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generalized alternating projections on

manifolds and convex sets

Ma�ias Fält∗, Pontus Giselsson†

Abstract In this paper, we extend the previous convergence results for the generalized

alternating projection method applied to subspaces in [23] to hold also for smoothmanifolds.

We show that the algorithm locally behaves similarly in the subspace and manifold settings

and that the same rates are obtained. We also present convergence rate results for when

the algorithm is applied to non-empty, closed, and convex sets. The results are based on a

finite identification property that implies that the algorithm after an initial identification

phase solves a smooth manifold feasibility problem. Therefore, the rates in this paper hold

asymptotically for problems in which this identification property is satisfied. We present a

few examples where this is the case and also a counter example for when this is not.

1 introduction

The problem of finding a point in the intersection of sets has a long history with many proposed

algorithms. They generally rely on successive projections onto the respective sets. The method of

alternating projections (MAP, or AP) was famously studied by von Neumann [39] for the case of

two subspaces and has a wide range of applications [18]. Many variants have been suggested and

shown to converge in the case of convex sets, for example using relaxed projections [1, 37, 13, 25]

or inexact projections [30], Dykstra’s algorithm [12], Douglas–Rachford splitting [20, 35], and its

dual algorithm ADMM [24, 11].

Many results on the linear convergence rates of these algorithms have been shown and are gen-

erally stated as a function of a regularity constant such as the smallest angle between the sets,

which in the case of affine sets is known as the Friedrichs angle \� . In the case of two subspaces,

the method of alternating projections was shown to converge with the linear rate cos2 (\� ) [19],
and the Douglas–Rachford method with the rate cos(\� ) [6]. In [7], the authors studied a few

methods with relaxed projections and the optimal rates with respect to the relaxation parame-

ters were found. The generalized alternating projection (GAP)—which generalizes most of the

algorithms above by allowing several relaxation parameters—was studied in [23, 16, 17]. It was

shown in [23] that the faster rate
1−sin(\� )
1+sin(\� ) is achievable with the right parameters. It was also

shown that, under general assumptions, this is the best possible rate for this generalization.

When it comes to general convex sets, local linear convergence of these algorithms is not guar-

anteed. Several different assumptions on the intersection between the sets have been proposed
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and shown to be sufficient. Some of these assumptions include linear regularity or bounded lin-

ear regularity, see for example [31, 4]. An overview of set regularities can be found in [28] and

a survey on their relation can be found in [29]. Under subtransversality assumptions of two

convex sets, the R-linear rate presented in [36] translates to a cos(\�/2) contraction rate for the

Douglas–Rachford algorithm, when translated to the subspace setting.

For general non-convex sets, convergence to a feasible point cannot be guaranteed, and local

convergence is instead studied. For the alternating projections method, different types of regu-

larity have been shown to be sufficient for local linear convergence [31, 9, 8, 38]. For the alter-

nating projections algorithm, the results in [31] for possibly non-convex super-regular sets with

linearly regular intersection translates to the known optimal rate of cos2(\� ) when applied to

sub-spaces. In [21], the authors showed that a transversality property can be used to guarantee

local linear convergence. However, both the assumptions and rates presented in this paper are

quite conservative. For example, in the case of two subspaces, the rate presented in [21] trans-

lates to cos2 (\�/2) which is considerably worse than the known contraction rate cos(\� ) and
the local linear rate cos2 (\� ). Among the few known results for alternating relaxed projections,

local linear convergence was shown for the MARP algorithm in [10] under different regularity

assumptions. However, this paper assumes that the projections are under-relaxed, which was

shown in [23] to result in sub-optimal local rates.

One approach to show local convergence rates for general convex sets is by showing that the

algorithms eventually project onto subsets that have nicer properties, i.e., that the algorithm iden-

tifies these subsets in finite time. This can be done by partitioning the boundary of sets into a

collection of smooth manifolds, and then studying the algorithm on these manifolds. There has

been a lot of research into these identification properties for various algorithms, see for exam-

ple [27, 33, 34]. However, as far as the authors know, none of these results apply to projection

methods on feasibility problems. The fundamental problem seems to be that gradients are vanish-

ing at any feasible point when a feasibility problem is reformulated as an optimization problem,

so the regularity assumptions are therefore not satisfied. However, for specific problems it can

sometimes be known that the algorithm will identify such surfaces, for example when the en-

tire boundary is a smooth manifold, or when the algorithm is known to converge to the relative

interior of one of the manifolds.

In this paper, we study generalized alternating projections in the setting of two smooth man-

ifolds. The special case of alternating projections is studied in [32]. There, it is shown that the

smooth manifolds locally can be approximated by affine sets and that the convergence rates

known from affine sets translate to local linear rates in this setting under a transversality con-

dition. A similar result is found in [2] under slightly relaxed assumptions. We show that the

weaker assumption in [2] is sufficient to show local linear convergence also of the generalized

alternating projections method on smooth manifolds. Moreover, we show that the optimal rates

and parameters for linear subspaces found in [23] translate to the smooth manifold setting.

We combine our rate results for generalized alternating projections on smooth manifolds with

a finite identification property. This gives convergence rate results for the algorithm when ap-

plied to convex sets for which the algorithm enjoys this identification property.We provide some

classes of convex sets for which this property holds, implying that the convergence rate result

for manifolds and subspaces is valid also for these sets. We also provide one counter-example

where we illustrate that even in the setting of polyhedral sets and the presence of regularity, the

finite identification property does not hold. As a consequence, the problem can in that case not

be locally reduced to that of affine sets, as is the case for alternating projections.

Fält, Giselsson GAP on Manifolds and Convex Sets
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2 notation

We letℕ denote the set of non-negative integers,ℝ be the real line,ℝ= be the set of=-dimensional

real vectors, and ℝ
=×< be the set of = ×< real matrices. We denote the identity operator by �

and the operator norm by ‖ · ‖. For a matrix� ∈ ℝ
=×= we let Λ(�) be the set of eigenvalues and

d (�) ≔ max_∈Λ(�) |_ | the spectral radius. If the limit lim:→∞�: exists, we denote it by �∞ and

define f (�) ≔ ‖� −�∞‖. For a vector E ∈ ℝ
= we also denote the vector norm by ‖E ‖ ≔

√
〈E, E〉.

The Jacobian of a function � : ℝ< → ℝ
= at a point G ∈ ℝ

= is denoted by J� (G). We denote the

closed ball around a point G ∈ ℝ
= and with radius X > 0, i.e., {H ∈ ℝ

= | ‖G − H ‖ ≤ X}, by BX (G)
and the open ball {H ∈ ℝ | ‖G − H ‖ < X} by B>

X
(G).

3 preliminaries

Definition 3.1 (projection). The projection of an element G ∈ ℝ
= onto a closed, non-empty subset

� ⊂ ℝ
= is defined by

Π� (G) ≔ aA6<8=
H∈�

‖G − H ‖

when the argmin is unique.

Definition 3.2 (relaxed projection). The relaxed projection of an element G ∈ ℝ
= onto a closed,

non-empty subset � ⊂ ℝ
= with relaxation parameter U ≠ 0 is defined as

Π
U
� (G) ≔ (1 − U)G + UΠC (G)

when the argmin is unique.

3.1 subspaces

In this section, we introduce some basic properties of subspaces that will be useful in the study

of the local properties of manifolds.

Definition 3.3. The principal angles \: ∈ [0, c/2], : = 1, . . . , ? between two subspaces U,V ⊂
ℝ

=, where ? = min(dimU, dimV), are recursively defined by

cos\: ≔ max
D: ∈U, E: ∈V

〈D: , E:〉

s.t. ‖D: ‖ = ‖E: ‖ = 1,

〈D: , E8〉 = 〈D8 , E:〉 = 0,∀ 8 = 1, . . . , : − 1.

Fact 3.1. [7, Def. 3.1, Prop. 3.3] The principal angles are unique and satisfy 0 ≤ \1 ≤ \2 ≤ . . . \? ≤
c/2. The angle \� ≔ \B+1 , where B = dim(U ∩ V), is the Friedrichs angle and it is the smallest

non-zero principal angle.

The cosine of the Friedrichs angle occurs naturally in many convergence rate results and is

denoted as in the following definition.

Definition 3.4. The cosine of the Friedrichs angle \� between two subspaces U,V ⊂ ℝ
= is

denoted as

2 (U,V) := cos(\� ).

We see that \8 = 0 if and only if 8 ≤ B, where B = dim(U ∩V), so \� is well defined whenever

min(dimU, dimV) = ? > B = dim(U ∩V), i.e., when no subspace is contained in the other.

Fält, Giselsson GAP on Manifolds and Convex Sets
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Definition 3.5. � ∈ ℝ
=×= is linearly convergent to �∞ ∈ ℝ

=×= with linear convergence rate ` ∈
[0, 1) if there exist", # > 0 such that


�: −�∞




 ≤ "`: ∀: > #, : ∈ ℕ.

Definition 3.6. [7, Fact 2.3] For � ∈ ℝ
=×= we say that _ ∈ Λ(�) is semisimple if ker(� − _� ) =

ker(� − _� )2.
Fact 3.2. [7, Fact 2.4] For � ∈ ℝ

=×= , the limit �∞
≔ lim:→∞�: exists if and only if

• d (�) < 1 or

• d (�) = 1 and _ = 1 is semisimple and the only eigenvalue on the unit circle.

Definition 3.7. [7, Def. 2.10] Let � ∈ ℝ
=×= be a matrix with d (�) ≤ 1 and define

W (�) ≔ max {|_ | | _ ∈ {0} ∪ Λ(�) \ {1}} .

Then _ ∈ Λ(�) is a subdominant eigenvalue if |_ | = W (�).
Fact 3.3. [7, Thm. 2.12] If � ∈ ℝ

=×= is convergent to �∞ ∈ ℝ
=×= then

• � is linearly convergent with any rate ` ∈ (W (�), 1)

• If � is linearly convergent with rate ` ∈ [0, 1), then ` ∈ [W (�), 1).

3.2 manifolds

The following definitions and results follow those in [32].

Definition 3.8 (smooth manifold). A setM ⊂ ℝ
= is a C: -manifold around a point G ∈ M if there

is an open set* ⊂ ℝ
= containing G such that

M ∩* = {G : � (G) = 0}

where � : * → ℝ
3 is a C: function with surjective derivative throughout * .

Definition 3.9 (tangent space and tangent plane). The tangent space to a manifoldM at G ∈ ℝ
=

is given by

TM (G) = ker J� (G).

and is independent of the choice of � that defines the manifold. The tangent plane is TM (G) + {G}.
Definition 3.10 (normal vector). E ∈ ℝ

= is a normal vector to themanifoldM atG ∈ ℝ
= if 〈E, C〉 = 0

for all C ∈ TM (G).
Definition 3.11 (smooth boundary). We say that a closed set � ⊂ ℝ

= has a C: smooth boundary

around Ḡ ∈ ℝ
= if bd (�) is a C: smooth manifold around Ḡ .

Remark 3.1. We note that if a set � ∈ ℝ
= is solid, i.e., int(�) ≠ ∅, with a C: smooth boundary

around some point Ḡ , then the boundary is defined in some neighborhood * of Ḡ by some 5 :

ℝ
= → ℝ as bd (�) ∩ * = {G : 5 (G) = 0}. The tangent space given by ker J5 (G) is therefore an

ℝ
=−1 dimensional plane, with normal vector ∇5 (G). Since 5 is a C: smooth function, the normal

vector is a C:−1 smooth function of G .

We now define the regularity condition that will be sufficient to show linear convergence of

the GAP method.

Fält, Giselsson GAP on Manifolds and Convex Sets
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Assumption 3.1 (regularity). TwomanifoldsM andN satisfy the regularity assumption at a point

G ∈ ℝ
= if they are C: -smooth (: ≥ 2) around G ∈ M ∩N and

A1. M ∩N is a C: smooth manifold around G

A2. TM∩N (G) = TM (G) ∩ TN (G).

We note that for closed convex sets, the assumption A2 is the conical hull intersection property

[15, 3]. We also note that our regularity condition is equivalent to the one used in [2] for prov-

ing a linear convergence rate for alternating projections. Besides A1, they use the assumption

that the manifolds are non-tangential, as defined in [2, Def. 3.4], in place of A2. These two latter

properties are equivalent except when one manifold locally is a subset of the other, which is an

uninteresting trivial case for these methods, see [2, Prop. 3.2 and Prop. 3.5]. Another common

regularity property that has been used, e.g., in [32] is transversality.

Definition 3.12 (transversality). Two C: -smooth manifolds M and N are transversal at Ḡ ∈ ℝ
=

if TM (Ḡ) +)N (Ḡ) = ℝ
= .

We note that both A1 and A2 in Assumption 3.1 are implied by the transversality assumption

[29]. However, transversality is not a consequence of Assumption 3.1 as we see in the following

example.

Example 3.1. LetM = {(G, 0, G2) | G ∈ ℝ} and N = {(0, H, 0) | H ∈ ℝ} whereM ∩N = {0}. We

have TM (0) = {(G, 0, 0) | G ∈ ℝ} and TN (0) = N . So the manifolds clearly satisfy Assumption

3.1 at 0, but not the transversality condition TM (0) + TN (0) = {(G, H, 0) | G, H ∈ ℝ} ≠ ℝ
3.

With some abuse of notation, we define the angle between two manifolds at a point in their

intersection using their tangent spaces.

Definition 3.13. For G ∈ M ∩N let

2 (M,N , G) ≔ 2 (TM (G),TN (G)).

The regularity condition implies that both the manifolds and their intersection locally behave

similarly to their tangent planes. In particular, the angle between two lines that belong to different

tangent planes is zero if and only if the lines are parallel to the intersection of the manifolds, as

seen by A2. This is crucial to show linear convergence. We also note that, under the regularity

assumptions, the Friedrichs angle \� is positive unless one manifold is locally a subset of the

other. To see this, we know that \� is well defined and positive unless one tangent space is a

subset of the other, for example TM (G) ⊂ TN (G). But since dim(TM (G)) = dim(M) around G ,
A2 implies that also dim(M) = dim(M∩N) around G , i.e., thatM locally is a subset ofN . Under

the regularity assumption, we therefore either have a positive Friedrichs angle or a locally trivial

problem.

Next, we show that relaxed projections are locally well defined on smooth manifolds, and that

their Jacobian is given by relaxed projections onto their tangent spaces. By well defined we mean

that the relaxed projection point exists and is unique.

The following Lemma is from [32, Lem 4].

Lemma 3.1 (projection onto manifold). If M is a C: manifold (with : ≥ 2) around Ḡ ∈ M, then

ΠM is well defined and C:−1 around Ḡ . Moreover JΠM (Ḡ) = ΠTM (Ḡ ) .

Lemma 3.2 (relaxed projection onto manifold). IfM is a C: manifold (with : ≥ 2) around Ḡ ∈ M,

then JΠU
M
(Ḡ) = Π

U
TM (Ḡ ) , and Π

U
M are well defined and C:−1 around Ḡ .

Proof. JΠU
M
(Ḡ) = J(1−U)�+UΠM (Ḡ) = (1 − U)� + UΠTM (Ḡ ) = Π

U
TM (Ḡ ) . The result now follows from

Lemma 3.1. �
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4 generalized alternating projections

In this section, we define the generalized alternating projections (GAP) operator, and state some

known results. We denote the feasibility problem of finding G ∈ U ∩ V by (U,V) to signify

that the algorithm depends on the ordering of the two sets.

Definition 4.1 (generalized alternating projections). The generalized alternating projections algo-

rithm (GAP) [22] for the feasibility problem (U,V), whereU,V ⊆ ℝ
= andU∩V ≠ ∅, is defined

by the iteration

(4.1) G:+1 ≔ (G: ,

where

(4.2) ( = (1 − U)� + UΠU2

UΠ
U1

V =: (1 − U)� + U)

and U, U1, U2 ∈ ℝ are scalar parameters of the algorithm.

For closed convex sets, the operator ( is averaged and the iterates converge to a point in the

fixed-point set fix( under Assumption 4.1, see, e.g., [22] where these results are collected.

Assumption 4.1. Assume that U ∈ (0, 1], U1, U2 ∈ (0, 2] and that one of the following holds

B1. U1, U2 ∈ (0, 2)

B2. U ∈ (0, 1) with either U1 ≠ 2 or U2 ≠ 2

B3. U ∈ (0, 1) and U1 = U2 = 2

The following result is shown in [22].

Lemma 4.1. LetU,V ⊂ ℝ
= be two non-empty linear subspaces and consider the feasibility prob-

lem (U,V). The fixed point set fix( ≔ {G ∈ ℝ
= | (G = G} of the GAP operator ( in (4.1) is:

U ∩V under Assumption 4.1 case B1 and B2, and U ∩V + (U⊥ ∩V⊥) under Assumption 4.1

case B3.

Throughout this section, we assume that the subspaces U,V ⊂ ℝ
= are non-empty, which

implies that the problem (U,V) is consistent and satisfies 0 ∈ U ∩V.

The following proposition and remark are found in [7, Prop. 3.4] and [23] respectively.

Proposition 4.1. Let U and V be subspaces in ℝ
= and let ? ≔ dim(U) and @ ≔ dim(V) satisfy

? ≤ @, ? + @ < = and ?, @ ≥ 1. Then the projection matrices ΠU ∈ ℝ
=×= and ΠV ∈ ℝ

=×= become

ΠU = �

©­­­«

�? 0 0 0

0 0? 0 0

0 0 0@−? 0

0 0 0 0=−?−@

ª®®®¬
�∗,(4.3)

ΠV = �

©­­­«

C
2

CS 0 0

CS S
2 0 0

0 0 �@−? 0

0 0 0 0=−?−@

ª®®®¬
�∗(4.4)

and

(4.5) ΠUΠV = �

©­­­«

C
2

CS 0 0

0 0? 0 0

0 0 0@−? 0

0 0 0 0=−?−@

ª®®®¬
�∗,
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where C and S are diagonal matrices containing the cosine and sine of the principal angles \8 ,

i.e.,

S =


sin(\1)

. . .

sin(\?)


, C =


cos(\1)

. . .

cos(\?)


,

and � ∈ ℝ
=×= is an orthogonal matrix.

Under the assumptions in Proposition 4.1, the linear operator) that is implicitly defined in (4.2)

becomes

) = Π
U2

UΠ
U1

V = ((1 − U2)� + U2ΠU) ((1 − U1)� + U1ΠV)
= (1 − U2) (1 − U1)� + U2 (1 − U1)ΠU + U1 (1 − U2)ΠV + U1U2ΠUΠV

= �


)1 0 0

0 )2 0

0 0 )3


�∗

where

)1 =

(
�? − U1S

2 U1CS

U1 (1 − U2)CS (1 − U2) (�? − U1C
2)

)
,(4.6)

)2 = (1 − U2)�@−? , )3 = (1 − U2) (1 − U1)�=−?−@ .

The rows and columns of )1 can be reordered so that it is a block-diagonal matrix with blocks

(4.7) )18 =

(
1 − U1B

2
8 U128B8

U1 (1 − U2)28B8 (1 − U2) (1 − U12
2
8 )

)
, 8 ∈ 1, . . . , ?

where B8 ≔ sin(\8), 28 ≔ cos(\8 ). The eigenvalues of ) are therefore _3 ≔ (1 − U2), _4 ≔
(1 − U2) (1 − U1), and for every )18

_1,28 =
1

2

(
2 − U1 − U2 + U1U22

2
8

)
±

√
1

4

(
2 − U1 − U2 + U1U22

2
8

)2 − (1 − U1) (1 − U2).(4.8)

Remark 4.1. The property ? ≤ @ was used to arrive at these results. If instead ? > @, we reverse

the definitions of ΠU and ΠV in Proposition 4.1. Noting that Λ() ) = Λ()⊤), we get a new block-

diagonal matrix )̄ with blocks )̄1 = )⊤
1 , )̄3 = )⊤

3 and )̄2 = (1 − U1)�?−@ . Therefore, the matrix can

have eigenvalues 1 − U1 or 1 − U2 depending on the dimensions of U and V.

If either ? = 0 or @ = 0, then the problem is trivial. We note that if ? + @ ≥ =, we can simply

embed the sets in a bigger space. SinceU andV are contained in the original space, the iterates

will also stay in this subspace if the initial point is. The algorithm therefore behaves identically

and the extra dimensions can be ignored. Although we do not have an explicit expression for the

operator) in this case, we can calculate the eigenvalues, as stated in the following theorem.

Theorem 4.1. Let U and V be subspaces in ℝ
= and let ? ≔ dim(U), @ ≔ dim(V), and B ≔

dim(U ∩V). The eigenvalues of ) = Π
U2

UΠ
U1

V are

{1}B , {(1 − U1) (1 − U2)}B+=−?−@ ,
{1 − U2}max (0,@−?) , {1 − U1}max(0,?−@) ,

{_1,28 } for every 8 ∈ {B + 1, . . . ,min(?, @)}

where _1,28 is defined by (4.8) and {_}8 denotes (possibly zero) multiplicity 8 of eigenvalue _.

Fält, Giselsson GAP on Manifolds and Convex Sets
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Proof. When either ? = 0 or @ = 0, we get B = 0 and the result is trivial from the definition of the

projections and ) . The case when ? ≤ @ and ? + @ < = follows directly from Proposition 4.1 by

observing that B of the eigenvalues in 1 and (1 − U1) (1 − U2) arise from _1,28 for 8 ∈ {1, . . . , B}, i.e.,
when \8 = 0.

For the case when @ < ? and ? + @ < = it follows from Remark 4.1 that the eigenvalues will be

1 − U1 instead of 1 − U2, and that the rest of the eigenvalues are the same.

For the case when ? +@ ≥ = we provide a proof similar to that in [6, p. 54]. We can extend the

space ℝ= to ℝ
=+:
≔ ℝ

= × ℝ
: so that ? + @ < = + : ≕ =̄, where we define the scalar product in

this new space as 〈(D1, D2), (E1, E2)〉 ≔ 〈D1, E1〉 + 〈D2, E2〉 for D1, E1 ∈ ℝ
=, D2, E2 ∈ ℝ

: .

Let Ū ≔ U × {0: }, V̄ ≔ V × {0: } so that

ΠŪ =

(
ΠU 0

0 0:

)
, ΠV̄ =

(
ΠV 0

0 0:

)
.

It follows that

)̄ ≔ Π
U2

ŪΠ
U1

V̄ =

(
) 0

0 (1 − U1) (1 − U2)�:

)
,(4.9)

where) = Π
U2

UΠ
U1

V . )̄ has the same eigenvalues as) , as well as: new eigenvalues in (1−U1) (1−U2).
As seen in the definition of Ū, V̄ and )̄ , these artificial eigenvalues correspond to directions that

are orthogonal to the original spaceℝ=. If we now apply the result for ? +@ < =̄ to )̄ , and observe

that the principal angles are the same for Ū, V̄ as for U,V, we see that the eigenvalues are as

those stated in the theorem, but with B + =̄ −? −@ eigenvalues in (1−U1) (1−U2). Subtracting the
: artificial eigenvalues, we conclude that the operator) must have B + = − ? − @ eigenvalues in

(1 − U1) (1 − U2). �

Proposition 4.2. Let U and V be subspaces in ℝ
= and let ? = dim(U), @ = dim(V), and B =

dim(U ∩V). Then the GAP operator ( satisfies

f (() = ‖( − (∞‖
≤ max(‖(1 − (∞1 ‖, |1 − U2 (1 − U) |, |U + (1 − U) (1 − U1) (1 − U2) |, |1 − U |),

where (1 = (1 − U)� + U)1 with )1 defined in (4.6).

Proof. If either ? = 0 or @ = 0 we trivially have ( = (1 − U)� so ‖( − (∞‖ = |1 − U | and the

result holds. If ? < @ and ? + @ < =, ?, @ ≥ 1 then it follows directly from Proposition 4.1 with

(8 = (1 − U)� + U)8 that

‖( − (∞‖ = ‖� ((1 − U)� + U) ) �∗ − (� ((1 − U)� + U) )�∗)∞ ‖
= ‖((1 − U)� + U) ) − ((1 − U)� + U) )∞)‖

=









(1 − (∞1 0 0

0 (2 − (∞2 0

0 0 (3 − (∞3










≤ max(‖(1 − (∞1 ‖, |1 − U2 (1 − U) |, |U + (1 − U) (1 − U1) (1 − U2) |)

and the result holds. If ? < @ and ? + @ ≥ = we extend the space as in the proof of Theorem

4.1. Since )̄ in (4.9) is a block diagonal matrix containing ) we get with (̄ = (1 − U)� + U)̄ that

‖( − (∞‖ ≤ ‖(̄ − (̄∞‖ and the result follows by applying the case ? + @ < = to the operator

(̄ . For the remaining cases where ? < @, we note as in Remark 4.1 that we can study (⊤ =

(1− U)� + UΠU1

VΠ
U2

U where the relative dimensions of the subspaces now satisfy the assumptions.

Applying the previous results to this case yields ‖(⊤ − (⊤∞‖ = ‖(( − (∞)⊤‖ = ‖( − (∞‖ and the
proof is complete. �
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It was shown in [23] that the parameters

U = 1, U1 = U2 = U∗
≔

2

1 + sin\�
,(4.10)

result in that the subdominant eigenvalues of ( have magnitude W (() = W∗, where

W∗ ≔ U∗ − 1 =
1 − sin(\� )
1 + sin(\� )

.(4.11)

When the Friedrichs angle does not exist, i.e., when one subspace is contained in the other, we

define U∗
= 1 and W∗ = 0. The next two theorems show that this rate is optimal under mild

assumptions. The theorems were published without proofs by the authors in [23]. We restate

them with minor modifications and prove them here.

Theorem 4.2. [23, Thm. 1] The GAP operator ( in (4.2) for the feasibility problem (U,V) with
linear subspacesU,V ⊆ ℝ

= and with U, U1, U2 as defined in (4.10) satisfies W (() = W∗, where W (()
and W∗ are defined in Definition 3.7 and (4.11) respectively. Moreover, ( is linearly convergent

with any rate ` ∈ (W∗, 1).
Proof. See Appendix a.1. �

Remark 4.2. Although the rate in Theorem 4.2 is dependent on knowing the true Friedrichs angle

\� , it is sufficient to have some conservative estimate \̂� < \� . As seen in the proof of Theorem 4.2,

choosing the parameters as U1 = U2 = 2/(1+sin \̂� ), results in the rateW = (1−sin \̂� )/(1+sin \̂� ).
Under the assumption that the relative dimensions of the subspaces are unknown, it was stated

that the rate W∗ is optimal. We restate it with slight modifications for clarity, and prove it here.

Theorem 4.3. [23, Thm. 2] Let (U1,V1) and (U2,V2) be two feasibility problems, where the sets

are linear subspaces in ℝ
= . Assume that dim(U1) < dim(V1), dim(U2) > dim(V2) and that

2 (U1,V1) = 2 (U2,V2) = cos(\� ), \� < c/2. Let (1, (2 be the corresponding GAP operators as

defined in (4.2), both defined with the same parameters U1, U2, U > 0. Then, both (1 and (2 are

linearly convergent with all rates ` ∈ (W∗, 1) if and only if

U = 1, U1 = U2 = U∗
≔

2

1 + sin\�
.

Proof. See Appendix a.3. �

This theorem shows that there is no choice of parameters that can perform better than that in

(4.10) independently of the dimensions of the subspaces. Any choice of parameters that performs

better than those in (4.10) for a specific problem, where the dimensions of the subspaces are

not the same, will necessarily perform worse on all problems where the relative dimensions are

reversed, if the Friedrichs angle is kept constant.

Remark 4.3. The are a few cases that are excluded in the theorem that should be explained. When

\� = c/2, we haveW∗ = 0, which is obviously optimal, however, there are choices ofU, U1, U2 other

than (4.10) that achieve this rate. The same is true if the Friedrichs angle is not well defined, i.e.,

when one set is contained in the other. In that case, by defining \� = c/2, we get W (() = 0 with

the parameters in (4.10), but the solution is not unique.

As noted in [23], there are specific choices of (U,V) where it is possible to get W (() < W∗.
However, if one of the principal angles is large enough, for example \8 = c/2, then it is not

possible to get a rate better than W∗. In the cases where W (() < W∗, the difference in rate is

negligible if \� is small, as long as the parameters are chosen so that the algorithm is convergent
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for every (U,V). For example, if dimU ≤ dimV and all principal angles \8 are small enough,

then the parameter choice GAP2U in [23]

U = 1, U1 = 2, U2 =
2

1 + sin(2\� )
achieves a rate of

cos(\� ) − sin(\� )
cos(\� ) + sin(\� )

= 1 − 2\� + 2\2� − 8\ 3� /3 +$ (\4� ) (as \� → 0)

compared to

W∗ =
1 − sin(\� )
1 + sin(\� )

= 1 − 2\� + 2\2� − 5\ 3� /3 +$ (\4) (as \� → 0).

This should be contrasted to the rates of alternating projections and Douglas–Rachford, which

are 1 − \2� + $ (\4� ) and 1 − \2� /2 + $ (\4� ) as \� → 0 respectively. So for small angles \� , the

improvement over AP and DR is significant ($ (\� )), and the difference to GAP2U is very small

($ (\ 3
�
)). Asmentioned above, the rate forGAP2U is only valid under an assumption on the relative

dimensions of the manifolds, and that all principal angles are small enough.

5 manifolds

In this section,we study the local properties of the GAP operator applied to twomanifoldsM and

N instead of linear subspaces. These results generalize the results in Section 4 of [32], from alter-

nating projections to the GAP algorithm, with similar proofs but under the relaxed Assumption

3.1 instead of transversality.

We begin by showing that the GAP operator is locally well defined and well behaved around

all points that satisfy the regularity assumptions.

Lemma 5.1. LetM andN bemanifolds that satisfyAssumption 3.1 at Ḡ ∈ M∩N , letU1, U2 ∈ [0, 2],
and let U ∈ ℝ. Then ΠM∩N , Π

U2

MΠ
U1

N , and ( = (1 − U)� + UΠ
U2

MΠ
U1

#
are well defined and of class

C:−1 around Ḡ .

Proof. From Assumption 3.1 A1 it follows that M ∩ N is a C: manifold (with : ≥ 2) so from

Lemma 3.2 we know that there exists X > 0 so that ΠM , ΠN , and ΠM∩N are well defined and of

class C:−1 on BX (Ḡ). Let G ∈ BX/3 (Ḡ). Then

Ḡ − Π
U1

N (G)


 ≤ ‖Ḡ − G ‖ +



G − Π
U1

N (G)


 = ‖Ḡ − G ‖ + U1 ‖G − ΠN (G)‖

≤ ‖Ḡ − G ‖ + U1 ‖G − Ḡ ‖ ≤ 3 ‖G − Ḡ ‖ ≤ X

so Π
U1

N (G) ∈ BX (Ḡ) and therefore ΠU2

MΠ
U1

#
and ( are well defined and C:−1 on BX/3 (Ḡ). �

To simplify notation, we denote the GAP operator applied to the tangent spaces TM (Ḡ) and
)N (Ḡ) by

(T(Ḡ ) ≔ (1 − U)� + UΠU2

TM (Ḡ )Π
U1

TN (Ḡ ) .(5.1)

We next show that the local behavior of ( around a point Ḡ ∈ M ∩N can be described by (T(Ḡ ) .

Lemma 5.2. Let M and N be manifolds that satisfy Assumption 3.1 at Ḡ ∈ M ∩ N . Then the

Jacobian at Ḡ ∈ ℝ
= of the GAP operator ( in (4.2) is given by

J( (Ḡ) = (T(Ḡ ) ,

with (T(Ḡ ) defined in (5.1).
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\�

M
Ḡ

N

TN (Ḡ) + {Ḡ }

TM (Ḡ) + {Ḡ}

Figure 1: Illustration of manifoldsM andN in ℝ
2 and the approximation by tangent planes at a

point Ḡ ∈ M ∩N .

Proof. Using the chain rule, Ḡ ∈ M ∩N , and Lemma 3.2 we conclude

J
Π
U2
M Π

U1
N
(Ḡ) = J

Π
U2
M
(ΠU1

N (Ḡ))J
Π
U1
N
(Ḡ) = J

Π
U2
M
(Ḡ)J

Π
U1
N
(Ḡ) = Π

U2

TM (Ḡ )Π
U1

TN (Ḡ ) .

Moreover

J( (Ḡ) = J(1−U)� (Ḡ) + UJ
Π
U2
M Π

U1
N
(Ḡ) = (1 − U)� + UΠU2

TM (Ḡ )Π
U1

TN (Ḡ ) = (T(Ḡ )

by definition of (T(Ḡ ) in (5.1). �

Proposition 5.1. LetM andN be manifolds that satisfy Assumption 3.1 at Ḡ ∈ M∩N and let the

parameters of the GAP operator ( in (4.2) satisfy Assumption 4.1 case B1 or B2. Then

TM(Ḡ )∩N(Ḡ ) = TM(Ḡ ) ∩)N(Ḡ ) = fix(T(Ḡ )(5.2)

and

Πfix(T(Ḡ ) = (∞T(Ḡ ) .(5.3)

Proof. The first equality follows from Assumption 3.1. From Lemma 4.1, under Assumption 4.1

cases B1 and B2, we know that fix(T(Ḡ ) = TM(Ḡ ) ∩)N(Ḡ ) and (5.2) is proven. From Theorem 4.2,

we know that (T(Ḡ ) is convergent (to (
∞
T(Ḡ ) ) and non-expansiveness of (T(Ḡ ) and [7, Corollary 2.7]

imply that ΠFix(T (Ḡ ) = (∞
T(Ḡ ) and (5.3) is proven. �

We next show that the convergence rate of (: (G) to the intersection tends to the rate W ((T(Ḡ ))
as the initial point gets closer to the intersection and the number of iterations : increases.

Theorem 5.1. Let M and N be manifolds that satisfy Assumption 3.1 at Ḡ ∈ M ∩ N and let the

parameters of the GAP operator ( in (4.2) satisfy Assumption 4.1 case B1 or B2. Then

1. for all 2 >



(T(Ḡ ) − ΠTM (Ḡ )∩)N (Ḡ )


 with (T(Ḡ ) is defined in (5.1), there exists some [ > 0 so

that for all G ∈ B[ (Ḡ)

(5.4) ‖( (G) − ΠM∩N (G)‖ ≤ 2 ‖G − ΠM∩N (G)‖ .

2. for all `Ḡ ∈ (W ((T(Ḡ) ), 1) there exists # ∈ ℕ, such that for any : ≥ #

(5.5) lim sup
G→Ḡ,G∉M∩N



(: (G) − ΠM∩N (G)




‖G − ΠM∩N (G)‖ ≤ `:Ḡ .
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Proof. Let GA ∉ M∩N and denote ḠA = ΠM∩N (GA ). Since ḠA ∈ M∩N we trivially have (ḠA = ḠA .

Let GA be in the region around Ḡ for which ( and ΠM∩N are well-defined and C1 according to

Lemma 5.1. By [14, Eq (3.8.1), Thm 3.8.1], a C1 function 5 : ℝ= → ℝ
= at a point 0 ∈ ℝ

= can be

approximated as

5 (G) − 5 (H) = J5 (0) (G − H) + ‖G − H ‖k (G, H), where lim
G,H→0

k (G, H) = 0,

at G, H ∈ ℝ
= . Using this, with 5 (G) = ( (G) − ΠM∩N (G), at G = GA , H = ḠA , 0 = Ḡ we get

( (GA ) − ΠM∩N (GA ) = (J( (Ḡ) − JΠM∩N (Ḡ)) (GA − ḠA ) + ‖GA − ḠA ‖k (GA , ḠA ),(5.6)

where lim
GA ,ḠA→Ḡ

k (GA , ḠA ) = 0.

We can replace the Jacobians by noting that Lemma 5.2, Lemma 3.1, and Assumption 3.1 A2 at

Ḡ ∈ ℝ
= imply

J( (Ḡ) − JΠM∩N (Ḡ) = (T(Ḡ ) − ΠTM (Ḡ )∩)N (Ḡ ) .

Using this equality in (5.6), taking the norm of both sides, applying the triangle inequality and

Cauchy–Schwarz, and dividing by ‖GA − ḠA ‖ result in

(5.7)
‖( (GA ) − ḠA ‖
‖GA − ḠA ‖

≤


(T(Ḡ ) − ΠTM (Ḡ )∩)N (Ḡ )



 + ‖k (GA , ḠA )‖, if GA ≠ ḠA .

Continuity of ΠM∩N around Ḡ means that k (GA , ḠA ) = k (GA ,ΠM∩N (GA )) → 0 as GA → Ḡ , so for

any 2 >



(T(Ḡ ) − ΠTM (Ḡ )∩)N (Ḡ )


, there exists some [ > 0 so that

(5.8) ∀GA ∈ B[ (Ḡ) : ‖( (GA ) − ḠA ‖ ≤ 2 ‖GA − ḠA ‖ .

This proves part 1 of the theorem.

In the same way for (: , since ( (Ḡ) = (T(Ḡ ) (Ḡ) = Ḡ , using the chain rule, we get

J(: (Ḡ) = (J( (Ḡ)): = (:T(Ḡ ),

so in the same way we conclude

(5.9)



(: (GA ) − ḠA




‖GA − ḠA ‖
≤




(:T(Ḡ ) − ΠTM (Ḡ )∩)N (Ḡ )




 +k (GA , ḠA ), if GA ≠ ḠA

From Proposition 5.1 we have that ΠTM (Ḡ )∩)N (Ḡ ) = (∞
T(Ḡ ) and thus

(: (GA ) − ḠA




‖GA − ḠA ‖

≤



(:T(Ḡ ) − (∞T(Ḡ )




 +k (GA , ḠA ), if GA ≠ ḠA .

Continuity of ΠM∩N around Ḡ = ΠM∩N (Ḡ), with ḠA = ΠM∩N (GA ), implies

lim sup
GA→Ḡ,GA ∉M∩N



(: (GA ) − ḠA




‖GA − ḠA ‖
≤




(:T(Ḡ ) − (∞T(Ḡ )




 .
Using the results in [23] with Definitions 3.5, 3.6, 3.7, and Facts 3.2, 3.3 imply that for any `Ḡ with

W ((T(Ḡ )) < `Ḡ there exists # ∈ ℕ so that for all : ≥ #


(:T(Ḡ ) − (∞T(Ḡ )




 ≤ `:Ḡ .

We conclude that for any `Ḡ ∈ (W ((T(Ḡ) ), 1), there exists # such that for all : ≥ #

(5.10) lim sup
G→Ḡ,G∉M∩N



(: (G) − ΠM∩N (G)




‖G − ΠM∩N (G)‖ ≤ `:Ḡ ,

which proofs part 2 of the theorem. �
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It remains to show that the sequence of iterates actually converges. To do this, we first show

that ‖(T(Ḡ) − ΠTM (Ḡ )∩TN (Ḡ ) ‖ < 1.

Lemma 5.3. Let U, U1, U2 satisfy Assumption 4.1 case B1 or B2, and letM andN be manifolds that

satisfy Assumption 3.1 at Ḡ ∈ M ∩N . Then

(5.11) f ((T(Ḡ) ) ≔ ‖(T(Ḡ) − ΠTM (Ḡ )∩TN (Ḡ ) ‖ < 1

where (T(Ḡ ) = UΠU2

TM (Ḡ )Π
U1

TN (Ḡ ) + (1 − U)�
Proof. First note that ΠTM (Ḡ )∩TN (Ḡ ) = ΠFix(T(Ḡ ) = (∞

T(Ḡ ) by Proposition 5.1. Proposition 4.2 there-

fore gives that

‖(T(G) − (∞T(G) ‖ ≤ max(‖(1 − (∞1 ‖, |1 − U2 (1 − U) |, |U + (1 − U) (1 − U1) (1 − U2) |, |1 − U |),

where (1 is a block diagonal matrix with blocks (18 = (1 − U)� + U)18 and )18 are defined in (4.7).

Under Assumption 4.1 case B1 or B2 we have |1 − U2 (1 − U) | < 1, |U + (1 − U) (1 − U1) (1 − U2) | < 1

and |1 − U | < 1. It remains to show that ‖(1 − (∞1 ‖ = max8 ‖(18 − (∞18 ‖ < 1. We now consider each

block (18 corresponding to each of the principal angles \8 . Each block with \8 = 0 becomes

(18 = U)18 + (1 − U)� =
(
1 0

0 U (1 − U1) (1 − U2) + (1 − U)

)

(∞18 =

(
1 0

0 0

)
,

so the corresponding singular values are 0 and |U (1−U1) (1−U2)+(1−U) | < 1. The remaining cases

are \8 ∈ (0, c/2] for which ((18 )∞ = Πfix(18
= 0. To study the largest singular value ‖(18 − (∞18 ‖ =

‖(18 ‖ = ‖U)18 + (1 − U)� ‖ so ‖(18 ‖ ≤ 1, hence we only need to show that ‖(18 ‖ ≠ 1. From the

triangle inequalitywe get ‖U)18 +(1−U)� ‖ ≤ U ‖)18 ‖+(1−U) ≤ 1, with equality only if ‖)18 ‖ = 1. To

this end, we consider ‖)18 ‖2 = d ()18)⊤
18
) and study the eigenvalues of )18)

⊤
18
. Non-expansiveness

again implies that ‖)18 ‖ ≤ 1. We now aim to show that these blocks have singular values smaller

than 1 when \8 ∈ (0, c/2]. After simplification using the identity B28 + 228 = 1, we get

)18)
⊤
18

=

(
1 − 2U1B

2
8 + U2

1 B
2
8 (2 − U1)U1 (1 − U2)28B8

(2 − U1)U1 (1 − U2)28B8 (1 − U2)2(1 − 2U12
2
8 + U2

1 2
2
8 )

)
=:

(
0 1

2 3

)
.

For any of these eigenvalues to be 1, it must hold that

det

(
0 − 1 1

2 3 − 1

)
= 0,

i.e.,

0 = 1 − 0 − 3 + 03 − 12.(5.12)

Simplifying the expressions yields the following identities

1 − 0 − 3 = U1B
2
8 (2 − U1) − (1 − U2)2 (1 − 2U12

2
8 + U2

1 2
2
8 )

03 = (1 − U2)2(U2
1 2

2
8 B

2
8 (4 − 4U1 + U2

1 ) + (1 − U1)2)
12 = (1 − U2)2U2

1 2
2
8 B

2
8 (4 − 4U1 + U2

1 )
03 − 12 = (1 − U1)2 (1 − U2)2
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and thus

1 − 0 − 3 + 03 − 12 = U1B
2
8 (2 − U1) − (1 − U2)2 (1 − 2U12

2
8 + U2

1 2
2
8 )

+ (1 − U1)2(1 − U2)2

= B28 U1 (2 − U1) − (1 − U2)2 (2U1 (1 − 228 ) + U2
1 (228 − 1))

= B2U1 (2 − U1) − (1 − U2)2U1B28 (2 − U1)
= B28 U1U2 (2 − U1) (2 − U2).

From (5.12) we conclude that for the largest eigenvalue to be 1, it must hold that

0 = sin(\8 )2U1U2 (2 − U1) (2 − U2).

Within the ranges U1, U2 ∈ (0, 2) and \8 ∈ (0, c/2] we have

sin(\8)2U1U2 (2 − U1) (2 − U2) > 0,

which leads to d ()18)⊤
18
) = ‖)18 ‖2 < 1, and thus ‖(18 ‖ < 1. This completes the proof for case B1

from Assumption 4.1.

Now consider the parts of case B2 from Assumption 4.1 that are not covered by case B1, i.e.,

U ∈ (0, 1) andU1 = 2 orU2 = 2 (but not both) implying that ‖)18 ‖ = 1. Suppose that ‖(18 ‖ = 1. From

compactness of the unit sphere in ℝ
= and continuity of the norm we get from the definition of

the operator norm that there exists a ‖E ‖ = 1 such that ‖(18E ‖ = 1. But then 1 = ‖(18E ‖2 =

‖U)18E + (1 − U)E ‖2. However, on the boundaries U = 0 or U = 1 we get ‖(18E ‖ = 1. Since the

squared norm is strongly convex we have for any U ∈ (0, 1) where )18E ≠ E the contradiction

‖U)18E + (1−U)E ‖2 < 1. This leaves the case where)18E = E , which means that E is a fixed point of

) , but the only fixed point is E = 0. Thus, there is no ‖E ‖ = 1 such that ‖(18E ‖ = 1 and therefore

‖(18 ‖ < 1. This concludes the proof. �

We are now ready to show that the algorithm will locally converge to some point in the inter-

section with the contraction factor in Lemma 5.3. The proof is similar to that in [32], where the

authors show the result for the special case of alternating projections.

Theorem 5.2. Let M and N be manifolds that satisfy Assumption 3.1 at Ḡ ∈ M ∩ N , and let the

parameters of the GAP operator ( in (4.2) satisfy Assumption 4.1 case B1 or B2. If the initial point

G0 ∈ ℝ
= is close enough to Ḡ then the GAP method in Definition 4.1 is well defined. Moreover,

the sequence (G: ):∈ℕ converges to some point G∗ ∈ M ∩ N , and for every `Ḡ ∈ (f ((T(Ḡ )), 1),
there exists a V > 0 such that

(5.13) ‖G: − G∗‖ ≤ V`:Ḡ .

Proof. By Lemma 5.3 we have f ((T(Ḡ ) ) = ‖(T(Ḡ) − ΠTM (Ḡ )∩TN (Ḡ ) ‖ < 1. Let 2 ∈ (0, 1) be such that

‖(T(Ḡ ) − ΠTM (Ḡ )∩TN (Ḡ ) ‖ < 2 < 1 and choose [ such that (G and ΠM∩N (G) are well defined by

Lemma 5.1 for G ∈ �[ (Ḡ) and so that the conditions of Theorem 5.1 are satisfied. Theorem 5.1 case

1 then gives

(5.14) ∀G ∈ �[ (Ḡ), ‖(G − ΠM∩N (G)‖ ≤ 2‖G − ΠM∩N (G)‖.

Let the initial point G0 ∈ BX (Ḡ) where X ≔ [/(2∑∞
:=0 2

: ) = [ (1 − 2)/2 < [ and define

Ḡ: := ΠM∩N (G: ). By the choice of [, if G: ∈ B[ (Ḡ) then Ḡ: and G:+1 are well defined. We now
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show the following results by induction:

‖G: − Ḡ ‖ ≤ 2X

:∑
8=0

28(H0)

‖G: − Ḡ: ‖ ≤ X2:(H1)

‖Ḡ: − Ḡ:−1 ‖ ≤ 2X2:(H2)

‖Ḡ: − Ḡ ‖ ≤ 2X

:∑
8=0

28(H3)

where we note that 2X
∑:

8=0 2
8 ≤ 2X

1−2 = [.

Case : = 0: Let Ḡ−1 ≔ Ḡ0. We have trivially

‖G0 − Ḡ ‖ ≤ X ≤ 2X(H00)

‖G0 − Ḡ0‖ ≤ ‖G0 − Ḡ ‖ ≤ X(H10)

‖Ḡ0 − Ḡ−1‖ = 0 ≤ 2X(H20)

‖Ḡ0 − Ḡ ‖ ≤ 2X.(H30)

Now assume that (H0)-(H3) hold up to some : . Then by the triangle inequality, (5.14), (H1), and

(H3) we get

‖G:+1 − Ḡ ‖ ≤ ‖G:+1 − Ḡ: ‖ + ‖Ḡ: − Ḡ ‖

≤ 2‖G: − Ḡ: ‖ + ‖Ḡ: − Ḡ ‖ ≤ X2:+1 + 2X

:∑
8=0

28 ≤ 2X

:+1∑
8=0

28 .(H0+)

By the definition of the projection, (5.14), and (H1) we get

‖G:+1 − Ḡ:+1 ‖ ≤ ‖G:+1 − Ḡ: ‖ ≤ 2‖G: − Ḡ: ‖ ≤ X2:+1 .(H1+)

Again, by the triangle inequality, the definition of projection and (H1+)

‖Ḡ:+1 − Ḡ: ‖ ≤ ‖Ḡ:+1 − G:+1 ‖ + ‖G:+1 − Ḡ: ‖ ≤ 2‖G:+1 − Ḡ: ‖ ≤ 2X2:+1(H2+)

and by (H2+) and (H3):

‖Ḡ:+1 − Ḡ ‖ ≤ ‖Ḡ:+1 − Ḡ: ‖ + ‖Ḡ: − Ḡ ‖ ≤ 2X2:+1 + 2X

:∑
8=0

28 = 2X

:+1∑
8=0

28 .(H3+)

By induction we have now shown that (H0)–(H3) must hold for all : ≥ 0.

We now show that (Ḡ: ):∈ℕ is Cauchy. By the triangle inequality, (5.14), and (H1):

‖Ḡ:+1 − Ḡ: ‖ ≤ ‖Ḡ:+1 − G:+1 ‖ + ‖G:+1 − Ḡ: ‖
≤ ‖Ḡ:+1 − G:+1 ‖ + 2‖G: − Ḡ: ‖ ≤ X2:+1 + X2:+1 ≤ 2X2:+1 .

Thus for any ?, : ∈ ℕ with ? > :

‖Ḡ? − Ḡ: ‖ ≤
?−1∑
8=:

‖Ḡ8+1 − Ḡ8 ‖ ≤ 2X

?−1∑
8=:

28+1 ≤ 2X2:+1
∞∑
8=0

28 =
2X

1 − 2
2:+1,
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so the sequence is Cauchy. Therefore G∗ = lim?→∞ Ḡ? ∈ M ∩N exists and

‖G∗ − Ḡ: ‖ ≤ 2X

1 − 2
2:+1 .

Lastly, by the triangle inequality and (H1)

‖G: − G∗‖ ≤ ‖G: − Ḡ: ‖ + ‖Ḡ: − G∗‖ ≤ X2: + 2X

1 − 2
2:+1 = X

1 + 2
1 − 2

2: ,

hence (5.13) holds with V = X 1+2
1−2 and `Ḡ = 2. �

Theorem 5.2 implies that the sequence generated by the generalized alternating projection

algorithm converges to a point in the intersection when initiated close enough to a point that

satisfies Assumption 3.1. However, as is the case for the method of alternating projections, the

rate predicted by f ((T(G∗)) is very conservative. We now show that the iterates converge to the

intersection with the faster rate W ((T(G∗) ) from Definition 3.7. The theorem and proof are similar

to that in [32, Rem. 4], where the authors show it for alternating projections.

Theorem 5.3. Let M and N be manifolds that satisfy Assumption 3.1 at Ḡ ∈ M ∩ N , let the

initial point G0 ∈ ℝ
= be close enough to Ḡ , and let the parameters of the GAP operator ( in

(4.2) satisfy Assumption 4.1 case B1 or B2. Further assume that M and N satisfy Assumption

3.1 at the limit point G∗ of the sequence (G: ):∈ℕ generated by the GAP method in Definition 4.1.

Then the convergence is R-linear to M ∩ N with any rate `G∗ ∈ (W ((T(G∗) ), 1). That is, for any
`G∗ ∈ (W ((T(G∗) ), 1), there exists # ∈ ℕ such that

(5.15) 3M∩N (G: ) ≤ `:G∗, ∀: > # .

Proof. We note that Theorem 5.2 establishes the existence of a limit point G∗. Take any `G∗ ∈
(W ((T(G∗) ), 1) and let ¯̀G∗ = (`G∗ + W ((T(G∗)))/2. Theorem 5.2 implies that eventually GA ∈ �[ (G∗),
and thus by Theorem 5.1 case 2, with ¯̀G∗ ∈ (W ((T(G∗) ), 1), there exists # ∈ ℕ so that ∀C > # ,

3M∩N (GC+=) =


(CG= − ΠM∩N (G=)



 < ¯̀CG∗ ‖G= − ΠM∩N (G=)‖ = ¯̀CG∗3M∩N (G=),

as long as G= ∉ M ∩N . By induction this leads to

(5.16) 3M∩N (G:C+=) < ¯̀:CG∗3M∩N (G=), ∀: = 1, 2, 3, . . . .

Now fix C > # and assume that (5.15) does not hold, then there exists an infinite sequence A1 <

A2 < · · · , all satisfying

(5.17) 3M∩N (GA 9 ) > `
A 9
G∗ .

Wenow show that this is impossible and that the theorem thereforemust hold. By Lemma a.1 (see

Appendix a.2), we can select a sub-sequence
(
A: 9

)
9 ∈ℕ

of
(
A 9

)
9 ∈ℕ where we can write A: 9

= 0 +1 9 C
for some 0 ∈ ℕ and an increasing sequence of integers

(
1 9

)
9 ∈ℕ, i.e., we have a new sub-sub-

sequence where all iterates are a multiplicity of C iterations apart. Thus, picking any 1 so that

0 + 1C > # , we have with A: 9
= 0 + 1 9 C = 0 + 1C + (1 9 − 1)C from (5.16) that

3M∩N (GA:9 ) < ¯̀
(1 9−1)C
G∗ 3M∩N (G0+1C ).

Since ¯̀G∗ < `G∗ we can find a large enough 9 so that(
¯̀G∗

`G∗

) (1 9−1)C
≤

`0+1CG∗

3M∩N (G0+1C )
and thus

3M∩N (GA:9 ) < ¯̀
(1 9−1)C
G∗ 3M∩N (G0+1C ) ≤ `

(1 9−1)C
G∗ `0+1CG∗ = `

A:9
G∗ .

This contradicts (5.17) so the theorem must hold. �
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Remark 5.1. For the case of the method of alternating projections (U = U1 = U2 = 1), these re-

sults coincide with those of [32]. In particular, the contraction rate is then given by f ((T(Ḡ ) ) =
2 (TM(Ḡ ) ,)N(Ḡ ) ) and the limiting rate is W ((T(Ḡ ) ) = 22 (TM(Ḡ ) ,)N(Ḡ ) ). This corresponds to the

rates cos(\� ) and cos2 (\� ) where \� is the Friedrichs angle of the corresponding tangent spaces.

We now show that the faster rate in Theorem 5.3 holds not only in terms of the distance to

the intersection, but also to a point G∗ ∈ M ∩ N . A similar result can be found in [2] for the

alternating projections method.

Theorem 5.4. LetM andN be manifolds that satisfy Assumption 3.1 at Ḡ ∈ M∩N , let the initial

point G0 ∈ ℝ
= be close enough to Ḡ , and let the parameters of the GAP operator ( in (4.2) satisfy

Assumption 4.1 case B1 or B2. Further assume thatM and N satisfy Assumption 3.1 at the limit

point G∗ of the sequence (G: ):∈ℕ generated by the GAP method in Definition 4.1. Then for every

`G∗ ∈ (W ((T(G∗) ), 1), there exists # ∈ ℕ such that for all : ≥ #

‖G: − G∗‖ ≤ `:G∗ ,

or equivalently

lim sup
:→∞

‖G: − G∗‖1/: ≤ W ((T(G∗) ).

Proof. Take any `G∗ ∈ (W ((T(G∗)), 1) and let ¯̀ = (`G∗+W ((T(G∗)))/2 ≤ `G∗ . Clearly ¯̀ ∈ (W ((T(G∗)), 1),
so we know from Theorem 5.3 that there exists # such that

(5.18) 3M∩N (G: ) = ‖G: − Ḡ: ‖ ≤ ¯̀: , ∀: ≥ #,

where Ḡ: ≔ ΠM∩N (G: ). Pick 2 < 1 and [ so that Theorem 5.1 case 1 can be applied for Ḡ = G∗.
Since (G: ) → G∗ there is some" ≥ # so that G: ∈ �[ (G∗) for all : ≥ " and thus by Theorem 5.1

case 1

(5.19) ‖G:+1 − Ḡ: ‖ ≤ 2 ‖G: − Ḡ: ‖ , ∀: ≥ ".

Using (5.18), (5.19), and the triangle inequality we get for : ≥ " that

(5.20)

‖Ḡ:+1 − Ḡ: ‖ ≤ ‖Ḡ:+1 − G:+1 ‖ + ‖G:+1 − Ḡ: ‖
≤ ‖Ḡ:+1 − G:+1 ‖ + 2‖G: − Ḡ: ‖ ≤ ¯̀:+1 + 2 ¯̀:

= ¯̀:+1 (1 + 2

¯̀
).

By continuity of ΠM∩N around G∗, the point Ḡ∗ = lim:→∞ Ḡ: exists. Using the triangle inequality

and (5.20) we get for : ≥ " that

(5.21)

‖Ḡ: − Ḡ∗‖ ≤
∞∑
8=:

‖Ḡ8+1 − Ḡ8 ‖ ≤
∞∑
8=:

¯̀8+1 (1 + 2

¯̀
)

= (1 + 2

¯̀
) ¯̀:+1

∞∑
8=0

¯̀8 ≤ (1 + 2

¯̀
) 1

1 − ¯̀
¯̀:+1 =

¯̀ + 2
1 − ¯̀

¯̀: .

By continuity of ΠM∩N we also have G∗ = Ḡ∗ since G∗ ∈ M ∩ N . Again, using the triangle

inequality, (5.18), and (5.21) we get for : ≥ " that

‖G: − G∗‖ ≤ ‖G: − Ḡ: ‖ + ‖Ḡ: − G∗‖ ≤ ¯̀: + ¯̀ + 2
1 − ¯̀

¯̀: =
1 + 2
1 − ¯̀

¯̀: .

Lastly, since ¯̀ < `G∗ , there is some ! ≥ " so that for all : ≥ !

‖G: − G∗‖ ≤ 1 + 2
1 − ¯̀

¯̀: ≤ `:G∗ .

�
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We note that the local linear rate `∗G < W ((T(G∗) ) is strict, in the sense that it cannot be improved

without adding more assumptions or changing the algorithm. This follows from the fact that the

worst case rate is achieved in the setting of affine sets, which is covered by this theorem.

To optimize the bound on the convergence rate W ((T(G∗)) in Theorem 5.4 in the case where

the relative dimensions of the tangent planes are unknown, it is shown in Theorem 4.3 that the

parameters should be chosen as

U = 1, U1 = U2 = U∗
≔

2

1 + sin (\� )
,(5.22)

where \� is the Friedrichs angle between the tangent spaces TM(G∗) and )N(G∗) .

6 convex sets

In this section, we show how the convergence results for GAP on manifolds can be extended to

GAP on convex sets in some cases. The GAP method is known to converge to some point in the

intersection when the sets are closed and convex and the intersection is nonempty, see, e.g., [22].

The question that remains is the convergence rate. One way to extend the results in this paper

to convex sets is to show that the iterates will eventually behave identically as if the projections

were made onto smooth manifolds. One approach to do this is to partition a convex set into

locally smooth manifolds. This can be done for many convex sets as illustrated in Example 6.1.

Example 6.1. Consider the convex set � = {(G, H, I) | G2 + H2 ≤ I2, 0 ≤ I ≤ 1}. The set can be

partitioned into the following five locally smooth manifolds:�1 = int�,�2 = {(G, H, I) | G2 + H2
=

I2, 0 < I < 1}, �3 = {(G, H, 1) | G2 + H2
< 1}, �4 = {(G, H, 1) | G2 + H2

= 1}, �5 = {(0, 0, 0)}.
There is plenty of literature on this type of identification of surfaces. For example, in [34]

the authors study the Douglas–Rachford algorithm for partially smooth functions. However, the

assumptions do not generally apply to convex feasibility problems since all reformulations into

the framework will either be non-smooth or have vanishing gradients at the boundaries.

For the case of alternating projections on convex sets, the projections will always lie on the

boundary of the sets until the problem is solved. The local convergence rate therefore follows

trivially if the boundaries of these sets satisfy the required regularity assumptions at the intersec-

tion. However, this is not the case for GAP in general because of the (over)-relaxed projections.

Even in cases of polyhedral sets, identification of affine sets is not guaranteed as we show with

an example in Section 6.2. We therefore present our results under some smoothness assump-

tions and for a slightly restricted set of parameters. This set of parameters does include the set

of parameters that optimize the rate in Theorem 5.4.

Lemma 6.1. Let� be a closed solid convex set inℝ
= with a C2 smooth boundary around Ḡ ∈ bd�.

Then there exists a X > 0 such that for all G ∈ BX (Ḡ) \�

Π
U
�G ∈ int�, ∀U ∈ (1, 2].

Proof. As noted in Remark 3.1, smoothness of bd� at Ḡ ∈ bd� implies that there exists a neigh-

borhood* of Ḡ for which the outwards facing normal vector =(G) with ‖=(G)‖ = 1 is unique for

all G ∈ bd� ∩ * and that the normal =(G) is continuous around Ḡ . Since � is solid and bd� is

smooth at Ḡ , there is some Z > 0 so that Ḡ − V=(Ḡ) ∈ int� for all V ∈ (0, Z ]. We assume without

loss of generality that Z < 1. We can now create an open ball with radius X such that

(6.1) B>
X (Ḡ − V=(Ḡ)) ⊂ int�.

From continuity of =(G) we have that there exists n ′ > 0 such that for all G ∈ bd�

(6.2) ‖G − Ḡ ‖ ≤ n ′ ⇒ ‖=(G) − =(Ḡ)‖ ≤ X.
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Now pick 0 < n < min(X (1 − V), V, n ′). By the triangle inequality, for all G ∈ Bn (Ḡ) ∩ bd�,

‖(G − V=(G)) − (Ḡ − V=(Ḡ ))‖ ≤ ‖G − Ḡ ‖ + V ‖=(G) − =(Ḡ))‖ ≤ n + VX < X (1 − V) + VX = X.

Using this and (6.1),

(6.3) G − V=(G) ∈ int� ,∀G ∈ Bn (Ḡ) ∩ bd�.

Moreover, by convexity of � and non-expansiveness [5, Prop. 4.16] of the projection

(6.4) Π� (G) ∈ Bn (Ḡ),∀G ∈ Bn (Ḡ).

Hence, by (6.3), (6.4), and since Π� (G) ∈ bd (�) for G ∉ � we have

(6.5) Π� (G) − V=(Π� (G)) ∈ int�, ∀G ∈ Bn (Ḡ) \�.

Moreover, the projection operator satisfies

=(Π� (G)) =
G − Π� (G)
‖G − Π� (G)‖

,

for G ∉ � [5, Prop. 6.47]. By the definition of the relaxed projection we therefore have for G ∈
Bn (Ḡ) \� that ΠU

�
(G) = Π� (G) − (U − 1)‖Π�(G) − G ‖=(Π� (G)). Noting that since U ∈ (1, 2] we

have

0 < (U − 1)‖Π�(G) − G ‖ ≤ n < V < 1,

which implies that ΠU
�
(G) is a strict convex combination between Π� (G) ∈ � and Π� (G) −

V=(Π� (G)) ∈ int�, i.e.,

Π
U
� (G) = WΠ� (G) + (1 − W) (Π� (G) − V=(Π� (G))),

where W ≔ 1 − (U − 1)‖Π� (G) − G ‖/V ∈ (0, 1) and therefore ΠU
�
(G) ∈ int�. �

6.1 examples

In this section, we present some results on when the rate in Theorem 5.4 can be applied to convex

sets. We say for a convex set� ∈ ℝ
= that the algorithm has identified a manifoldM ⊂ � at some

iteration : if subsequent iterations would be identical when the set � is replaced with M. We

partition a smooth convex set � into two parts bd� and int�, and show that either bd� or int�

is identified.

Assumption 6.1 (regularity of convex sets at solution). Let �, � ⊆ ℝ
= be two closed convex sets

with G∗ ∈ � ∩ �. Assume that at least one of the following holds

C1. G∗ ∈ bd� ∩ bd� and (bd�, bd�) satisfies Assumption 3.1 at the point G∗,

C2. G∗ ∈ int� ∩ bd� where bd� is C2-smooth around G∗,

C3. G∗ ∈ bd� ∩ int� where bd� is C2-smooth around G∗,

C4. G∗ ∈ int� ∩ int�.

We now introduce a definition of (T(G∗) in the setting of convex sets to simplify the following

statements on convergence rates.
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Definition 6.1. For the feasibility problem (�, �) involving two closed convex sets�, � ⊆ ℝ
= that

satisfy Assumption 6.1 at a point G∗ ∈ � ∩ �, we define

(T(G∗) ≔ (1 − U)� + UΠ
U2

TM (G∗)Π
U1

TN (G∗)

where we let

M ≔

{
bd� if G∗ ∈ bd�

int� if G∗ ∈ int�
, N ≔

{
bd� if G∗ ∈ bd�

int� if G∗ ∈ int�.

If G∗ ∈ int� in this definition, we get tangent space TM (G∗) = ℝ
= and projection operator

Π
U2

TM (Ḡ ) = � . The same holds for G∗ ∈ int�. The corresponding rate W ((T(G∗) ) then reduces to one

of (1 − U2), (1 − U1) or (1 − U1) (1 − U2) according to Theorem 4.1.

Theorem 6.1. Consider (�, �), let �, � ⊆ ℝ
= be solid closed convex sets with � ∩ � ≠ ∅, and let

U = 1, 1 < U1, U2 < 2 in the GAP algorithm in Definition 4.1. Then the iterations converge to

some point G∗ ∈ � ∩ �. If the sets � and � satisfy Assumption 6.1 at the point G∗, then either the

problem is solved in finite time, or eventually the algorithm will identify the sets bd� and bd�

and converge R-linearly with any rate ` ∈ (W ((T(G∗) ), 1) to G∗ ∈ bd� ∩ bd�.

Proof. We know that G: → G∗ for some point G∗ due to closed convexity of� and � [22, Prop. 3].

We first show that the problem is solved in a finite number of iterations unless G∗ ∈ bd� ∩ bd�.

Assume G∗ ∈ int� ∩ int�. Then there is some open ball around G∗ that is contained in � ∩ �.

By convergence of (G: ):∈ℕ, there is some : such that G: is in this ball, and we have convergence

in finite time.

Assume G∗ ∈ bd� ∩ int�. Let X be such that Lemma 6.1 is satisfied for (�, G∗) and so that

BX (G∗) ⊂ �. Then there is a : ∈ ℕ such that G: ∈ BX (G∗). If G: ∈ � ∩ � the problem is

solved in finite time. If not, then G: ∈ � \ �, so trivially Π
U1

�
G: = G: , and by Lemma 6.1 we

get GG+1 = Π
U2

�
G: ∈ int�. By non-expansiveness of ΠU2

�
Π
U1

�
, we have G:+1 ∈ BX (G∗) ⊂ �, so

G:+1 ∈ � ∩ �, and the problem is solved in finite time.

Assume G∗ ∈ int� ∩ bd� and let X be such that Lemma 6.1 is satisfied for (�, G∗), and so that

BX (G∗) ⊂ �. Eventually G: ∈ BX (G∗) for some : ∈ ℕ. If G: ∈ � the problem is solved. If not,

then G: ∈ � \ �, but then Π
U1

�
G: ∈ � by Lemma 6.1. Again, by non-expansiveness of ΠU1

�
we have

Π
U1

�
G: ∈ BX (G∗) ⊂ � so G:+1 = Π

U1

�
G: ∈ � ∩ � and the problem is solved in finite time.

Now consider the case where G∗ ∈ bd�∩bd�. Choose X� and X� so that Lemma 6.1 is satisfied

for (�, G∗) and (�, G∗) respectively and let X = min(X�, X�). Since G: → G∗ there exists # ∈ ℕ

such that G: ∈ BX (G∗) for all integer: > # . By Lemma 6.1, we then have G:+1 ∈ �. If G:+1 ∈ �∩�,
the problem is solved in finite time. If not, G:+1 ∈ � \ �. Now consider any integer 9 > # such

that G 9 ∈ � \ � with G 9 ∈ BX (G∗). The first projection Π
U1

�
(G 9 ) is equivalent to projecting onto

the manifold bd�, and by Lemma 6.1, we have ΠU1

�
(G 9 ) ∈ �. Either ΠU1

�
(G 9 ) is also in �, in which

case the problem is solved in finite time, or the second projection Π
U2

� Π
U1

� (G 9 ) is equivalent to
projecting onto the manifold bd�. By Lemma 6.1, we get G 9+1 ∈ �. Therefore, we either we have

G 9+1 ∈ �∩�, in which case we have a solution in finite time, or we have G 9+1 ∈ �\�. By recursion
over 9 > # , we see that either the problem is solved in finite time, or G 9+1 ∈ � \ � for all 9 > # ,

in which case each projection onto the sets is equivalent to projecting onto their boundaries, i.e.,

the algorithm has identified the manifolds. The rate then follows directly from Theorem 5.4. �

Theorem 6.2. Let � ⊆ ℝ
= be a solid closed convex set and � ⊆ ℝ

= be an affine set such that

� ∩ � ≠ ∅. Then G: → G∗ for some point G∗ ∈ � ∩ � for the GAP algorithm in Definition 4.1. If

the sets � and � satisfy Assumption 6.1 at G∗, then the GAP method converges R-linearly with

any rate ` ∈ (W ((T(G∗) ), 1) to G∗.
Proof. This proof is similar to that of Theorem 6.1. The sequence (G: ):∈ℕ converges to some

G∗ ∈ �∩� by convexity of the sets. First assume that G∗ ∈ int�. Then, since G: → G∗ there exists
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# such that G 9 ∈ � for all 9 > # . The problem is then locally equivalent to that of (ℝ=, �), i.e.,
two subspaces.

If G∗ ∈ bd�, then let X be such that Lemma 6.1 is satisfied for (�, G∗). Then by convergence to

G∗, eventually G 9 ∈ BX (G∗) for all 9 > # . If ΠU1

�
G 9 ∉ � then G 9+1 ∈ int� by Lemma 6.1. IfΠU1

�
G 9 ∈ �,

then G 9+1 ∈ � by the definition of projection. So G 9+1 ∈ � for all 9 > # .

If also Π
U1

� G; ∈ � for some ; > 9 > # , then since both G; and G;−1 are in �, we have G; −
G;−1 ∈ N� (Π�G;−1). From convexity of � we know that the straight line segment between G; and

G;−1 must be contained in �, so all subsequent iterations must be on this line segment. But then

Π�G; = G∗ and by assumption G∗ ∈ bd�, so convexity of� implies that the whole segment must

be in bd�. The algorithm has thus identified bd� and �.

Otherwise, ΠU1

�
G 9 ∉ � for all 9 > : , and the projection Π

U2

�
(ΠU1

�
)G 9 is equivalent to projecting

onto bd�, i.e, the algorithm has identified bd� and �. The rate then follows from Theorem 5.4

since � is a smooth manifold. �

Next, we introduce some regularity properties of convex sets and show how they relate to the

regularity of the manifolds corresponding to their boundaries.

Definition 6.2 (subtransversality of sets). [29, Thm. 1 (ii)]

Two sets � ⊆ ℝ
= and � ⊆ ℝ

= are subtransversal at G∗ ∈ � ∩ � if there exist U > 0 and X > 0

such that

Ud�∩� (G) ≤ max{d� (G), d� (G)} ∀G ∈ BX (G∗).(6.6)

sr[�, �] (G∗) is defined as the exact upper bound of all U such that (6.6) holds.

Definition 6.3 (transversality of sets). [29, Thm. 1 (ii)]

Two sets � ⊆ ℝ
= and � ⊆ ℝ

= are transversal at G∗ ∈ � ∩ � if there exists U > 0 and X > 0 such

that

Ud(�−G1)∩(�−G2 ) (G) ≤max{d�−G1 (G), d�−G2 (G)} for all G ∈ BX (G∗), G1, G2 ∈ BX (0).(6.7)

r[�, �] (G∗) is defined as the exact upper bound of all U such that (6.7) holds. Equivalently, the

sets � and � are transversal at G∗ if N� (G∗) ∩ (−N� (G∗)) = {0} [29, Thm. 2 (v)].

The transversality condition N� (G∗) ∩ (−N� (G∗)) = {0} for two sets � and � coincides with

Definition 3.12 of transversality when the sets are smooth manifolds, since the normal cones are

linear subspaces in this case [26].

Definition 6.4 (acute and obtuse intersection). For two solid, closed, convex sets �, � ⊆ ℝ
= with

smooth boundaries, we say that the intersection is acute at a point G∗ ∈ bd� ∩ bd� if 〈E1, E2〉 ≤
0, where E1, E2 are the unique vectors such that E1 ∈ N� (G∗), E2 ∈ N� (G∗), ‖E1‖ = ‖E2‖ = 1.

Conversely, we say that the intersection is obtuse if 〈E1, E2〉 > 0.

Note that acute and obtuse refer to the shape of the intersection, and not the angle between

the normals, for which the property is reversed.

Lemma 6.2. Let�, � be solid, closed and convex sets inℝ
= with boundaries bd�, bd� that satisfy

Assumption 3.1 at some point G∗ ∈ bd�, bd� and assume that Tbd� (G∗) ≠ Tbd� (G∗). Let \� ∈
(0, c/2] be defined via cos(\� ) = 2 (bd�, bd�, G∗). Then

1. the manifolds bd� and bd� are transversal at G∗,

2. the sets � and � are transversal at G∗, i.e. N� (G∗) ∩ (−N� (G∗)) = {0},

3. the sets � and � are subtransversal at G∗ and the following inequalities hold

r[�, �] (G∗) ≤ sr[�, �] (G∗) ≤
{
sin(\�/2) if (�, �) acute at G∗

cos(\�/2) if (�, �) obtuse at G∗,
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4. sin(\�/2) = r[bd�, bd�] (G∗). Furthermore, if the intersection of (�, �) is acute at G∗ then

sin(\� /2) = r[bd�, bd�] (G∗) = r[�, �] (G∗) = sr[�, �] (G∗)

otherwise

cos(\� /2) = r[�, �] (G∗) = sr[�, �] (G∗).

Proof. The proofs follow the definitions and results on (sub-)transversality of general sets from [28].

1: From smoothness of the manifolds bd�, bd�, the corresponding normals are lines and triv-

iallyNbd� (G∗) = −Nbd� (G∗). Moreover, sinceTbd� (G∗) ≠ Tbd� (G∗)wehaveNbd� (G∗) ≠ Nbd� (G∗),
and therefore Nbd� (G∗) ∩ (−Nbd� (G∗)) = {0}.

2: The normals to the sets �, � at a point on their boundaries G∗ satisfy Nbd� (G∗) = N� (G∗) ∪
(−N� (G∗)) and correspondingly for �. Hence, N� (G∗) ⊂ Nbd� (G∗) and −N� (G∗) ⊂ Nbd� (G∗), so
from case 1 it follows that N� (G∗) ∩ (−N� (G∗)) = {0}.

3: The first inequality follows directly from [29, Thm. 4 (i)]. For the second inequality, let E1 ∈
N� (G∗),E2 ∈ N� (G∗) be the unique vectors with ‖E1‖ = ‖E2‖ = 1, and defineF = (E1+E2)/‖E1+E2‖.
From case 2, we see that E1 ≠ −E2 and thus 〈E1, E2〉 > −1. Thus 〈F, E1〉 = (〈E1, E2〉 + 1)/‖E1 + E2‖ >
0 and similarly 〈F, E2〉 > 0. Since �, � are convex sets, T� (G∗) + {G∗} and T� (G∗) + {G∗} are

separating hyperplanes to the corresponding sets, and it follows from 〈F, E1〉 > 0, 〈F, E2〉 > 0

that G∗ + VF is separated from the sets � and � when V > 0, i.e. G∗ + VF ∉ � ∪ � for V > 0.

Moreover, by definition of F , we have F ∈ #� (G∗) + #� (G∗) ⊂ #�∩� (G∗) where the second

inclusion holds trivially for convex sets. We can therefore conclude that Π�∩� (G∗ + VF ) = G∗,
and therefore

d�∩� (G∗ + VF ) = V ‖F ‖ = V.(6.8)

We now calculate an expression for d� (G∗ + VF ). Since G∗ + VF ∉ �, the projection onto � is

locally equivalent to projecting onto the smooth manifold bd�. From Lemma 3.1 we get with

series expansion around G∗ that

Πbd� (G∗ + VF ) = Πbd� (G∗) + ΠTbd� (G∗) (VF ) +$ (V2),

where Πbd� (G∗) = G∗. The projection of F = (E1 + E2)/‖E1 + E2‖ onto Tbd� (G∗) is given by

ΠTbd� (G∗) (F ) = F − 〈E1,F〉
‖E1‖2

E1 = F − 〈E1,F〉E1

and the distance 3� (G∗ + VF ) is therefore

(6.9)

3� (G∗ + VF ) = ‖Πbd� (G∗ + VF ) − (G∗ + VF )‖ = ‖VΠTbd� (G∗) (F ) − VF +$ (V2)‖

= ‖V 〈E1,F〉E1 −$ (V2)‖ = V ‖ 1 + 〈E1, E2〉
‖E1 + E2‖

E1 −$ (V)‖,

and in the same way for �: 3� (G∗ + VF ) = V ‖ 1+〈E1,E2 〉‖E1+E2 ‖ E2 −$ (V)‖.
By Definition 3.4 that defines the Friedrichs angle and Definition 3.13, we conclude that

cos(\� ) = 2 (bd�, bd�, G∗) = 2 (Tbd� (G∗),Tbd� (G∗)) = 2 ((Tbd� (G∗))⊥, (Tbd� (G∗))⊥),

where the last equality canbe found,e.g., in [29,Def. 3]. Since (Tbd� (G∗))⊥ = N� (G∗)∪(−N� (G∗)) =
{VE1 | V ∈ ℝ}, and similarly for �, Definition 3.4 results in that cos(\� ) = max{〈E1, E2〉,−〈E1, E2〉},
i.e.

〈E1, E2〉 =
{
− cos(\� ) if 〈E1, E2〉 ≤ 0

cos(\� ) if 〈E1, E2〉 ≥ 0.
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Thus by definition of sr[�, �] (G∗), (6.8) and (6.9)

sr[�, �] (G∗) ≤ lim
V→0+

max(d� (G∗ + VF ), d� (G∗ + VF ))
d�∩� (G∗ + VF )

= lim
V→0+

max
8∈{1,2}

‖ 1 + 〈E1, E2〉
‖E1 + E2‖

E8 −$ (V)‖

=
1 + 〈E1, E2〉√

‖E1‖2 + 2〈E1, E2〉 + ‖E2‖2

=




1−cos(\� )√
2−2 cos(\� )

=
√
1 − cos(\� )/

√
2 = sin(\� /2) if 〈E1, E2〉 ≤ 0

1+cos (\� )√
2+2 cos(\� )

=
√
1 + cos(\� )/

√
2 = cos(\�/2) if 〈E1, E2〉 ≥ 0.

4: By [29, Prop. 8]

ra[�, �] (G) = sup
=1 ∈N� (G), =2∈N� (G)

‖=1 ‖=‖=2 ‖=1

−〈=1, =2〉,

where ra[�, �] (G) satisfies ra[�, �] (G∗) + 2(r[�, �] (G∗))2 = 1.

Since bd�, bd� are smooth manifolds, this results in ra [bd�, bd�] (G∗) = cos(\� ) by Defi-

nition 3.4, since Nbd� (G∗) = −Nbd� (G∗) and equivalently for bd�. Thus, since \� ∈ [0, c/2]
and r[bd�, bd�] (G∗) ≥ 0 holds by definition, we have r[bd�, bd�] (G∗) =

√
(1 − cos(\� ))/2 =

sin(\� /2) for all \� ∈ [0, c/2].
For r[�, �] (G∗) we use the same result, but the unit normal vectors are unique in this case.

When 〈E1, E2〉 ≤ 0 we have 〈E1, E2〉 = − cos(\� ) by definition of \� . We therefore get ra[�, �] =
cos(\� ) and thus r[�, �] (G∗) =

√
(1 − cos(\� ))/2 = sin(\�/2).

In the same way, when 〈E1, E2〉 ≥ 0 we have 〈E1, E2〉 = cos(\� ), so ra[�, �] = − cos(\� ) and
r[�, �] (G∗) =

√
(1 + cos(\� ))/2 = cos(\� /2).

But we always have r[�, �] ≤ sr[�, �] [29, Thm. 4 (i)], so together with case 3 we see that

sr[�, �] (G∗) is bounded both above and below by

sin(\� /2) if 〈E1, E2〉 ≤ 0

cos(\� /2) if 〈E1, E2〉 ≥ 0,

which concludes the proof. �

Remark 6.1. The regularity constants in Lemma 6.2 case 4 are continuous with respect to the

normals as they approach the limit between acute and obtuse since 〈E1, E2〉 → 0 ⇒ \� → c/2
and sin(c/4) = cos(c/4) = 1/

√
2.

The rates presented so far are stated either as a property of the operator (T(G∗) or as a func-

tion of the Friedrichs angle \� between tangent planes at the intersection. In previous work on

alternating projections and similar algorithms for convex and non-convex sets, the rates are of-

ten stated as a function of a linear regularity constant [31, 10]. We now state the rate found by

choosing the optimal relaxation parameters (4.10) in terms of linear regularity.

Theorem 6.3. Let�, � be two solid, closed, and convex sets inℝ=. Let G∗ ∈ �∩� be the limit point

of the sequence (G: ):∈ℕ generated by the GAP algorithm in Definition 4.1, and assume that

1. G∗ ∈ bd� ∩ bd�

2. bd� and bd� satisfy Assumption 3.1 at the point G∗.
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Then the sets are ˆ̂-linearly regular, i.e., there exist X > 0 and ˆ̂ > 0 such that

(6.10) d�∩� (G) ≤ ˆ̂ max(d� (G), d� (G)), ∀G ∈ BX (G∗).

Let ^ be the lower limit of all such ˆ̂ and assume that ^ ≥
√
2, then the GAP algorithm with

parameters

(6.11) U = 1, U1 = U2 = 2

(
^

√
^2 − 1 + 1

)2

will converge to G∗ with R-linear rate ` for any ` ∈ (W, 1), where

(6.12) W =

(√
^2 − 1 − 1

√
^2 − 1 + 1

)2
= 1 − 4

√
^2 − 1

^2 + 2
√
^2 − 1

.

Proof. Existence of a limit point G∗ for convex sets follows from the previous results or [22]. First

assume that )bd� (G∗) = )bd� (G∗). Then Assumption A2 along with a dimensionality argument

imply that bd� = bd� in some neighborhood ofG∗. It must therefore be that either�∩� = � = �

or � ∩ � = bd� ∩ bd� in some neighborhood of G∗. The problem is then trivial, but d�∩� (G) =
d� (G) = d� (G) for all G ∈ BX (G∗), so ^ = 1. This trivial case is not covered by the result as we

assume ^ ≥
√
2.

Now assume instead that )bd� (G∗) ≠ )bd� (G∗). The sets (�, �) are therefore transversal by

Lemma 6.2 case 2, and since N� (G∗) ≠ N� (G∗), we have \� > 0. Since 1/^ = sr[�, �] ≤ 1/
√
2 we

have by Lemma 6.2 case 4 that

1/^ = r[bd�, bd�] = sr[�, �] = sin(\�/2).

The optimal parameters (4.10) are therefore, with \� = 2 arcsin(1/^)

U1 = U2 =
2

1 + sin(\� )
=

2

1 + sin(2 arcsin(1/^)) = 2

(
^

√
^2 − 1 + 1

)2
∈ [1, 2).

By Theorem 6.2 and Theorem 4.3, the convergence to G∗ is R-linear with rate ` for any ` ∈
(W ((T(G∗) ), 1) where

W ((T(G∗) ), 1) =
1 − sin(\� )
1 + sin(\� )

=
1 − sin(2 arcsin(1/^))
1 + sin(2 arcsin(1/^)) =

(√
^2 − 1 − 1

√
^2 − 1 + 1

)2
= 1 − 4

√
^2 − 1

^2 + 2
√
^2 − 1

.

�

Remark 6.2. The regularity parameter satisfies ^ ∈ [1,∞] under the assumptions of Theorem 6.3.

In particular, for ill-conditioned problems, i.e., large ^, the rate above approaches W ≈ 1− 4
^
. This

can be compared to the rate of alternating projections of W = 1 − 4
^2 as found in [31] under

linear regularity assumptions for non-convex sets, which is worse. The contraction rate for the

Douglas–Rachford algorithm, presented in [36] for general convex sets is
√
1 − ^−2, which can be

approximated for large ^ by 1 − 1
2^2 .

Theorem 6.4. Let �, � be two solid, closed, and convex sets in ℝ
= that satisfy Assumption 6.1 at

every point G∗ ∈ �∩�. Assume that there is a ˆ̂ > 0 such that the sets�, � are ˆ̂-linearly regular

at every point G∗ ∈ � ∩ �, i.e., for every G∗ there exists XG∗ > 0 such that

(6.13) d�∩� (G) ≤ ˆ̂ max(d� (G), d� (G)), ∀G ∈ BXG∗ (G
∗).
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Let ^ = max( ˆ̂,
√
2), then the GAP algorithm with parameters

(6.14) U = 1, U1 = U2 = 2

(
^

√
^2 − 1 + 1

)2
will converge to G∗ with R-linear rate ` for any ` ∈ (W, 1), where

(6.15) W =

(√
^2 − 1 − 1

√
^2 − 1 + 1

)2
= 1 − 4

√
^2 − 1

^2 + 2
√
^2 − 1

.

Proof. We note that ^ =
√
2 implies that U1 = U2 = 1, otherwise U1 = U2 ∈ (1, 2). Convergence

to some G∗ ∈ � ∩ � follows from convexity. If G∗ ∉ bd� ∩ bd�, then Theorem 6.1 states that

the convergence is in finite time, for which the rate holds trivially. The remaining case is G∗ ∈
bd� ∩ bd�. If Tbd� (G∗) = Tbd� (G∗), then bd� = bd� in some neighborhood of G∗ and the

problem is trivial with convergence in finite time.

Otherwise, Tbd� (G∗) ≠ Tbd� (G∗) and consequently the Friedrichs angle satisfies cos(\� ) > 0.

First consider the case where the angle between the sets � and � is obtuse at G∗. Let X1 be such
that Lemma 6.1 holds, i.e., Π

U1

�
G ∈ � and Π

U2

�
G ∈ �, for any G ∈ BX1 (G∗). Let 2 = 〈=� (G∗), =� (G∗)〉,

where =� (G∗), =� (G∗) are the outward facing unit normals for the sets�, � at the point G∗, which
by definition of obtuse satisfies 2 > 0. By smoothness of the boundaries of� and�, and continuity

of their normals, there is some X2 > 0 such that

〈=� (G), =� (H)〉 > 0,∀G ∈ BX2 (G∗) ∩ bd�, H ∈ BX2 (G∗) ∩ bd�,(6.16)

where =� (G),=� (H) are the outward facing unit normals to� and � at G and H respectively. Now,

by convergence of G: to G
∗, there is some : such that G: ∈ BX (G∗) where X = min(X1, X2). Thus by

Lemma 6.1 and non-expansiveness of the projectors, we have ΠU1

�
G ∈ � and G:+1 = Π

U2

�
Π
U1

�
G: ∈ �.

IfG:+1 ∈ �, then the problem is solved in finite time, and the result is trivial, otherwiseG:+1 ∈ �\�.
There must therefore exist a point Ḡ on the line between G:+1 ∈ � \ � and Π

U1

�
G: ∈ � such that

Ḡ ∈ bd�, moreover it must satisfy 〈=� (Ḡ), G:+1 − Π
U1

�
G: 〉 > 0 since the line is pointing out of the

set �. But by the definition of the projection and G:+1 , we have

G:+1 − Π
U1

�
G:

‖G:+1 − Π
U1

�
G: ‖

= −=� (G̃),

where G̃ = Π�Π
U1

�
G:bd�. This leads to 〈=� (Ḡ), =� (G̃)〉 < 0. Since both Ḡ and G̃ are in BX (G∗) by

non-expansiveness, this is a contradiction to (6.16), i.e. GG+1 ∈ � \� cannot hold, so GG+1 ∈ � ∩ �

and the convergence is finite and the result holds trivially.

The remaining case is when � and � form an acute angle at G∗. By Lemma 6.2 case 4, we

have sr[�, �] (G∗) = sin(\�/2) ≤ 1/
√
2, so by definition of sr (Definition 6.2), it must hold that

^ ≥ 1/sr[�, �] (G∗) = 1/sin(\�/2) ≥
√
2. By Theorem 6.3, we see that the optimal rate would have

been achieved if ^ = 1/sin(\�/2), i.e. U1 = U2 > U∗, or equivalently that the parameters have been

chosen as if \� was smaller. But as seen in Remark 4.2, this still results in the sub-optimal rate

(6.15) based on this conservative ^. �

Remark 6.3.We note that the adaptive method proposed in [23] for estimating \� by the angle

between the vectors E1 = Π
U1

�
G: −G: and E2 = Π

U1

�
G: −Π

U2

�
Π
U1

�
G: , works very well in the setting of

two convex sets (�, �) with smooth boundaries. This can be seen by observing that if E1/‖E1‖ =
−=1 and E2/‖E2‖ = =2, where =1, =2 are normal vectors with unit length to� and � at the point G∗,
then the angle between them is exactly \� in the acute case. And indeed, as long as the algorithm

has not already converged, we have E1/‖E1‖ → −=1, E2/‖E2‖ → =2 as G: → G∗, by the definition

of the projections and continuity of the normals around G∗. The estimate will therefore converge

to \� as G: → G∗.
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�

�

?0

Π
U1

�
?0

?1

Π
U1

�
?1

?2

Figure 2: Illustration of the problem with a cone � and line � from Example 6.2. The iterates

?0, ?1, ?2, . . . are illustrated in red, the normal cone to� with dashed lines, and the rays

through (1,−W) and (−1,−W) are shownwith blue dotted lines. As shown in the example,

the iterates stay on the dotted lines and alternate between projecting on the two faces

of �.

6.2 counter example

We present a simple convex example that illustrates that it is not always possible to rely on

finite identification of smooth manifolds for the GAP algorithm 4.1, even in the case of convex

polytopes.

Example 6.2. Consider the convex feasibility problem (�, �) with � = {(G, H) | H ≥ |G |}, � =

{(G, H) | H = 0} as illustrated in Figure 2, with parameters U = 1, U1 = U2 = 1.5 for the GAP

algorithm 4.1. Let

?0 = (1,−W)

where W =
1
12

(
1 +

√
73

)
≈ 0.795. The GAP algorithm will then alternate between projecting onto

the half-lines {H = G, G > 0} and {H = −G, G < 0}.
Proof. The first projection point will hit the boundary of the cone � at Π�?0 =

1
2
(1 − W, 1 − W)

which is easily seen by that Π�?0 − ?0 =
1
2
(−1 − W, 1 + W) ⊥ Π�?0. The relaxed projection point

and the next iterate can then be calculated to

Π
U1
� ?0 =

1

4
(1 − 3W,−3 + W)

?1 = Π
U2

�
Π
U1

�
?0 =

1

8
(2 − 6W,−3 + W)

We note that W2 =
1
6
(W + 3), and that (?1)GW =

1
8
(2 − 6W)W =

1
8
(W − 3) = (?1)H , where ?1 =

((?1)G , (?1)H ). So ?1 is simply ?0 scaled and flipped around the H axis, i.e., it is of the form ?1 =

V (−1,−W) for some V > 0. The next projection point is therefore on the boundary of the cone �

with G < 0, and because of the symmetry around the H axis, the next iterate is

?2 = V2 (1,−W) .

By linearity and induction, it is clear that the algorithm will not identify any of the smooth

surfaces {H = G, G > 0} or {H = −G, G < 0} but instead alternate between them. �
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Remark 6.4. Example 6.2 shows that finite identification of either of the manifolds {(G, H) | H =

G, G > 0} and {(G, H) | H = −G, G < 0} does not occur for every initial point. However, with some

reasonable definition of smallest angle, for example through the subregularity constant sr, we

would have \� = c/4, and the theory for subspaces would predict a worst case rate W (() = 0.5. It

is notable that the convergence rate V ≈ 0.35 in the example is significantly better. It is therefore

still an open question whether the smallest angle sets an upper bound on the rate through the

eigenvalues in Theorem 4.1 even for these problems.

7 conclusions

We have shown that the known convergence rates for the GAP algorithm on affine sets extend

to local rates on smooth manifolds, and that the optimal parameters and rates hold also in this

setting. These rates are significantly better thanprevious known rates for similar projectionmeth-

ods. We have also shown how these results can be applied to generate linear convergence rates

for two smooth and solid convex sets, and how they can be connected to linear regularity.

Since finite identification of smooth manifolds cannot generally be assumed, it remains to be

shown how these results can be applied to general convex sets.

appendix a appendix

appendix a.1 proof of theorem 4.2

Since ( = ) with U = 1, we begin by showing that all eigenvalues of ) in Theorem 4.1 satisfy

|_ | ≤ W∗. For convenience of notation we introduce

5 (\ ) ≔ 1

2

(
2 − U1 − U2 + U1U2 cos

2 (\ )
)

(a.1)

6(\ ) ≔
√
5 (\ )2 − (1 − U1) (1 − U2)(a.2)

so that _1,28 in (4.8) can be written _1,28 = 5 (\8) ± 6(\8 ). For U1 = U2 = U∗
=

2
1+sin(\� ) we get

5 (\� ) = 1 − U∗ + U∗222� /2 =
1−sin(\� )
1+sin(\� ) = U∗ − 1 and 6(\� ) = 0. The eigenvalues corresponding to

\� are therefore _1,2
�

= U∗ − 1 =
1−sin(\� )
1+sin(\� ) . We also see that 5 (c/2) = 1 − U∗, 6(c/2) = 0. Since

5 (\ ) is linear in cos2 (\ ), which is decreasing in [\� , c/2], and | 5 (\� ) | = | 5 (c/2) | = U∗ − 1, it

follows that |5 (\8 ) | ≤ U∗ − 1 for all \8 ∈ [\� , c/2]. This means that 5 (\8 )2 − (U∗ − 1)2 ≤ 0 and the

corresponding _1,28 are complex with magnitudes��_1,28 �� = √
5 (\8)2 + | 5 (\8)2 − (1 − U∗)2 | =

√
(1 − U∗)2

= U∗ − 1 ∀8 : \� ≤ \8 ≤ c/2.

For the remaining eigenvalueswe have |1−U1 | = U∗−1 = W∗, |1−U2 | = U∗−1 = W∗, | (1−U1) (1−U2) | =
(U∗−1)2 ≤ W∗. Lastly, the eigenvalues in _ = 1 correspond to the angles \8 = 0 and are semisimple

since the matrix in (4.7) is diagonal for \8 = 0. We therefore conclude, using Fact 3.2 and 3.3, that

U1 = U2 = U∗ results in that the GAP operator ( = ) in (4.2) is linearly convergent with any rate

` ∈ (W∗, 1) where W∗ = U∗ − 1 =
1−sin(\� )
1+sin(\� ) is a subdominant eigenvalue.

appendix a.2 lemmas

Lemma a.1 (Infinite Sub-sequence). Given any infinite sequence of increasing positive integers

(A 9 ) 9 ∈ℕ, for any integer = > 0 there exists an infinite sub-sequence (A 9: ):∈ℕ where

A 9: = 0 + =1: ,
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for some 0 ∈ ℕ and some increasing sequence (1: ):∈ℕ.
Proof. Fix= and consider the finite collection of sets (8 = {E ∈ ℕ | E = 8+=1, 1 ∈ ℕ}, 8 = 0, . . . , =−1.
We have∪8=0,...,=−1(8 = ℕ, so ∪8=0,...,=−1 ((8∩{A 9 } 9 ) = {A 9 } 9 ∈ℕ and thus one of the sets ((8∩{A 9 } 9 ∈ℕ)
must be infinite. Let 0 be the index so that ((0 ∩ {A 9 } 9 ∈ℕ) is infinite. This is clearly a subset of

{A 9 } 9 ∈ℕ and by the definition of (0 each element is of the form 0 +=1: with 1: ∈ ℕ and the proof

is complete. �

Lemma a.2. The matrix

" ≔ (2 − U∗)� + U∗

U1
() �

1 − � ),(a.3)

where) �
1 is the matrix defined in (4.7) corresponding to the angle \� has trace and determinant:

tr" =
2

(1 + B)U1
(
−U1 − U2 + U2U12

2 + 2U1B
)

det" =
4B (1 − B)
U1 (1 + B)2

(−U1 − U2 + U1U2 (1 + B)) ,

where B ≔ sin(\� ), 2 ≔ cos(\� ).
Proof. The matrix" can be written

" = (2 − U∗)� + U∗

U1

((
1 − U1B

2 U12B

U1 (1 − U2)2B (1 − U2) (1 − U12
2)

)
− �

)

=

(
2 − U∗ − U∗B2 U∗2B
U∗(1 − U2)2B 2 − U∗ + U∗

U1

(
(1 − U2) (1 − U12

2) − 1
) )

=

(
2 − U∗(1 + B2) U∗2B
U∗ (1 − U2)2B 2 − U∗ + U∗

U1

(
U1U22

2 − U2 − U12
2
) ) .

Using that U∗
=

2
1+B , we can rewrite the diagonal elements

2 − U∗ (1 + B2) = U∗ (
1 + B − (1 + B2)

)
= U∗B (1 − B)

and

2 − U∗ + U∗

U1

(
U1U22

2 − U2 − U12
2
)
= U∗(1 + B) − U∗ + U∗

(
22 (U2 − 1) − U2

U1

)

= U∗
(
B + 22 (U2 − 1) − U2

U1

)
.

We can extract the factor U∗2B from the matrix and get

" = U∗2B

(
1−B
2

1

1 − U2
B+22 (U2−1)−U2

U1

2B

)
.

The trace is therefore given by

tr" = U∗2B

(
1 − B

2
+
B + 22 (U2 − 1) − U2

U1

2B

)

= U∗
(
2B − B2 + 22U2 − 22 − U2

U1

)

=
U∗

U1

(
−U1 − U2 + U2U12

2 + 2U1B
)

=
2

(1 + B)U1
(
−U1 − U2 + U2U12

2 + 2U1B
)
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and the determinant is given by

det" = (U∗2B)2
©­­«
(1 − B)

(
B + 22 (U2 − 1) − U2

U1

)
22B

− (1 − U2) 22B
22B

ª®®¬
= U∗2B

((
B + 22 (U2 − 1) − U2

U1
− B2 − 22B (U2 − 1) + B U2

U1

)
− (1 − U2) 22B

)

= U∗2B

(
B + 22 (U2 − 1) − U2

U1
− B2 + B U2

U1

)

= U∗2B

(
B − 1 + U22

2 + U2

U1
(B − 1)

)

= U∗2B (1 − B)
(
−1 + U2 (1 + B) −

U2

U1

)

=
U∗2B (1 − B)

U1
(−U1 − U2 + U1U2 (1 + B))

=
4B (1 − B)
U1 (1 + B)2

(−U1 − U2 + U1U2 (1 + B)) .

�

Lemma a.3. Under the assumptions U =
U∗

U1
, U1 ≥ U2 > 0 and \� ∈ (0, c/2), the matrix" (a.3) in

Lemma a.2 satisfies

(U1 ≠ U∗ or U2 ≠ U∗) ⇒ maxReΛ(") > 0,

where Λ(") is the set of eigenvalues of" .

Proof. We prove the equivalent claim

maxReΛ(") ≤ 0 ⇒ U1 = U2 = U∗.

We have maxReΛ(") ≤ 0 if and only if both eigenvalues of " have negative or zero real part,

which is equivalent to

_1 + _2 ≤ 0 and _1_2 ≥ 0.

This is equivalent to

tr" ≤ 0 and det" ≥ 0.

Using Lemma a.2, this can be written{
2

(1+B)U1

(
−U1 − U2 + U2U12

2 + 2U1B
)

≤ 0
4B (1−B)
U1 (1+B)2 (−U1 − U2 + U1U2 (1 + B)) ≥ 0

,

where B ≔ sin(\� ) and 2 ≔ cos(\� ). Since U1 > 0, B ∈ (0, 1), this is equivalent to{
U1 + U2 − U2U12

2 − 2U1B ≥ 0(a.4a)

−U1 − U2 + U1U2 (1 + B) ≥ 0.(a.4b)

This implies that the sum is positive, i.e.(
U1 + U2 − U2U12

2 − 2U1B
)
+ (−U1 − U2 + U1U2 (1 + B))

= (U2U1B2 − 2U1B + U1U2B)
= U1B (U2B − 2 + U2) ≥ 0
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which, since U2, B > 0, is equivalent to U2 (1 + B) ≥ 2, and thus

U2 ≥
2

1 + B = U∗.

But since U2 ≥ U∗, (a.4a) implies

U1 + U2 − U∗U12
2 − 2U1B ≥ 0

which is equivalent to

U1 + U2 − U∗U12
2 − 2U1B = U1 + U2 − 2U1 (1 − B) − 2U1B

= U1 + U2 − 2U1 = U2 − U1 ≥ 0

i.e., U2 ≥ U1.

But by the assumption that U1 ≥ U2 we know that (a.4) implies U1 = U2 ≥ U∗. Equation (a.4a)

yields

U1 + U2 − U2U12
2 − 2U1B ≥ 0

⇒ 2U1 − U2
1 2

2 − 2U1B ≥ 0

⇔ 2 − U12
2 − 2B ≥ 0

⇔ 2
(1 − B)
22

≥ U1

⇔ U∗
=

2

(1 + B) ≥ U1,

where the implication is from U1 = U2. We have shown that U∗ ≥ U1 = U2 ≥ U∗ i.e., U∗
= U1 =

U2 ≥ U∗. This completes the proof. �

appendix a.3 proof of theorem 4.3

The first direction, that both (1 and (2 are convergent with any rate ` ∈ (W∗, 1) for the parameters

in (4.10) holds by Theorem 4.2. We now prove that if (1 and (2 converge with the rate ` for all

` ∈ (W∗, 1) then the parameters must be those in (4.10). By Fact 3.2, if both operators converge

with any rate ` ∈ (W∗, 1) then it must be that W ((1) ≤ W∗ and W ((2) ≤ W∗. By Definition 3.7, this

means that all eigenvalues _ to both (1 and (2 have |_ | ≤ W∗, unless _ = 1. With (8 = (1−U)� +U)8 ,
we see from Theorem 4.1, that)1 has an eigenvalue in 1−U2,)2 in 1−U1, and both)1 and)2 have

eigenvalues in _1,28 corresponding to the angle \� . We therefore need that |1 + U (_ − 1) | ≤ W∗

for each of the eigenvalues _. We start by defining Û = U∗/U1, where U∗
= 2/(1 + sin(\� )), and

observe that U∗ − 1 = W∗.
Assume that U1 ≥ U2 and U = Û . For the eigenvalue _ = 1 − U1, we get

1 + Û (_ − 1) = 1 + U∗

U1
(1 − U1 − 1) = 1 − U∗.(a.5)

Consider the eigenvalues of � + Û ()� − � ) where)� is the matrix (4.7) corresponding to the angle

\� , i.e., the eigenvalues _
1,2
8 . We have

(a.6) maxReΛ(� + Û ()� − � )) > U∗ − 1

if and only if

(a.7) maxReΛ((2 − U∗)� + Û ()� − � )) > 0.
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By Lemma a.3 we know that (a.7) is true when U = Û , unless U1 = U2 = U∗. We therefore know

that for U = Û , unless the optimal parameters are selected, there will always be one eigenvalue

of (2 in 1− U∗ and one, corresponding to \� , with real part greater than U∗ − 1. We now consider

the two cases U > Û and U < Û . First note that U acts as a scaling of the eigenvalues relative

to the point 1, i.e., (1 − U) + U_ = 1 + U (_ − 1). It is therefore clear that U > Û will result in one

eigenvalue with real part less than 1 − U∗
= −W∗, and thus W ((1) > W∗ and W ((2) > W∗.

Similarly, any U < Û will result in one eigenvalue (_1� ) with real part greater than U∗ − 1 = W∗.
If this eigenvalue is not in 1, i.e., unless 1+U (_1� − 1) = 1, we know that W (() > W∗ also in this case.

Since U ≠ 0 we have 1 + U (_1� − 1) = 1 if and only if _1� = 1. But _1� = 1 only if det()� − � ) = 0,

where )� is the block corresponding to \� in (4.7). Since U1, U2 ≠ 0 and \� > 0 we get

det()� − � ) = −U1B2� (U122� − U2 + U1U22
2
� ) − U2

1 (1 − U2)22�B2� = U1U2B
2
� ≠ 0

and thus _1� ≠ 1.

We conclude that when U1 ≥ U2, then W ((2) > U∗ − 1 = W∗ for all parameters that are not

U = 1, U1 = U2 = U∗.
The proof is only dependent on the eigenvalue 1−U1, corresponding to (2, and the eigenvalue

_1,2
�

corresponding to \� . From symmetry of U1, U2 in _1,2
�

we see that the same argument holds if

we instead assume U2 ≥ U1, let Û = U∗/U2, and consider the eigenvalues 1 − U2 from (1 and _1,2
�
.

Therefore, when U2 ≥ U1, we get W ((1) > U∗ − 1 = W∗ for all parameters that are not U = 1, U1 =

U2 = U∗. To conclude, unless U = 1, U1 = U2 = U∗, we have either W ((1) > W∗ or W ((2) > W∗, which
contradicts that they both converge linearly with any rate ` ∈ (W∗, 1).
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