00(𝑥).
Following the arguments provided at the end of [8, Sec. 3.1], we find

Λ(𝑥,𝑢) =

𝑦 ∈ Λ(𝑥)
�������
∀𝑖 ∈ 𝐼 00

+0 (𝑥,𝑢) : 𝑦𝑖 = 0
∀𝑖 ∈ 𝐼 00

0+ (𝑥,𝑢) : 𝑦𝑝+𝑖 = 0
∀𝑖 ∈ 𝐼 00

00 (𝑥,𝑢) : 𝑦𝑖 ≤ 0, 𝑦𝑝+1 ≤ 0

 .
for each 𝑢 ∈ C(𝑥), where we made use of a disjoint partition of 𝐼 00(𝑥) given by

𝐼 00
+0 (𝑥,𝑢) B {𝑖 ∈ 𝐼 00(𝑥) | 𝑐′𝑖 (𝑥)𝑢 > 0, 𝑐′𝑝+𝑖 (𝑥)𝑢 = 0},
𝐼 00
0+ (𝑥,𝑢) B {𝑖 ∈ 𝐼 00(𝑥) | 𝑐′𝑖 (𝑥)𝑢 = 0, 𝑐′𝑝+𝑖 (𝑥)𝑢 > 0},
𝐼 00
00 (𝑥,𝑢) B {𝑖 ∈ 𝐼 00(𝑥) | 𝑐′𝑖 (𝑥)𝑢 = 0, 𝑐′𝑝+𝑖 (𝑥)𝑢 = 0}.

Thus, due to [8, Thm 5.4], SOSC can be stated in the form

∀𝑢 ∈ C(𝑥) \ {0}, ∃𝑦 ∈ Λ(𝑥,𝑢) : ∇2
𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] > 0.
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As shown in the proof of Corollary 3.9, any multiplier 𝑦 ∈ Λ(𝑥) suitable to appear the second-order
condition (3.11) necessarily belongs to

⋂
𝑢∈C(𝑥 )\{0} Λ(𝑥,𝑢) ⊂ Λ(𝑥), and for any such multiplier 𝑦 ,

d2 𝛿𝐶cc (𝑐 (𝑥), 𝑦) (𝑐′(𝑥)𝑢) vanishes, see [8, Lem. 3.2, Prop. 3.6]. Hence, (3.11) takes the form

∃𝑦 ∈
⋂

𝑢∈C(𝑥 )\{0}
Λ(𝑥,𝑢), ∀𝑢 ∈ C(𝑥) \ {0} : ∇2

𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] > 0.

It follows from [23, Lem. 3.2] that this is a less restrictive assumption than the standard second-order
sufficient condition for (MPCC) which takes the form

∃𝑦 ∈ Λ(𝑥) ∩ 𝑁𝐶cc (𝑐 (𝑥)), ∀𝑢 ∈ C(𝑥) \ {0} : ∇2
𝑥𝑥L(𝑥, 𝑦) [𝑢,𝑢] > 0

and is based on a strongly stationary point. A detailed study on the relationship between SOSC and
(3.11) as well as other MPCC-tailored second-order optimality conditions is beyond the scope of this
paper, see e.g. [23, 25] for an overview.

The graphical derivative of the limiting normal conemappings associatedwith𝐶cc has been computed
recently in [9, Sec. 4.4.1], and the obtained formulas can be used to specify the CQs (3.13), (3.16), (3.18),
and (3.22) in the recent setting.

6 concluding remarks

The results in this paper could be extended to cover the extra feature in (P) of a geometric convex
constraint 𝑥 ∈ 𝑋 , which was not included here for reasons of exposition. It remains unclear, instead,
how to address such additional constraint with nonconvex𝑋 , if not reformulating into (P) and accepting
𝑥 ∈ 𝑋 as a soft constraint, see [16, Rem. 5.1].

Another challenging question is whether it is possible to dispose the additional constraint qualifica-
tion in the nonconvex polyhedral case (i.e., epi𝑔 being the union of finitely many convex polyhedra)
in the analysis of Section 4. Such a result would yield convergence rates merely via some second-order
sufficient conditions and the (upper) error bound, generalizing [22]. In specific situations, this should
be possible even in the nonpolyhedral setting, as [28] has shown for the case of convex linear-quadratic
𝑔. As already pointed out in Section 1, however, such a generalization does not seem to be available in
nonpolyhedral settings.
Future research may also focus on the relationship between the proximal point algorithm and the

augmented Lagrangian method in the fully nonconvex setting, in the vein of [50, 54], and investigate
saddle-point properties of the augmented Lagrangian function in primal-dual terms as in [57].
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