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proximal methods for point source localisation

Tuomo Valkonen∗

Abstract Point source localisation is generally modelled as a Lasso-type problem on measures.

However, optimisation methods in non-Hilbert spaces, such as the space of Radon measures, are

much less developed than in Hilbert spaces. Most numerical algorithms for point source localisa-

tion are based on the Frank–Wolfe conditional gradient method, for which ad hoc convergence

theory is developed. We develop extensions of proximal-type methods to spaces of measures. This

includes forward-backward splitting, its inertial version, and primal-dual proximal splitting. Their

convergence proofs follow standard patterns. We demonstrate their numerical efficacy.

1 introduction

The point source localisation problem [7, 26] reads

(1.1) min

0≤𝜇∈ℳ (Ω)
1

2

∥𝐴𝜇 − 𝑏∥2 + 𝛼 ∥𝜇∥ℳ (Ω)

for a regularisation parameter 𝛼 > 0, measurement data 𝑏 ∈ ℝ𝑛
, and a forward operator 𝐴 ∈

𝕃(ℳ(Ω);ℝ𝑛) in the space ℳ(Ω) of Radon measures on Ω ⊂ ℝ𝑚
. Commonly 𝐴 consists of sev-

eral convolution operators over the sensors of a sensor grid. Most iterative algorithms in the literature

for (1.1) are based on the Frank–Wolfe conditional gradient method [21]. Forward-backward splitting

and other proximal-type methods are notably absent. Wewant to understandwhy are true proximal-type

methods not amenable to (1.1)—or are they?

The basic scheme of conditional gradient methods [5, 17, 18, 29, 3, 16] for (1.1) is to add a single Dirac

measure (or spike) to the discrete measure 𝜇, and then optimise the weights of the spikes so far inserted.

Repeat. The location of the spike is discovered bymaximising |𝐴∗(𝐴𝜇−𝑏) |, where𝐴∗ ∈ 𝕃(ℝ𝑛
;𝐶0(Ω)) is

a pre-adjoint of 𝐴. This is a difficult non-convex optimisation problem. Some also include spike sliding

[17]. The approach has been extended to curve discovery [4]. Semismooth Newton approaches have also

been proposed [8, 9], and recently, an approach based on semi-infinite programming [19]. In some cases

particle gradient descent can be used after lifting the measures to a higher-dimensional space [12, 14].

The number of particles (or point sources) is, however, fixed, although many-particle limits are also

analysed. In [13] standard Bregman-proximal methods are applied to point source reconstruction by

working with densities with respect to a fixed reference measure. In practical application, the reference

measure is discretised, so the method is not grid-free: the sources cannot be located at arbitrary points

of the domain Ω.
Forward-backward splitting is commonly used for ℓ1-regularised regression (Lasso), which is a

discrete, finite-dimensional variant of (1.1). With 𝐹 (𝜇) = 1

2
∥𝐴𝜇 − 𝑏∥2

, we can also sketch forward-

backward splitting for (1.1) as solving on each step 𝑘 ∈ ℕ the surrogate problem

(1.2) 𝜇𝑘+1 ∈ arg min

0≤𝜇∈ℳ (Ω)
𝐹 (𝜇𝑘 ) + ⟨𝐹 ′(𝜇𝑘 ) |𝜇 − 𝜇𝑘⟩ + 𝛼 ∥𝜇∥ℳ + proximal penalty.
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In Hilbert spaces the proximal penalty would be
1

2𝜏 ∥𝜇 − 𝜇𝑘 ∥2
for a step length parameter 𝜏 > 0

satisfying 𝜏𝐿 < 1 for a Lipschitz factor 𝐿 of 𝐹 ′. This choice is not practical in non-Hilbert spaces, as a

crucial (Pythagoras’) three-point identity does not hold. Such an identity, however, holds for Bregman

divergences [6]; see [34]. The Frank–Wolfe method can, moreover, be seen a forward-backward method

for a modified but equivalent problem
1
with zero as the proximal penalty. However, as 𝐹 ′ cannot be

Lipschitz with respect to such a degenerate proximal penalty, a form of line search is employed to ensure

descent. In the case of (1.1), this amounts to the finite-dimensional weight optimisation subproblems.

These considerations raise the question whether we could develop a distance onℳ(Ω) that would
give a practical forward-backward method?

As the first stage of our endeavour to understand (1.1), documented in this manuscript, we were able

to do so simply by constructing onℳ(Ω) the semi-inner product

⟨𝜇, 𝜈⟩𝒟 := ⟨𝒟𝜇 |𝜈⟩ (𝜇, 𝜈 ∈ ℳ(Ω))
for a “particle-to-wave” operator𝒟 : 𝕃(ℳ(Ω);𝐶0(Ω)), and then basing the proximal penalty in (1.2)

on the square of the induced semi-norm ∥ · ∥𝒟. We analyse an exemplifying choice of 𝒟 based on

convolution in Section 2. In particular we relate it to the weak-∗ convergence of measures. To develop

in Section 4 a forward-backward method for (1.1), we will need 𝐹 ′ to be Lipschitz with respect to ∥ · ∥𝒟.
For the squared data term, this reduces to 𝐴∗𝐴 ≤ 𝐿𝒟 for some factor 𝐿 ≥ 0. Based on approximation

theory [11], Bochner’s theorem and Fourier transforms, we study this relationship in Section 3.

Our convergence proofs in Section 4 are then standard and simple [33, 15]. However, we will need

to account for inexact computation of each step of the method. The resulting approach bears more

resemblance to the semi-infinite approach of [19] than to conditional gradient methods in that more

than one point may need to be inserted into the support of 𝜇 on each iteration of the method. Inertial

extensions, i.e., FISTA [2] for (1.1), are immediate. We treat one in Section 5.

A forward-backward or conditional gradient method can only handle differentiable data terms with

nonsmooth (Radon norm) regularisation. However, our overall approach readily extends to other

proximal-type type methods. We therefore sketch in Section 6 an extension of the primal dual proximal

splitting (PDPS) of [10] to problems of the form

min

0≤𝜇∈ℳ (Ω)
𝐹0(𝐴𝜇) + 𝛼 ∥𝜇∥ℳ,

where 𝐹0 may be nonsmooth. Thus our overall approach is applicable to problems that are (so far) out

of the reach of conditional gradient methods. As a further advantage, thanks to standard convergence

proofs, our methods can readily be extended to product spacesℳ(Ω) × 𝑋 for 𝑋 a Hilbert space.

We finish with numerical demonstrations in Section 7.

notation

We denote the extended reals by ℝ := [−∞,∞], and the space of finite Radon measures on a locally

compact Borel measurable set Ω ⊂ ℝ𝑛
by ℳ(Ω). We write ∥ · ∥ℳ (Ω) or, for short, ∥ · ∥ℳ for the

Radon norm. The subspace𝒵(Ω) ⊂ ℳ(Ω) consists of discrete measures 𝜇 =
∑𝑛

𝑘=1
𝛼𝑘𝛿𝑥𝑘 for any 𝑛 ∈ ℕ,

where the weights 𝛼𝑘 ∈ ℝ, and locations 𝑥𝑘 ∈ Ω. Here, 𝛿𝑥 is the Dirac measure with mass one at

a point 𝑥 ∈ Ω. For 𝜇 ∈ ℳ(Ω) and a Borel set 𝐴 ⊂ Ω, we write 𝜇⌞𝐴 for the measure defined by

(𝜇⌞𝐴) (𝐵) := 𝜇 (𝐴 ∩ 𝐵) for Borel sets 𝐵. We denote by 𝐵(𝑥, 𝑟 ) the closed ball of radius 𝑟 > 0 and centre

𝑥 , and by #𝐾 the cardinality of a finite set 𝐾 .

For Fréchet differentiable 𝐹 : 𝑋 → 𝑅 on a normed space 𝑋 , we write 𝐹 ′(𝑥) ∈ 𝑋 ∗
for the Fréchet

derivative at 𝑥 ∈ 𝑋 . Here 𝑋 ∗
is the dual space to 𝑋 . We call 𝐹 pre-differentiable if 𝐹 ′(𝑥) ∈ 𝑋∗ for 𝑋∗ a

1∥𝜇∥ℳ (Ω) is replaced by 𝜑 (∥𝜇∥ℳ (Ω) ) for 𝜑 that quadratically penalises values greater than 𝐹 (0)/𝛼 .
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designated predual space of 𝑋 , satisfying 𝑋 = (𝑋∗)∗. We have (𝑋∗)∗∗ = 𝑋 ∗
, so 𝑋∗ canonically injects

into 𝑋 ∗
. A predual of ℳ(Ω) is the space 𝐶𝑐 (Ω) of continuous functions with compact support. We

write 𝐶0(Ω) := cl𝐶𝑐 (Ω) for continuous functions on Ω that vanish at infinity, which is also a predual

space of ℳ(Ω) [20, Theorem 1.200].

For a convex function 𝐹 : 𝑋 → ℝ, we write 𝜕𝐹 : 𝑋 ⇒ 𝑋∗ for the (set-valued) pre-subdifferential
map or, defined as 𝜕𝐹 (𝑥) = {𝑥∗ ∈ 𝑋∗ | 𝐹 (𝑥) − 𝐹 (𝑥) ≥ ⟨𝑥∗ |𝑥 − 𝑥⟩ for all 𝑥 ∈ 𝑋 }. We write 𝛿𝐶 : 𝑋 → ℝ

for the {0,∞}-valued indicator function of a set 𝐶 ⊂ 𝑋 . Observe that the notation has similarities to

the Dirac measure.

We write ⟨𝑥, 𝑥 ′⟩ for the inner product between two elements 𝑥 and 𝑥 ′ of a Hilbert space 𝑋 , and
⟨𝑥∗ |𝑥⟩ := 𝑥∗(𝑥) for the dual product in a Banach space. We write 𝕃(𝑋 ;𝑌 ) for the space of bounded
linear operators between two vector spaces 𝑋 and 𝑌 . For 𝐴 ∈ 𝕃(𝑋 ;𝑌 ), we write ran𝐴 ⊂ 𝑌 for the

range. We let Id ∈ 𝕃(𝑋 ;𝑋 ) stand for the identity operator. With 𝑌 a Hilbert space for simplicity, we call

𝐴 ∈ 𝕃(𝑋 ;𝑌 ) pre-adjointable if there exists a pre-adjoint 𝐴∗ : 𝕃(𝑋∗;𝑌 ) whose mixed Hilbert–Banach

adjoint (𝐴∗)∗ = 𝐴. In other words ⟨𝑥 |𝐴∗𝑧⟩ = ⟨𝐴𝑥, 𝑧⟩ for all 𝑧 ∈ 𝑌 and 𝑥 ∈ 𝑋 .
With 𝕚 =

√−1 the imaginary unit, we write ℱ𝑢 or 𝑢 for the Fourier transform, defined for of

𝑢 ∈ 𝐿1(ℝ𝑛) by
[ℱ𝑢] (𝜉) :=

∫
ℝ𝑛

𝑢 (𝑥)𝑒−2𝜋 𝕚⟨𝑥,𝜉 ⟩ 𝑑𝑥 (𝜉 ∈ ℝ𝑛),

and for 𝑢 ∈ 𝐿2(ℝ𝑛) by continuous extension; see [31]. Then the Hilbert-space adjoint ℱ∗ = ℱ−1
. We

occasionally also take Fourier transforms of measures as tempered distributions. We write 𝑢 ∗ 𝑣 for the
convolution and𝒜𝑢 = 𝑢 ∗𝑢 for the autoconvolution of functions𝑢, 𝑣 , recalling thatℱ [𝑢]2 = ℱ [𝒜 [𝑢]].

2 distances of measures

As we have mentioned in the introduction, the norm or the squared norm is not particularly useful

for deriving proximal-type methods in non-Hilbert spaces. Nevertheless, let𝑀 (𝜇) := 1

2
∥𝜇∥2

ℳ (Ω) . The
preduality map 𝜇 ↦→ 𝜕𝑀 (𝜇), ℳ(Ω) ⇒ 𝐶0(Ω) associates with every measure 𝜇 ∈ ℳ(Ω)) a set of

corresponding “wave functions”

𝜔𝜇 ∈ 𝜕𝑀 (𝜇) = {𝜔 ∥𝜇∥ℳ (Ω) | 𝜔 ∈ 𝐶0(Ω), −1 ≤ 𝜔 ≤ 1, ⟨𝜔 |𝜇⟩ = ∥𝜇∥ℳ (Ω) }.
If this relationship were linear and single-valued, as it is in Hilbert spaces,𝑀 (𝜇−𝜇𝑘 ) could be a practical
proximal penalty term in (1.2). Unfortunately, this is not the case inℳ(Ω). However, the concept of
the preduality map suggests to define a distance on measures using some particle-to-wave operator

𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)) that explicitly and linearly associates every measure, in the manuscript typically

a discrete measure, with a corresponding wave function, an element of the predual. In Section 2.2 we

will study such operators based on convolution. Before this, in Section 2.1 we study general properties

of seminorms and semi-inner products constructed with linear operators𝒟 to a predual space.

2.1 wave-particle duality

Let 𝑋 be a (real) Banach space with a predual space 𝑋∗, i.e., 𝑋 = (𝑋∗)∗. Pick𝒟 ∈ 𝕃(𝑋 ;𝑋∗), which is

self-adjoint and positive semi-definite, that is,

⟨𝒟𝑥 |𝑦⟩𝑋∗,𝑋 = ⟨𝑥 |𝒟𝑦⟩𝑋,𝑋∗ (𝑥, 𝑦 ∈ 𝑋 )(2.1)

and

⟨𝒟𝑥 |𝑥⟩𝑋∗,𝑋 ≥ 0 (𝑥, 𝑥 ∈ 𝑋 ).(2.2)

If the latter inequality is strict, we call 𝒟 (strictly) positive definite. Define

⟨𝑥, 𝑥⟩𝒟 := ⟨𝒟𝑥 |𝑥⟩𝑋∗,𝑋 and ∥𝑥 ∥𝒟 :=
√︁
⟨𝑥, 𝑥⟩𝒟.
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Then it is easy to see that ⟨ · , · ⟩𝒟 is a pseudo-inner product on 𝑋 , and ∥ · ∥𝒟 a seminorm, i.e., non-

negative and satisfies the triangle inequality. Consequently, by a standard argument,
2
it also satisfies

the Cauchy–Schwarz inequality. Moreover, the three-point identity holds:

(2.3)

1

2

∥𝑥 − 𝑦 ∥2

𝒟 =
1

2

⟨𝒟(𝑥 − 𝑦) |𝑥 − 𝑦⟩

=
1

2

⟨𝒟((𝑥 − 𝑧) + (𝑧 − 𝑦)) | (𝑥 − 𝑧) + (𝑧 − 𝑦)⟩

=
1

2

∥𝑥 − 𝑧∥2

𝒟 + 1

2

∥𝑧 − 𝑦 ∥2

𝒟 + ⟨𝑥 − 𝑧, 𝑧 − 𝑦⟩𝒟.

If𝒟 is injective, this construction turns 𝑋 into an inner product space. The (semi-)norm ∥ · ∥𝒟 may

not, however, be equivalent to the original norm ∥ · ∥ on 𝑋 . Since 𝒟 is assumed bounded, we always

have ∥𝑥 ∥𝒟 ≤ ∥𝒟∥∥𝑥 ∥, so the induced topology is weaker than the original (strong) topology. If the

opposite inequality also holds, the norms are equivalent. For our constructions, this will, however, not

be the case.

2.2 particle-to-wave operators based on convolution

We now take𝒟𝜇 = 𝜌 ∗ 𝜇 for a convolution kernel 𝜌 ∈ 𝐶0(ℝ𝑛). We call 𝜌 symmetric if 𝜌 (−𝑥) = 𝜌 (𝑥) for
all 𝑥 ∈ ℝ𝑛

, and positive semi-definite if 0 ≤ ℱ [𝜌]. We first show that𝒟 is well-defined. Throughout,

we take 𝐶0(Ω) as our designated predual space ofℳ(Ω). When Ω is compact, 𝐶0(Ω) = 𝐶 (Ω).
Lemma 2.1. Let 𝜌 ∈ 𝐶0(ℝ𝑛) be symmetric. On a closed domain Ω ⊂ ℝ𝑛

, let𝒟𝜇 := 𝜌 ∗ 𝜇 for 𝜇 ∈ ℳ(Ω).
Then 𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)) and is self-adjoint, i.e., satisfies (2.1).
Proof. The definition of the convolution readily shows that𝒟𝜇 ∈ 𝐶 (Ω). Let 𝜀 > 0. Since 𝜌 is continuous

and vanishes at infinity, ∥𝜌 ∥∞ < ∞, and there exist 𝑟 > 0 such that |𝜌 (𝑥) | ≤ 𝜀 for 𝑥 ∈ ℝ𝑛 \ 𝐵(0, 𝑟 ).
Consequently

| [𝒟𝜇] (𝑦) | ≤
����∫

𝐵 (𝑦,𝑟 )
𝜌 (𝑦 − 𝑥) 𝑑𝜇 (𝑥)

���� + ����∫
Ω\𝐵 (𝑦,𝑟 )

𝜌 (𝑦 − 𝑥) 𝑑𝜇 (𝑥)
���� ≤ ∥𝜌 ∥∞ |𝜇 | (𝐵(𝑦, 𝑟 )) + 𝜀∥𝜇∥ℳ (Ω) .

Since ∥𝜇∥ℳ (Ω) < ∞, for any 𝜀 > 0, we can find 𝑅 > 0 such that 𝜇 (ℝ𝑛 \𝐵(0, 𝑅)) ≤ 𝜀. Thus | [𝒟𝜇] (𝑦) | ≤
𝜀 (∥𝜌 ∥∞ + ∥𝜇∥ℳ (Ω) ) for ∥𝑦 ∥ > 𝑟 + 𝑅. Since 𝜀 > 0 was arbitrary, this shows that 𝒟𝜇 ∈ 𝐶0(ℝ𝑛). Since
Ω is closed, it follows that 𝒟𝜇 ∈ 𝐶0(Ω). Indeed, by the definition of 𝐶0(Ω) as the closure of 𝐶𝑐 (Ω),
there exist 𝜑𝑘 ∈ 𝐶𝑐 (ℝ𝑛) with 𝜑𝑘 → 𝒟𝜇 uniformly in ℝ𝑛

. But for a closed Ω, 𝜑𝑘 |Ω ∈ 𝐶𝑐 (Ω) with
𝜑𝑘 |Ω → (𝒟𝜇) |Ω uniformly in Ω.
We then expand and rearrange using Fubini’s theorem for any 𝜈 ∈ ℳ(Ω) that

(2.4) ⟨𝒟𝜇 |𝜈⟩𝐶0 (Ω),ℳ (Ω) =
∫
Ω
[𝒟𝜇] (𝑥) 𝑑𝜈 (𝑥) =

∫
Ω

∫
Ω
𝜌 (𝑥 − 𝑦) 𝑑𝜇 (𝑦) 𝑑𝜈 (𝑥)

=
∫
Ω

∫
Ω
𝜌 (𝑥 − 𝑦) 𝑑𝜈 (𝑥) 𝑑𝜇 (𝑦) =

∫
Ω

∫
Ω
𝜌 (𝑦 − 𝑥) 𝑑𝜈 (𝑥) 𝑑𝜇 (𝑦)

=
∫
Ω
[𝜌 ∗ 𝜈] (𝑦)𝜇 (𝑦) = ⟨𝒟𝜈 |𝜇⟩𝐶0 (Ω),ℳ (Ω) .

Hence ∥𝜌 ∗𝜈 ∥∞ ≤ ∥𝜌 ∥∞∥𝜈 ∥ℳ ; see, e.g., [1, §2.1]. Consequently (2.4) establishes ⟨𝒟𝜇 |𝜈⟩𝐶0 (Ω),ℳ (Ω) ≤
∥𝜌 ∥∞∥𝜈 ∥ℳ ∥𝜇∥ℳ . This shows that𝒟 is bounded. It is evidently also linear so that𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω))
as claimed. From (2.4) we also observe that𝒟 is self-adjoint. □

2⟨𝜇, 𝜈⟩𝒟 = 1

2
∥𝜇 − 𝜈 ∥2

𝒟
− 1

2
∥𝜇∥2

𝒟
− 1

2
∥𝜈 ∥2

𝒟
≤ 1

2
(∥𝜇∥𝒟 + ∥𝜈 ∥𝒟)2 − 1

2
∥𝜇∥2

𝒟
− 1

2
∥𝜈 ∥2

𝒟
= ∥𝜇∥𝒟∥𝜈 ∥𝒟.
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We now characterise weak-∗ convergence in terms of 𝒟-seminorms. Following [11, Chapter 18] we

call a subset 𝑉 of a normed space 𝑋 fundamental if cl span𝑉 is dense in 𝑋 . We are interested in the

fundamentality in 𝐶0(Ω) of
𝑉𝜌 (Ω) := {𝑥 ↦→ 𝜌 (𝑥 − 𝑦) | 𝑦 ∈ Ω}.

According to [11, Theorem 18.1], this is the case whenℱ [𝜌] is a finite-valued real non-negative measure

and satisfies for all non-empty open sets𝑈 ⊂ ℝ𝑛
the strict lower bound

(2.5)

∫
𝑈
ℱ [𝜌] (𝜉) 𝑑𝜉 > 0.

Example 2.2. Since the Fourier transform of a Gaussian 𝜌 is a Gaussian, 𝑉𝜌 (Ω) is fundamental in

𝐶 (Ω) for any compact Ω ⊂ ℝ𝑛
.

We will require the following lemma on a few occasions.

Lemma 2.3. Suppose 𝜑 ∈ 𝐶0(ℝ𝑛), the domain Ω ⊂ ℝ𝑛
, and {𝜇𝑘 }𝑘∈ℕ ⊂ ℳ(Ω) is bounded. Then the

collection {𝑥 ↦→ [𝜑 ∗ 𝜇𝑘 ] (𝑥)}𝑘∈ℕ is uniformly equicontinuous on cl Ω.

Proof. Let 𝜀 > 0 and 𝐶 := sup𝑘∈ℕ ∥𝜇𝑘 ∥ℳ (Ω) . By assumption 𝐶 < ∞. Since 𝜑 ∈ 𝐶0(ℝ𝑛), it is uniformly

continuous. Therefore, there exists 𝛿 > 0 such that |𝜑 (𝑥) − 𝜑 (𝑦) | ≤ 𝜀 whenever ∥𝑥 − 𝑦 ∥ ≤ 𝛿 . Now

| [𝜑 ∗ 𝜇𝑘 ] (𝑥) − [𝜑 ∗ 𝜇𝑘 ] (𝑦) | ≤
∫
Ω
|𝜑 (𝑥 − 𝑧) − 𝜑 (𝑦 − 𝑧) | 𝑑 |𝜇𝑘 | (𝑧) ≤

∫
Ω
𝜀 𝑑 |𝜇𝑘 | (𝑧) ≤ 𝐶𝜀

for any 𝑘 ∈ ℕ and 𝑥, 𝑦 ∈ Ω with ∥𝑥 − 𝑦 ∥ ≤ 𝛿 . Since the right hand side 𝐶𝜀 does not depend on 𝑘 , and

can be made arbitrarily small for sufficiently small 𝜀 and corresponding 𝛿 , this proves the claim. □

Now we can state and prove our main result on particle-to-wave operators based on convolution.

Recall that we write 𝒜𝑢 := 𝑢 ∗ 𝑢 for the autoconvolution.

Theorem 2.4. Let 0 . 𝜌 ∈ 𝐶0(ℝ𝑛) ∩ 𝐿2(ℝ𝑛) be symmetric and positive semi-definite. On a closed domain

Ω ⊂ ℝ𝑛
, let𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)) be defined by𝒟𝜇 = 𝜌 ∗ 𝜇 for 𝜇 ∈ ℳ(Ω). Then

(i) 𝒟 is self-adjoint and positive semi-definite.

(ii) 𝒟 is (strictly) positive definite on the discrete measures𝒵(Ω).

Assume further that Ω is compact, and that there exists 𝜌1/2 ∈ 𝐿2(ℝ𝑛) ∩𝐶0(ℝ𝑛) such that 𝜌 = 𝒜 [𝜌1/2].
Then

(iii) 𝜇𝑘 ∗⇀ 𝜇 weakly-∗ inℳ(Ω) implies ∥𝜇𝑘 − 𝜇∥𝒟 → 0.

(iv) If 𝑉𝜌1/2 is fundamental for 𝐶0(Ω), then ∥𝜇𝑘 − 𝜇∥𝒟 → 0 with {𝜇𝑘 }𝑘∈ℕ ⊂ ℳ(Ω) bounded implies

𝜇𝑘 ∗⇀ 𝜇 weakly-∗ inℳ(Ω).

Proof. We know from Lemma 2.1 that𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)), and is self-adjoint. Bochner’s theorem

proves (i), and (ii) follows from [11, Theorem 13.3]. However, due to slightly different assumptions for

the latter, we find it easiest to provide the proofs. We write 𝜌 = ℱ [𝜌]. Since 𝜌 ∈ 𝐿2(ℝ𝑛) is symmetric,

also 𝜌 ∈ 𝐿2(ℝ𝑛) is symmetric. Therefore, by Fubini’s theorem and the Fourier inverse transform, we

Valkonen Proximal methods for point source localisation
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have

(2.6) ⟨𝒟𝜇 |𝜇⟩ =
∫
Ω

∫
Ω
𝜌 (𝑥 − 𝑦) 𝑑𝜇 (𝑥) 𝑑𝜇 (𝑦)

=
∫
Ω

∫
Ω

∫
ℝ𝑛

𝜌 (𝜉)𝑒2𝜋 𝕚⟨𝜉,𝑥−𝑦 ⟩ 𝑑𝜉 𝑑𝜇 (𝑥) 𝑑𝜇 (𝑦)

=
∫
ℝ𝑛

𝜌 (𝜉)
����∫

Ω
𝑒−2𝜋 𝕚⟨𝜉,𝑥 ⟩ 𝑑𝜇 (𝑥)

����2 𝑑𝜉
=

∫
ℝ𝑛

𝜌 (𝜉) |ℱ [𝜇] (𝜉) |2 𝑑𝜉 .

Since 𝜌 ≥ 0 by our definition of the positive semi-definiteness of 𝜌 , this shows (i).

To prove (ii), we start by observing that since 𝜌 ∈ 𝐿2(ℝ𝑛) is not identically zero and has 𝜌 ≥
0, necessarily

∫
𝜌 𝑑𝜉 > 0. But then there exists 𝜀 > 0 and a Borel set 𝐸 with nonzero Lebesgue

measure such that 𝜌 ≥ 𝜀 on 𝐸. When 𝜇 ∈ 𝒵(Ω), the zero set of the continuous function ℱ [𝜇],
a finite sum of complex exponentials, has Lebesgue measure zero by [11, Lemma 13.6]. Therefore∫
ℝ𝑛 𝜌 (𝜉) |ℱ [𝜇] (𝜉) |2 𝑑𝜉 ≥ 𝜀

∫
𝐸
|ℱ [𝜇] (𝜉) |2 𝑑𝜉 > 0. The claim now follows from (2.6).

For (iii) we observe that 𝒟 = 𝒬∗𝒬 for 𝒬 ∈ 𝕃(ℳ(Ω);𝐿2(ℝ𝑛)) defined by 𝒬𝜇 := 𝜌1/2 ∗ 𝜇 and

𝒬∗ 𝑓 := 𝜌1/2 ∗ 𝑓 for 𝑓 ∈ 𝐿2(ℝ𝑛) and 𝜇 ∈ ℳ(Ω). We therefore need to prove that 𝜌1/2 ∗ (𝜇𝑘 − 𝜇) → 0 in

𝐿2(ℝ𝑛). Observe that 𝜌1/2

𝑦 (𝑥) := 𝜌1/2(𝑥 − 𝑦) satisfies 𝜌1/2

𝑦 ∈ 𝐶0(Ω) for all 𝑦 ∈ ℝ𝑛
. (For this we need the

closedness of Ω, but not yet the boundedness; compare the proof of Lemma 2.1.) Thus ⟨𝜌1/2

𝑥 |𝜇𝑘 −𝜇⟩ → 0

for all 𝑥 ∈ ℝ𝑛
by the assumed weak-∗ convergence. Since by assumption 𝜌1/2 ∈ 𝐿2(ℝ𝑛), we can for

each 𝜀 > 0 find a bounded𝑈𝜀 ⊂ ℝ𝑛
such that

∫
ℝ𝑛\𝑈𝜀

𝜌1/2(𝑥)2 𝑑𝑥 ≤ 𝜀∥𝜌1/2∥2∞. Letting Θ𝜀 := 𝑈𝜀 + Ω, for
all 𝑦 ∈ Ω then∫

ℝ𝑛\Θ𝜀

𝜌
1/2

𝑦 (𝑥)2 𝑑𝑥 =
∫
ℝ𝑛\(Θ𝜀−𝑦 )

𝜌1/2(𝑥)2 𝑑𝑥 ≤
∫
ℝ𝑛\𝑈𝜀

𝜌1/2(𝑥)2 𝑑𝑥 ≤ 𝜀∥𝜌1/2∥2

∞.

Using Jensen’s inequality and Fubini’s theorem, then∫
ℝ𝑛\Θ𝜀

[𝜌1/2 ∗ (𝜇𝑘 − 𝜇)] (𝑥)2 𝑑𝑥 =
∫
ℝ𝑛\Θ𝜀

(∫
Ω
𝜌

1/2

𝑦 (𝑥) 𝑑 |𝜇𝑘 − 𝜇 | (𝑦)
)

2

𝑑𝑥

≤ ∥𝜇𝑘 − 𝜇∥ℳ
∫
ℝ𝑛\Θ𝜀

∫
Ω
𝜌

1/2

𝑦 (𝑥)2 𝑑 |𝜇𝑘 − 𝜇 | (𝑦) 𝑑𝑥

= ∥𝜇𝑘 − 𝜇∥ℳ
∫
Ω

∫
ℝ𝑛\Θ𝜀

𝜌
1/2

𝑦 (𝑥)2 𝑑𝑥 𝑑 |𝜇𝑘 − 𝜇 | (𝑦)

≤ 𝜀∥𝜌1/2∥2

∞∥𝜇𝑘 − 𝜇∥2

ℳ .

The set Θ𝜀 is of finite measure, because Ω is bounded. By Egorov’s theorem we can thus find a

set 𝐸𝜀 ⊂ Θ𝜀 such that the Lebesgue measureℒ(Θ𝜀 \ 𝐸𝜀) ≤ 𝜀 and 𝑥 ↦→ ⟨𝜌1/2

𝑥 |𝜇𝑘 − 𝜇⟩ converges in 𝐸𝜀
uniformly to zero. Then∫

ℝ𝑛

[𝜌1/2 ∗ (𝜇𝑘 − 𝜇)] (𝑥)2 𝑑𝑥 =
∫
𝐸𝜀

⟨𝜌1/2

𝑥 |𝜇𝑘 − 𝜇⟩2 𝑑𝑥 +
∫
Θ𝜀\𝐸𝜀

[𝜌1/2 ∗ (𝜇𝑘 − 𝜇)] (𝑥)2 𝑑𝑥

+
∫
ℝ𝑛\Θ𝜀

[𝜌1/2 ∗ (𝜇𝑘 − 𝜇)] (𝑥)2 𝑑𝑥

≤
∫
𝐸𝜀

⟨𝜌1/2

𝑥 |𝜇𝑘 − 𝜇⟩2 𝑑𝑥 + 2𝜀∥𝜌1/2∥2

∞∥𝜇𝑘 − 𝜇∥2

ℳ .

Thus lim sup𝑘→∞ ∥𝜌1/2 ∗ (𝜇𝑘 − 𝜇)∥𝐿2 (ℝ𝑛 ) ≤ √
2𝜀∥𝜌1/2∥∞ sup𝑘 ∥𝜇𝑘 − 𝜇∥ℳ . Since 𝜀 > 0 was arbitrary,

and {𝜇𝑘 − 𝜇}𝑘∈ℕ is bounded by weak-∗ convergence, it follows that 𝜌1/2 ∗ (𝜇𝑘 − 𝜇) → 0 in 𝐿2(ℝ𝑛).

Valkonen Proximal methods for point source localisation
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For (iv) we note that since 𝑉𝜌1/2 is by assumption fundamental for 𝐶0(Ω), we can for any 𝜑 ∈ 𝐶0(Ω)
and 𝜀 > 0 find a finite set𝑈𝜀 ⊂ Ω and coefficients {𝛼𝑦 }𝑦∈𝑈𝜀

⊂ ℝ such that

sup

𝑥∈Ω

�����𝜑 (𝑥) − ∑︁
𝑦∈𝑈𝜀

𝛼𝑦𝜌
1/2

𝑦 (𝑥)
����� < 𝜀.

Then, for all 𝑘 ∈ ℕ,

(2.7) ⟨𝜑 |𝜇𝑘 − 𝜇⟩ =
∑︁
𝑦∈𝑈𝜀

⟨𝛼𝑦𝜌1/2

𝑦 |𝜇𝑘 − 𝜇⟩ +
〈
𝜑 −

∑︁
𝑦∈𝑈𝜀

𝛼𝑦𝜌
1/2

𝑦

����� 𝜇𝑘 − 𝜇
〉
.

The assumption ∥𝜇𝑘 − 𝜇∥𝒟 → 0 readily implies 𝜌1/2 ∗ (𝜇𝑘 − 𝜇) → 0 in 𝐿2(ℝ𝑛). Hence, there exists
a subsequence {𝑘 𝑗 } 𝑗∈ℕ of {𝑘}𝑘∈ℕ such that 𝜌1/2 ∗ (𝜇𝑘 𝑗 − 𝜇) → 0 almost everywhere. Since, by the

Heine–Borel theorem, Ω is bounded, and sup𝑘∈ℕ ∥𝜇𝑘 − 𝜇∥ℳ (Ω) ≤ 𝑀 for some 𝑀 > 0, Lemma 2.3

shows that the family {𝜌1/2 ∗ (𝜇𝑘 − 𝜇)}𝑘∈ℕ is uniformly equicontinuous on Ω. By a compact covering

argument, it follows that 𝜌1/2 ∗ (𝜇𝑘 𝑗 − 𝜇) → 0 uniformly on Ω. In particular, |⟨𝛼𝑦𝜌1/2

𝑦 |𝜇𝑘 𝑗 − 𝜇⟩| < 𝜀/#𝑈𝜀

for all 𝑦 ∈ 𝑈𝜀 for 𝑗 ∈ ℕ large enough. It follows from (2.7) that

(2.8) |⟨𝜑 |𝜇𝑘 𝑗 − 𝜇⟩| ≤ (1 +𝑀)𝜀 for 𝑗 large enough.

Since 𝜀 > 0 and 𝜑 ∈ 𝐶0(Ω) were arbitrary, we deduce 𝜇𝑘 𝑗 ∗⇀ 𝜇. If there would exist a subsequence

{𝜇𝑘ℓ }ℓ∈ℕ of {𝜇𝑘 }𝑘∈ℕ not weakly-∗ convergent to 𝜇, then we could find a further unrelabelled subse-

quence, 𝜀 > 0, and 𝜑 ∈ 𝐶0(Ω) such that |⟨𝜑 |𝜇𝑘ℓ − 𝜇⟩| ≥ 2(1 +𝑀)𝜀 for all ℓ ∈ ℕ. Repeating the above

arguments, we would obtain (2.8), hence a contradiction. Therefore 𝜇𝑘 ∗⇀ 𝜇. □

Corollary 2.5. Let all the assumptions of Theorem 2.4 (iv) hold. Then ∥ · ∥𝒟 is a norm on ℳ(Ω).
Proof. Based on the discussion that in the beginning of Section 2.1, it only remains to prove that

∥𝜇 − 𝜈 ∥𝒟 = 0 implies 𝜇 = 𝜈 . Indeed, setting 𝜇𝑘 = 𝜇 for all 𝑘 ∈ ℕ, we have ∥𝜇𝑘 − 𝜈 ∥𝒟 → 0. Then

Theorem 2.4 (iv) implies 𝜇 = 𝜇𝑘 ∗⇀ 𝜈 . Thus 𝜇 = 𝜈 . □

3 convolution kernels and sensor grids

We will need the data term 𝐹 (𝜇) = 1

2
∥𝐴𝜇 − 𝑏∥2

to satisfy a smoothness property also known as the

“descent lemma” with respect to the wave-particle norm ∥ · ∥𝒟. As shown in, e.g., [15, Lemma 7.1], this

in general follows from 𝐹 ′ being Lipschitz. In our case the Lipschitz property needs to be with respect

to the 𝒟-seminorm. For quadratic 𝐹 as in (1.1), this requirement reduces to

𝐴∗𝐴 ≤ 𝐿𝒟 for some 𝐿 > 0.

This means that we have to find𝒟 such that 𝐿𝒟−𝐴∗𝐴 is positive semi-definite. We could take𝒟 = 𝐴∗𝐴
and 𝐿 = 1 and still obtain a theoretical algorithm with convergent function values, although in general

not the weak-∗ convergence of iterates. However, the proximal step of the method that we develop in

the next section consists of finding new points 𝑥 to insert into the support of 𝜇𝑘+1
to approximately

satisfy first-order optimality conditions for (1.2) with
1

2
∥ · ∥𝒟 as the proximal penalty. To avoid such

an insertion from perturbing optimality conditions globally, it will be practical if 𝒟𝛿𝑥 is localised

around 𝑥 . This can be achieved when 𝒟 is a simple convolution operator. However, even for physical

processes that can be modelled as convolutions, 𝐴∗𝐴 is in general not exactly a convolution operator

when the range of 𝐴 consists of measurements on a finite sensor grid, and its effects are not localised:

𝐴∗𝐴𝛿𝑥 may have multiple peaks.

Valkonen Proximal methods for point source localisation
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We will, therefore, first in Section 3.1 construct upper approximations by convolution operators

𝒟 for forward operators 𝐴 modelling measurements of convolved signals on a finite sensor grid. We

provide specific examples in Section 3.2. Although we work with convolution operators in this section,

in the following sections on our proposed algorithms, there is in general no need for 𝐴 or 𝒟 to be

based on convolution.

3.1 sensor grids

We now construct some example forward operators 𝐴, based on a simple physical spreading process

followed by sensing. More precisely, the spread 𝜓 ∈ 𝐶𝑐 (ℝ𝑛) is a convolution kernel that models the

physical spreading process of, e.g., light. If a source of unit intensity is at 𝑥 , then 𝜓 (𝑦 − 𝑥) is the
intensity that falls at 𝑦 . This light is sensed by the sensor 𝜃𝑧 ∈ 𝐿2(ℝ𝑛) ∩ 𝐿1(ℝ𝑛) placed at 𝑧 on a finite

grid 𝒢 with the sensitivity 𝜃𝑧 (𝑦). With this we define the forward operator 𝐴 as

(3.1) 𝐴𝜇 := (𝜇 (𝜃𝑧 ∗𝜓 ))𝑧∈𝒢, i.e., [𝐴𝜇]𝑧 =
∫

(𝜃𝑧 ∗𝜓 ) (𝑥) 𝑑𝜇 (𝑥) for 𝑧 ∈ 𝒢.

The sensors or, more precisely, the field-of-views of the sensors, are a technical necessity for our proof.

They can, nevertheless, also be physically justified through practical light sensors having positive

area instead of just sensing the light falling at a singular point. For 𝐴 of this form, the next lemma

establishes an upper bound on 𝐴∗𝐴 in terms of a simple convolution operator.

Lemma 3.1. Let the sensor grid𝒢 be an arbitrary finite index set with corresponding sensors 0 ≤ 𝜃𝑧 ∈
𝐿2(ℝ𝑛) ∩ 𝐿1(ℝ𝑛), (𝑧 ∈ 𝒢), satisfying for some 𝐿0 ≥ 0 the bound

(3.2) 𝐿0 ≥ sup

𝑥∈ℝ𝑛

∑︁
𝑧∈𝒢

𝜃𝑧 (𝑥)
∫
ℝ𝑛

𝜃𝑧 (𝑤) 𝑑𝑤.

Pick a symmetric spread𝜓 ∈ 𝐶0(ℝ𝑛) ∩𝐿2(ℝ𝑛), and on a domain Ω ⊂ ℝ𝑛
, define𝐴 ∈ 𝕃(ℳ(Ω);ℝ#𝒢) by

(3.1). Then the pre-adjoint 𝐴∗ ∈ 𝕃(ℝ𝑛
;𝐶0(Ω)) exists and is given by 𝐴∗𝑦 =

∑
𝑧∈𝒢 𝑦𝑧𝜃𝑧 ∗𝜓 , and we have

𝐴∗𝐴 ≤ 𝐿0⟨ · |𝒜 [𝜓 ] ∗ · ⟩.
Proof. We easily verify that (𝐴∗)∗ = 𝐴. 𝐴∗ is also bounded since 𝐴∗ = 𝐽𝐴∗ where 𝐽 is the canonical
injection 𝐶0(Ω) ↩→ ℳ(Ω)∗. We have

⟨𝜇 |𝐴∗𝐴𝜇⟩ = ∥𝐴𝜇∥2

2
=

∑︁
𝑧∈𝒢

(∫ ∫
ℝ𝑛

𝜃𝑧 (𝑤)𝜓 (𝑥 −𝑤) 𝑑𝑤 𝑑𝜇 (𝑥)
)

2

Recalling that 𝜃𝑧 ≥ 0, defining 𝐼𝜃𝑧 :=
∫
ℝ𝑛 𝜃𝑧 (𝑤) 𝑑𝑤 ∈ [0,∞), and using Hölder’s inequality, we continue

⟨𝜇 |𝐴∗𝐴𝜇⟩ =
∑︁
𝑧∈𝒢

(∫
ℝ𝑛

∫
𝜓 (𝑥 −𝑤) 𝑑𝜇 (𝑥)𝜃𝑧 (𝑤) 𝑑𝑤

)
2

≤
∑︁
𝑧∈𝒢

∫
ℝ𝑛

𝜃𝑧 (𝑤) 𝑑𝑤
∫
ℝ𝑛

(∫
𝜓 (𝑥 −𝑤) 𝑑𝜇 (𝑥)

)
2

𝜃𝑧 (𝑤) 𝑑𝑤.

Using (3.2) and the symmetricity of𝜓 , it follows

⟨𝜇 |𝐴∗𝐴𝜇⟩ ≤ 𝐿0

∫
ℝ𝑛

(∫
𝜓 (𝑥 −𝑤) 𝑑𝜇 (𝑥)

)
2

𝑑𝑤

= 𝐿0

∫
ℝ𝑛

∫
𝜓 (𝑥 −𝑤) 𝑑𝜇 (𝑥)

∫
𝜓 (𝑦 −𝑤) 𝑑𝜇 (𝑦) 𝑑𝑤

= 𝐿0

∫ ∫ ∫
ℝ𝑛

𝜓 (𝑥 −𝑤)𝜓 (𝑤 − 𝑦) 𝑑𝑤 𝑑𝜇 (𝑦) 𝑑𝜇 (𝑥)

= 𝐿0⟨𝜇 |𝒜 [𝜓 ] ∗ 𝜇⟩.
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This establishes the claim. □

Example 3.2 (Rectangular sensors). Let 𝜃𝑧 (𝑥) = 𝜒 [−𝑏,𝑏 ]𝑛 (𝑥 − 𝑧) for some 0 < 𝑏 < inf𝑧,𝑧∈𝒢 ∥𝑧 − 𝑧∥∞.
Then (3.2) is satisfied by 𝐿0 = (2𝑏)𝑛 .

Having bounded 𝐴∗𝐴 by ⟨ · |𝒜 [𝜓 ] ∗ · ⟩, we now need to bound ⟨ · |𝒜 [𝜓 ] ∗ · ⟩ by 𝒟 to establish the

overall bound 𝐴∗𝐴 ≤ 𝐿𝒟. This is done in the next theorem.

Theorem 3.3 (Putting it all together). Suppose the “spread” and the “kernel” 𝜓, 𝜌 ∈ 𝐶0(ℝ𝑛) ∩ 𝐿2(ℝ𝑛)
satisfy

(3.3) ℱ [𝜓 ]2 ≤ 𝐿1ℱ [𝜌]
Also assume 0 ≤ 𝜃𝑧 ∈ 𝐿2(ℝ) for all 𝑧 ∈ 𝒢 on a finite grid𝒢 ⊂ ℝ with 𝐿0 satisfying (3.2). For a closed

Ω ⊂ ℝ𝑛
, define

(3.4) 𝐴𝜇 := (𝜇 (𝜃𝑧 ∗𝜓 ))𝑧∈𝒢 and 𝒟𝜇 := 𝜌 ∗ 𝜇 for 𝜇 ∈ ℳ(Ω) .
Then a pre-adjoint 𝐴∗ ∈ 𝕃(ℝ𝑛

;𝐶0(Ω)) is given by 𝐴∗𝑦 =
∑

𝑧∈𝒢 𝑦𝑧𝜃𝑧 ∗𝜓 , and we have
(3.5) 𝐴∗𝐴 ≤ 𝐿0𝐿1𝒟.

Proof. Due to Lemma 3.1, we only need to show that ⟨ · |𝒜 [𝜓 ] ∗ · ⟩ ≤ 𝐿1𝒟. By Bochner’s theorem (see

[11, Chapter 12] or the proof of Theorem 2.4), and the Fourier transform convolution-multiplication

exchange rule (see, e.g., [31, Theorem 7.19]), this amounts to (3.3). □

3.2 examples

One choice satisfying Theorem 3.3 with 𝐿1 = 1 would be 𝜌 = 𝒜 [𝜓 ]. This could also easily be made to

satisfy all the additional conditions of Theorem 2.4 with 𝜌1/2 = 𝜓 , so would be an option if we were

able to calculate𝒜 [𝜓 ] efficiently. For numerical reasons, both 𝜌 and𝜓 should also have small support,

which is not the case for a Gaussian𝜓 . Therefore, we would need to cut the spread to ensure small

compact support. The next example, on the other hand, avoids even forming the autoconvolution by

taking 𝜌 = 𝜓 . Why we call the choice “fast” will be apparent once stumble onto Gauss error functions

when treating a cut Gaussian spread.

To proceed, we define for 𝑏 > 0 the hat function

(3.6) tri𝑏 (𝑡) :=
1

𝑏
𝒜 [𝜒 [−𝑏/2,𝑏/2]] (𝑡) =

{
1 − |𝑡 |/𝑏, 𝑡 ∈ (−𝑏,−𝑏),
0, otherwise.

We also recall for 𝑎 > 0 that (see, e.g., [25, Appendix 3])

(3.7) ℱ [𝜒 [−𝑎,𝑎]] = ℱ [rect( 1

2𝑎 · )] = 2𝑎 sinc(2𝜋𝑎 · ) .
for the (unnormalised) sinc 𝑡 := sin 𝑡/𝑡 .
Example 3.4 (“Fast” spread). For some 𝜎 > 0, let 𝜌 = 𝜓 and for 𝑥 ∈ ℝ,

𝜓 (𝑥) = 4

𝜎
𝒜 [tri1/2] (𝑥/𝜎) =

4

𝜎


2

3
(𝑥/𝜎 + 1)3 −1 < 𝑥/𝜎 ≤ − 1

2
,

2|𝑥/𝜎 |3 − 2(𝑥/𝜎)2 + 1

3
− 1

2
< 𝑥/𝜎 ≤ 1

2
,

− 2

3
(𝑥/𝜎 − 1)3 1

2
≤ 𝑥/𝜎 < 1,

0 otherwise.

Also let 𝜃𝑧 (𝑥) = 𝜒 [−𝑏,𝑏 ] (𝑥 − 𝑧) for some 0 < 𝑏 < inf𝑧,𝑧∈𝒢 |𝑧 − 𝑧 | on the finite grid 𝒢 ⊂ ℝ, and

Valkonen Proximal methods for point source localisation
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define 𝐴 and 𝒟 according to (3.4). Clearly supp𝜓 = supp 𝜌 = [−𝜎, 𝜎]. It can also be verified

that

∫
𝜓 𝑑𝑥 = 1. Writing

ˆ𝜓 := ℱ [𝜓 ], we expand using standard Fourier transform dilation and

convolution rules (see, e.g., [25, Appendix 3]), (3.6), and (3.7) that

ℱ [𝜓 ] (𝜉) = 4ℱ [𝒜 [tri1/2]] (𝜎𝜉) = 4ℱ [tri1/2] (𝜎𝜉)2

= 16ℱ [𝜒 [−1/4,1/4]] (𝜎𝜉)4 = 16

(
1

2

sinc(𝜋𝜎𝜉/2)
)

4

= sinc(𝜋𝜎𝜉/2)4 (𝜉 ∈ ℝ) .

Since sinc achieves its maximum at 𝜉 = 0 with value 1, it follows that ℱ [𝜓 ]2 ≤ ℱ [𝜌]. Thus we
may apply Theorem 3.3 with 𝐿1 = 1 and 𝐿0 given by Example 3.2. This gives the bound

𝐴∗𝐴 ≤ 2𝑏𝒟.

Obviously 𝜌1/2 = 2

𝜎 tri1/2( · /𝜎) ∈ 𝐿2(ℝ𝑛) ∩ 𝐶𝑐 (ℝ𝑛). The above calculations establish that∫
𝑈
ℱ [𝜌1/2] (𝜉) 𝑑𝜉 =

∫
𝑈

sinc(𝜋𝜎𝜉/2)2 𝑑𝜉 > 0 for every open set 𝑈 , so that (2.5) holds for 𝜌1/2
.

Therefore [11, Theorem 18.1] proves that 𝑉𝜌1/2 (Ω) is fundamental on compact sets Ω ⊂ ℝ𝑛
. Now

Theorem 2.4 shows that ∥ · ∥𝒟 characterises weak-∗ convergence on such sets.

Finally, to apply 𝐴, we need to be able to calculate 𝜃𝑧 ∗ 𝜓 = 𝜒 [−𝑏,𝑏 ] ∗ 𝑣 . This is a piecewise

polynomial, so easily implemented in software, although sizeable to write down case-by-case.

To base the spread𝜓 on a Gaussian, we need to cut it to have a compact support. We therefore next

construct 𝜓 = 𝜒𝑣 for a cut-off function 𝜒 and a base spread 𝑣 . Since 𝜌 = 𝒜 [𝜓 ] can be numerically

unwieldy, we also take 𝜌 = 𝜑𝑢 for 𝜑 = 𝒜 [𝜒] and a computationally simple base kernel 𝑢, in our

numerical practise 𝑢 = 𝑣 . The condition (3.8) roughly says that the base spread 𝑣 cannot be more

localised in space than the base kernel 𝑢.

In the following, we use the abbreviations 𝑢 = ℱ [𝑢], 𝑣 = ℱ [𝑣], etc., without explicit mention.

Lemma 3.5. Let 𝑢, 𝑣, 𝜒 ∈ 𝐿2(ℝ𝑛). Then (3.3) holds if 𝑣 ≥ 0 with

∫
𝑣 𝑑𝜉 < ∞, and, for some 𝐿1 ≥ 0 we have

(3.8) 𝐼𝑣𝑣 ≤ 𝐿1𝑢.

Proof. Sinceℱ [𝒜(𝜒)𝑢] (𝜉) = [𝜒2∗𝑢] (𝜉) by standard Fourier transform exchange rules for convolution

and multiplication, we need to prove for all 𝜉 ∈ ℝ𝑛
thatℱ [𝜒𝑣] (𝜉)2 ≤ [𝜒2 ∗ 𝑢] (𝜉) . If 𝐼𝑣 :=

∫
𝑣 𝑑𝜉 = 0,

also 𝑣 = 0, so this is immediate by the assumed non-negativity of 𝑢. So suppose 𝐼𝑣 > 0. Since, by

assumption 𝐼𝑣 < ∞ and 𝑣 ≥ 0, we have 𝑣 ∈ 𝐿1(ℝ𝑛). Now Hölder’s inequality shows as claimed that

(𝜒 ∗ 𝑣) (𝜉)2 =

(∫
ℝ𝑛

𝜒 (𝑧)𝑣 (𝜉 − 𝑧) 𝑑𝑧
)

2

≤
(∫

ℝ𝑛

𝑣 (𝜉 − 𝑧) 𝑑𝑧
) (∫

ℝ𝑛

𝜒 (𝑧)2𝑣 (𝜉 − 𝑧) 𝑑𝑧
)
= 𝐼𝑣 [𝜒2 ∗ 𝑣] (𝜉). □

If we want ∥ · ∥𝒟 defined with the kernel 𝜌 = 𝜑𝑢 to characterise weak convergence we need to

show for Theorem 2.4 the existence of 𝜌1/2 ∈ 𝐿2(ℝ𝑛) ∩ 𝐶0(ℝ𝑛), and that 𝑉𝜌1/2 (Ω) is fundamental.

Unfortunately, we have no simple characterisation of the requirement 𝜌1/2 ∈ 𝐶0(ℝ𝑛), although it would
hold by properties of the Fourier transform if 𝜌 were a rapidly decreasing function (i.e., a test function

for tempered distributions) [31, Chapter 7].

Lemma 3.6. Suppose 𝜌 = 𝜑𝑢 for symmetric 𝜑,𝑢 ∈ 𝐿2(ℝ𝑛) such that 𝜑,𝑢 ∈ 𝐿1(ℝ𝑛) and 𝜑,𝑢 ≥ 0. Then

there exists 𝜌1/2 ∈ 𝐿2(ℝ𝑛) such that 𝜌 = 𝒜 [𝜌1/2]. If 𝜌 ( · )1/2 ∈ 𝐿1(ℝ𝑛), then, moreover, 𝜌1/2 ∈ 𝐶0(ℝ𝑛).

Proof. We have 𝜌 = 𝜑 ∗ 𝑢 ≥ 0 with all of the Fourier transforms real-valued and symmetric by the

corresponding properties of 𝜑 and 𝑢. Since 𝜑,𝑢 ∈ 𝐿1(ℝ𝑛), standard properties of convolutions imply

𝜌 ∈ 𝐿1(ℝ𝑛). Therefore 𝜌 ( · )1/2 ∈ 𝐿2(ℝ𝑛). This quantity is non-negative, real-valued, and symmetric

by the corresponding properties of 𝜌 . Now letting 𝜌1/2
:= ℱ∗ [𝜌 ( · )1/2], since the Fourier transform is

Valkonen Proximal methods for point source localisation



J. Nonsmooth Anal. Optim. 4 (2023), 10433 page 11 of 36

by Plancherel’s theorem an isometry of 𝐿2(ℝ𝑛), it follows that 𝜌1/2 ∈ 𝐿2(ℝ𝑛). Also 𝜌1/2
is real-valued

and symmetric by the corresponding properties of 𝜌 ( · )1/2
. Finally, if 𝜌 ( · )1/2 ∈ 𝐿1(ℝ𝑛), we have

𝜌1/2 ∈ 𝐶0(ℝ𝑛) by, e.g., [31, Theorem 7.5]. □

Lemma 3.7. Let 𝜑,𝑢 ∈ 𝐿2(ℝ𝑛) ∩ 𝐿1(ℝ𝑛) satisfy:
(i) ℱ [𝑢] ≥ 0 and for every non-empty open set𝑈 ⊂ ℝ𝑛

that

∫
𝑈
ℱ [𝑢] (𝜉) 𝑑𝜉 > 0.

(ii) ℱ [𝜑] ≥ 0 and for every 𝑟 > 0,

∫
𝐵 (0,𝑟 ) ℱ [𝜑] (𝜉)𝑑𝜉 > 0.

Then 𝑉(𝜑𝑢 )1/2 (Ω) is fundamental for 𝐶 (Ω) for any compact Ω ⊂ ℝ𝑛
.

Proof. Let 𝜌 := 𝜑𝑢. We use [11, Theorem 18.1], which establishes the required fundamentality provided

that 𝜌 ≥ 0 and

∫
𝑈
𝜌 𝑑𝜉 > 0 for every non-empty open set 𝑈 . We have 𝜌 = 𝜑 ∗ 𝑢, so clearly 𝜌 ≥ 0 by

the corresponding assumptions on 𝜑 and 𝑢. Let then 𝑈 ⊂ ℝ𝑛
be open and non-empty. There then

exists 𝜂0 ∈ 𝑈 and 𝑟 > 0 such that 𝐵(𝜂0, 𝑟 ) ⊂ 𝑈 . Let 𝑈𝑟 := {𝜉 ∈ ℝ𝑛 | 𝐵(𝜉, 𝑟 ) ⊂ 𝑈 }. Then 𝑈𝑟 is open,

non-empty, and

⋂
𝜂∈𝐵 (0,𝑟 ) (𝑈 − 𝜂) ⊃ 𝑈𝑟 . Write 𝐼�̂� :=

∫
𝐵 (0,𝑟 ) 𝜑 (𝜂) 𝑑𝜂. By assumption (ii), 𝐼�̂� > 0 and

𝜑 ≥ 0, we have ∫
𝑈
𝜌 (𝜉)1/2 𝑑𝜉 =

∫
𝑈

(∫
ℝ𝑛

𝑢 (𝜉 − 𝜂)𝜑 (𝜂) 𝑑𝜂
)

1/2

𝑑𝜉

≥
∫
𝑈

(∫
𝐵 (0,𝑟 )

𝑢 (𝜉 − 𝜂)𝜑 (𝜂) 𝑑𝜂
)

1/2

𝑑𝜉

= 𝐼 1/2

�̂�

∫
𝑈

(
1

𝐼�̂�

∫
𝐵 (0,𝑟 )

𝑢 (𝜉 − 𝜂)𝜑 (𝜂) 𝑑𝜂
)

1/2

𝑑𝜉 .

Continuing with the reverse Jensen’s inequality for concave functions, Fubini’s theorem, and (i), we

get ∫
𝑈
𝜌 (𝜉)1/2 𝑑𝜉 ≥ 𝐼

−1/2

�̂�

∫
𝑈

∫
𝐵 (0,𝑟 )

𝑢 (𝜉 − 𝜂)1/2𝜑 (𝜂) 𝑑𝜂 𝑑𝜉

≥ 𝐼
−1/2

�̂� ∥𝑢∥−1/2

∞

∫
𝑈

∫
𝐵 (0,𝑟 )

𝑢 (𝜉 − 𝜂)𝜑 (𝜂) 𝑑𝜂 𝑑𝜉

≥ 𝐼
−1/2

�̂� ∥𝑢∥−1/2

∞

∫
𝐵 (0,𝑟 )

𝜑 (𝜂) 𝑑𝜂
∫
𝑈𝑟

𝑢 (𝜉) 𝑑𝜉

= 𝐼 1/2

�̂� ∥𝑢∥−1/2

∞

∫
𝑈𝑟

𝑢 (𝜉) 𝑑𝜉 > 0.

Since we assume Ω compact, the aforementioned [11, Theorem 18.1] now establishes the claim. □

Example 3.8 (Cut Gaussian spread with triangular–Gaussian kernel for𝒟). On ℝ, let 𝑢 and 𝑣 be

Gaussians of variances 𝜎2

𝑢 and 𝜎2

𝑣 , i.e., 𝑢 (𝑥) = 𝐶𝑢𝑒−𝑥
2/(2𝜎2

𝑢 ) and 𝑣 (𝑥) = 𝐶𝑣𝑒
−𝑥2/(2𝜎2

𝑣 ) for the unit
scaling factors 𝐶𝑢 and 𝐶𝑣 . Also let 𝜃𝑧 (𝑥) = 𝜒 [−𝑏,𝑏 ] (𝑥 − 𝑧) for some 0 < 𝑏 < inf𝑧,𝑧∈𝒢 |𝑧 − 𝑧 | on the

finite grid𝒢 ⊂ ℝ. Define 𝐴 and 𝒟 according to (3.4) with 𝜓 = 𝜒 [−𝑎,𝑎]𝑢 and 𝜌 = 𝒜 [𝜒 [−𝑎,𝑎]]𝑣 for
some 𝑎 > 0. We know from, e.g., [25, Appendix 2 & 3] that 𝑢 (𝜉) = 𝑒−2𝜋2𝜎2

𝑢𝜉
2

and 𝑣 (𝜉) = 𝑒−2𝜋2𝜎2

𝑣𝜉
2

.

Thus (3.8) reads

𝐼𝑣𝑒
−2𝜋2𝜎2

𝑣𝜉
2 ≤ 𝐿1𝑒

−2𝜋2𝜎2

𝑢𝜉
2

where 𝐼𝑣 =
√

2𝜋𝜎𝑣 .

This holds with 𝐿1 =
√

2𝜋𝜎𝑣 if 𝜎𝑣 ≥ 𝜎𝑢 . By Example 3.2, the bound (3.2) is satisfied by 𝐿0 = 2𝑏. Now

Lemma 3.5 and Theorem 3.3 establish

𝐴∗𝐴 ≤ 2𝑏
√

2𝜋𝜎𝑣𝒟 if 𝜎𝑣 ≥ 𝜎𝑢 .
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By Lemmas 3.6 and 3.7, 𝜌1/2 ∈ 𝐿2(ℝ𝑛) exists, and 𝑉𝜌1/2 is fundamental for 𝐶 (Ω) for any compact

set Ω ⊂ ℝ𝑛
. However, 𝜌1/2

does not appear to be𝐶0(ℝ𝑛), so Theorem 2.4 does not show that ∥ · ∥𝒟
would characterise weak-∗ convergence unlike the “fast” spread of Example 3.4.

The next lemma provides a formula for calculating 𝜃𝑧 ∗𝜓 in the definition of 𝐴 in Example 3.8.

Numerically, the error functions erf in the lemma are expensive, which leads us to the moniker

“fast” for Example 3.4. It only involves low-order piecewise polynomials.

Lemma 3.9. On ℝ, let𝜓 (𝑥) = 𝜒 [−𝑎,𝑎] (𝑥)𝐶𝑒−
1

2𝜎2
𝑥2

and 𝜃𝑧 (𝑥) = 𝜒 [−𝑏,𝑏 ] (𝑥 − 𝑧) for some 𝑎, 𝑏, 𝜎 > 0. Then

[𝜃𝑧 ∗𝜓 ] (𝑥) =
{

0, 𝑐1(𝑥) ≥ 𝑐2(𝑥),
𝐶𝜎

√
8√

𝜋

[
erf

(
𝑐2 (𝑥 )√

2𝜎

)
− erf

(
𝑐1 (𝑥 )√

2𝜎

)]
, otherwise,

where 𝑐1(𝑥) := max{𝑧 − 𝑥 − 𝑏,−𝑎} and 𝑐2(𝑥) := min{𝑧 − 𝑥 + 𝑏, 𝑎}, and the error function

erf (𝑠) = 2√
𝜋

∫ 𝑠

0

𝑒−𝑡
2

𝑑𝑡 .

Proof. We have

[𝜃𝑧 ∗𝜓 ] (𝑥) =
∫ ∞

−∞
𝜒 [−𝑏,𝑏 ] (𝑦 − 𝑧)𝜒 [−𝑎,𝑎] (𝑥 − 𝑦)𝐶𝑒− 1

2𝜎2
(𝑥−𝑦 )2

𝑑𝑦

=
∫ ∞

−∞
𝜒 [𝑧−𝑥−𝑏,𝑧−𝑥+𝑏 ] (𝑤)𝜒 [−𝑎,𝑎] (𝑤)𝐶𝑒− 1

2𝜎2
𝑤2

𝑑𝑤

If 𝑐1(𝑥) ≥ 𝑐2(𝑥), this gives [𝜃𝑧 ∗𝜓 ] (𝑥) = 0. So assume 𝑐1(𝑥) < 𝑐2(𝑥). Then, with the convention that∫ 𝑑

𝑐
= −

∫ 𝑐

𝑑
if 𝑐 > 𝑑 , we have

[𝜃𝑧 ∗𝜓 ] (𝑥) =
∫ 𝑐2 (𝑥 )

𝑐1 (𝑥 )
𝐶𝑒

− 1

2𝜎2
𝑤2

𝑑𝑤

=
∫ 𝑐2 (𝑥 )/(

√
2𝜎 )

𝑐1 (𝑥 )/(
√

2𝜎 )

√
2𝜎𝐶𝑒−𝑡

2

𝑑𝑡

=
∫ 𝑐2 (𝑥 )/(

√
2𝜎 )

0

√
2𝜎𝐶𝑒−𝑡

2

𝑑𝑡 −
∫ 𝑐1 (𝑥 )/(

√
2𝜎 )

0

√
2𝜎𝐶𝑒−𝑡

2

𝑑𝑡

=
𝐶𝜎

√
8√

𝜋

[
erf

(
𝑐2(𝑥)√

2𝜎

)
− erf

(
𝑐1(𝑥)√

2𝜎

)]
.

This establishes the claim. □

Remark 3.10 (Higher dimensions). In higher dimensions, we will work with uniform products

𝑢 (𝑛) (𝑥1, . . . , 𝑥𝑛) := 𝑢 (𝑥1) · · ·𝑢 (𝑥𝑛) .

Thus we will generally replace 𝜒 = 𝜒 [−𝑎,𝑎] by 𝜒 = 𝜒 [−𝑎,𝑎]𝑛 = 𝜒
(𝑛)
[−𝑎,𝑎] , and 𝜑 = 𝒜 [𝜒 [−𝑎,𝑎]] by 𝜑 =

𝒜 [𝜒 [−𝑎,𝑎]𝑛 ] = 𝒜 [𝜒 [−𝑎,𝑎]] (𝑛) . Since 𝑢 (𝑛) ∗ 𝑣 (𝑛) = (𝑢 ∗ 𝑣) (𝑛) and ℱ [𝑢 (𝑛) ] = ℱ [𝑢] (𝑛) , the above

results readily extend to higher dimensions with product factors 𝐿𝑛
1
in place of 𝐿1 in (3.3). The one-

dimensional factor 𝐿1 can be calculated following Examples 3.4 and 3.8. On a regular grid 𝒢 with

𝜃 (𝑧1,...,𝑧𝑛 ) (𝑥1, . . . , 𝑥𝑛) =
∏𝑛

𝑖=1
𝜃𝑧𝑖 (𝑥𝑖), also 𝐿0 can be replaced by 𝐿𝑛

0
for the one-dimensional 𝐿0.
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Remark 3.11 (Higher dimensions alternative). Alternatively, instead of cutting𝜓 = 𝜒𝑣 with 𝜒 = 𝜒 [−𝑎,𝑎]𝑛 ,
it would be possible to cut with 𝜒 = 𝜒𝐵 (0,𝑎) . Then 𝜑 = 𝒜 [𝜒𝐵 (0,𝑎) ] in 𝜌 = 𝜑𝑢. In ℝ2

, it is possible to

calculate using geometric arguments on the area of the intersection of two disks of equal radius that

𝒜 [𝜒𝐵 (0,𝑎) ] (𝑥) =
{

0, 𝑑 ≥ 𝑎,
2𝑎2 ∗ cos

−1(𝑑/𝑎) − 𝑑
√
𝑎2 − 𝑑2, 𝑑 < 𝑎,

where 𝑑 = ∥𝑥 ∥/2 is the distance between the centres of the two disks. Thus 𝜌 = 𝜑𝑢 is computable

when 𝑢 is. An extension of Lemma 3.9 for the calculation of 𝜃𝑧 ∗𝜓 is more involved. The calculation of

the factor 𝐿1 for the “fast” spread as in Example 3.4 requires working with Bessel functions in place of

the sinc.

Remark 3.12 (Microlocal analysis). Fourier analysis of products 𝜑𝑢 is also central to microlocal analysis

[24]. However, a family of cut-off functions 𝜑 is usually employed.

4 forward-backward splitting

We now develop a forward-backward approach for (1.1). In fact, we do so for the general problem

(4.1) min

𝜇∈ℳ (Ω)
[𝐹 +𝐺] (𝜇)

for some 𝛼 > 0, convex and pre-differentiable 𝐹 , and

(4.2) 𝐺 (𝜇) := 𝛼 ∥𝜇∥ℳ + 𝛿≥0(𝜇) .
In the case of (1.1), 𝐹 (𝜇) := 1

2
∥𝐴𝜇 − 𝑏∥2

.

In Section 4.1 we formulate the overall method and approximate optimality conditions that each

step of our method tries to solve. Then in Section 4.2 we formulate an algorithm for satisfying these

approximate optimality conditions. Finally, in Sections 4.3 and 4.4,we prove function value convergence

with rates and weak-∗ convergence of the iterates.

4.1 optimality conditions and basic method

We choose a self-adjoint and positive semi-definite particle-to-wave operator 𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)).
On each step 𝑘 ∈ ℕ, given a base point 𝜇𝑘 ∈ ℳ(Ω), we take the next iterate 𝜇𝑘+1 ∈ ℳ(Ω) as a solution
of the (for convenience 𝜏-scaled) surrogate problem

min

𝜇∈ℳ (Ω)
𝐸𝑘 (𝜇) where 𝐸𝑘 (𝜇) = 𝜏 [𝐹 (𝜇𝑘 ) + ⟨𝐹 ′(𝜇𝑘 ) |𝜇 − 𝜇𝑘⟩ +𝐺 (𝜇)] + 1

2

∥𝜇 − 𝜇𝑘 ∥2

𝒟.

For the methods of this section, the base point 𝜇𝑘 = 𝜇𝑘 , but in Section 5 we will use an inertial base

point. The pre-subdifferential of 𝐸𝑘 is

𝜕𝐸𝑘 (𝜇) = 𝜏 [𝐹 ′(𝜇𝑘 ) + 𝜕𝐺 (𝜇)] +𝒟(𝜇 − 𝜇𝑘 ),
where the pre-subdifferential of 𝐺 is characterised by

𝛼𝑤𝑘+1 ∈ 𝜕𝐺 (𝜇𝑘+1) ⇐⇒ 𝑤𝑘+1 ≤ 1 and 𝜇𝑘+1(𝑤𝑘+1) = ∥𝜇∥ with 𝑤𝑘+1 ∈ 𝐶0(Ω) .
Thus the inclusion 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1) expands with 𝑣𝑘 := 𝐹 ′(𝜇𝑘 ) as{

𝜀𝑘+1 = 𝜏 [𝑣𝑘 + 𝛼𝑤𝑘+1] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ),
𝑤𝑘+1 ≤ 1 and 𝜇𝑘+1(𝑤𝑘+1) = ∥𝜇𝑘+1∥ℳ .

(4.3)
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In practise, we are unable to satisfy the Fermat principle 0 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1). Instead, we pick a tolerance

𝜀𝑘+1 > 0 for 𝜀𝑘+1, and solve for 𝜇𝑘+1
,

(4.4a)

{
𝜏 [𝑣𝑘 + 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) ≥ −𝜀𝑘+1 on Ω,

𝜏 [𝑣𝑘 + 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) ≤ 𝜀𝑘+1 on supp 𝜇𝑘+1.

To ensure that {𝜇𝑘+1}𝑘∈ℕ stays bounded, we further require for some 𝜅 > 0 that

(4.4b) ⟨𝜏 [𝑣𝑘 + 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) |𝜇𝑘+1⟩ ≤ 𝜅𝜀𝑘+1.

Iteratively solving (4.4) with 𝜇𝑘 = 𝜇𝑘 produces the overall structure of Algorithm 4.1, our proposed

forward-backward splitting for (4.1).

The next lemma shows that for a solution 𝜇𝑘+1
to (4.4a) there is some 𝜀𝑘+1-bounded 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1).

In the next subsection, we verify the existence of solutions to the entire (4.4).

Lemma 4.1. Suppose Ω is closed and 𝜇𝑘+1 ∈ ℳ(Ω) has compact support and solves (4.4) for a fixed 𝑘 ∈ ℕ

and a given 𝑣𝑘 ∈ 𝐶0(Ω). Then there exists 𝜀𝑘+1 ∈ 𝐶0(Ω) satisfying (4.3) with −𝜀𝑘+1 ≤ 𝜀𝑘+1 ≤ 𝜀𝑘+1, and

(4.5) ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩ ≤ 𝜀𝑘+1(𝜅 + ∥𝜇∥ℳ (Ω) ) .

If 𝑣𝑘 = 𝐹 ′(𝜇𝑘 ), then 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1).
Proof. Pick 𝜑 ∈ 𝐶𝑐 (Ω) such that

1 ≥ 𝜑 ≥ 1

𝜏𝛼
max{0,−𝜀𝑘+1 − 𝜏𝑣𝑘 −𝒟(𝜇𝑘+1 − 𝜇𝑘 )} with 𝜑 | supp 𝜇𝑘+1 = 1.

Indeed, by the first inequality in (4.4a), the lower bound on 𝜑 is at most the upper bound. Since

𝜏𝑣𝑘 +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) ∈ 𝐶0(Ω) and 𝜀𝑘+1 > 0, the lower bound becomes zero outside a compact set. Since

𝜇𝑘+1
has compact support, it therefore suffices to take 𝜑 as a mollified indicator of a sufficiently large

ball.

We then let

𝜀𝑘+1 = min{𝜀𝑘+1, 𝜏 [𝑣𝑘 + 𝛼𝜑] +𝒟(𝜇𝑘+1 − 𝜇𝑘 )} = 𝜏 [𝑣𝑘 + 𝛼𝑤𝑘+1] +𝒟(𝜇𝑘+1 − 𝜇𝑘 )
for

𝑤𝑘+1
:= min

{
𝜑,

1

𝜏𝛼

(
𝜀𝑘+1 − 𝜏𝑣𝑘 −𝒟(𝜇𝑘+1 − 𝜇𝑘 )

)}
.

Then 𝜀𝑘+1 ∈ 𝐶0(Ω), and by construction −𝜀𝑘+1 ≤ 𝜀𝑘+1 ≤ 𝜀𝑘+1. We also have 𝑤𝑘+1 ≤ 1 while the

construction of 𝜑 and the second inequality of (4.4a) ensure that 𝑤𝑘+1 = 1 on supp 𝜇𝑘+1
. Therefore,

(4.3) holds. When 𝑣𝑘 = 𝐹 ′(𝜇𝑘 ), this means that 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1).
Since the second inequality of (4.4a) ensures that 𝜀𝑘+1 = 𝜏 [𝑣𝑘 + 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) on supp 𝜇𝑘+1

, we

now deduce from (4.4b) that ⟨𝜀𝑘+1 |𝜇𝑘+1⟩ ≤ 𝜅𝜀𝑘+1. This bound with 𝜀𝑘+1 ≥ −𝜀𝑘+1 establishes (4.5). □

4.2 point insertion and reweighting

We present in Algorithm 4.2 a scheme to approximately solve (4.4) for 𝜇𝑘+1
when starting with 𝜇𝑘 a

discrete measure. We denote the class of suchmeasures by𝒵(Ω) ⊂ ℳ(Ω). We stress that Algorithm 4.2

is just one possibility for satisfying (4.4). In all of our theory it could be replaced with another algorithm

that could, for example, incorporate heuristics such as point merging and the sliding of [17]. The

method is based on optimising the weights of the points already in the support of the discrete measure
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Algorithm 4.1 Forward-backward for Radon norm regularisation of non-negative measures (𝜇FB)

Require: Regularisation parameter 𝛼 > 0; convex and pre-differentiable 𝐹 : ℳ(Ω) → ℝ; self-adjoint

particle-to-wave operator𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)).
1: Choose tolerances {𝜀𝑘+1}𝑘∈ℕ ⊂ (0,∞) and a step length 𝜏 > 0 subject to Theorem 4.10, 4.13, or

4.18.

2: Choose a fractional tolerance 𝜅 ∈ (0, 1) for finite-dimensional subproblems.

3: Pick an initial iterate 𝜇0 ∈ 𝒵(Ω).
4: for 𝑘 ∈ ℕ do
5: 𝑣𝑘 := 𝐹 ′(𝜇𝑘 ).
6:

𝜇𝑘+1
:= insert_and_adjust(𝜇𝑘 , 𝜏𝑣𝑘 −𝒟𝜇𝑘 , 𝜏𝛼, 𝜀𝑘+1, 𝜅). ⊲ Solves (4.4) with Algorithm 4.2.

7: Prune zero weight spikes from 𝜇𝑘+1
. ⊲ Optionally also apply a spike merging heuristic.

8: end for

Algorithm 4.2 Point insertion and weight adjustment

Require: 𝜇 ∈ 𝒵(Ω), 𝜂 ∈ 𝐶0(Ω), 𝜆, 𝜀 > 0, 𝜅 ∈ (0, 1) on a domain Ω ⊂ ℝ𝑛
.

1: function insert_and_adjust(𝜇, 𝜂, 𝜆, 𝜀, 𝜅)

2: Let 𝑆 := supp 𝜇.

3: repeat
4: Solve for

®𝛽 = (𝛽𝑥 )𝑥∈𝑆 ∈ ℝ#𝑆
the finite-dimensional subproblem

min

®𝛽≥0

1

2

⟨ ®𝛽, 𝐷 ®𝛽⟩ + ⟨®𝜂, ®𝛽⟩ + 𝜆∥ ®𝛽 ∥1 with

{ ®𝜂 := (𝜂 (𝑥))𝑥∈𝑆 ∈ ℝ#𝑆 ,

𝐷 := (𝜌 (𝑦 − 𝑥))𝑥,𝑦∈𝑆 ∈ ℝ#𝑆×#𝑆 ,

to the accuracy

∥𝐷 ®𝛽 + ®𝜂 + 𝜆 ®𝑤 ∥∞ ≤ 𝜅𝜀

1 + ∥ ®𝛽 ∥1

for some ®𝑤 ∈ 𝜕∥ · ∥1( ®𝛽) .

5: Let 𝜇 :=
∑

𝑥∈𝑆 𝛽𝑥𝛿𝑥
6: Find 𝑥 (approximately) minimising 𝒟𝜇 + 𝜂 + 𝜆. ⊲ For example, branch-and-bound.

7: Let 𝑆 := 𝑆 ∪ {𝑥} ⊲ 𝑥 will only be inserted into 𝜇 if the next bounds check fails.

8: until (𝒟𝜇) (𝑥) + 𝜂 (𝑥) + 𝜆 ≥ −𝜀
9: return 𝜇
10: end function

𝜇 = 𝜇𝑘 and, if necessary, inserting a new point into the support, then repeating until (4.4) is satisfied.

Compared to the corresponding step for conditional gradient methods from the literature, which always

insert a single point, Algorithm 4.2 has one major advantage: it can skip point insertion, if mere weight

optimisation is enough to satisfy (4.4). As we have observed in the numerical experiments of Section 7,

this makes the merging heuristics that are critical for conditional gradient methods, unnecessary. Our

analysis also incorporates inexact solution of the non-convex point discovery subproblem.

The next lemma proves the finite termination of Algorithm 4.2 along with the solvability of (4.4). It

is the only point in our algorithmic theory in this and the following sections, where we need 𝒟 to be

a convolution operator, instead of an abstract operator. Indeed, 𝒟 = 𝜌∗ for a simple single-peaked

kernel 𝜌 appears beneficial for the easy solution of (4.4), but in principle other options are possible

when the bound 𝐴∗𝐴 ≤ 𝐿𝒟 cannot be satisfied for𝒟 a convolution operator.

Lemma 4.2. On a compact set Ω ⊂ ℝ𝑛
, let 𝒟𝜇 = 𝜌 ∗ 𝜇 for 𝜇 ∈ ℳ(Ω) with the symmetric and positive

semi-definite 0 . 𝜌 ∈ 𝐶0(ℝ𝑛) ∩𝐿2(ℝ𝑛). Let 𝜀𝑘+1 > 0 and 𝜅 ∈ (0, 1). Then, for any 𝜇 ∈ 𝒵(Ω), (4.4) can be
satisfied in finitely many steps by insert_and_adjust(𝜇, 𝜏𝑣𝑘 −𝒟𝜇𝑘 , 𝜏𝛼, 𝜀𝑘+1, 𝜅) defined in Algorithm 4.2.
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Proof. Observe that by Theorem 2.4, 𝒟 is (strictly) positive definite on𝒵(Ω). Let 𝜂𝑘 := 𝒟𝜇𝑘 − 𝜏𝑣𝑘 .
For clarity, index the iterations of the inner loop of Algorithm 4.2 by ℓ , and correspondingly write

𝜇ℓ = 𝜇 and 𝑆ℓ = 𝑆 for the situation on Line 5. Since the matrix 𝐷 on Line 4 is positive definite by the

corresponding property of𝒟, there always exist solution to the subproblem. Moreover, any minimising

sequence { ®𝛽 𝑗 } 𝑗∈ℕ is bounded, ensuring that the ∥ ®𝛽 ∥1-scaled the accuracy requirement can be satisfied

by an inexact solution.

Together with the accuracy requirement, the finite-dimensional subproblem amounts to finding

non-negative factors {𝛽𝑥 }𝑥∈𝑆ℓ such that 𝜇ℓ :=
∑

𝑥∈𝑆ℓ 𝛽𝑥𝛿𝑥 satisfies for some 1 ≥ 𝑤 ∈ 𝐶0(Ω) with
𝑤 (𝑦) = 1 if 𝛽𝑦 > 0 the bounds

(4.6) − 𝜅𝜀𝑘+1

1 + ∥𝜇ℓ ∥ℳ (Ω)
≤ [𝒟𝜇ℓ + 𝜂𝑘 + 𝜆𝑤] (𝑦) ≤ 𝜅𝜀𝑘+1

1 + ∥𝜇ℓ ∥ℳ (Ω)
for all 𝑦 ∈ 𝑆ℓ .

Since 𝜅 ∈ (0, 1), 𝑤 = 1 on supp 𝜇ℓ , and in the parametrisation of insert_and_adjust, 𝜆 = 𝜏𝛼 and

𝜂𝑘 = 𝜏𝑣𝑘 −𝒟𝜇𝑘 , it follows that 𝜇𝑘+1 = 𝜇ℓ thus constructed satisfies the upper bound of (4.4a) as well as
(4.4b). The function insert_and_adjust only returns when the lower bound of (4.4a) is also satisfied.

Therefore, it remains to prove that the lower bound of (4.4a) is satisfied for large enough ℓ .

Since 𝒟 is strictly positive definite, 𝜌 (0) = ⟨𝒟𝛿𝑥 |𝛿𝑥 ⟩ > 0 for any 𝑥 ∈ Ω. Since 𝜌 is continuous,

there exists 𝑅 > 0 such that 𝜌 ≥ 1

2
𝜌 (0)𝜒𝐵 (0,𝑅) . The upper bound of (4.6) ensures for all ℓ ∈ ℕ and

𝑦 ∈ 𝑆>ℓ := {𝑦 ∈ 𝑆ℓ | 𝛽𝑦 > 0} that

0 ≤ 1

2

𝜌 (0)∥𝜇ℓ⌞𝐵(𝑦, 𝑅)∥ℳ (Ω) =
∑︁
𝑥∈𝑆ℓ

1

2

𝛽𝑥𝜌 (0)𝜒𝐵 (𝑦,𝑅) (𝑥)

≤
∑︁
𝑥∈𝑆ℓ

𝛽𝑥𝜌 (𝑦 − 𝑥) = 𝒟𝜇ℓ (𝑦) ≤ −[𝜂𝑘 + 𝜆] (𝑦) + 𝜅𝜀𝑘+1.

Since 𝜂𝑘 ∈ 𝐶0(Ω), it is bounded on the compact set Ω. Therefore, by the above, there exists𝑀 > 0 such

that ∥𝜇ℓ⌞𝐵(𝑦, 𝑅)∥ℳ (Ω) ≤ 𝑀 for all for all ℓ ∈ ℕ and 𝑦 ∈ 𝑆>ℓ . By the finite Vitali covering lemma, see,

e.g., [27, Proof of Theorem 2.1], there exists a subcollection 𝑆ℓ ⊂ 𝑆>ℓ such that 𝑆>ℓ ⊂ ⋃
𝑦∈𝑆>

ℓ
𝐵(𝑦, 𝑅/3) ⊂⋃

𝑦∈ ˜𝑆ℓ
𝐵(𝑦, 𝑅), and the latter balls are disjoint. Thus

∥𝜇ℓ ∥ℳ (Ω) =


𝜇ℓ⌞𝑆>ℓ 



ℳ (Ω) =
∑︁
𝑦∈𝑆ℓ

∥𝜇ℓ⌞𝐵(𝑦, 𝑅)∥ℳ (Ω) ≤ #
˜𝑆ℓ𝑀.

Since Ω is bounded, #
˜𝑆ℓ is bounded by a constant dependent on 𝑅 and Ω alone; see, e.g., [27, Lemma 2.6].

Therefore {∥𝜇ℓ ∥ℳ (Ω) }ℓ≥1 is bounded. Lemma 2.3 now shows that the family {𝒟𝜇ℓ }ℓ∈ℕ is uniformly

equicontinuous. Since𝑤 (𝑦) ≤ 1, the lower bound in (4.6) holds with𝑤 replaced by 1. Therefore, there

must exist 𝑟 > 0 such that

(4.7) [𝒟𝜇ℓ + 𝜂𝑘 + 𝜆] (𝑥) ≥ −𝜅 + 1

2

𝜀𝑘+1 > −𝜀𝑘+1 for all 𝑥 ∈ 𝐵(𝑦, 𝑟 ), 𝑦 ∈ 𝑆ℓ , and ℓ ≥ 1.

It follows that 𝐵(𝑦, 𝑟 ) ∩ 𝑆ℓ = {𝑦} for all 𝑦 ∈ 𝑆ℓ , meaning that Algorithm 4.2 does not insert new points

into 𝑆 in the 𝑟 -neighbourhoods of existing points. Since a finite number of such neighbourhoods cover

the compact set Ω, Algorithm 4.2 must terminate in a finite number of steps. □

Remark 4.3 (Insertion count). The proof of Lemma 4.2 implies that the maximum number of insertions

in Algorithm 4.2 is bounded by the number of open 𝑟 -balls with non-intersecting centres, that can

be packed into Ω. Subject to further Lipschitz assumptions on 𝜌 and ran𝐴∗, such an 𝑟 is by (4.7)

proportional to 𝜀𝑘+1, so the count is in the order of 1/𝜀𝑛
𝑘+1

. If no pruning is performed in Algorithm 4.1,

this becomes a bound on the cumulative insertions. Under a strict complementarity assumption, when

𝜇𝑘 is near a solution 𝜇, it would be possible to further improve the proof to show that insertions can

only happen in a subset of the domain near the spikes of 𝜇.
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Remark 4.4 (Complete reconstruction). According to Lemma 4.2, it would be possible to replace 𝜇𝑘 by 0

in the application of insert_and_adjust in Algorithm 4.1. This would force complete reconstruction

of 𝜇𝑘+1
on each iteration. In our numerical experience the resulting algorithm has much higher

computational demands.

Remark 4.5 (Unconstrained problem). If 𝐺 (𝜇) = 𝛼 ∥𝜇∥ℳ (Ω) without the positivity constraint, the

inclusion 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1) expands with 𝑣𝑘 := 𝐹 ′(𝜇𝑘 ) as{
𝜀𝑘+1 = 𝜏 [𝑣𝑘 + 𝛼𝑤𝑘+1] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ),
−1 ≤ 𝑤𝑘+1 ≤ 1 and 𝜇𝑘+1(𝑤𝑘+1) = ∥𝜇𝑘+1∥ℳ .

Thus (4.4a) can be replaced by

(4.8a)


𝜏 [𝑣𝑘 + 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) ≥ −𝜀𝑘+1 on Ω,

𝜏 [𝑣𝑘 − 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) ≤ 𝜀𝑘+1 on Ω,

𝜏 [𝑣𝑘 + 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) ≤ 𝜀𝑘+1 on supp
+ 𝜇𝑘+1,

𝜏 [𝑣𝑘 − 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) ≥ −𝜀𝑘+1 on supp
− 𝜇𝑘+1.

where supp
± 𝜇 := supp 𝜇± in the minimal decomposition 𝜇 = 𝜇+ − 𝜇− with 𝜇+, 𝜇− ≥ 0. To ensure that

{𝜇𝑘+1}𝑘∈ℕ stays bounded, we replace (4.4b) with

(4.8b) ⟨𝜏 [𝑣𝑘 + �̃�𝑘+1𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) |𝜇𝑘+1⟩ ≤ 𝜅𝜀𝑘+1,

for some Borel �̃�𝑘+1
: supp 𝜇𝑘+1 → {1,−1} with �̃�𝑘+1𝜇𝑘+1 = |𝜇𝑘+1 |. For a discrete measure 𝜇𝑘+1 =∑𝑛

𝑖=1
𝛽𝑖𝛿𝑥𝑖 this falls down to the pointwise values �̃�𝑘+1(𝑥𝑖) = sign 𝛽𝑖 for all 𝑖 = 1, . . . , 𝑛.

In Algorithm 4.2 all we have to change is:

1. On Line 4 remove the constraint
®𝛽 ≥ 0.

2. On Line 6 find
¯𝜉 maximising |𝒟𝜇 + 𝜂 |.

3. On Line 8 exit the loop only if also the upper bound check (𝒟𝜇) (𝑥) + 𝜂 (𝑥) − 𝜆 ≤ 𝜀 succeeds.
It is also not difficult to extend Lemmas 4.1 and 4.2 to this setting. Then the theorems in the remainder

of this manuscript also go through for the modified algorithm without the positivity constraint.

4.3 function value convergence

Wenow embark on proving the convergence Algorithm 4.1,where we could tacitly replace Algorithm 4.2

by any other way to solve (4.4). We require some basic regularity and step length conditions.

Assumption 4.6. We assume that Ω ⊂ ℝ𝑛
is compact, the regularisation parameter 𝛼 > 0, and that

(i) The operator𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)) is defined by𝒟𝜇 = 𝜌 ∗ 𝜇 where 0 . 𝜌 ∈ 𝐶0(ℝ𝑛) ∩ 𝐿2(ℝ𝑛)
is symmetric and positive definite, i.e., 𝜌 (−𝑦) = 𝜌 (𝑦) for all 𝑦 , and ℱ [𝜌] ≥ 0.

(ii) The convex function 𝐹 : ℳ(Ω) → ℝ is pre-differentiable and 𝐿-smooth with respect to ∥ · ∥𝒟:

𝐹 (𝜈) − 𝐹 (𝜇) − ⟨𝐹 ′(𝜇) |𝜈 − 𝜇⟩𝐶0 (Ω),ℳ (Ω) ≤
𝐿

2

∥𝜈 − 𝜇∥2

𝒟 (𝜈, 𝜇 ∈ ℳ(Ω)) .

(iii) The step length 𝜏 > 0 satisfies 1 ≥ 𝜏𝐿 (strictly for weak-∗ convergence).
Remark 4.7 (Compactness). The compactness assumption on Ω is only due to Lemma 4.2 on the

finite termination of Algorithm 4.2. It could be removed if (4.4) is otherwise ensured on Line 6 of the

algorithm.
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Example 4.8. For 𝐹 (𝜇) = 1

2
∥𝐴𝜇−𝑏∥2

𝑌 with𝐴 ∈ 𝕃(ℳ(Ω);𝑌 ) and𝑌 a Hilbert space,Assumption 4.6 (ii)

reduces to 𝐴 being pre-adjointable with 𝐴∗𝐴 ≤ 𝐿𝒟.

Our convergence proofs are based on the following simplified (scalar-tested, without strong convex-

ity) version of [32, Theorem 2.3] with the addition of inexact solutions (𝜀𝑘+1 ≠ 0). It includes inertial

parameters 𝜆𝑘 that we need in Section 5. For non-inertial methods we take 𝜆𝑘 ≡ 1 and 𝑧𝑘 ≡ 𝑥𝑘 ≡ 𝑥𝑘 .
Lemma 4.9. On a Banach space 𝑋 with predual 𝑋∗, let 𝐹,𝐺 : 𝑋 → ℝ with 𝐹 transport-subdifferentiable

and 𝐹 3-point smooth. For an initial 𝑥0 = 𝑥0 ∈ 𝑋 , let {𝑥𝑘+1}𝑘∈ℕ and {𝑥𝑘+1}𝑘∈ℕ be defined for some 𝜆𝑘 > 0

and 𝜀𝑘+1 ∈ 𝑋∗ through

𝜀𝑘+1 ∈ 𝜏𝑘 [𝐹 ′(𝑥𝑘 ) + 𝜕𝐺 (𝑥𝑘+1)] +𝒟(𝑥𝑘+1 − 𝑥𝑘 )
and

𝜆𝑘 (𝑧𝑘+1 − 𝑧𝑘 ) = 𝑥𝑘+1 − 𝑥𝑘 as well as 𝜆𝑘 (𝑧𝑘+1 − 𝑥𝑘 ) = 𝑥𝑘+1 − 𝑥𝑘 .(4.9)

Then for any 𝑥 ∈ 𝑋 we have

𝜆2

𝑘

2

∥𝑧𝑘+1 − 𝑥 ∥2

𝒟 + 𝜆
2

𝑘
(1 − 𝜏𝑘𝐿)

2

∥𝑧𝑘+1 − 𝑧𝑘 ∥2

𝒟 + 𝜏𝑘 ( [𝐹 +𝐺] (𝑥𝑘+1) − [𝐹 +𝐺] (𝑥))

− (1 − 𝜆𝑘 )𝜏𝑘 ( [𝐹 +𝐺] (𝑥𝑘 ) − [𝐹 +𝐺] (𝑥)) ≤ 𝜆2

𝑘

2

∥𝑧𝑘 − 𝑥 ∥2

𝒟 + 𝜆𝑘 ⟨𝜀𝑘+1 |𝑧𝑘 − 𝑥⟩.

In particular, if 𝜆𝑘 ≡ 1 and 𝑧𝑘 ≡ 𝑥𝑘 ≡ 𝑥𝑘 , we have
1

2

∥𝑥𝑘+1 − 𝑥 ∥2

𝒟 + 1 − 𝜏𝑘𝐿
2

∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝒟 + 𝜏𝑘 ( [𝐹 +𝐺] (𝑥𝑘+1) − [𝐹 +𝐺] (𝑥)) ≤ 1

2

∥𝑥𝑘 − 𝑥 ∥2

𝒟 + ⟨𝜀𝑘+1 |𝑥𝑘 − 𝑥⟩.

Proof. Let 𝑞𝑘+1 ∈ 𝜕𝐺 (𝑥𝑘+1) satisfy 𝜀𝑘+1 = 𝜏𝑘 [𝐹 ′(𝑥𝑘 ) + 𝑞𝑘+1] +𝒟(𝑥𝑘+1 − 𝑥𝑘 ). Then

(4.10) 𝜆𝑘 ⟨𝜀𝑘+1 |𝑧𝑘+1 − 𝑥⟩ = 𝜆𝑘 ⟨𝜏𝑘 [𝐹 ′(𝑥𝑘 ) + 𝑞𝑘+1] +𝒟(𝑥𝑘+1 − 𝑥𝑘 ) |𝑧𝑘+1 − 𝑥⟩.

Due to the three-point identity (2.3) and (4.9), we have

𝜆𝑘 ⟨𝒟(𝑥𝑘+1 − 𝑥𝑘 ) |𝑧𝑘+1 − 𝑥⟩ = 𝜆2

𝑘 ⟨𝒟(𝑧𝑘+1 − 𝑧𝑘 ) |𝑧𝑘+1 − 𝑥⟩

=
𝜆2

𝑘

2

∥𝑧𝑘+1 − 𝑧𝑘 ∥2

𝒟 + 𝜆
2

𝑘

2

∥𝑧𝑘+1 − 𝑥 ∥2

𝒟 − 𝜆2

𝑘

2

∥𝑧𝑘+1 − 𝑥 ∥2

𝒟.

By the definition of the convex pre-subdifferential and the 𝐿-smoothness of 𝐹 with respect to𝒟, using

both relationships of (4.9), we obtain

𝜆𝑘 ⟨𝐹 ′(𝑥𝑘 ) + 𝑞𝑘+1 |𝑧𝑘+1 − 𝑥⟩ = 𝜆𝑘 ⟨𝐹 ′(𝑥𝑘 ) + 𝑞𝑘+1 |𝑥𝑘+1 − 𝑥⟩ + (1 − 𝜆𝑘 )⟨𝐹 ′(𝑥𝑘 ) + 𝑞𝑘+1 |𝑥𝑘+1 − 𝑥𝑘⟩

≥ 𝜆𝑘

(
[𝐹 +𝐺] (𝑥𝑘+1) − [𝐹 +𝐺] (𝑥) − 𝐿

2

∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝒟

)
+ (1 − 𝜆𝑘 )

(
[𝐹 +𝐺] (𝑥𝑘+1) − [𝐹 +𝐺] (𝑥𝑘 ) − 𝐿

2

∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝒟

)
= ( [𝐹 +𝐺] (𝑥𝑘+1) − [𝐹 +𝐺] (𝑥))

− (1 − 𝜆𝑘 ) ( [𝐹 +𝐺] (𝑥𝑘 ) − [𝐹 +𝐺] (𝑥)) − 𝐿𝜆2

𝑘

2

∥𝑧𝑘+1 − 𝑧𝑘 ∥2

𝒟.

Inserting these two expressions into (4.10), the claim follows. □
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We now readily obtain ergodic function value convergence:

Theorem 4.10 (Ergodic function value convergence). Suppose Assumption 4.6 holds and let 𝜇 ∈ ℳ(Ω)
satisfy 0 ∈ 𝜕[𝐹 +𝐺] (𝜇). Let {𝜇𝑘 }𝑘≥1 be generated by Algorithm 4.1 for some 𝜇0 ∈ 𝒵(Ω) with the tolerance
sequence {𝜀𝑘+1}𝑘∈ℕ ⊂ (0,∞) satisfying

(4.11) lim

𝑁→∞
1

𝑁

𝑁−1∑︁
𝑘=0

𝜀𝑘+1 = 0.

Define the ergodic iterate �̃�𝑁 := 1

𝑁

∑𝑁−1

𝑘=0
𝜇𝑘 . Then [𝐹 +𝐺] (�̃�𝑁 ) → [𝐹 +𝐺] (𝜇), more precisely,

[𝐹 +𝐺] (�̃�𝑁 ) ≤ [𝐹 +𝐺] (𝜇) + 1

𝑁𝜏

(
(𝜅 + ∥𝜇∥ℳ (Ω) )

𝑁−1∑︁
𝑘=0

𝜀𝑘+1 +
1

2

∥𝜇0 − 𝜇∥2

𝒟

)
.

Proof. Algorithm 4.1, Lemma 4.2, and Assumption 4.6 ensure (4.4) for all 𝑘 ∈ ℕ. Therefore Lemma 4.1

provides 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1) satisfying (4.5). The case 𝜆𝑘 ≡ 1 of Lemma 4.9 with 𝜏𝑘 ≡ 𝜏 now establishes

(4.12)

1

2

∥𝜇𝑘+1−𝜇∥2

𝒟+ 1 − 𝜏𝐿
2

∥𝜇𝑘+1−𝜇𝑘 ∥2

𝒟+𝜏 [𝐹 +𝐺] (𝜇𝑘+1)−𝜏 [𝐹 +𝐺] (𝜇) ≤ 1

2

∥𝜇𝑘−𝜇∥2

𝒟+⟨𝜀𝑘+1 |𝜇𝑘+1−𝜇⟩.

Summing over 𝑘 = 0, . . . , 𝑁 − 1 we obtain

(4.13)

1

2

∥𝜇𝑁 − 𝜇∥2

𝒟 +
𝑁−1∑︁
𝑘=0

(
𝜏 [𝐹 +𝐺] (𝜇𝑘+1) − 𝜏 [𝐹 +𝐺] (𝜇) + 1 − 𝜏𝐿

2

∥𝜇𝑘+1 − 𝜇𝑘 ∥2

𝒟

)
≤ 1

2

∥𝜇0 − 𝜇∥2

𝒟 + ˜𝐶𝑁 ,

where (4.5) shows that 𝐶𝑁 :=
∑𝑁−1

𝑘=0
⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩ ≤ (𝜅 + ∥𝜇∥ℳ (Ω) )

∑𝑁−1

𝑘=0
𝜀𝑘+1. Since 𝜏𝐿 ≤ 1, dividing

(4.13) by 𝑁𝜏 and using Jensen’s inequality, the claim follows. □

Example 4.11 (Tolerance sequence). Take 𝜀𝑘+1 = 1/(𝑘 + 1)𝑝 for some 𝑝 > 1. Then (4.11) holds. In fact,∑𝑁−1

𝑘=0
𝜀𝑘+1 < ∞, so Theorem 4.10 yields 𝑂 (1/𝑁 ) ergodic function value convergence.

Example 4.12 (Controlling the insertion count). Recall Remark 4.3. To keep the growth of the

(cumulative) maximum insertion count in Algorithm 4.2 linear, we could take 𝜀𝑘+1 = 1/(𝑘 + 1)1/𝑛
.

This comes at the expense of reducing the 𝑂 ( 1

𝑁

∑𝑁−1

𝑘=0
𝜀𝑘+1) convergence rate given by the theorem

to 𝑂 (log𝑁 /𝑁 ) for 𝑛 = 1 and 𝑂 (𝑁 −1/𝑛) for 𝑛 > 1. By our numerical experience in Section 7, in

practise even the option of Example 4.11 requires very few insertions on each iteration.

With a tighter finite-dimensional subproblem solution accuracy, the method is nearly monotone, and

we get non-ergodic convergence. If the tolerances are as in Example 4.11, this convergence is 𝑂 (1/𝑁 ).
Theorem 4.13 (Function value convergence). Suppose Assumption 4.6 holds and let 𝜇 ∈ ℳ(Ω) satisfy
0 ∈ 𝜕[𝐹 + 𝐺] (𝜇). Let {𝜇𝑘 }𝑘≥1 be generated by Algorithm 4.1 for some 𝜇0 ∈ 𝒵(Ω) with the tolerance

sequence {𝜀𝑘+1}𝑘∈ℕ ⊂ (0,∞) satisfying (4.11), and (4.4) amended by

(4.14) ⟨min{𝜀𝑘+1, 𝜏 [𝑣𝑘 + 𝛼] +𝒟(𝜇𝑘+1 − 𝜇𝑘 )}|𝜇𝑘+1 − 𝜇𝑘⟩ ≤ 𝜅𝜀𝑘+1

𝑘
for 𝑘 ≥ 1.

Then [𝐹 +𝐺] (𝜇𝑁 ) → [𝐹 +𝐺] (𝜇), more precisely,

[𝐹 +𝐺] (𝜇𝑁 ) ≤ [𝐹 +𝐺] (𝜇) + 1

𝑁𝜏

(
(2𝜅 + ∥𝜇∥ℳ (Ω) )

𝑁−1∑︁
𝑘=0

𝜀𝑘+1 +
1

2

∥𝜇0 − 𝜇∥2

𝒟

)
.
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Proof. Algorithm 4.1, Lemma 4.2, and Assumption 4.6 ensure (4.4) for all 𝑘 ∈ ℕ. Therefore Lemma 4.1

provides 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1) satisfying (4.5). In fact, 𝜀𝑘+1 = min{𝜀𝑘+1, 𝜏 [𝑣𝑘 + 𝛼] + 𝒟(𝜇𝑘+1 − 𝜇𝑘 )} in the

proof. Therefore, (4.14) reads ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇𝑘⟩ ≤ 𝜅𝜀𝑘+1

𝑘 . Since 𝜏𝐿 ≤ 1, the case 𝜆 𝑗 ≡ 1 of Lemma 4.9 with

𝜏𝑘 ≡ 𝜏 and 𝑥 = 𝜇𝑘 now establishes for all 𝑗 ≥ 1 the “monotonicity with error”

𝜏 [𝐹 +𝐺] (𝜇 𝑗+1) ≤ 𝜏 [𝐹 +𝐺] (𝜇 𝑗 ) + ⟨𝜀 𝑗+1 |𝜇 𝑗+1 − 𝜇 𝑗 ⟩ ≤ 𝜏 [𝐹 +𝐺] (𝜇 𝑗 ) + 𝜅𝜀 𝑗+1

𝑗
.

Hence, summing over all 𝑗 = 𝑘 + 1, . . . , 𝑁 − 1, we obtain for all 𝑁 ≥ 𝑘 and 𝑘 ∈ ℕ that

𝜏 [𝐹 +𝐺] (𝜇𝑁 ) ≤ 𝜏 [𝐹 +𝐺] (𝜇𝑘+1) + 𝜅
𝑁−1∑︁
𝑗=𝑘+1

𝜀 𝑗+1

𝑗
.

Applying this estimate in (4.13) for all 𝑘 = 0, . . . , 𝑁 − 1, yields

1

2

∥𝜇𝑁 − 𝜇∥2

𝒟 + 𝑁𝜏 ([𝐹 +𝐺] (𝜇𝑁 ) − [𝐹 +𝐺] (𝜇)) ≤ 1

2

∥𝜇0 − 𝜇∥2

𝒟 + 𝜅
𝑁−1∑︁
𝑘=0

𝑁−1∑︁
𝑗=𝑘+1

𝜀 𝑗+1

𝑗
+

𝑁−1∑︁
𝑘=0

⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩.

Since

∑𝑁−1

𝑘=0

∑𝑁−1

𝑗=𝑘+1

𝜀 𝑗+1

𝑗 =
∑𝑁−1

𝑘=1
𝜀𝑘+1, using (4.5) on the final term and dividing by 𝑁𝜏 , establishes the

claim. □

Remark 4.14 (Finite-dimensional subproblems). The accuracy requirement (4.14) holds if

|𝜏 [𝑣𝑘 + 𝛼𝑤𝑘 ] +𝒟(𝜇𝑘+1 − 𝜇𝑘 ) | (𝑦) ≤ 𝜅𝜀𝑘+1

𝑘 (∥𝜇𝑘+1∥ℳ + ∥𝜇𝑘 ∥ℳ) for 𝑦 ∈ supp 𝜇𝑘+1 ∪ supp 𝜇𝑘 ,

where 1 ≥ 𝑤𝑘 ∈ 𝐶0(Ω) with 𝑤𝑘 = 1 on supp 𝜇𝑘+1
. Since the set 𝑆 only grows in Algorithm 4.2, it

follows that (4.14) is satisfied by tightening the right-hand-side of the accuracy requirement on Line 4

to 𝜅𝜀𝑘+1/(1 + 𝑘 (∥ ®𝛽 ∥1 + ∥ ®𝛽0∥1)), where ®𝛽0 is the vector of weights of the initial 𝜇.

Remark 4.15 (Linear convergence). If 𝐹 is strongly convex with respect to the 𝒟-seminorm, it is

not difficult to prove linear convergence along the lines of the Hilbert space proofs in [15, 33]. For

𝐹 (𝜇) = 1

2
∥𝐴𝜇 −𝑏∥2

the strong convexity requirement reduces to𝐴∗𝐴 ≥ 𝛾𝒟 for some 𝛾 > 0. In practise,

we do not expect this condition to hold, so do not pursue the precise proof here. It would be possible to

relax the strong convexity requirement to the (strong or non-strong) metric subregularity of 𝜕[𝐹 +𝐺]
near a solution; see [35, 15] for the convergence theory and [36] for examples of satisfaction of such a

condition in other contexts. Proving metric subregularity for the problem (1.1) is outside the scope of

the present manuscript.

4.4 weak-∗ convergence
We now prove weak-∗ convergence of the iterates. We recall the following deterministic version of the

results of [30]:

Lemma 4.16. Let {𝑎𝑘 }𝑘∈ℕ, {𝑏𝑘 }𝑘∈ℕ, {𝑐𝑘 }𝑘∈ℕ, and {𝑑𝑘 }𝑘∈ℕ be non-negative sequences with

𝑎𝑘+1 ≤ 𝑎𝑘 (1 + 𝑏𝑘 ) + 𝑐𝑘 − 𝑑𝑘 for all 𝑘 ∈ ℕ.

If

∑∞
𝑘=0

𝑏𝑘 < ∞ and

∑∞
𝑘=0

𝑐𝑘 < ∞, then (i) lim𝑘→∞ 𝑎𝑘 exists and is finite; and (ii)

∑∞
𝑘=0

𝑑𝑘 < ∞.

The next generalisation of Opial’s lemma [28] follows the proof from [15] in Hilbert spaces. We

prove it for Bregman divergences

𝐵𝑀 (𝑥, 𝑧) := 𝑀 (𝑧) −𝑀 (𝑥) − ⟨𝑀 ′(𝑥) |𝑧 − 𝑥⟩,
as they add no extra difficulties. Recall that in Hilbert spaces

1

2
∥𝑧 − 𝑥 ∥2 = 𝐵𝑀 (𝑥, 𝑧) for𝑀 = 1

2
∥ · ∥2

.
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Lemma 4.17. Let 𝑋 = (𝑋∗)∗ be the dual space of a corresponding separable normed space 𝑋∗. Also let
𝑀 : 𝑋 → ℝ be convex, proper, and Gateaux differentiable with𝑀 ′

: 𝑋 → 𝑋∗ weak-∗-to-weak continuous.
Finally, let ˆ𝑋 ⊂ 𝑋 be non-empty and {𝑒𝑘+1}𝑘∈ℕ ∈ 𝑋∗. If

(i) all weak-∗ limit points of {𝑥𝑘 }𝑘∈ℕ belong 𝑋 .

(ii)

∑∞
𝑘=0

max{0, ⟨𝑒𝑘+1 |𝑥𝑘+1 − 𝑥⟩} < ∞ for all 𝑥 ∈ ˆ𝑋 ; and

(iii) 𝐵𝑀 (𝑥𝑘+1, 𝑥) ≤ 𝐵𝑀 (𝑥𝑘 , 𝑥) + ⟨𝑒𝑘+1 |𝑥𝑘+1 − 𝑥⟩ for all 𝑥 ∈ ˆ𝑋 and 𝑘 ∈ ℕ;

then all weak-∗ limit points of {𝑥𝑘 }𝑘∈ℕ satisfy 𝑥, 𝑥 ∈ ˆ𝑋 and

(4.15) ⟨𝑀 ′(𝑥) −𝑀 ′(𝑥) |𝑥 − 𝑥⟩ = 0.

If {𝑥𝑘 }𝑘∈ℕ ⊂ 𝑋 is bounded, then such a limit point exists. If, in addition to all the previous assumptions,

(4.15) implies 𝑥 = 𝑥 (such as when𝑀 is strongly monotone), then 𝑥𝑘 ∗⇀ 𝑥 in 𝑋 for some 𝑥 ∈ ˆ𝑋 .

Proof. Let 𝑥 and 𝑥 be weak-∗ limit points of {𝑥𝑘 }𝑘∈ℕ. Since Bregman divergences 𝐵𝑀 ≥ 0 for convex

𝑀 , the conditions (ii) and (iii) establish the assumptions of Lemma 4.16 for 𝑎𝑘 = 𝐵𝑀 (𝑥𝑘 ;𝑥), 𝑏𝑘 = 0,

𝑐𝑘 = max{0, ⟨𝑒𝑘+1 |𝑥𝑘+1 − 𝑥⟩}, and 𝑑𝑘 = 0. It follows that {𝐵𝑀 (𝑥𝑘 ;𝑥)}𝑘∈ℕ is convergent. Likewise we

establish that {𝐵𝑀 (𝑥𝑘 ;𝑥)}𝑘∈ℕ is convergent. Therefore

⟨𝑀 ′(𝑥𝑘 ) |𝑥 − 𝑥⟩ = 𝐵𝑀 (𝑥𝑘 ;𝑥) − 𝐵𝑀 (𝑥𝑘 ;𝑥) +𝑀 (𝑥) −𝑀 (𝑥) → 𝑐 ∈ ℝ.

Since 𝑥 and 𝑥 are a weak-∗ limit point, there exist subsequence {𝑥𝑘𝑛 }𝑛∈ℕ and {𝑥𝑘𝑚 }𝑚∈ℕ with 𝑥𝑘𝑛 ⇀ 𝑥

and 𝑥𝑘𝑚 ⇀ 𝑥 . Using the weak-∗-to-weak continuity of𝑀 ′
: 𝑋 → 𝑋∗, (4.15) follows from

⟨𝑀 ′(𝑥) |𝑥 − 𝑥⟩ = lim

𝑛→∞⟨𝑀
′(𝑥𝑘𝑛 ), 𝑥 − 𝑥⟩ = 𝑐 = lim

𝑛→∞⟨𝑀
′(𝑥𝑘𝑚 ), 𝑥 − 𝑥⟩ = ⟨𝑀 ′(𝑥) |𝑥 − 𝑥⟩.

If {𝑥𝑘 }𝑘∈ℕ is bounded, it contains a weakly-∗ convergent subsequence by the Banach–Alaoglu

theorem, so a limit point exists as claimed.

Hence, if (4.15) implies 𝑥 = 𝑥 , then every convergent subsequence of {𝑥𝑘 }𝑘∈ℕ has the sameweak limit.

It lies in
ˆ𝑋 by (i). The final claim now follows from a standard subsequence–subsequence argument:

Assume to the contrary that there exists a subsequence of {𝑥𝑘 }𝑘∈ℕ not convergent to 𝑥 . Then we can

apply the above argument to obtain a further subsequence converging to 𝑥 . This contradicts the fact

that any subsequence of a convergent sequences converges to the same limit. □

Finally, we can state and prove the weak convergence result.

Theorem 4.18 (Weak convergence). Suppose Assumption 4.6 holds with the step length condition (iii)

strictly: 𝜏𝐿 < 1. Let {𝜇𝑘 }𝑘≥1 be generated by Algorithm 4.1 for some 𝜇0 ∈ 𝒵(Ω). Also suppose

(i) 𝐹 is bounded from below;

(ii) 𝐹 ′ is continuous with respect to ∥ · ∥𝒟; and

(iii) the tolerance sequence {𝜀𝑘+1}𝑘∈ℕ ⊂ (0,∞) satisfies ∑∞
𝑘=0

𝜀𝑘+1 < ∞.

Then there exists a weak-∗ limit point 𝜇 of {𝜇𝑘 }𝑘∈ℕ satisfying 0 ∈ 𝜕[𝐹 +𝐺] (𝜇), and any two such points

𝜇, 𝜇 satisfy ∥𝜇 − 𝜇∥𝒟 = 0. If a point satisfying both properties is unique, in particular when all the

assumptions of Theorem 2.4 (iv) hold for 𝜌 , then 𝜇𝑘 ∗⇀ 𝜇 weakly-∗ inℳ(Ω).
We recall that the assumptions of Theorem 2.4 (iv) hold for the kernel 𝜌 of Example 3.4, but the 𝐶0

assumption on 𝜌1/2
presumably fails for Example 3.8.
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Proof. We use Lemma 4.17 with 𝑋 = (𝜕[𝐹 + 𝐺])−1(0) and 𝑀 = 1

2
∥ · ∥2

𝒟
, in which case 𝐵𝑀 (𝜇, 𝜈) =

1

2
∥𝜇 − 𝜈 ∥2

𝒟
. We need to verify its assumptions. Algorithm 4.1, Lemma 4.2, and Assumption 4.6 ensure

(4.4) for all 𝑘 ∈ ℕ. Therefore Lemma 4.1 provides 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1) satisfying −𝜀𝑘+1 ≤ 𝜀𝑘+1 ≤ 𝜀𝑘+1 as

well as (4.5). The latter with the present assumption (iii) establishes

(4.16)

∞∑︁
𝑘=0

max{0, ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩} ≤ (𝜅 + ∥𝜇∥ℳ (Ω) )
∞∑︁
𝑘=0

𝜀𝑘+1 =: 𝐶 for all 𝜇 ∈ ˆ𝑋 .

Hence Lemma 4.17 (ii) holds. The case 𝜆𝑘 ≡ 1 of Lemma 4.9 with 𝜏𝑘 ≡ 𝜏 establishes the Féjer mono-

tonicity “with error”

1

2

∥𝜇𝑘+1 − 𝜇∥2

𝒟 ≤ 1

2

∥𝜇𝑘 − 𝜇∥2

𝒟 + ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩

for every 𝜇 ∈ ˆ𝑋 . This proves the assumption Lemma 4.17 (iii). We still need to prove Lemma 4.17 (i). We

do this together with showing the boundedness of {𝜇𝑘 }𝑘∈ℕ.
The conditions of Theorem 4.10 readily hold for any 𝜇 ∈ ˆ𝑋 by our assumptions. Thus (4.12) and

(4.13) in its proof hold for all 𝑁 ∈ ℕ. Since 0 ∈ 𝜕[𝐹 +𝐺] (𝜇), we have [𝐹 +𝐺] (𝜇𝑘+1) ≥ [𝐹 +𝐺] (𝜇) for
all 𝑘 ∈ ℕ. Therefore, since 𝜏𝐿 < 1, (4.13) and (iii) allow us to deduce both ∥𝜇𝑘+1 − 𝜇𝑘 ∥𝒟 → 0 and

(4.17)

1

2

∥𝜇0 − 𝜇∥2 +𝐶 ≥
𝑁−1∑︁
𝑘=0

(
𝜏 [𝐹 +𝐺] (𝜇𝑘+1) − 𝜏 [𝐹 +𝐺] (𝜇) + 1

2

∥𝜇𝑘+1 − 𝜇𝑘 ∥2

)
≥ 𝜏 [𝐹 +𝐺] (𝜇 𝑗+1) − 𝜏 [𝐹 +𝐺] (𝜇)
≥ 𝜏𝛼 ∥𝜇 𝑗+1∥ℳ + 𝜏 inf 𝐹 − 𝜏 [𝐹 +𝐺] (𝜇)

for𝐶 defined in (4.16), for any 𝑗 ∈ {0, . . . , 𝑁 − 1} and 𝜇 ∈ 𝑋 . By (i), this establishes the boundedness of

{𝜇𝑘 }𝑘∈ℕ.
For any 𝑥 ∈ Ω and 𝑘 ∈ ℕ, we have

(4.18) |⟨𝛿𝑥 |𝒟(𝜇𝑘+1 − 𝜇𝑘 )⟩| = |⟨𝛿𝑥 , 𝜇𝑘+1 − 𝜇𝑘⟩𝒟 | ≤ ∥𝛿𝑥 ∥𝒟∥𝜇𝑘+1 − 𝜇𝑘 ∥𝒟 = |𝜌 (0) |∥𝜇𝑘+1 − 𝜇𝑘 ∥𝒟.
Since we have just shown that ∥𝜇𝑘+1 − 𝜇𝑘 ∥𝒟 → 0, it follows from (4.18) that 𝒟(𝜇𝑘+1 − 𝜇𝑘 ) → 0

uniformly, i.e., strongly in 𝐶0(Ω). By (ii), moreover, 𝐹 ′(𝜇𝑘 ) − 𝐹 ′(𝜇𝑘+1) → 0 strongly in 𝐶0(Ω). Let
then 𝜂𝑘 := 𝐹 ′(𝜇𝑘+1) + 𝛼𝑤𝑘+1 ∈ 𝜕[𝐹 +𝐺] (𝜇𝑘+1). Since we have assumed 𝜀𝑘+1

→ 0, also 𝜀𝑘+1 → 0 strongly.

Testing the approximate optimality conditions (4.3) by 𝛿𝑥 we now have

𝜏𝜂𝑘 (𝑥) = 𝜀𝑘+1(𝑥) − 𝜏 [𝐹 ′(𝜇𝑘 ) − 𝐹 ′(𝜇𝑘+1)] (𝑥) − ⟨𝛿𝑥 |𝒟(𝜇𝑘+1 − 𝜇𝑘 )⟩ → 0 uniformly in Ω.

Since 𝜂𝑘 ∈ 𝜕[𝐹 +𝐺] (𝜇𝑘+1), the weak-∗-to-strong outer semicontinuity of (pre)subdifferentials (see [15])

establishes that any weak-∗ limit point 𝜇 of {𝜇𝑘 }𝑘∈ℕ satisfies 0 ∈ 𝜕[𝐹 +𝐺] (𝜇). This establishes the
assumption Lemma 4.17 (i).

We have now verified the main conditions of Lemma 4.17, which shows that all weak-∗ limit points

𝜇, 𝜇 of {𝜇𝑘 }𝑘∈ℕ belong to (𝜕[𝐹 +𝐺])−1(0) and satisfy 0 = ⟨𝑀 ′(𝜇) −𝑀 ′(𝜇) |𝜇 − 𝜇⟩ = ∥𝜇 − 𝜇∥2

𝒟
. Since

we have shown that {𝜇𝑘 }𝑘∈ℕ is bounded, such a limit point exists. This establishes the first claim.

If now ∥𝜇 − 𝜇∥𝒟 = 0 implies 𝜇 = 𝜈 , then Lemma 4.17 establishes weak-∗ convergence. When the

assumptions of Theorem 2.4 (iv) hold, Corollary 2.5 proves that ∥ · ∥𝒟 is a norm, in particular, so this

property holds. □

Remark 4.19. The condition Theorem 4.18 (ii) along with Assumption 4.6 (ii) follow from

(4.19) ∥𝐹 ′(𝜇) − 𝐹 ′(𝜈)∥∞ ≤ 𝐿∥𝜇 − 𝜈 ∥𝒟 (𝜇, 𝜈 ∈ ℳ(Ω)) .
The former is immediate while the proof of the latter is standard; compare [15, Lemma 7.1 (iii)⇒ (v)].
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Algorithm 5.1 Inertial forward-backward for Radon norm regularisation (𝜇FISTA)

Require: Regularisation parameter 𝛼 > 0; convex and pre-differentiable 𝐹 : ℳ(Ω) → ℝ; self-adjoint

particle-to-wave operator𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)).
1: Choose tolerances {𝜀𝑘+1}𝑘∈ℕ ⊂ (0,∞) and a step length parameter 𝜏 > 0 subject to Theorem 5.1.

2: Choose a fractional tolerance 𝜅 ∈ (0, 1) for finite-dimensional subproblems.

3: Pick an initial iterate 𝜇0 ∈ 𝒵(Ω)
4: Set 𝜆0 := 1 and 𝜇0

:= 𝜇0
.

5: for 𝑘 ∈ ℕ do
6: 𝑣𝑘 := 𝐹 ′(𝜇𝑘 ).
7: 𝜇𝑘+1

:= insert_and_adjust(𝜇𝑘 , 𝜏𝑣𝑘 −𝒟𝜇𝑘 , 𝜏𝛼, 𝜀𝑘+1, 𝜅). ⊲ Solves (4.4) with Algorithm 4.2.

8: Calculate 𝜇𝑘+1
and 𝜆𝑘+1 according to (5.1).

9: Prune spikes with zero weight in both 𝜇𝑘+1
and 𝜇𝑘+1

. ⊲ Optionally also heuristic merging.

10: end for

Example 4.20. For 𝐹 (𝜇) = 1

2
∥𝐴𝜇 − 𝑏∥2

with pre-adjointable 𝐴 ∈ 𝕃(ℳ(Ω);𝑌 ) and 𝑌 a Hilbert space,

Theorem 4.18 (ii) follows by slightly adapting the previous remark. Indeed, we take 𝐿 satisfying

𝐴∗𝐴 ≤ 𝐿𝒟 as in Example 4.8. Since 𝐹 ′(𝜇) − 𝐹 ′(𝜈) = 𝐴∗𝐴(𝜇 − 𝜈), (4.19), we then have

∥𝐹 ′(𝜇) − 𝐹 ′(𝜈)∥∞ ≤ ∥𝐴∗∥𝕃 (ℝ𝑛
;𝐶0 (Ω) ) ∥𝐴(𝜇 − 𝜈)∥ℝ𝑛 ≤ ∥𝐴∗∥𝕃 (ℝ𝑛

;𝐶0 (Ω) )
√
𝐿∥𝜇 − 𝜈 ∥𝒟.

This establishes the required continuity.

5 inertial forward-backward

We now provide an inertial version of Algorithm 4.1, i.e., FISTA [2] on measures. We first describe

the algorithm in Section 5.1, and then prove its convergence in Section 5.2. For this we need the full

generality of Lemma 4.9.

5.1 algorithm description

With 𝜆0 = 1, and 𝜇0 = 𝜇0
, we define the inertial measures and parameters

(5.1) 𝜇𝑘+1
:= (1 + 𝜃𝑘+1)𝜇𝑘+1 − 𝜃𝑘+1𝜇

𝑘 , 𝜃𝑘+1 := 𝜆𝑘+1(𝜆−1

𝑘 − 1), 𝜆𝑘+1 :=
2𝜆𝑘

𝜆𝑘 +
√︃

4 + 𝜆2

𝑘

(𝑘 ∈ ℕ) .

Then we “rebase” Algorithm 4.1 at 𝜇𝑘 in place of 𝜇𝑘 to obtain the inertial algorithm Algorithm 5.1.

5.2 convergence

Theorem 5.1 (Inertial method convergence). Suppose Assumption 4.6 holds and let 𝜇 ∈ ℳ(Ω) satisfy
0 ∈ 𝜕[𝐹 + 𝐺] (𝜇). Let {𝜇𝑘 }𝑘≥1 be generated by Algorithm 5.1 for some 𝜇0 ∈ 𝒵(Ω) with the tolerance

sequence {𝜀𝑘+1}𝑘∈ℕ ⊂ (0,∞) satisfying

lim

𝑁→∞
𝜆2

𝑁

𝑁−1∑︁
𝑘=0

𝜆−1

𝑘 𝜀𝑘+1 = 0.

Then [𝐹 +𝐺] (𝜇𝑁 ) → [𝐹 +𝐺] (𝜇), more precisely, 𝜆2

𝑁 = 𝑂 (1/𝑁 2) in

[𝐹 +𝐺] (𝜇𝑁 ) ≤ [𝐹 +𝐺] (𝜇) + 𝜆
2

𝑁

𝜏

(
(𝜅 + ∥𝜇∥ℳ (Ω) )

𝑁−1∑︁
𝑘=0

𝜆−1

𝑘 𝜀𝑘+1 +𝐶0

)
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for 𝐶0 = 𝜏 ( [𝐹 +𝐺] (𝜇0) − [𝐹 +𝐺] (𝜇)) + 1

2
∥𝜇0 − 𝜇∥2

𝒟
.

Proof. Wehave 𝜆−1

𝑁 ≥ 1+𝑁 /2, see [2, Lemma 4.3] or [32,Lemma 3.4]. This establishes that𝜆2

𝑁 = 𝑂 (1/𝑁 2).
Taking 𝑧𝑘+1

:= 𝜆−1

𝑘
𝜇𝑘+1−(𝜆−1

𝑘
−1)𝜇𝑘 , we have 𝜆𝑘 (𝑧𝑘+1−𝜇𝑘 ) = 𝜇𝑘+1−𝜇𝑘 as well as 𝜆𝑘 (𝑧𝑘+1−𝑧𝑘 ) = 𝜇𝑘+1−𝜇𝑘 ,

as required by Lemma 4.9; see [32, (2.8)]. Algorithm 5.1, Lemma 4.2, and Assumption 4.6 ensure (4.4) for

all 𝑘 ∈ ℕ. Therefore Lemma 4.1 provides 𝜀𝑘+1 ∈ 𝜕𝐸𝑘 (𝜇𝑘+1) satisfying (4.5). Since 𝜏𝐿 ≤ 1 and 𝜆𝑘 ∈ (0, 1],
Lemma 4.9 thus establishes

𝜆2

𝑘

2

∥𝑧𝑘+1 − 𝜇∥2

𝒟 + 𝜏 ( [𝐹 +𝐺] (𝜇𝑘+1) − [𝐹 +𝐺] (𝜇))

≤ (1 − 𝜆𝑘 )𝜏 ( [𝐹 +𝐺] (𝜇𝑘 ) − [𝐹 +𝐺] (𝜇)) + 𝜆
2

𝑘

2

∥𝑧𝑘 − 𝜇∥2

𝒟 + 𝜆𝑘 ⟨𝜀𝑘+1 |𝑧𝑘 − 𝜇⟩.

Since 𝜆−2

𝑘
(1−𝜆𝑘 ) = 𝜆−2

𝑘−1
for all 𝑘 ∈ ℕ when we set 𝜆−1 = 0, see again, e.g., [32, Lemma 3.4], multiplying

this expression by 𝜆−2

𝑘
yields

1

2

∥𝑧𝑘+1 − 𝜇∥2

𝒟 + 𝜆−2

𝑘 𝜏 ( [𝐹 +𝐺] (𝜇𝑘+1) − [𝐹 +𝐺] (𝜇))

≤ 𝜆−2

𝑘−1
𝜏 ( [𝐹 +𝐺] (𝜇𝑘 ) − [𝐹 +𝐺] (𝜇)) + 1

2

∥𝑧𝑘 − 𝜇∥2

𝒟 + 𝜆−1

𝑘 ⟨𝜀𝑘+1 |𝑧𝑘 − 𝜇⟩.

Summing over 𝑘 = 0, . . . , 𝑁 − 1 establishes

𝜆−2

𝑁 𝜏 ( [𝐹 +𝐺] (𝜇𝑁 ) − [𝐹 +𝐺] (𝜇)) ≤ 𝐶0 +
𝑁−1∑︁
𝑘=0

𝜆−1

𝑘 ⟨𝜀𝑘+1 |𝑧𝑘 − 𝜇⟩.

Estimating the sum with (4.5), and multiplying by 𝜆2

𝑁 /𝜏 , the claim follows. □

Example 5.2 (Tolerance sequence for inertia). Since 𝜆0 = 1, we have

𝜆−1

𝑘+1
=

1

2

(1 +
√︁

1 + 4𝜆−2

𝑘 ) ≤ 1 + 𝜆−1

𝑘 ≤ . . . ≤ 𝑘 + 1.

Therefore, taking 𝜀𝑘+1 = 1/(𝑘 + 1)𝑝 for some 𝑝 > 2, Theorem 5.1 shows 𝑂 (1/𝑁 2) function value

convergence. If 𝑝 ∈ (1, 2] as in Example 4.11, the rate reduces to 𝑂 (1/𝑁 ).

6 primal-dual proximal splitting

We now provide a version of the primal-dual proximal splitting (PDPS) of [10]. We first describe the

algorithm in Section 6.1, and then sketch its convergence in Section 6.2. We allow the function 𝐹 in

(4.1) to take the form

𝐹 (𝜇) = 𝐹0(𝐴𝜇),

where 𝐴 ∈ 𝕃(ℳ(Ω);𝑌 ) with 𝑌 a Hilbert space, and 𝐹0 : 𝑌 → ℝ is convex, proper, and lower

semicontinuous, but possibly nonsmooth. This is a relaxation from Sections 4 and 5 that required 𝐹 to

have Lipschitz Fréchet derivative. For (1.1), i.e., a Gaussian noise model,we would take 𝐹0(𝑦) = 1

2
∥𝑦−𝑏∥2

2

on 𝑌 = ℝ𝑛
. For a salt-and-pepper noise model, we would take 𝐹0(𝑦) = ∥𝑦 − 𝑏∥1.
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Algorithm 6.1 Primal-dual proximal splitting for Radon norm regularisation (𝜇PDPS)

Require: Regularisation parameter 𝛼 > 0; convex and Fréchet-differentiable 𝐹0 : 𝑌 → ℝ; pre-

adjointable 𝐴 ∈ 𝕃(ℳ(Ω);𝑌 ) with 𝑌 a Hilbert space; self-adjoint𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)).
1: Choose tolerances {𝜀𝑘+1}𝑘∈ℕ ⊂ (0,∞), and step length parameters 𝜏, 𝜎 > 0 satisfying 𝜏𝜎𝐴∗𝐴 < 𝒟.

2: Choose a fractional tolerance 𝜅 ∈ (0, 1) for finite-dimensional subproblems.

3: Pick initial iterates (𝜇0, 𝑦0) ∈ 𝒵(Ω) × 𝑌 .
4: for 𝑘 ∈ ℕ do
5: 𝑣𝑘 := 𝐴∗𝑦𝑘 .
6: 𝜇𝑘+1

:= insert_and_adjust(𝜇𝑘 , 𝜏𝑣𝑘 −𝒟𝜇𝑘 , 𝜏𝛼, 𝜀𝑘+1, 𝜅). ⊲ Solves (4.4) with Algorithm 4.2.

7: Prune zero weight spikes from 𝜇𝑘+1
. ⊲ Optionally also apply a spike merging heuristic.

8: 𝑦𝑘+1
:= prox𝜎𝐹 ∗

0

(𝑦𝑘 + 𝜎𝐴[2𝜇𝑘+1 − 𝜇𝑘 ]).
9: end for

6.1 algorithm description

The optimality conditions for (4.1) may now be written [15]

0 ∈ 𝐻 (𝜇, 𝑦) where 𝐻 (𝜇, 𝑦) :=

(
𝜕𝐺 (𝜇) +𝐴∗𝑦
𝜕𝐹 ∗

0
(𝑦) −𝐴𝜇

)
,

where we recall from (4.2) that 𝐺 (𝜇) = 𝛼 ∥𝜇∥ℳ + 𝛿≥0(𝜇). With the help of the step length and pre-

conditioning operators𝑊𝑘 ∈ 𝕃(𝐶0(Ω) × 𝑌 ;𝐶0(Ω) × 𝑌 ) and 𝑀𝑘 ∈ 𝕃(ℳ(Ω) × 𝑌 ;𝐶0(Ω) × 𝑌 ) defined
as

𝑊𝑘 :=

(
𝜏𝑘 Id 0

0 𝜎𝑘+1 Id

)
and 𝑀𝑘 :=

(
𝒟 −𝜏𝑘𝐴∗

𝜔𝑘𝜎𝑘+1𝐴 Id

)
,

for some step length and over-relaxation parameters {(𝜏𝑘 , 𝜎𝑘 , 𝜔𝑘 )}𝑘∈ℕ, we introduce as in [33, 15, 22]

the implicit form algorithm

(6.1)

(
𝜀𝑘+1

0

)
∈𝑊𝑘𝐻 (𝑢𝑘+1) +𝑀𝑘 (𝑢𝑘+1 − 𝑢𝑘 ),

where 𝑢𝑘 = (𝜇𝑘 , 𝑦𝑘 ), and with exact steps, we would have 𝜀𝑘+1 = 0. Following Section 4 we, however,

replace the first line primal update by (4.4) with 𝑣𝑘 = 𝐴∗𝑦𝑘 . The second line dual update reads

0 ∈ 𝜎𝑘+1𝜕𝐹
∗
0
(𝑦𝑘+1) − 𝜎𝑘+1𝐴[(1 + 𝜔𝑘 )𝜇𝑘+1 − 𝜔𝑘𝜇

𝑘 ] + (𝑦𝑘+1 − 𝑦𝑘 ) .
Taking (𝜏𝑘 , 𝜎𝑘 , 𝜔𝑘 ) ≡ (𝜏, 𝜎, 1), and rewriting the dual update in terms of an explicit proximal mapping,

in analogy with Algorithm 4.1, we obtain Algorithm 6.1.

When 𝐹 ∗
0
is strongly convex with factor 𝛾𝐹 ∗

0

, we can also accelerate

(6.2) 𝜏𝑘+1 := 𝜏𝑘/𝜔𝑘 and 𝜎𝑘+1 := 𝜎𝑘𝜔𝑘 for 𝜔𝑘 := 1/
√︃

1 + 𝛾𝐹 ∗
0

𝜎𝑘 ,

replacing 2𝜇𝑘+1 − 𝜇𝑘 in the dual update by (1 + 𝜔𝑘 )𝜇𝑘+1 − 𝜔𝑘𝜇
𝑘
. We can take 𝜔𝑘 := 1/√︁1 + 2𝛾𝐹 ∗

0

𝜎𝑘 if

only iterate convergence is desired, and no function value convergence.

6.2 sketch of convergence

Following [33], see also [15], we introduce for some testing parameters 𝜑𝑘 ,𝜓𝑘 > 0 the testing operator

𝑍𝑘 ∈ 𝕃(𝐶0(Ω) × 𝑌 ;𝐶0(Ω) × 𝑌 ) defined by

𝑍𝑘 :=

(
𝜑𝑘 Id 0

0 𝜓𝑘+1 Id

)
.
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We need 𝑍𝑘𝑀𝑘 ∈ 𝕃(ℳ(Ω) × 𝑌 ;𝐶0(Ω) × 𝑌 ) to be self-adjoint and positive semi-definite. By standard

arguments [33, 15] this holds when 𝜔𝑘 = 𝜎−1

𝑘+1
𝜓 −1

𝑘+1
𝜑𝑘𝜏𝑘 and𝜓𝑘𝜎𝑘 = 𝜑𝑘𝜏𝑘 as well as 𝜏𝑘𝜎𝑘𝐴∗𝐴 < 𝒟 with

{𝜓𝑘 }𝑘∈ℕ non-decreasing.

We then test (6.1) by the application of ⟨𝑍𝑘 · |𝑢𝑘+1 − 𝑢⟩ for some 𝑢 ∈ 𝐻−1(0). This yields

(6.3) 𝜑𝑘 ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩ ∈ 𝜑𝑘𝜏𝑘 ⟨𝜕𝐺 (𝜇𝑘+1) +𝐴∗𝑦𝑘+1 |𝜇𝑘+1 − 𝜇⟩
+𝜓𝑘+1𝜎𝑘+1⟨𝜕𝐹 ∗0 (𝑦𝑘+1) −𝐴𝜇𝑘+1 |𝑦𝑘+1 − 𝑦⟩ + ⟨𝑍𝑘𝑀𝑘 (𝑢𝑘+1 − 𝑢𝑘 ) |𝑢𝑘+1 − 𝑢⟩.

Using the definition of the convex subdifferential and the three-point identity for 𝑍𝑘𝑀𝑘 , now

(6.4) 𝜑𝑘 ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩ ≥ 1

2

∥𝑢𝑘+1 − 𝑢∥2

𝑍𝑘𝑀𝑘
− 1

2

∥𝑢𝑘 − 𝑢∥2

𝑍𝑘𝑀𝑘
+ 1

2

∥𝑢𝑘+1 − 𝑢𝑘 ∥2

𝑍𝑘𝑀𝑘

+ 𝜑𝑘𝜏𝑘 [𝐺 (𝜇𝑘+1) −𝐺 (𝜇)] +𝜓𝑘+1𝜎𝑘+1 [𝐹 ∗0 (𝑦𝑘+1) − 𝐹 ∗
0
(𝑦)]

+
𝜓𝑘+1𝜎𝑘+1𝛾𝐹 ∗

0

2

∥𝑦𝑘+1 − 𝑦 ∥2

𝑌

+ 𝜑𝑘𝜏𝑘 [⟨𝐴∗𝑦𝑘+1 |𝜇𝑘+1 − 𝜇⟩ −𝜓𝑘+1𝜎𝑘+1⟨𝐴𝜇𝑘+1 |𝑦𝑘+1 − 𝑦⟩.

If now (𝜏𝑘 , 𝜎𝑘 , 𝜔𝑘 ) ≡ (𝜏, 𝜎, 1), i.e., we consider the unaccelerated algorithm, we can take 𝜑𝑘 ≡ 1 and

𝜓𝑘+1 = 𝜎−1𝜏 while satisfying the non-negativity and self-adjointness of 𝑍𝑘𝑀𝑘 = 𝑍𝑀 , which is now

independent of the iteration. Then (6.4) gives

(6.5)

1

2

∥𝑢𝑘+1 − 𝑢∥2

𝑍𝑀 + 1

2

∥𝑢𝑘+1 − 𝑢𝑘 ∥2

𝑍𝑀 + 𝜏G(𝑢𝑘+1, 𝑢) ≤ 1

2

∥𝑢𝑘 − 𝑢∥2

𝑍𝑀 + ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩,

where the Lagrangian gap functional

G(𝑢,𝑢) := 𝐺 (𝜇) −𝐺 (𝜇) + 𝐹 ∗
0
(𝑦) − 𝐹 ∗

0
(𝑦) + ⟨𝐴∗𝑦 |𝜇 − 𝜇⟩ − ⟨𝐴𝜇 |𝑦 − 𝑦⟩

= [𝐺 (𝜇) − 𝐹 ∗
0
(𝑦) + ⟨𝐴𝜇 |𝑦⟩] − [𝐺 (𝜇) − 𝐹 ∗

0
(𝑦) + ⟨𝐴𝜇 |𝑦⟩] .

We have G(𝑢,𝑢) ≥ 0 when 0 ∈ 𝐻 (𝑢); compare [15]. Summing (6.5) over 𝑘 = 0, . . . , 𝑁 − 1, estimating

⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩ with Lemma 4.1, and using Jensen’s inequality to pass to ergodic variables, we get:

Theorem 6.1 (Ergodic convergence of the Lagrangian gap functional). Let 𝒟 ∈ 𝕃(ℳ(Ω);𝐶0(Ω)) be
defined as𝒟𝜇 = 𝜌 ∗ 𝜇 on the compact set Ω, where 0 . 𝜌 ∈ 𝐶0(ℝ𝑛) is symmetric and positive definite,

i.e., 𝜌 (−𝑦) = 𝜌 (𝑦) for all 𝑦 , and ℱ [𝜌] ≥ 0. Let 𝑢 ∈ ℳ(Ω) × 𝑌 with 𝑌 a Hilbert space satisfy 0 ∈ 𝐻 (𝑢),
and {(𝜇𝑘 , 𝑦𝑘 )}𝑘≥1 be generated by Algorithm 6.1 for some (𝜇0, 𝑦0) ∈ 𝒵(Ω) × 𝑌 , step lengths 𝜏, 𝜎 > 0

satisfying 𝜏𝜎𝐴∗𝐴 ≤ 𝒟, and the tolerance sequence {𝜀𝑘+1}𝑘∈ℕ ⊂ (0,∞) satisfying

lim

𝑁→∞
1

𝑁

𝑁−1∑︁
𝑘=0

𝜀𝑘+1 = 0;

see Example 4.11. Then G(�̃�𝑁 ;𝑢) → 0, more precisely,

0 ≤ G(�̃�𝑁 ;𝑢) ≤ 1

𝑁𝜏

(
(𝜅 + ∥𝜇∥ℳ (Ω) )

𝑁−1∑︁
𝑘=0

𝜀𝑘+1 +
1

2

∥𝑢0 − 𝑢∥2

𝑍𝑀

)
.

Weak convergence of the iterates can also be obtained following the arguments of Theorem 4.18.

When 𝐹 ∗
0
is strongly convex, we can with the step length parameter updates (6.2) obtain 𝑂 (1/𝑁 2)

convergence of the gap functionals and𝑂 (1/𝑁 ) convergence of the dual iterates {𝑦𝑘 }𝑘∈ℕ, however, the
treatment of the gap functional is very technical; we refer to [33, 15]. We therefore skip the treatment
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of the gap functional, and directly use in (6.3) the fact that 0 ∈ 𝐻 (𝑢) together with the monotonicity

of 𝜕𝐺 and the 𝛾𝐹 ∗
0

-strong monotonicity of 𝐹 ∗
0
. This gives in place of (6.3) the estimate

(6.6) 𝜑𝑘 ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩ ≥ 1

2

∥𝑢𝑘+1 − 𝑢∥2

𝑍𝑘𝑀𝑘
− 1

2

∥𝑢𝑘 − 𝑢∥2

𝑍𝑘𝑀𝑘
+ 1

2

∥𝑢𝑘+1 − 𝑢𝑘 ∥2

𝑍𝑘𝑀𝑘

+𝜓𝑘+1𝜎𝑘+1𝛾𝐹 ∗
0

∥𝑦𝑘+1 − 𝑦 ∥2

𝑌 .

Taking 𝜑𝑘 ≡ 1 and𝜓𝑘+1 = 𝜓𝑘 (1 + 2𝜎𝑘𝛾𝐹 ∗
0

), we have

𝑍𝑘+1𝑀𝑘+1 = 𝑍𝑘𝑀𝑘 +
(
0 0

0 𝜓𝑘+1𝜎𝑘+1𝛾𝐹 ∗
0

Id

)
+ Ξ𝑘 ,

for some skew-adjoint Ξ𝑘 . Since operator-relative norms are invariant with respect skew-adjoint

components, summing (6.6) over 𝑘 = 0, . . . , 𝑁 − 1 yields

(6.7)

1

2

∥𝑢𝑁 − 𝑢∥2

𝑍𝑁 −1𝑀𝑁 −1

≤ 1

2

∥𝑢0 − 𝑢∥2

𝑍0𝑀0

+
𝑁−1∑︁
𝑘=0

𝜑𝑘 ⟨𝜀𝑘+1 |𝜇𝑘+1 − 𝜇⟩.

For some 𝜅 ∈ (0, 1), we have
𝑍𝑁−1𝑀𝑁−1 ≥

(
0 0

0 (1 − 𝜅)𝜓𝑁 Id

)
Therefore, dividing (6.7) by𝜓𝑁 , which grows at the rate Ω(𝑁 2) [15, Lemma 10.7], we obtain 𝑂 (1/𝑁 )
convergence of the dual iterates {𝑦𝑘 }𝑘∈ℕ.

7 numerical experience

We now discuss our implementations of the proposed methods, and their practical performance

compared to conditional gradient methods from the literature. We first describe the implementation

and parametrisation details in Section 7.1. We then describe the sample problems that we solve in

Section 7.2. We finish with a report and discussion on the performance in Section 7.3.

7.1 algorithm implementation and parametrisation

We implemented Algorithms 4.1, 5.1 and 6.1 (“our methods” 𝜇FB, 𝜇FISTA, and 𝜇PDPS) as well as the

“relaxed” and “fully corrective” conditional gradient methods [5, Algorithm 5.1] and [29, Algorithm 2],

denoted FWr and FWf. All are applicable to the squared data term 𝐹 (𝜇) = 1

2
∥𝐴𝜇 − 𝑏∥2

. 𝜇PDPS is also

applicable to 𝐹 (𝜇) = ∥𝐴𝜇 − 𝑏∥1. Our Rust implementation is available on Zenodo [37].

Finite-dimensional subproblems Both conditional gradient methods find a maximiser of −𝐹 ′(𝜇𝑘 ) ( · ).3
They add the point to the support 𝑆 of 𝜇𝑘 , and then adapt weights by solving the finite-dimensional

subproblem

min

𝑤
𝐽 (𝑤) := 𝐹 (𝑃𝑤) +𝐺 (𝑃𝑤),

where 𝑃 ∈ 𝕃(ℝ𝑛
;ℳ(Ω)) maps weights𝑤 ∈ ℝ𝑛

to measures

∑𝑛
𝑖=1
𝑤𝑖𝛿𝑥𝑖 with support 𝑆 = {𝑥1, . . . , 𝑥𝑛}.

In the finite-dimensional subproblems of Algorithms 4.1, 5.1 and 6.1, by contrast, 𝐹 is linearised, and a

quadratic penalty based on𝒟 is added:

min

𝑤
𝐽 (𝑤) := 𝜏 [𝐹 (𝜇𝑘 ) + ⟨𝑣𝑘 , 𝑃𝑤 − 𝜇𝑘⟩ +𝐺 (𝑃𝑤)] + 1

2

∥𝑃𝑤 − 𝜇𝑘 ∥2

𝒟.

3
The maximisation of |𝐹 ′ (𝜇𝑘 ) ( · ) | in [5] corresponds to a version of (1.1) without the non-negativity constraint; compare

Remark 4.5. The more general cone constraints of [29] readily treat this constraint.
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The FWr takes a single forward-backward step on each finite-dimensional subproblem after a

specific initialisation [5]. For our methods and the FWf, we solve the subproblems to the accuracy

inf𝑞∈𝜕𝐽 (𝑤ℓ ) ∥𝑞∥∞ ≤ 0.1𝜀𝑘+1, where {𝜀𝑘+1}𝑘∈ℕ is the overall tolerance sequence. For FWf we use forward-

backward splitting capped at 2000 iterations. For Algorithms 4.1, 5.1 and 6.1 we use a semismooth

Newton method (SSN) modelled after [23]. It is based on the proximal optimality condition

𝑤 = prox𝜏sub𝐺◦𝑃 (𝑤 − 𝜏sub𝑃∗𝑣𝑘 − 𝜏sub𝑃∗𝒟𝑃𝑤) .

SSN can only be used with our methods because𝐴∗𝐴 is in general not positive definite, but𝒟 is subject

to conditions in Theorem 2.4.
4
We set the subproblem step length 𝜏sub in both methods as 0.99 times

an estimate of the Lipschitz factor of the gradient of the smooth part of 𝐽 . For the conditional gradient

methods this is 𝑛 times an estimate of ∥𝐴∗𝐴∥, and for our methods 𝑛 times an estimate of ∥𝒟∥.

Branch-and-bound subproblem To maximise −𝐹 ′(𝜇𝑘 ) ( · ) for the conditional gradient methods, or to

do the corresponding step of Algorithm 4.2 for ourmethods, we do branch-and-bound optimisation on a

geometric bisection tree representation ofweighted sums 𝜁 (𝑥) = ∑𝑛
𝑖=1
𝑤𝑖𝜌 (𝑥−𝑥𝑖)+

∑𝑚
𝑗=1
𝛽 𝑗 (𝜃∗𝜓 ) (𝑥−𝑧 𝑗 )

of functions with a small support. Each node of the tree corresponds to a subcube of the domain, and

maintains a list of active, non-zero components of the sum, and rough upper and lower bounds on it,

within the subcube. The sum is, of course, computationally easier if the number of active components

is small. To achieve this, we construct the component functions to have the small supports that was

one of our guiding principles in Section 3.2.

The branch-and-bound maximisation starts by putting the domain Ω = [0, 1]𝑛 in a priority queue (a

binary heap). Based on upper bound estimates for each cube in the priority queue, it picks the most

promising one for refinement. If the maximum of a second-order polynomial model of 𝜁 within the

cube is 0.1𝜀𝑘 of the rough upper bound, the cube is inserted back into the priority queue, marked

as a candidate solution. Otherwise its 2
𝑛
subcubes are inserted into the priority queue, unmarked.

When a marked cube is taken from the priority queue, the local approximate maximiser is returned

as an approximate maximiser of 𝜁 . Cubes are pruned from the priority queue when it is apparent

that they do not contain the solution. For further details we refer to our Rust implementation and its

documentation.

Merging heuristics In all algorithms we prune unneeded spikes with zero weights to improve

computational performance and result visualisation. The conditional gradient methods are, however,

veryweak at achieving completely zeroweights. They instead depend onmerging heuristics to reduce the

number of spikes. We use the following: if two spikes𝑤𝑖𝛿𝑥𝑖 and𝑤 𝑗𝛿𝑥 𝑗
of 𝜇𝑘+1

satisfy ∥𝑥𝑖 −𝑥 𝑗 ∥∞ ≤ 0.02,

we merge them as (𝑤𝑖 +𝑤 𝑗 )𝛿 (𝑤𝑖𝑥𝑖+𝑤𝑗𝑥 𝑗 )/(𝑤𝑖+𝑤𝑗 ) if doing so does not increase the value of the data term
𝐹 . Then convergence is not affected.

For our Algorithms 4.1, 5.1 and 6.1 this is not true: non-increase of the data term is not sufficient to

not affect convergence. Instead, (4.4) should be maintained. This is significantly more costly. Therefore,

we will not use a merging in heuristic. One is not needed: the methods tend to keep the spike count

reasonable even without one. This stems from the conservative insertion strategy in Algorithm 4.2:

if weight optimisation is sufficient to satisfy (4.4), a new point will not be inserted into the support of

𝜇𝑘+1
. However, to improve visual quality, we use the same merging heuristic as with FWr and FWf to

postprocess the final iterate.

4
If the spikes of 𝜇𝑘 start grouping very close together, 𝑃∗𝒟𝑃 may become ill-conditioned. If observed, this could be avoided

by using a merging heuristic. Alternatively, a first-order method could be used for the subproblem.
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Parameters We always take the initial iterate 𝜇0 = 0. For the PDPS, 𝑦0 ∈ 𝜕𝐹0(𝐴𝜇0). Based on trial

and error, we take the tolerance sequence 𝜀𝑘 = 0.5𝜏𝛼/(1 + 0.2𝑘)1.4
, where 𝑘 is the iteration number.

This choice balances between fast initial convergence and not slowing down later iterations too much

via excessive accuracy requirements. Moreover, as a bootstrap heuristic, on the first 10 iterations,

we insert in Algorithm 4.2 at most one point irrespective of the tolerance 𝜀𝑘 . This does not affect

convergence, as the convergence theory can be applied starting from any fixed iteration number. For

𝜇FB and 𝜇FISTA we take 𝜏 = 0.99/𝐿 where 𝐿 satisfying 𝐴∗𝐴 ≤ 𝐿𝒟 is given by Example 3.8 or 3.4

based on the choice of the spread𝜓 for 𝐴 and the corresponding kernel 𝜌 of𝒟. For 𝜇PDPS we take

𝜏0 = 0.5/√𝐿 and 𝜎0 = 1.98/√𝐿. For the squared data term we use the acceleration scheme (6.2) with

𝛾𝐹 ∗
0

= 1. The implemented conditional gradient methods have no discretionary parameters [5, 29].

7.2 experiments

To compare the algorithms against one another, we use the squared data term 𝐹 (𝜇) = 1

2
∥𝐴𝜇 − 𝑏∥2

in

both Ω = [0, 1] and Ω = [0, 2]2
. For the forward operator 𝐴, we consider both the cut Gaussian spread

of Example 3.8, and the “fast” spread of Example 3.4. We use the wave-to-particle operator𝒟 from the

same example. For the cut Gaussian the standard deviation 𝜎𝑢 = 𝜎𝑣 = 0.05, and the cut-off 𝑎 = 0.15.

For the “fast” case 𝜎 = 0.16. For the radius 𝑏 of the rectangular sensor 𝜃 as in Example 3.2 we take 0.4

times the spacing between the sensors on a regular grid𝒢. Thus 80% of the domain is “sensed” by

some sensor. In [0, 1] we use 100, and in [0, 2]2
we use 16 × 16 equally spaced sensors.

5

To generate the synthetic measurement data 𝑏, we apply 𝐴 to a ground-truth measure 𝜇 with four

spikes of distinct magnitudes, as depicted in our result figures. Then we add to each sensor reading

independent Gaussian noise of standard deviation 0.2 in 1D (both spreads), and standard deviation 0.1

(cut Gaussian spread) or 0.15 (“fast” spread) in 2D. These choices produce in all cases 3.8–4.8 dB SSNR

(57–65% noise). We use the trial-and-error regularisation parameter 𝛼 = 0.09 (1D, cut Gaussian), 0.06

(1D, “fast”), 0.19 (2D, cut Gaussian), or 0.12 (2D, “fast” spread).

We also demonstrate 𝜇PDPS on the ℓ 1
data term 𝐹 (𝜇) = ∥𝐴𝜇 − 𝑏∥1 on the cut Gaussian spread

in one dimension; the other combinations are available through our software implementation [37].

The parametrisation of 𝐴 is as above. We apply salt-and-pepper noise of magnitude 𝑚 = 0.6 and

probability 𝑝 = 0.4 in 1D. Each sensor will therefore have noise values in {0,−𝑚,𝑚}with corresponding
probabilities {1 − 𝑝, 𝑝/2, 𝑝/2}. This gives again 4.8 dB SSNR (57% noise). We set 𝛼 = 0.1.

7.3 results

We ran the experiments on a 2020 MacBook Air M1 with 16GB of memory. We take advantage of the

4 high performance CPU cores of the 8-core machine by using 4 parallel computational threads to

calculate 𝐴∗𝑧 and for the branch-and-bound optimisation. We report the performance of all of the

algorithms for the cut Gaussian spread with squared data term and Gaussian noise in 1D in Figure 1,

and in 2D in Figure 3. For the “fast” spread the results are in the corresponding Figures 2 and 4. We

also report the performance of 𝜇PDPS on salt-and-pepper noise with ℓ 1
data term in one dimension in

Figure 5. Each of the figures depicts the spread𝜓 , kernel 𝜌 , and sensor 𝜃 involved in𝐴 and𝒟. They also

depict the noisy and noise-free data, the ground-truth measure 𝜇, and the algorithmic reconstructions.

The reconstructions or optimal solutions to (4.1) cannot be expected to equal 𝜇 due to noise and

ill-conditioning of the inverse problem 𝐴𝜇 = 𝑏.
Each of the figures plots function value against both iteration count and CPU time spent. The plots

are logarithmic on both axes, and we sample the reported values logarithmically only on iterations

5
The small number of sensors along each axis in 2D is for visualisation purposes: our implementation scales well with

computation using a 32 × 32 sensor grid with the same spread only requiring slightly over double the CPU time.
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1, 2, . . . , 10, 20, . . . , 100, 200, . . .. We limit the number of iterations to 2000. The CPU time is a sum over

the time spent by each computational thread, so several times the clock time requirement. Since the

branch-and-bound optimisation stage gets increasingly more difficult closer to a solution, algorithms

that converge the fastest generally require more CPU time to reach the final iteration.

The figures also indicate the spike count evolution and the number of iterations needed to solve the

finite-dimensional subproblems. The subproblem iteration counts are averages over the corresponding

period. FWr by design only ever takes one forward-backward iteration for the subproblems. FWf

uses forward-backward splitting, as discussed in Section 7.1. Recall that we cap the iteration count at

2000. For 𝜇FB, 𝜇FISTA, and 𝜇PDPS the subproblem iteration count may include more than one spike

insertion.

Since the weight optimisation subproblem of 𝜇FB, 𝜇FISTA, and 𝜇PDPS is not simply a finite-

dimensional version of the original problem, as it is for FWf and FWr, the reported function value

for the initial iterations can be suboptimal. An improved function value can be obtained by cheap

postprocessing weight optimisation. This is graphed for 𝜇FB with a thin line in the iteration vs. function

value plot.

7.4 comparison

Based on all the computations, for all algorithms, the “fast” spread generally has much lower CPU

time requirements for convergence than the cut Gaussian. The bulk of the computational time is spent

computing the erf of the expression for 𝜃𝑧 ∗𝜓 in Lemma 3.9. The FWf and FWr seem quicker to start

than the 𝜇FB and 𝜇FISTA, but eventually slow down, and the latter two overtake them. Sometimes,

as in Figure 3, the conditional gradient methods are incredibly slow, and FWr even unstable. Overall,

however, it is difficult to rank the FWf, FWr, and 𝜇FISTA based on these experiments. Generally 𝜇FISTA

performs better than 𝜇FB, but not always significantly. Perhaps surprisingly, as the squared data

term does not require primal-dual structure for a prox-simple algorithm, the 𝜇PDPS is consistently a

top-performer. It is also the only one of the algorithms that can handle the ℓ 1
data term.
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Figure 3: Reconstructions and performance on 2D problem with cut Gaussian spread. Top: reconstruc-
tion and original data. The area area of the top surface of the boxes is proportional the noise

level of the underlying sensor, and their colour the sign of the noise. Middle: Function value

in terms of iteration count and CPU time. The thin line indicates function value for 𝜇FB after

postprocessing weight optimisation. Bottom: spike count evolution and kernels. The kernels

have been shifted by ±0.2 in the 𝑥 and 𝑦 directions for visualisation-technical reasons.
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