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optimal control of a viscous two-field damage
model with fatigue

Livia Betz∗

Abstract Motivated by fatigue damage models, this paper addresses optimal control problems

governed by a non-smooth system featuring two non-di�erentiable mappings. This consists of a

coupling between a doubly non-smooth history-dependent evolution and an elliptic PDE. After

proving the directional di�erentiability of the associated solution mapping, an optimality system

which is stronger than the one obtained by classical smoothening procedures is derived. If one of

the non-di�erentiable mappings becomes smooth, the optimality conditions are of strong stationary

type, i.e., equivalent to the primal necessary optimality condition.
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1 introduction

Fatigue is considered to be the main cause of mechanical failure [28, 34]. It describes the weakening of

a material due to repeated applied loads (�uctuating stresses, strains, forces, environmental factors,

temperature, etc.), which individually would be too small to cause its malfunction [1, 34]. Whether in

association with environmental damage (corrosion fatigue) or elevated temperatures (creep fatigue),

fatigue failure is often an unexpected phenomenon. Unfortunately, in real situations, it is very di�cult

to identify the fatigue degradation state of a material, which sometimes might result in devastating

events. Therefore, it is extremely important to �nd methods which allow us to describe and control

the behaviour of materials exposed to fatigue. While there are very few papers [1] (damage in elastic

materials) and [11] (cohesive fracture), concerned with a rigorous mathematical examination of models

describing fatigue damage, the literature regarding the optimal control of fatigue models is practically

nonexistent. All the existing results which include the terminology “optimal control” in the context of

fatigue damage do not address theoretical aspects nor involve mathematical tools such as optimal control

theory in Banach spaces as in the present work, but focus on design of controllers and simulations

instead, see e.g. [18, 27] and the references therein.

In this paper we investigate the optimal control of the following viscous two-�eld gradient damage

problem with fatigue:

(1.1)

φ(t) ∈ arg min

φ ∈H 1(Ω)

E(t ,φ,q(t)),

−∂qE(t ,φ(t),q(t)) ∈ ∂ ÛqRϵ (H(q)(t), Ûq(t)) in L2(Ω), q(0) = 0,
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a.e. in (0,T ). To be more precise, we prove an optimality system that is far stronger than the one

obtained by classical smoothening techniques.

The main novelty concerning (1.1) arises from the highly non-smooth structure, which is due to

the non-di�erentiability of the dissipation Rϵ in the evolution inclusion, in combination with an
additional non-smooth fatigue degradation mapping which shall be introduced below. This excludes the

application of standard adjoint techniques for the derivation of �rst-order necessary conditions in form

of optimality systems. Not only does the evolution in (1.1) have a highly non-smooth character, but, as

we will next see, it is also history-dependent. The fact that the di�erential inclusion is coupled with a

minimization problem (which can be reduced to an elliptic PDE) gives rise to additional challenges [5].

The problem describes the evolution of damage under the in�uence of a time-dependent load

` : [0,T ] → H 1(Ω)∗ (control) acting on a body occupying the bounded Lipschitz domain Ω ⊂ RN
,

N ∈ {2, 3}. The induced ’local’ and ’nonlocal’ damage are expressed in terms of the functions q :

[0,T ] → L2(Ω) and φ : [0,T ] → H 1(Ω), respectively (states).

In (1.1), the stored energy E : [0,T ] × H 1(Ω) × L2(Ω) → R is given by

(1.2) E(t ,φ,q) :=
α

2

‖∇φ‖2L2(Ω)
+
β

2

‖φ − q‖2L2(Ω)
− 〈`(t),φ〉H 1(Ω),

where α > 0 is the gradient regularization and β > 0 denotes the penalization parameter. Thus, the

two damage variables are connected through the penalty term β in the stored energy, so that our model

becomes a penalized version of the viscous fatigue damage model addressed in [1] (two-dimensional

case); note that, for simplicity reasons, we do not take a displacement variable into account. The type

of penalization used in (1.2) has already been proven to be successful in the context of classical damage

models (without fatigue). Firstly, it approximates the classical single-�eld damage model, in the sense

that, when β →∞, the penalized damage model coincides with the model addressed in [16, 21], cf. [24].

Secondly, the penalization we use is frequently employed in computational mechanics due to the

numerical bene�ts o�ered by the additional damage variable (see e.g. [13] and the references therein).

For more details, we also refer to [23, Sec. 2.1-2.2].

The di�erential inclusion appearing in (1.1) describes the evolution of the damage variable q under

fatigue e�ects. Therein,H is a so-called history operator that models how the damage experienced

by the material a�ects its fatigue level. Thus, as opposed to other well-known damage models, cf.

e.g. [15, 16,21], the dissipation Rϵ in (1.1) is a�ected by the history of the evolution,H(q). The parameter

ϵ > 0 stands for the viscosity parameter, while the symbol ∂ Ûq denotes the convex subdi�erential of the

functional Rϵ in its second argument. Thus, the non-smooth di�erential inclusion is to be understood

as follows:

(−∂qE(t ,φ(t),q(t)),η − Ûq(t))L2(Ω) ≤ Rϵ (H(q)(t),η) − Rϵ (H(q)(t), Ûq(t)) ∀η ∈ L2(Ω).

The viscous dissipation Rϵ : L2(Ω) × L2(Ω) → (−∞,∞] is de�ned as

(1.3) Rϵ (ω,η) :=


∫
Ω
f (ω)η dx +

ϵ

2

‖η‖2L2(Ω)
, if η ≥ 0 a.e. in Ω,

∞ otherwise,

and features a second non-smooth component, namely the fatigue degradation mapping f . This de-

scribes in which measure the fatigue a�ects the fracture toughness of the material. This mapping is

non-increasing in applications, since the higher the cumulated damageH(q), the lower the fracture

toughness f (H(q)). Whereas usually the toughness of the material is described by a �xed (nonnegative)

constant [15, 16], in the present model it changes at each point in time and space, depending onH(q).
To be more precise, the value of the fracture toughness of the body at (t ,x) is given by f (H(q))(t ,x), cf.

(1.3). Hence, the model (1.1) takes into account the following crucial aspect: the occurrence of damage

is favoured in regions where fatigue accumulates.
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We underline that the dissipation Rϵ accounts for the non-smooth nature of the evolution in the

�rst place: even if f is replaced by a (nonnegative) constant, the evolution in (1.1) still describes a

non-smooth process. The optimal control thereof is far away from being standard and has been recently

addressed in [5, Sec. 4], where strong stationarity for the damage model (1.1) without fatigue is proven.

By contrast, in applications which take fatigue into consideration, f : R+ → R+ is constant until its

kink point is achieved, after which it monotonically decreases [2, Sec. 2.6.2]. Thus, it is the fatigue

degradation mapping f which accounts for the highly non-smooth character of our problem.

Deriving necessary optimality conditions is a challenging issue even in �nite dimensions, where

a special attention is given to MPCCs (mathematical programs with complementarity constraints).

In [30] a detailed overview of various optimality conditions of di�erent strength was introduced, see

also [20] for the in�nite-dimensional case. The most rigorous stationarity concept is strong stationarity.

Roughly speaking, the strong stationarity conditions involve an optimality system, which is equivalent

to the purely primal conditions saying that the directional derivative of the reduced objective in feasible

directions is nonnegative (which is referred to as B stationarity).

While there are plenty of contributions in the �eld of optimal control of smooth problems, see

e.g. [37] and the references therein, fewer papers are dealing with non-smooth problems. Most of these

papers resort to regularization or relaxation techniques to smoothen the problem, see e.g. [3, 17, 19] and

the references therein. The optimality systems derived in this way are of intermediate strength and

are not expected to be of strong stationary type, since one always loses information when passing

to the limit in the regularization scheme. Thus, proving strong stationarity for optimal control of

non-smooth problems requires direct approaches, which employ the limited di�erentiability properties

of the control-to-state map. In this context, there are even less contributions. We refer to the pioneering

work [25] (strong stationarity for optimal control of elliptic VIs of obstacle type), which was followed

by other papers addressing strong stationarity of various types of VIs [7, 8, 12, 26, 38, 39]. Regarding

strong stationarity for optimal control of non-smooth PDEs, the literature is rather scarce and the only

papers known to the author addressing this issue so far are [5, 6, 9, 10, 22].

Let us point out the main contributions of the present work. This paper aims at deriving optimality

conditions which - regarding their strength - lie between the conditions derived by classical regu-

larization techniques and the strong stationary ones. Starting from an optimality system obtained

via smoothening, we resort to direct methods from previous works [5, 22], in order to improve our

initial optimality conditions as far as we can. This approach has been employed in [5, 22] to arrive at

a strong stationary optimality system. However, in the literature concerned with the derivation of

optimality conditions which are weaker than strong stationarity, the analysis ends with the passage to

the limit in the regularized system. We underline that in the present work we exploit the B-stationarity

condition to improve the limit optimality system, though, in the end, optimality conditions of strong

stationary type are not established. Indeed, in contrast to [5, 22], our state system features two non-

di�erentiable mappings instead of one, so that the methods from the aforementioned works are of

limited applicability: Optimality conditions equivalent to the B-stationary ones are not expected in our

complex doubly non-smooth setting. If the fatigue degradation mapping is smooth, strong stationarity

conditions are available. While control problems featuring non-smooth terms both in the objective and

the state equation have been addressed in [4, 6, 36], we point out that, to the best of our knowledge,

optimization problems featuring two non-di�erentiable functions in the state equation have not been

tackled so far, not even in the context of classical smoothening methods.

The paper is structured as follows. After an introduction of the notation, section 2 focuses on the

analysis of our fatigue damage model (1.1). Here we address the existence and uniqueness of solutions,

by proving that (1.1) is in fact equivalent to a PDE system. This consists of an elliptic PDE and a highly

non-smooth di�erential ODE. The latter one is of particular interest. It features two non-di�erentiable

functions, namely max and the fatigue degradation function f ; the latter appears in the argument of

the initial non-smoothness, cf. (2.2a). The properties of the control-to-state operator associated to (1.1)
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are investigated. In particular, we are concerned with the directional di�erentiability of the solution

mapping of the non-smooth state system.

In section 3 we present the optimal control problem and investigate the existence of optimal mini-

mizers. Then, in subsection 3.1 we derive our �rst optimality conditions, by resorting to a classical

smoothening method. These conditions are of intermediate strength. If the non-smoothness is inactive,

they coincide with the classical KKT system. However, our �rst optimality system does not contain

any information in those points (t ,x) where the non-di�erentiable mappings max and f attain their

kink points. This is namely the focus of section 3.2, where the main result is proven in Theorem 3.15.

Here, the initial optimality system is improved by employing the "surjectivity" trick from [5, 22]. The

new and �nal optimality conditions (3.17) are comparatively strong (but not strong stationary). They

contain information in terms of sign conditions on sets where the non-smoothness is active; these

are not expected to be obtained if one just smoothens the problem, cf. e.g. [6, Remark 3.9]. Moreover,

if the fatigue degradation function f is smooth, then (3.17) is of strong stationary type (Corollary

3.16). For completeness, the expected (not proven) strong stationarity system associated to the doubly

non-smooth state system is presented in Section 3.3. Here we include a thorough explanation as to

why the methods from [5,22] fail (Remark 3.22). Finally, we include in Appendix a the proof of Lemma

3.7, for convenience of the reader.

notation

Throughout the paper,T > 0 is a �xed �nal time. IfX and Y are linear normed spaces, then the space of

linear and bounded operators from X to Y is denoted by L(X ,Y ), and X
d
↪→ Y means that X is densely

embedded in Y . The dual space of X will be denoted by X ∗. For the dual pairing between X and X ∗

we write 〈., .〉X . The closed ball in X around x ∈ X with radius α > 0 is denoted by BX (x ,α). If X is a

Hilbert space, we write (·, ·)X for the associated scalar product. The following abbreviations will be

used throughout the paper:

H 1

0
(0,T ;X ) := {z ∈ H 1(0,T ;X ) : z(0) = 0},

H 1

T (0,T ;X ) := {z ∈ H 1(0,T ;X ) : z(T ) = 0},

where X is a Banach space. The adjoint operator of a linear and continuous mapping A is denoted by

A?. By
χM we denote the characteristic function associated to the set M . Derivatives w.r.t. time (weak

derivatives of vector-valued functions) are frequently denoted by a dot. The symbol ∂ stands for the

convex subdi�erential, see e.g. [29]. With a little abuse of notation, the Nemytskii-operators associated

with the mappings considered in this paper will be denoted by the same symbol, even when considered

with di�erent domains and ranges. The mapping max{·, 0} is abbreviated by max(·). With a little abuse

of notation, we use in the following the Laplace symbol for the operator ∆ : H 1(Ω) → H 1(Ω)∗ de�ned

by

〈∆η,ψ 〉H 1(Ω) := −

∫
Ω
∇η∇ψ dx ∀ψ ∈ H 1(Ω).

2 properties of the control-to-state map

This section is concerned with the investigation of the solvability and di�erentiability properties of

the state system (1.1).

Assumption 2.1. For the mappings associated with fatigue in (1.1) we require the following:

1. The history operator H : L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)) satis�es

‖H(q1)(t) − H(q2)(t)‖L2(Ω) ≤ LH

∫ t

0

‖q1(s) − q2(s)‖L2(Ω) ds a.e. in (0,T ),
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for all q1,q2 ∈ L
2(0,T ;L2(Ω)), where LH > 0 is a positive constant.

Moreover,H : L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)) is supposed to be Gâteaux-di�erentiable with

continuous derivative on H 1(0,T ;L2(Ω)).

2. The non-linear function f : R → R is assumed to be Lipschitz-continuous with Lipschitz-

constant Lf > 0 and directionally di�erentiable.

Remark 2.2. Note that Assumption 2.1.1 is satis�ed by the Volterra operator H : L2(0,T ;L2(Ω)) →
L2(0,T ;L2(Ω)), de�ned as

[0,T ] 3 t 7→ H(q)(t) :=

∫ t

0

A(t − s)q(s)ds + q0 ∈ L
2(Ω),

where A ∈ C([0,T ];L(L2(Ω),L2(Ω))) and q0 ∈ L
2(Ω). This type of operator is often employed in the

study of history-dependent evolutionary variational inequalities, see e.g. [33, Ch. 4.4].

Concerning Assumption 2.1.2, we remark that non-di�erentiable fatigue degradation functions are

very common in applications, since such mappings often display at least one kink point, see [2, Sec.

2.6.2]. This basically means that once the cumulated fatigueH(q) achieves a certain value, say nf , the

body suddenly starts to become weaker in terms of its fracture toughness (so that nf is a kink point of

f ). This abrupt weakening of the material is described by the monotonically decreasing mapping f on

the interval [nf ,∞), see [2, Sec. 2.6.2].

Assumption 2.1 is supposed to hold throughout the paper, without mentioning it every time.

It is not di�cult to check that the Nemytskii operator f : L2(Ω) → L2(Ω) is Lipschitz continuous

with constant Lf . In view of Assumption 2.1.1, we thus have

(2.1) ‖(f ◦ H)(q1)(t) − (f ◦ H)(q2)(t)‖L2(Ω) ≤ Lf LH

∫ t

0

‖q1(s) − q2(s)‖L2(Ω) ds

a.e. in (0,T ), for all q1,q2 ∈ L
2(0,T ;L2(Ω)).

Proposition 2.3 (Control-to-state map). For every ` ∈ L2(0,T ;H 1(Ω)∗), the fatigue damage problem
(1.1) admits a unique solution (q,φ) ∈ H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)), which is characterized by the

following PDE system

Ûq(t) =
1

ϵ
max

(
− β(q(t) − φ(t)) − (f ◦ H)(q)(t)

)
in L2(Ω), q(0) = 0,(2.2a)

−α∆φ(t) + β φ(t) = βq(t) + `(t) in H 1(Ω)∗(2.2b)

a.e. in (0,T ).

Proof. Let t ∈ [0,T ] and q̂ : [0,T ] → L2(Ω) be arbitrary, but �xed. Since E(t , ·, q̂(t)) is strictly convex,

continuous and radially unbounded (see (1.2)), the minimization problem minφ ∈H 1(Ω) E(t , ·, q̂(t)) admits

a unique solution φ̂(t) characterized by ∂φE(t , φ̂(t), q̂(t)) = 0 in H 1(Ω)∗. In view of (1.2), this means

that

(2.3) φ̂(t) ∈ arg min

φ ∈H 1(Ω)

E(t ,φ, q̂(t)) ⇐⇒ φ̂(t) = ϕ(q̂(t), `(t)),

where ϕ : L2(Ω) × H 1(Ω)∗ 3 (q̃, ˜̀) 7→ φ̃ ∈ H 1(Ω) is the solution operator of

(2.4) − α∆φ̃ + β φ̃ = βq̃ + ˜̀ in H 1(Ω)∗.

With the map ϕ at hand, the evolution in (1.1) reads

(2.5) − ∂qE(t ,ϕ(q(t), `(t)),q(t)) ∈ ∂ ÛqRϵ (H(q)(t), Ûq(t)) a.e. in (0,T ).
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In the light of (1.2), (1.3), and sum rule for convex subdi�erentials, (2.5) is equivalent to

(2.6)

R(H(q)(t),v) − R(H(q)(t), Ûq(t)) + ϵ ( Ûq(t),v − Ûq(t))L2(Ω)

≥ β
(
ϕ(q(t), `(t)) − q(t),v − Ûq(t)

)
L2(Ω) ∀v ∈ L2(Ω), a.e. in (0,T ),

where

(2.7) R : L2(Ω) × L2(Ω) → R, R(ω,η) :=

{∫
Ω
f (ω)η dx , if η ≥ 0 a.e. in Ω,

∞ otherwise.

Now we use the result in [5, Lemma 3.3] for each time point t and we see that (2.6) is in fact equivalent

with

(2.8) Ûq(t) =
1

ϵ
(I − P∂ ÛqR(H(q)(t ),0))

(
д(q(t), `(t))

)
a.e. in (0,T ),

where we abbreviate for convenience

(2.9) д(q(t), `(t)) := β(ϕ(q(t), `(t)) − q(t)).

In (2.8), P∂ ÛqR(H(q)(t ),0) : L2(Ω) → L2(Ω) stands for the (metric) projection onto the set ∂ ÛqR(H(q)(t), 0),
i.e., P∂ ÛqR(H(q)(t ),0)η is the unique solution of

min

µ ∈∂ ÛqR(H(q)(t ),0)
‖η − µ‖2L2(Ω)

for any η ∈ L2(Ω). In order to compute ∂ ÛqR(H(q)(t), 0), we use the de�nition of the convex subdi�er-

ential and the fact that R(H(q)(t), 0) = 0, from which we deduce

∂ ÛqR(H(q)(t), 0) = {µ ∈ L
2(Ω)| (µ,v)L2(Ω) ≤ R(H(q)(t),v) ∀v ∈ L2(Ω)}.

Now, in view of (2.7) combined with the fundamental lemma of the calculus of variations we have

∂ ÛqR(H(q)(t), 0) = {µ ∈ L
2(Ω)| µ ≤ f (H(q)(t)) a.e. in Ω}.

This means that P∂ ÛqR(H(q)(t ),0)(η) = min{η, f (H(q)(t))} and since

η −min{η, f (H(q)(t))} = max{η − f (H(q)(t)), 0},

we can �nally write (2.8) as

(2.10) Ûq(t) =
1

ϵ
max{д(q(t), `(t)) − f (H(q)(t)), 0} a.e. in (0,T ).

To summarize, we have shown that the evolution in (2.5) is equivalent to (2.10).

To solve (2.10), we apply a �xed-point argument. For this, we take a look at the mappingL2(0, t ;L2(Ω)) 3
η 7→ G(η) ∈ H 1(0, t ;L2(Ω)), given by

G(η)(τ ) :=

∫ τ

0

max(д(η(s), `(s)) − (f ◦ H)(η)(s)) ds ∀τ ∈ [0, t],
where t ∈ (0,T ] is to be determined so that G : L2(0, t ;L2(Ω)) → L2(0, t ;L2(Ω)) is a contraction. For

all q1,q2 ∈ L
2(0, t ;L2(Ω)) the following estimate is true

(2.11)

‖G(q1)(τ ) − G(q2)(τ )‖L2(Ω) ≤

∫ τ

0

‖д(q1(s), `(s)) − д(q2(s), `(s))‖L2(Ω) ds

+

∫ τ

0

‖(f ◦ H)(q1)(s) − (f ◦ H)(q2)(s)‖L2(Ω) ds

≤ c

∫ τ

0

‖q1(s) − q2(s)‖L2(Ω) ds + Lf LH

∫ τ

0

∫ s

0

‖q1(ζ ) − q2(ζ )‖L2(Ω) dζ ds

≤ c t 1/2‖q1 − q2‖L2(0,t ;L2(Ω)) + tLf LH ‖q1 − q2‖L1(0,t ;L2(Ω))

≤ (c t 1/2 + Lf LH t3/2)‖q1 − q2‖L2(0,t ;L2(Ω)) for all τ ∈ [0, t],
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where c > 0 is a positive constant. Here we used the fact that max : L2(Ω) → L2(Ω) is Lipschitzian

with constant 1, the de�nition of д (see (2.9)) combined with the boundedness of ϕ, and the estimate

(2.1). From (2.11) we deduce

(2.12) ‖G(q1) − G(q2)‖L2(0,t ;L2(Ω)) ≤ (c t + Lf LH t2)‖q1 − q2‖L2(0,t ;L2(Ω)),

which allows us to conclude that
1

ϵ G is a contraction for a small enough t . Thus, the PDE (2.10)

restricted on (0, t) admits a unique solution in H 1

0
(0, t ;L2(Ω))(see e.g. [14, Thm. 7.2.3]). Now, the

unique solvability of (2.10) on the whole interval (0,T ) and the desired regularity of q follow by a

concatenation argument.

Finally, we recall that φ(·) = ϕ(q(·), `(·)), cf. (2.3) and we deduce from (2.4) that φ ∈ L2(0,T ;H 1(Ω)).
To summarize, we obtained that (1.1) admits a unique solution (q,φ) ∈ H 1

0
(0,T ;L2(Ω)) ×L2(0,T ;H 1(Ω)),

which, owing to (2.3) and (2.10), is characterized by (2.2). �

Lemma 2.4. The solution map associated to (1.1)

S : L2(0,T ;H 1(Ω)∗) 3 ` 7→ (q,φ) ∈ H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω))

is Lipschitz continuous.

Proof. Let `1, `2 ∈ L
2(0,T ;H 1(Ω)∗) be arbitrary, but �xed. In the following, we abbreviate (qi ,φi ) :=

S(`i ) and д(qi (·), `i (·)) := β(ϕ(qi (·), `i (·)) − qi (·)), i = 1, 2, where ϕ is the solution operator of (2.4) . In

view of Proposition 2.3 combined with (2.1), we obtain

‖(q1 − q2)(t)‖L2(Ω) ≤
1

ϵ

∫ t

0

‖д(q1(s), `1(s)) − д(q2(s), `2(s))‖L2(Ω) ds

+
1

ϵ

∫ t

0

‖(f ◦ H)(q1)(s) − (f ◦ H)(q2)(s)‖L2(Ω) ds

≤ c

∫ t

0

‖q1(s) − q2(s)‖L2(Ω) + ‖`1(s) − `2(s)‖H 1(Ω)∗ ds

+
1

ϵ
Lf LH

∫ t

0

∫ s

0

‖q1(ζ ) − q2(ζ )‖L2(Ω) dζ ds ∀ t ∈ [0,T ],
where c > 0 is a constant dependent only on the given data. Then, applying Gronwall’s inequality

leads to

‖(q1 − q2)(t)‖L2(Ω) ≤ ĉ

∫ t

0

‖`1(s) − `2(s)‖H 1(Ω)∗ ds ∀ t ∈ [0,T ],
where ĉ > 0 is a constant dependent only on the given data. By employing again (2.2a) and by

estimating as above without integrating over time, we obtain

(2.13) ‖q1 − q2‖H 1(0,T ;L2(Ω)) ≤ c̃ ‖`1 − `2‖L2(0,T ;H 1(Ω)∗),

where c̃ > 0 is another constant dependent only on the given data. Now, the desired result follows

from φi = ϕ(qi , `i ), i = 1, 2, ϕ ∈ L(L2(Ω) × H 1(Ω)∗,H 1(Ω)) and (2.13). �

Lemma 2.5. The mapping (f ◦ H) : L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)) is Hadamard directionally di�er-
entiable with

(2.14) (f ◦ H)′(η;δη) = f ′(H(η);H ′(η)(δη)) ∀η,δη ∈ L2(0,T ;L2(Ω)).

Moreover, for all η,δη1,δη2 ∈ L
2(0,T ;L2(Ω)), it holds

(2.15) ‖(f ◦ H)′(η;δη1)(t) − (f ◦ H)
′(η;δη2)(t)‖L2(Ω) ≤ Lf LH

∫ t

0

‖δη1(s) − δη2(s)‖L2(Ω) ds

a.e. in (0,T ).
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Proof. In view of the di�erentiability properties ofH and f , the mapping (f ◦ H) : L2(0,T ;L2(Ω)) →
L2(0,T ;L2(Ω)) is Hadamard directionally di�erentiable [31, Def. 3.1.1, Lem. 3.1.2(b)]. To see this, we

�rst note that f : L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)) is Hadamard directionally di�erentiable, since it

is directionally di�erentiable (by Assumption 2.1.2 and Lebesgue’s dominated convergence theorem,

see e.g. [35, Lemma A.1]) and Lipschitz-continuous. In view of Assumption 2.1.1, chain rule [32, Prop.

3.6(i)] implies that (f ◦ H) is Hadamard directionally di�erentiable as well, with directional derivative

given by (2.14). To prove (2.15), we observe that, as a consequence of (2.1), we have

1

τ
‖(f ◦ H)(η + τδη1)(t) − (f ◦ H)(η + τδη2)(t)‖L2(Ω) ≤ Lf LH

∫ t

0

‖δη1(s) − δη2(s)‖L2(Ω) ds

a.e. in (0,T ), for all η,δη1,δη2 ∈ L
2(0,T ;L2(Ω)) and all τ > 0. Passing to the limit τ ↘ 0, where one

uses the directional di�erentiability of f ◦ H and the fact that convergence in L2(0,T ;L2(Ω)) implies

a.e. convergence in L2(Ω) for a subsequence, then yields the desired estimate. �

Proposition 2.6 (Directional di�erentiability). The operator S : L2(0,T ;H 1(Ω)∗) → H 1

0
(0,T ;L2(Ω)) ×

L2(0,T ;H 1(Ω)) is directionally di�erentiable. Its directional derivative (δq,δφ) := S ′(`;δ`) at point ` ∈
L2(0,T ;H 1(Ω)∗) in direction δ` ∈ L2(0,T ;H 1(Ω)∗) is the unique solution of

Ûδq(t) =
1

ϵ
max

′
(
z(t);−β(δq(t) − δφ(t)) − f ′(H(q);H ′(q)(δq))(t)

)
in L2(Ω), δq(0) = 0,(2.16a)

−α∆δφ(t) + β δφ(t) = βδq(t) + δ`(t) in H 1(Ω)∗(2.16b)

a.e. in (0,T ), where we abbreviate z(t) := −β(q(t) − φ(t)) − (f ◦ H)(q)(t).

Proof. We start by examining the solvability of (2.16). To this end, we just check that the mapping

L2(0, t ;L2(Ω)) 3 η 7→ Ĝ(η) ∈ H 1(0, t ;L2(Ω)), given by

Ĝ(η)(τ ) :=

∫ τ

0

max
′
(
z(s);−β(η(s) − ϕ(η(s),δ`(s)) − f ′

(
H(q);H ′(q)(η)

)
(s)

)
ds

for all τ ∈ [0, t], is Lipschitzian from L2(0, t ;L2(Ω)) to L2(0, t ;L2(Ω)) with constant smaller than ϵ ,

for t ∈ (0,T ] small enough. Then, by using the arguments employed at the end of the proof of

Proposition 2.3, we can deduce that, for any δ` ∈ L2(0,T ;H 1(Ω)∗), (2.16) admits a unique solution

(δq,δφ) ∈ H 1

0
(0,T ;L2(Ω))×L2(0,T ;H 1(Ω)). For all η1,η2 ∈ L

2(0, t ;L2(Ω)) the following estimate is true

‖Ĝ(η1)(τ ) − Ĝ(η2)(τ )‖L2(Ω) ≤

∫ τ

0

‖д(η1(s),δ`(s)) − д(η2(s),δ`(s))‖L2(Ω) ds

+

∫ τ

0

‖ f ′(H(q);H ′(q;η1))(s) − f ′(H(q);H ′(q;η2))(s)‖L2(Ω) ds

≤ c

∫ τ

0

‖η1(s) − η2(s)‖L2(Ω) ds + Lf LH

∫ τ

0

∫ s

0

‖η1(ζ ) − η2(ζ )‖L2(Ω) dζ ds

≤ c t 1/2‖η1 − η2‖L2(0,t ;L2(Ω)) + tLf LH ‖η1 − η2‖L1(0,t ;L2(Ω))

≤ (c t 1/2 + Lf LH t3/2)‖η1 − η2‖L2(0,t ;L2(Ω)) for all τ ∈ [0, t],

where c > 0 is a positive constant; note that here we abbreviated againд(ηi (·),δ`(·)) := β(ϕ(ηi (·),δ`(·))−
ηi (·)), i = 1, 2. Here we used the fact that max

′(z(s), ·) : L2(Ω) → L2(Ω) is Lipschitzian with constant

1, the boundedness of ϕ (see (2.4)), and (2.15) in combination with (2.14). Then, we obtain an estimate

similar to (2.12) which allows us to conclude the fact that
1

ϵ Ĝ is a contraction.

Next we focus on the convergence of the di�erence quotients associated with the mapping S . We

begin by observing that the operator max : L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)) is Hadamard directionally
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di�erentiable [31, Def. 3.1.1, Lem. 3.1.2(b)], since it is directionally di�erentiable (by Lebesgue’s dominated

convergence theorem, see e.g. [35, Lem. A.1]) and Lipschitz-continuous. Moreover,

G : (η,ψ ) 7→ −β(η − ϕ(η,ψ )) − (f ◦ H)(η)

is directionally di�erentiable from L2(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)∗) to L2(0,T ;L2(Ω)), since ϕ is linear

and bounded between these spaces (cf. (2.4)) and as a result of Lemma 2.5. Now chain rule [32, Prop.

3.6(i)] implies that

F := max ◦G

is (Hadamard) directionally di�erentiable from L2(0,T ;L2(Ω))×L2(0,T ;H 1(Ω)∗) to L2(0,T ;L2(Ω))with

F ′((q, `); (δq,δ`)) = max
′
(
G(q, `);G ′((q, `); (δq,δ`))

)
for all (q, `), (δq,δ`) ∈ L2(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)∗). For simplicity, in the following we abbreviate

qτ := S1(` + τ δ`), where τ > 0 is arbitrary, but �xed. S1 denotes the �rst component of the map S , i.e.,

S1 : L2(0,T ;H 1(Ω)∗) → H 1

0
(0,T ;L2(Ω)) is the solution map associated with (2.10). By combining the

equations for qτ , q and (2.16), we obtain

(2.17)

d

dt

(qτ − q
τ
− δq

)
=
F (qτ , ` + τ δ`) − F (q, `)

τ
− F ′

(
(q, `); (δq,δ`)

)
a.e. in (0,T ),(qτ − q

τ
− δq

)
(0) = 0.

This implies

(2.18)

(qτ − q
τ
− δq

)
(t)


L2(Ω)

≤

∫ t

0

F (
qτ , ` + τ δ`

)
(s) − F

(
(q, `) + τ (δq,δ`)

)
(s)

τ


L2(Ω)

+

 F (
(q, `) + τ (δq,δ`)

)
(s) − F (q, `)(s)

τ
− F ′

(
(q, `); (δq,δ`)

)
(s)︸                                                                           ︷︷                                                                           ︸

=:Aτ (s)


L2(Ω)

ds

≤

∫ t

0

G(qτ , ` + τδ`)(s) −G((q, `) + τ (δq,δ`))(s)
τ


L2(Ω)

ds + ‖Aτ ‖L1(0,t ;L2(Ω))

≤ c

∫ t

0

(qτ − q
τ
− δq

)
(s)


L2(Ω)

ds + Lf LH

∫ t

0

∫ s

0

(qτ − q
τ
− δq

)
(ζ )


L2(Ω)

dζ ds

+ ‖Aτ ‖L1(0,T ;L2(Ω)) ∀ t ∈ [0,T ],
where c > 0 is the positive constant appearing in (2.11). In (2.18) we used again the Lipschitz continuity

of max : L2(Ω) → L2(Ω), the boundedness of ϕ (cf. (2.3) and (2.4)), and the estimate (2.1). Applying

Gronwall’s inequality in (2.18) yields

(2.19)

(qτ − q
τ
− δq

)
(t)


L2(Ω)

≤ C ‖Aτ ‖L1(0,T ;L2(Ω)) ∀ t ∈ [0,T ],

where C > 0 is a constant dependent only on the given data. Now, (2.17) and estimating as in (2.18), in

combination with (2.19), leads to

(2.20)

qτ − q
τ
− δq


H 1(0,T ;L2(Ω))

≤ Ĉ ‖Aτ ‖L2(0,T ;L2(Ω)) ∀τ > 0,
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where Ĉ > 0 is a constant dependent only on the given data. On the other hand, we recall the de�nition

of Aτ in (2.18) and the fact that F is directionally di�erentiable from L2(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)∗)
to L2(0,T ;L2(Ω)), which implies

‖Aτ ‖L2(0,T ;L2(Ω)) → 0 as τ ↘ 0.

In view of (2.20), we have shown that S1 : L2(0,T ;H 1(Ω)∗) → H 1(0,T ;L2(Ω) is directionally di�eren-

tiable with S ′
1
(`;δ`) = δq. Further, from (2.3) we have S2(`) = ϕ(S1(`), `) for all ` ∈ L2(0,T ;H 1(Ω)∗),

where S2 is the second component of the operator S , i.e.,S2 : L2(0,T ;H 1(Ω)∗) 3 ` 7→ φ ∈ L2(0,T ;H 1(Ω)).
Thus, S2 is directionally di�erentiable as well, since ϕ ∈ L(L2(Ω) × H 1(Ω)∗;H 1(Ω)) and S1 is direction-

ally di�erentiable. Its directional derivative S ′
2
(`;δ`) is given by ϕ(S ′

1
(`;δ`),δ`), i.e., S ′

2
(`;δ`) = δφ, see

(2.16). The proof is now complete. �

3 the optimal control problem

Now, we turn our attention to the optimal control of the fatigue damage model (1.1). In the remainder

of the paper, we are concerned with the examination of the following optimal control problem

min

`∈H 1(0,T ;L2(Ω))
J (q,φ, `)

s.t. (q,φ) solves (1.1) with r.h.s. `.

In view of Proposition 2.3, this can also be formulated as

(P)

min

`∈H 1(0,T ;L2(Ω))
J (q,φ, `)

s.t. (q,φ) solves (2.2) with r.h.s. `.


Assumption 3.1. The functional J satis�es

J (q,φ, `) = j(q,φ) +
1

2

‖`‖2H 1(0,T ;L2(Ω))
,

where j : L2(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)) → R is continuously Fréchet-di�erentiable.

Note that Assumption 3.1 is satis�ed by classical objectives of tracking type such as

Jex (q,φ, `) :=
1

2

‖q − qd ‖
2

L2(0,T ;L2(Ω))
+
κ

2

‖φ‖2L2(0,T ;H 1(Ω))
+

1

2

‖`‖2H 1(0,T ;L2(Ω))
,

where qd ∈ L
2(0,T ;L2(Ω)) and κ ≥ 0.

Proposition 3.2 (Existence of optimal solutions for (P)). The optimal control problem (P) admits at least
one solution in H 1(0,T ;L2(Ω)).

Proof. The assertion follows by standard arguments which rely on the direct method of the calculus of

variations combined with the radial unboundedness of the reduced objective

H 1(0,T ;L2(Ω)) 3 ` 7→ J (S(`), `) ∈ R,

the Lipschitz continuity of S on L2(0,T ;H 1(Ω)∗) (Lemma 2.4), the compact embedding

H 1(0,T ;L2(Ω)) ↪→↪→ L2(0,T ;H 1(Ω)∗)

and the continuity of j from Assumption 3.1. �
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3.1 regularization and passage to the limit

In this section, we are concerned with the derivation of a �rst optimality system for local optima of

(P). Based thereon, we shall improve our optimality conditions in the next section.

To obtain a �rst strong optimality system, see (3.5) below, we need the following rather non-restrictive

assumption:

Assumption 3.3. In addition to Assumption 2.1, we require that the mappings associated with fatigue

in (1.1) satisfy:

1. The history operator H : L2(0,T ;L∞(Ω)) → L2(0,T ;L∞(Ω)) ful�lls

‖H(q1)(t) − H(q2)(t)‖L∞(Ω) ≤ L̂H

∫ t

0

‖q1(s) − q2(s)‖L∞(Ω) ds a.e. in (0,T ),

for all q1,q2 ∈ L
2(0,T ;L∞(Ω)), where L̂H > 0 is a positive constant.

2. The non-di�erentiable function f : R → R is assumed to have one non-smooth point nf .

Moreover, f is assumed to be continuously di�erentiable on R \ {nf }.

Remark 3.4. Similarly to Remark 2.2, we observe that Assumption 3.3.1 is satis�ed by classical Volterra

operators which are employed in the study of history-dependent evolutionary variational inequalities,

i.e.,H : L2(0,T ;L∞(Ω)) → L2(0,T ;L∞(Ω))

[0,T ] 3 t 7→ H(q)(t) :=

∫ t

0

A(t − s)q(s)ds + q0 ∈ L
∞(Ω),

where A ∈ C([0,T ];L(L∞(Ω),L∞(Ω))) and q0 ∈ L
∞(Ω).

We underline that Assumption 3.3.2 is very reasonable from the point of view of applications,

since fatigue degradation functions have at most two kink points in practice [2, Sec. 2.6.2]; moreover,

such mappings are always piecewise continuously di�erentiable. Our mathematical analysis can be

carried on in an analogous way if f has a countable number of non-smooth points; since this is rather

uncommon in applications and for the sake of a better overview, we stick to the setting where f has a

single non-di�erentiable point.

In the rest of the paper, we will tacitly assume that, in addition to Assumptions 2.1 and 3.1, Assumption

3.3 is always ful�lled, without mentioning it every time.

Definition 3.5 (Regularization of f ). For every ε > 0, the di�erentiable function fε : R→ R is de�ned

as

fε (v) :=

∫ ∞

−∞

f (v − εs)ψ (s)ds,

whereψ ∈ C∞c (R), ψ ≥ 0, suppψ ⊂ [−1, 1] and

∫ ∞
−∞

ψ (s)ds = 1.

Lemma 3.6 (Properties of fε ). The following assertions are true:

1. There exists a constant C > 0, independent of ε , such that

| fε (v) − f (v)| ≤ Cε ∀v ∈ R, ∀ ε > 0.

2. For every ε > 0, fε is Lipschitz continuous. Its Lipschitz constant is given by Lf > 0, and it is thus
independent of ε .

3. For every δ > 0 and every K ≥ |nf | + δ , the sequence { f ′ε } converges uniformly towards f ′ on
[−K ,nf − δ ] ∪ [nf + δ ,K] as ε ↘ 0.
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Proof. The �rst two statements are an immediate consequence of the Lipschitz continuity of f . Note

that fε = ψε ? f , whereψε (·) = ψ (·/ε)/ε . Then, the third statement is a consequence of the fact that f ′

is continuous on [−K ,nf − δ ] ∪ [nf + δ ,K] in combination with the fact that f ′ε = ψε ? f ′. �

For an arbitrary local minimizer
¯` of (P), consider the following regularization, also known as

"adapted penalization", see e.g. [4]:

(Pε )

min

`∈H 1(0,T ;L2(Ω))
J (q,φ, `) +

1

2

‖` − ¯`‖2H 1(0,T ;L2(Ω))

s.t. Ûq(t) =
1

ϵ
max ε (−β(q(t) − φ(t)) − (fε ◦ H)(q)(t)) in L2(Ω),

q(0) = 0,

− α∆φ(t) + β φ(t) = βq(t) + `(t) in H 1(Ω)∗, a.e. in (0,T ),


where

max ε : R→ R, max ε (x) :=


0, x ≤ 0,
1

2ε x
2, x ∈ (0, ε) ,

x − ε
2
, x ≥ ε .

Lemma 3.7. For each local optimum ¯` of (P) there exists a sequence of local minimizers {`ε } of (Pε ) such
that

(3.1) `ε → ¯` in H 1(0,T ;L2(Ω)) as ε ↘ 0.

Moreover,

(3.2) Sε (`ε ) → S( ¯`) in H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)) as ε ↘ 0,

where Sε : L2(0,T ;H 1(Ω)∗) 3 ` 7→ (qε ,φε ) ∈ H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)) is the control-to-state

map associated to the state equation in (Pε ).

Proof. see Appendix a. �

The next result is essential for the solvability of the �rst adjoint equation in (3.5).

Lemma 3.8. For all η,δη ∈ L2(0,T ;L2(Ω)) it holds

(3.3) ‖[(fε ◦ H)
′(η)]?(δη)(t)‖L2(Ω) ≤ L̂f LH

∫ T

t
‖δη(s)‖L2(Ω) ds a.e. in (0,T ),

where [(fε ◦H)′(η)]? : L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)) stands for the adjoint operator of (fε ◦H)′(η).

Proof. Let ψ ∈ L2(0,T ;L2(Ω)) be arbitrary, but �xed. By virtue of (2.15) (applied for fε instead of f ),

we have

([(fε ◦ H)
′(η)]?(δη),ψ )L2(0,T ;L2(Ω)) = ((fε ◦ H)

′(η)(ψ ),δη)L2(0,T ;L2(Ω))

≤

∫ T

0

L̂f LH

∫ T

0

χ
[0,t ](s)‖ψ (s)‖L2(Ω) ds ‖δη(t)‖L2(Ω) dt

= L̂f LH

∫ T

0

∫ T

0

χ
[0,s](t)‖δη(s)‖L2(Ω) ds ‖ψ (t)‖L2(Ω) dt

= L̂f LH

∫ T

0

∫ T

t
‖δη(s)‖L2(Ω) ds ‖ψ (t)‖L2(Ω) dt .
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Note that in the �rst identity we made use of Fubini’s theorem. Now, testing with ψ := vρ, where

v ∈ L2(Ω) and ρ ∈ L2(0,T ), ρ ≥ 0, are arbitrary, but �xed yields∫ T

0

([(fε ◦ H)
′(η)]?(δη)(t),v)L2(Ω)ρ(t)dt

≤ L̂f LH

∫ T

0

∫ T

t
‖δη(s)‖L2(Ω) ds ‖v ‖L2(Ω)ρ(t)dt .

Applying the fundamental lemma of the calculus of variations then gives in turn

([(fε ◦ H)
′(η)]?(δη)(t),v)L2(Ω) ≤ L̂f LH

∫ T

t
‖δη(s)‖L2(Ω) ds ‖v ‖L2(Ω)

a.e. in (0,T ). Since v ∈ L2(Ω) was arbitrary, the proof is now complete. �

To show that the relations in (3.12) below are valid, we need to prove that the convergence in (3.2) is

true in L∞(0,T ;L∞(Ω)) as well. This is con�rmed by the following

Lemma 3.9. Let {`ε } be the sequence of local minimizers from Lemma 3.7 associated to a local optimum
¯` of (P). Then,

(3.4) Sε (`ε ) → S( ¯`) in L∞(0,T ;L∞(Ω)) × L∞(0,T ;L∞(Ω)) as ε ↘ 0.

Proof. Let us �rst show that (q̄, φ̄) belongs to L∞(0,T ;L∞(Ω)) × L∞(0,T ;L∞(Ω)). The assertion for

(qε ,φε ) follows in a completely analogous way. By taking a look at (2.2), we see that, since
¯` ∈

L∞(0,T ;L2(Ω)), the mapping φ̄ belongs to the space L∞(0,T ;L∞(Ω)); this follows by the so-called

Stampacchia method, cf. e.g. [37, Chp. 7.2.2]. Then, by arguing as in the proof of Proposition 2.3, where

one employs Assumption 3.3.1, one obtains that q̄ ∈ H 1(0,T ;L∞(Ω)) ⊂ L∞(0,T ;L∞(Ω)). Now, to show

the convergence (3.4), we subtract the equation associated to q̄ (see (2.2a)) from the one associated to

qε (see (a.1a)). By using the fact that |max ε (x) −max(x)| ≤ ε ∀x ∈ R, and by relying on the Lipschitz

continuity of max and f , as well as Lemma 3.6.1, we arrive at

‖(qε − q̄)(t)‖L∞(Ω) ≤
2εt

ϵ
+
c

ϵ

∫ t

0

‖qε (s) − q̄(s)‖L∞(Ω) + ‖φε (s) − φ̄(s)‖L∞(Ω) ds

+
Lf

ϵ

∫ t

0

‖H(qε )(s) − H(q̄)(s)‖L∞(Ω) ds

≤
2εt

ϵ
+
c

ϵ

∫ t

0

‖qε (s) − q̄(s)‖L∞(Ω) + ‖`ε (s) − ¯`(s)‖L2(Ω) ds

+
Lf L̂H

ϵ

∫ t

0

∫ s

0

‖qε (ζ ) − q̄(ζ )‖L∞(Ω) dζ ds ∀ t ∈ [0,T ],

where c > 0 is a constant dependent only on the given data; note that in the last inequality we used

Assumption 3.3.1. Then, applying Gronwall’s inequality leads to

‖(qε − q̄)(t)‖L∞(Ω) ≤ ĉ
(
2εt

ϵ
+
c

ϵ

∫ t

0

‖`ε (s) − ¯`(s)‖L2(Ω) ds
)

∀ t ∈ [0,T ],

where ĉ > 0 is a constant dependent only on the given data. By employing (3.1), we can �nally deduce

that qε → q̄ in L∞(0,T ;L∞(Ω)). In view of (2.2b), the proof is now complete. �

We are now in the position to state the main result of this subsection.
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Proposition 3.10. Suppose that Assumptions 3.1 and 3.3 are ful�lled. Let ¯` be a local optimum of (P) with
associated state (q̄, φ̄) ∈ H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)). Then there exist adjoint states

ξ ∈ H 1

T (0,T ;L2(Ω)) andw ∈ L2(0,T ;H 1(Ω))

and multipliers λ ∈ L∞(0,T ;L2(Ω)) and µ ∈ L∞(0,T ;L2(Ω)) such that the following optimality system
is satis�ed

− Ûξ − β
(
w − λ

)
+H ′(q̄)?(µ) = ∂q j(q̄, φ̄) in L2(0,T ;L2(Ω)), ξ (T ) = 0,(3.5a)

−α∆w + β
(
w − λ

)
= ∂φ j(q̄, φ̄) in L2(0,T ;H 1(Ω)∗),(3.5b)

λ(t ,x) =
1

ϵ
χ
{z̄>0}(t ,x)ξ (t ,x) a.e. where z̄(t ,x) , 0,(3.5c)

µ(t ,x) = f ′(H(q̄)(t ,x))λ(t ,x) a.e. whereH(q̄)(t ,x) , nf ,(3.5d)

(w,δ`)L2(0,T ;L2(Ω)) + ( ¯`,δ`)H 1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H 1(0,T ;L2(Ω)),(3.5e)

where we abbreviate z̄ := −β(q̄ − φ̄) − (f ◦ H)(q̄).

Proof. Let {`ε } be the sequence of local minimizers from Lemma 3.7. Since `ε is locally optimal for

(Pε ) and on account of the di�erentiability properties of Sε , cf. Appendix a, and J , see Assumption 3.1,

we can write down the necessary optimality condition

(3.6) j ′(Sε (`ε ))(S
′
ε (`ε )(δ`)) + (`ε ,δ`)H 1(0,T ;L2(Ω)) + (`ε − ¯`,δ`)H 1(0,T ;L2(Ω)) = 0

for all δ` ∈ H 1(0,T ;L2(Ω)). Now, let us consider the system

− Ûξε (t) − β
(
wε (t)−

1

ϵ
max ε

′(zε (t))ξε (t)
)

+H ′(qε )
?
(
f ′ε (H(qε ))

( 1

ϵ
max ε

′(zε )ξε
) )
(t) = ∂q j(Sε (`ε ))(t), ξε (T ) = 0,

(3.7a)

−α∆wε (t) + β
(
wε (t) −

1

ϵ
max ε

′(zε (t))ξε (t)
)
= ∂φ j(Sε (`ε ))(t)(3.7b)

a.e. in (0,T ), where we abbreviate zε := −β(qε − φε ) − (fε ◦ H)(qε ) and (qε ,φε ) := Sε (`ε ). In (3.7a),

H ′(qε )
?

: L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)) stands for the adjoint operator ofH ′(qε ).

By arguments inspired e.g. from the proof of [35, Lem. 5.7] in combination with the estimate (3.3),

one obtains that (3.7) admits a unique solution (ξε ,wε ) ∈ H
1

T (0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)). Let us go a

little more into detail concerning the solvability of (3.7a). In this context one checks if the mapping

L2(0, t ;L2(Ω)) 3 η 7→ G(η) ∈ H 1(0, t ;L2(Ω)), given by

G(η)(τ ) :=

∫ τ

0

β
(
wε (T − s,η(s)) −

1

ϵ
max ε

′(zε (T − s))η(s)
)

−H ′(qε )
?
(
f ′ε (H(qε ))

( 1

ϵ
max ε

′(zε )η(T − ·)
) )︸                                                    ︷︷                                                    ︸

=[(fε ◦H)′(qε )]?
(

1

ϵ max ε ′(zε )(η(T−·))
) (T − s) + ∂q j(Sε (`ε ))(T − s) ds

for all τ ∈ [0, t], is Lipschitzian from L2(0, t ;L2(Ω)) to L2(0, t ;L2(Ω)) with constant smaller than 1, for

t ∈ (0,T ] small enough; here wε (t ,v) denotes the solution of

−α∆wε (t ,v) + β
(
wε (t ,v) −

1

ϵ
max ε

′(zε (t))v
)
= ∂φ j(Sε (`ε ))(t)
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for t ∈ [0,T ] and v ∈ L2(Ω).We observe that, for all η1,η2 ∈ L
2(0, t ;L2(Ω)), the following estimate is

true

‖G(η1)(τ ) − G(η2)(τ )‖L2(Ω) ≤ c

∫ τ

0

‖η1(s) − η2(s)‖L2(Ω) ds

+

∫ τ

0

L̂f LH

∫ T

T−s
‖(η1 − η2)(T − ζ )‖L2(Ω) dζ ds

≤ c t 1/2‖η1 − η2‖L2(0,t ;L2(Ω)) + L̂f LH

∫ τ

0

∫ s

0

‖(η1 − η2)(ζ )‖L2(Ω) dζ ds

≤ (c t 1/2 + L̂f LH t3/2)‖η1 − η2‖L2(0,t ;L2(Ω)) for all τ ∈ [0, t],

where in the �rst inequality we used the global Lipschitz-continuity of maxε with constant 1 and (3.3);

now the reader is referred to the �rst part of the proof of Proposition 2.6 where the exact type of

estimate was established in order to obtain that η = G(η) admits a solution in H 1

0
(0,T ;L2(Ω)); �nally,

a transformation of the variables yields that (ξε ,wε ) := (η(T − ·),wε (t ,η(T − ·)) is the solution of the

adjoint system (3.7).

Testing (3.7) with S ′ε (`ε )(δ`) and (a.2) with (ξε ,wε ) yields

(wε ,δ`)L2(0,T ;L2(Ω)) = j ′(Sε (`ε ))(S
′
ε (`ε )(δ`)),

which inserted in (3.6) gives

(3.8) (wε ,δ`)L2(0,T ;L2(Ω)) + (`ε ,δ`)H 1(0,T ;L2(Ω)) + (`ε − ¯`,δ`)H 1(0,T ;L2(Ω)) = 0

for all δ` ∈ H 1(0,T ;L2(Ω)). Further, we observe that

∂q j(Sε (`ε )) → ∂q j(S( ¯`)) in L2(0,T ;L2(Ω)),(3.9a)

∂φ j(Sε (`ε )) → ∂φ j(S( ¯`)) in L2(0,T ;H 1(Ω)∗),(3.9b)

in the light of (3.2) combined with the continuous Fréchet-di�erentiability of J (Assumption 3.1).

Next we focus on proving uniform bounds for the regularized adjoint states. By employing again a

transformation of the variables where this time we abbreviate
ˆξε := ξε (T − ·) and by relying again on

the global Lipschitz-continuity of maxε and (3.3), we obtain from (3.7a)

‖ ˆξε (t)‖L2(Ω) ≤

∫ t

0

‖β
(
wε (T − s, ˆξε (s)) −

1

ϵ
max ε

′(zε (T − s)) ˆξε (s)
)
‖L2(Ω) ds

+

∫ t

0

‖[(fε ◦ H)
′(qε )]

? ( 1

ϵ
max ε

′(zε )( ˆξε (T − ·))
)
(T − s)‖L2(Ω) ds

+

∫ t

0

‖∂q j(Sε (`ε ))(T − s)‖L2(Ω) ds

≤

∫ t

0

c (‖ ˆξε (s)‖L2(Ω) + ‖∂φ j(Sε (`ε ))(T − s)‖H 1(Ω)∗) ds

+

∫ t

0

L̂f LH

∫ T

T−s
‖ ˆξε (T − ζ )‖L2(Ω) dζ︸                          ︷︷                          ︸
=
∫ s

0
‖ ˆξε (ζ ) ‖L2(Ω) dζ

ds

+

∫ t

0

‖∂q j(Sε (`ε ))(T − s)‖L2(Ω) ds ∀ t ∈ [0,T ].

Now, Gronwall’s inequality gives in turn

‖ξε (t)‖L2(Ω) ≤ c̃

∫ T−t

0

‖∂φ j(Sε (`ε ))(T − s)‖H 1(Ω)∗ + ‖∂q j(Sε (`ε ))(T − s)‖L2(Ω) ds
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for all t ∈ [0,T ]. Thus, by relying on (3.9a)-(3.9b) and by estimating again as above in (3.7a), this time

without integrating, one obtains that there exists a constant, independent of ε , such that

‖ξε ‖H 1(0,T ;L2(Ω)) ≤ c .

As a consequence,

λε :=
1

ϵ
max ε

′(zε )ξε

and

µε := f ′ε (H(qε ))λε

are uniformly bounded in L∞(0,T ;L2(Ω)) (recall that maxε and fε are globally Lipschitz continuous

with constants independent of ε). From (3.7b) we can further deduce that there exists a constant c > 0,

independent of ε , such that ‖wε ‖L2(0,T ;H 1(Ω)) ≤ c , where we use again (3.9b). Therefore, we can extract

weakly convergent subsequences (denoted by the same symbol) so that

wε ⇀ w in L2(0,T ;H 1(Ω)), ξε ⇀ ξ in H 1(0,T ;L2(Ω)),

λε ⇀
∗ λ, µε ⇀

∗ µ in L∞(0,T ;L2(Ω)) as ε → 0.
(3.10)

Owing to (3.10), (3.9a), (3.9b) and (3.1), we can pass to the limit in (3.7)-(3.8). This results in

− Ûξ − β
(
w − λ

)
+H ′(q̄)?µ = ∂q j(q̄, φ̄) in L2(0,T ;L2(Ω)), ξ (T ) = 0,(3.11a)

−α∆w + β
(
w − λ

)
= ∂φ j(q̄, φ̄) in L2(0,T ;H 1(Ω)∗),(3.11b)

(w,δ`)L2(0,T ;L2(Ω)) + ( ¯`,δ`)H 1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H 1(0,T ;L2(Ω)),(3.11c)

where for the passage to the limit in (3.7a) we also relied on the continuity of the derivative ofH (see

Assumption 2.1.1) combined with (3.2).

Now, it remains to prove that (3.5c)-(3.5d) is true. To this end, we show that, for each δ > 0, we have

λ =
1

ϵ
max

′(z̄)ξ a.e. in Mδ ,(3.12a)

µ = f ′(H(q̄))λ a.e. in M̂δ ,(3.12b)

where we abbreviate Mδ := {(t ,x) : |z̄(t ,x)| ≥ δ }, z̄ := −β(q̄ − φ̄) − (f ◦ H)(q̄), and M̂δ := {(t ,x) :

|H(q̄)(t ,x) − nf | ≥ δ }.
We begin by observing that

‖H(qε )(t) − H(q̄)(t)‖L∞(Ω) ≤ L̂H ‖qε − q̄‖L1(0,T ;L∞(Ω)) a.e. in (0,T ),

in light of Assumption 3.3.1. Thus, as a consequence of (3.4), we have

(3.13) H(qε ) → H(q̄) in L∞(0,T ;L∞(Ω)),

which then implies

zε → z̄ in L∞((0,T ) × Ω),

by the Lipschitz continuity of f and Lemma 3.6.1. This means that |zε (t ,x)| ≥ δ/2 f.a.a. (t ,x) ∈ Mδ for

ε small enough, independent of (t ,x). In view of the de�nition of max ε we have

max ε
′(zε (·)) = max

′(z̄(·)) a.e. in Mδ

for ε ≤ δ/2. The de�nition ofλε and (3.10) now yield (3.12a). To show (3.12b), we proceed in a similar way.

Thanks to (3.13), there exists an ε small enough, independent of (t ,x), so that |H(qε )(t ,x) − nf | ≥ δ/2

f.a.a. (t ,x) ∈ M̂δ . Lemma 3.6.3 applied for δ/2 and

K := max{‖H(q̄)‖L∞((0,T )×Ω), |nf |} + δ
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then gives in turn the convergence

f ′ε (H(qε )) − f ′(H(qε )) → 0 in L∞(M̂δ ).

Note that, in light of (3.13), it holds ‖H(qε )‖L∞((0,T )×Ω) ≤ ‖H(q̄)‖L∞((0,T )×Ω) + δ ≤ K , for ε > 0 small

enough. Since f ′ is continuous on [−K ,nf − δ/2] ∪ [nf + δ/2,K], by Assumption 3.3.2, we deduce in

view of (3.13), Assumption 2.1.2 and Lebesgue dominated convergence that

f ′(H(qε )) − f ′(H(q̄)) → 0 in L2(M̂δ ).

Finally, the convergence of {λε } from (3.10) along with the de�nition of µε yield that

µε ⇀ µ = f ′(H(q̄))λ in L1(M̂δ ),

i.e., (3.12b). Since δ > 0 was arbitrary and since ∪
δ>0

Mδ = {(t ,x) : z̄(t ,x) , 0} and ∪
δ>0

M̂δ = {(t ,x) :

H(q̄)(t ,x) , nf } (up to a set of measure zero), the proof is now complete. �

Remark 3.11. Some remarks concerning (3.5) are in order:

• If z̄(t ,x) , 0 and ifH(q̄)(t ,x) , nf a.e. in (0,T )×Ω, then the optimality system in Proposition 3.10

coincides with the very same optimality conditions which one obtains when directly applying

the KKT-theory to (P), cf. [37]. Moreover, we observe that (3.5) does not contain any information

as to what happens in those (t ,x) for which z̄(t ,x) andH(q̄)(t ,x) are non-smooth points of the

mappings max and f , respectively. This is the focus of the next section, where the optimality

conditions from Proposition 3.10 shall be improved.

• Indeed, (3.5) is not the best optimality system one could obtain via regularization. Such a system

should also contain the relations

λ(t ,x) ∈
1

ϵ
∂max(0)ξ (t ,x) a.e. where z̄(t ,x) = 0,(3.14a)

µ(t ,x) ∈ ∂ f (nf )λ(t ,x) a.e. whereH(q̄)(t ,x) = nf .(3.14b)

We acknowledge the results [36, Thm. 2.4], [6, Prop. 2.17], [9, Thm. 4.4], where the respective limit

optimality systems, though not strong stationary, include such relations between multipliers

and adjoint states on the sets where the non-smoothness is active. We cannot expect this to

happen in the present paper; by contrast to the aforementioned contributions, our adjoint state

ξε ∈ H
1(0,T ;L2(Ω)) converges weakly in a space which is not compactly embedded in a Lebesgue

space. Although we are able to show

max ε
′(z̄ε (·))⇀

∗ γ ∈ ∂max(z̄(·)) in L∞((0,T ) × Ω),

this does not help us conclude (3.14), in view of the lack of space regularity of the adjoint state.

3.2 towards strong stationarity

In this section, we aim to derive a stronger optimality system than (3.5). To this end, we will employ

arguments from previous works [5, 22], which are entirely based on the limited di�erentiability

properties of the non-smooth mappings involved. We begin by stating the �rst order necessary

optimality conditions in primal form.

Lemma 3.12 (B-stationarity). If ¯` ∈ H 1(0,T ;L2(Ω)) is locally optimal for (P), then there holds

(3.15) j ′(S( ¯`))S ′( ¯`;δ`) + ( ¯`,δ`)H 1(0,T ;L2(Ω)) ≥ 0 ∀δ` ∈ H 1(0,T ;L2(Ω)).

Betz Optimal control of a viscous two-field damage model with . . .



J. Nonsmooth Anal. Optim. 4 (2023), 10834 page 18 of 29

Proof. As a result of Proposition 2.6 and Assumption 3.1 we have that the composite mapping

H 1(0,T ;L2(Ω)) 3 ` 7→ J (S(`), `) ∈ R

is (Hadamard) directionally di�erentiable [31, Def. 3.1.1] at
¯` in any direction δ` with directional

derivative ∂(q,φ) J (S( ¯`), ¯`)S ′( ¯`;δ`) + ∂` J (S( ¯`), ¯`)δ`; see [31, Lem. 3.1.2(b)] and [32, Prop. 3.6(i)]. The

result then follows immediately from the local optimality of
¯` and Assumption 3.1. �

In order to improve the optimality conditions from the previous section 3.1, we make use of the

following very natural requirement:

Assumption 3.13. The history operator H satis�es the monotonicity condition

H(q1) ≥ H(q2) ∀q1,q2 ∈ L
2(0,T ;L2(Ω)) with q1 ≥ q2.

Remark 3.14. It is self-evident that the cumulated damageH(q) (fatigue level of the material) increases

as the damage q increases. Hence, the condition in Assumption 3.13 is always satis�ed in applications.

As an immediate consequence of Assumption 3.13, we have

(3.16) H ′(q)(η) = lim

τ↘0

H(q + τη) − H(q)

τ
≥ 0 a.e. in (0,T ) × Ω

for all q,η ∈ L2(0,T ;L2(Ω)) with η ≥ 0 a.e. in (0,T ) × Ω.

The main result of this section reads as follows.

Theorem 3.15. Suppose that Assumptions 3.1, 3.3, and 3.13 are ful�lled. Let ¯` ∈ H 1(0,T ;L2(Ω)) be locally
optimal for (P) with associated states

q̄ ∈ H 1

0
(0,T ;L2(Ω)) and φ̄ ∈ L2(0,T ;H 1(Ω)).

Then, there exist adjoint states

ξ ∈ H 1

T (0,T ;L2(Ω)) and w ∈ L2(0,T ;H 1(Ω)),

and multipliers λ ∈ L∞(0,T ;L2(Ω)) and µ ∈ L∞(0,T ;L2(Ω)) such that the following system is satis�ed

− Ûξ − β
(
w − λ

)
+H ′(q̄)?(µ) = ∂q j(q̄, φ̄) in L2(0,T ;L2(Ω)), ξ (T ) = 0,(3.17a)

−α∆w + β
(
w − λ

)
= ∂φ j(q̄, φ̄) in L2(0,T ;H 1(Ω)∗),(3.17b)

λ(t ,x) =
1

ϵ
χ
{z̄>0}(t ,x)ξ (t ,x) a.e. where z̄(t ,x) , 0,

µ(t ,x) = f ′(H(q̄)(t ,x))λ(t ,x) a.e. whereH(q̄)(t ,x) , nf ,

(3.17c)

0 ≤ λ(t ,x) ≤
1

ϵ
(ξ (t ,x) +G+(t ,x)) a.e. where z̄(t ,x) = 0,

G−(t ,x) ≤ 0 ≤ G+(t ,x) a.e. where z̄(t ,x) > 0,

(3.17d)

(w,δ`)L2(0,T ;L2(Ω)) + ( ¯`,δ`)H 1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H 1(0,T ;L2(Ω)),(3.17e)

where we abbreviate z̄ := −β(q̄− φ̄)− (f ◦H)(q̄). In (3.17d), the mappingsG+,G− : [0,T ]×Ω are de�ned
as follows

(3.18)

G+(t ,x) :=

∫ T

t
H ′(q̄)?[χ {H(q̄)=nf }(−λ f

′
+(nf ) + µ)](s,x) ds,

G−(t ,x) :=

∫ T

t
H ′(q̄)?[χ {H(q̄)=nf }(−λ f

′
−(nf ) + µ)](s,x) ds,

where, for any v ∈ R, the right- and left-sided derivative of f : R → R are given by f ′+(v) := f ′(v ; 1)

and f ′−(v) := −f ′(v ;−1), respectively.
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Proof. The existence of a tuple (ξ ,w, λ, µ) ∈ H 1(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)) × L∞(0,T ;L2(Ω)) ×
L∞(0,T ;L2(Ω)) satisfying the system (3.17a)-(3.17b)-(3.17c)-(3.17e) is due to Proposition 3.10. Thus, the

rest of the proof is focused on showing (3.17d). In this context, we �rst follow the ideas from [5, Proof

of Lem. 2.8] and prove that the set of arguments of max
′(z̄; ·) from (2.16a) is dense in L2(0,T ;L2(Ω))

(step (I)). With this information at hand, we are then able to show the desired result by employing a

technique from [5, Proof of Thm. 2.11], see also [22, Proof of Thm. 5.3] (step (II)).

(I) Let ρ ∈ L2(0,T ;L2(Ω)) be arbitrary, but �xed. As indicated above, we next show that there exists

{δ`n} ⊂ H 1(0,T ;L2(Ω)) such that

(3.19) −β(δqn − δφn) − (f ◦ H)
′(q̄;δqn)︸                                       ︷︷                                       ︸

:=ρn

→ ρ in L2(0,T ;L2(Ω)) as n →∞,

where we abbreviate (δqn ,δφn) := S ′( ¯`;δ`n) and ρn := −β(δqn −δφn) − (f ◦H)
′(q̄)(δqn) for all n ∈ N.

To this end, we follow the lines of the proof of [5, Lem. 2.8]. We start by noticing that the mapping

[0,T ] 3 t 7→ q̂(t) ∈ L2(Ω), q̂(t) :=
1

ϵ

∫ t

0

max
′(z̄(s); ρ(s)) ds

satis�es q̂(0) = 0 and q̂ ∈ H 1(0,T ;L2(Ω)). Then, we observe that q̂ ful�lls

(3.20)

d

dt
q̂(t) =

1

ϵ
max

′(z̄(t);−βq̂(t) − (f ◦ H)′(q̄; q̂)(t) + ρ(t) + βq̂(t) + (f ◦ H)′(q̄; q̂)(t)
)

a.e. in (0,T ). In view of the embedding H 1(0,T ;C∞c (Ω))
d
↪→ L2(0,T ;L2(Ω)), there exists a sequence

{φ̂n}n ⊂ H 1(0,T ;C∞c (Ω)) such that

(3.21) βφ̂n → ρ + βq̂ + (f ◦ H)′(q̄; q̂) in L2(0,T ;L2(Ω)) as n →∞.

For any n ∈ N, consider the equation

(3.22)

d

dt
q̂n(t) =

1

ϵ
max

′(z̄(t);−β(q̂n − φ̂n) − (f ◦ H)
′(q̄; q̂n)

)
a.e. in (0,T ), q̂n(0) = 0.

By arguing as in the proof of Lemma 2.6 we see that (3.22) admits a unique solution q̂n ∈ H
1

0
(0,T ;L2(Ω)).

Now, we de�ne

(3.23) δ`n := −α∆φ̂n + β
(
φ̂n − q̂n

)
∈ H 1(0,T ;L2(Ω)),

such that (q̂n , φ̂n) solves the system (2.16) associated to
¯` with right-hand side δ`n ∈ H

1(0,T ;L2(Ω));
note that the regularity of δ`n in (3.23) is due to the H 1(0,T ;C∞c (Ω))-regularity of φ̂n . In view of the

unique solvability of (2.16), cf. Proposition 2.6, (q̂n , φ̂n) = S ′( ¯`;δ`n). Owing to the Lipschitz-continuity

of the directional derivative of max (w.r.t. direction) and (2.15), we further obtain from (3.20) and (3.22)

ϵ ‖(q̂n − q̂)(t)‖L2(Ω) ≤ β

∫ t

0

‖(q̂ − q̂n)(s)‖L2(Ω) ds

+ Lf LH

∫ t

0

∫ s

0

‖(q̂ − q̂n)(ζ )‖L2(Ω) dζ ds

+

∫ t

0

‖ − βφ̂n(s) + ρ(s) + βq̂(s) + (f ◦ H)
′(q̄; q̂)(s)‖L2(Ω) ds .

Gronwall’s inequality and (3.21) then give in turn

(3.24) ‖q̂n − q̂‖H 1(0,T ;L2(Ω)) ≤ c ‖ − βφ̂n + ρ + βq̂ + (f ◦ H)
′(q̄; q̂)‖L2(0,T ;L2(Ω)) → 0 as n →∞,
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where c > 0 is a constant dependent only on the given data. By relying on the continuity of (f ◦H)′(q̄; ·) :

L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)), cf. (2.15), we have

(3.25) βq̂n + (f ◦ H)
′(q̄; q̂n) → βq̂ + (f ◦ H)′(q̄; q̂) in L2(0,T ;L2(Ω)) as n →∞,

as a result of (3.24). Combining (3.21) and (3.25) �nally yields

−β(q̂n − φ̂n) − (f ◦ H)
′(q̄; q̂n) → ρ in L2(0,T ;L2(Ω)) as n →∞.

Since we established above that (q̂n , φ̂n) = S ′( ¯`;δ`n), the proof of this step is now complete.

(II) In the following, ρ ∈ L2(0,T ;L2(Ω)) remains arbitrary, but �xed. To prove the desired relations

in (3.17d), we �rst make use of the B-stationarity from (3.15). Here we test with the function δ`n ∈
H 1(0,T ;L2(Ω)) which was de�ned in (3.23).

We test (3.17a), (3.17b), and (3.17e) with (δqn ,δφn) := S ′( ¯`;δ`n) and δ`n , respectively. This leads to

(3.26)

0 ≤ ∂q j(q̄, φ̄)δqn + ∂φ j(q̄, φ̄)δφn + ( ¯`,δ`n)H 1(0,T ;L2(Ω))

= −

∫ T

0

( Ûξ (t),δqn(t))L2(Ω) dt − β(w − λ,δqn)L2(0,T ;L2(Ω))

+ (H ′(q̄)?(µ),δqn)L2(0,T ;L2(Ω)) + β(w − λ,δφn)L2(0,T ;L2(Ω))

+ α(∇w,∇δφn)L2(0,T ;L2(Ω)) − (w,δ`n)L2(0,T ;L2(Ω))

=

∫ T

0

(ξ (t), Ûδqn(t))L2(Ω) dt − (λ,−β(δqn − δφn))L2(0,T ;L2(Ω))

+ (µ,H ′(q̄)(δqn))L2(0,T ;L2(Ω)) − 〈β(δqn − δφn) + α∆δφn + δ`n︸                                ︷︷                                ︸
=0, cf. (2.16b)

,w〉L2(0,T ;H 1(Ω))

=︸︷︷︸
(2.16a)

∫ T

0

(ξ (t),
1

ϵ
max

′(z̄(t); ρn(t))L2(Ω) dt −

∫ T

0

(λ(t), ρn(t))L2(Ω) dt

−

∫ T

0

(λ(t), (f ◦ H)′(q̄;δqn)(t))L2(Ω) dt +

∫ T

0

(µ(t),H ′(q̄)(δqn)(t))L2(Ω) dt ∀n ∈ N,
where the second identity follows from integration by parts, δqn(0) = 0, and ξ (T ) = 0; here we also

recall the abbreviation ρn := −β(δqn − δφn) − (f ◦ H)
′(q̄;δqn), see (3.19). In view of (3.19) and since

δqn(t) =
1

ϵ

∫ t
0

max
′(z̄(s); ρn(s))ds , letting n →∞ in (3.26) leads to

(3.27)

0 ≤

∫ T

0

(ξ (t),
1

ϵ
max

′(z̄(t); ρ(t))L2(Ω) dt −

∫ T

0

(λ(t), ρ(t))L2(Ω) dt

−

∫ T

0

(λ(t), (f ◦ H)′(q̄; q̂ρ )(t))L2(Ω) dt +

∫ T

0

(µ(t),H ′(q̄)(q̂ρ )(t))L2(Ω) dt

for all ρ ∈ L2(0,T ;L2(Ω)), where we abbreviate

(3.28) q̂ρ (t) :=
1

ϵ

∫ t

0

max
′(z̄(s); ρ(s)) ds ∀ t ∈ [0,T ].

Here we used the fact that max
′(z̄; ·) : L2(0,T ;L2(Ω)) → L2(0,T ;L2(Ω)) is continuous, by the Lipschitz-

continuity of max, as well as (3.24) in combination with (2.15), and the fact that H ′(q̄) belongs to

L(L2(0,T ;L2(Ω)),L2(0,T ;L2(Ω))).
Next, we take a closer look at the second line in the estimate (3.27). In this context, we �rst notice

that, for all v,h ∈ R, it holds

(3.29) f ′(v ;h) =

{
f ′+(v)h, if h ≥ 0,

f ′−(v)h, if h < 0.
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Moreover, we recall that

(3.30) max
′(v ;h) =


h if v > 0,

max{h, 0} if v = 0,

0 if v < 0.

Now, let ρ ∈ L2(0,T ;L2(Ω)) with ρ ≥ 0 a.e. in (0,T ) × Ω be arbitrary, but �xed. In view of (3.28) and

(3.30), we have q̂ρ ≥ 0 a.e. in (0,T ) × Ω and (3.16) implies

H ′(q̄)(q̂ρ ) ≥ 0 a.e. in (0,T ) × Ω.

Then, by recalling (2.14) and by employing Fubini’s theorem, we obtain

(3.31)

−

∫ T

0

(λ(t), (f ◦ H)′(q̄; q̂ρ )(t))L2(Ω) dt +

∫ T

0

(µ(t),H ′(q̄)(q̂ρ )(t))L2(Ω) dt

=

∫ T

0

∫
Ω
[−λ(t ,x)f ′+(H(q̄)(t ,x)) + µ(t ,x)]H

′(q̄)(q̂ρ )(t ,x)dx dt

=

∫ T

0

∫
Ω
H ′(q̄)?[−λ f ′+(H(q̄)) + µ](t ,x)q̂ρ (t ,x)dx dt

=
(3.28)

∫
Ω

∫ T

0

H ′(q̄)?[−λ f ′+(H(q̄)) + µ](t ,x)
(

1

ϵ

∫ t

0

max
′(z̄(s,x); ρ(s,x)) ds

)
dt dx

=

∫
Ω

∫ T

0

1

ϵ
max

′(z̄(t ,x); ρ(t ,x))
( ∫ T

t
H ′(q̄)?[−λ f ′+(H(q̄)) + µ](s,x) ds

)
dt dx

=

∫ T

0

∫
Ω

1

ϵ
max

′(z̄(t ,x); ρ(t ,x))G+(t ,x)dx dt ∀ ρ ∈ L2(0,T ;L2(Ω)), ρ ≥ 0,

where the last equality is due to the de�nition of G+ in (3.18) combined with the second identity in

(3.17c). Going back to (3.27), we have

(3.32)

0 ≤

∫ T

0

∫
Ω

1

ϵ
max

′(z̄(t ,x); ρ(t ,x))ξ (t ,x) − λ(t ,x)ρ(t ,x)dx dt

+

∫ T

0

∫
Ω

1

ϵ
max

′(z̄(t ,x); ρ(t ,x))G+(t ,x)dx dt ∀ ρ ∈ L2(0,T ;L2(Ω)), ρ ≥ 0.

By means of the fundamental lemma of calculus of variations in combination with the positive homo-

geneity of the directional derivative w.r.t. direction, we deduce from (3.32) the inequality

(3.33)

1

ϵ
max

′(z̄(t ,x); 1)ξ (t ,x) − λ(t ,x) +
1

ϵ
max

′(z̄(t ,x); 1)G+(t ,x) ≥ 0 a.e. in (0,T ) × Ω.

By arguing exactly in the same way as above, where one takes into account the fact thatH ′(q̄)(q̂ρ ) ≤
0 a.e. in (0,T ) × Ω, for ρ ≤ 0 a.e. in (0,T ) × Ω, we show

(3.34)

−

∫ T

0

(λ(t), (f ◦ H)′(q̄; q̂ρ )(t))L2(Ω) dt +

∫ T

0

(µ(t),H ′(q̄)(q̂ρ )(t))L2(Ω) dt

=

∫ T

0

∫
Ω

1

ϵ
max

′(z̄(t ,x); ρ(t ,x))
( ∫ T

t
H ′(q̄)?[−λ f ′−(H(q̄)) + µ](s,x) ds

)
︸                                                ︷︷                                                ︸

=G−(t,x )

dx dt

∀ ρ ∈ L2(0,T ;L2(Ω)), ρ ≤ 0.
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This gives in turn

(3.35)

1

ϵ
max

′(z̄(t ,x);−1)ξ (t ,x) + λ(t ,x) +
1

ϵ
max

′(z̄(t ,x);−1)G−(t ,x) ≥ 0

a.e. in (0,T ) × Ω, where we relied again on the fundamental lemma of calculus of variations and the

positive homogeneity of the directional derivative w.r.t. direction. From (3.33)- (3.35) and the fact that

max
′(0; ·) = max{·, 0} (see (3.30)) we can now conclude the �rst relation in (3.17d). Finally, the second

relation in (3.17d) is a consequence of (3.17c), (3.33)- (3.35) and (3.30). This completes the proof. �

Corollary 3.16 (Strong stationarity in the case that f is smooth). Suppose that Assumption 3.1 is ful�lled.
Let ¯` ∈ H 1(0,T ;L2(Ω)) be locally optimal for (P) with associated states

q̄ ∈ H 1

0
(0,T ;L2(Ω)) and φ̄ ∈ L2(0,T ;H 1(Ω)).

If the mapping f is di�erentiable, then there exist unique adjoint states

ξ ∈ H 1

T (0,T ;L2(Ω)) and w ∈ L2(0,T ;H 1(Ω)),

and a unique multiplier λ ∈ L∞(0,T ;L2(Ω)) such that the following system is satis�ed

− Ûξ − β
(
w − λ

)
+ [(f ◦ H)′(q̄)]?(λ) = ∂q j(q̄, φ̄) in L2(0,T ;L2(Ω)), ξ (T ) = 0,(3.36a)

−α∆w + β
(
w − λ

)
= ∂φ j(q̄, φ̄) in L2(0,T ;H 1(Ω)∗),(3.36b)

λ(t ,x) =
1

ϵ
χ
{z̄>0}(t ,x)ξ (t ,x) a.e. where z̄(t ,x) , 0,

0 ≤ λ(t ,x) ≤
1

ϵ
ξ (t ,x) a.e. where z̄(t ,x) = 0,

(3.36c)

(w,δ`)L2(0,T ;L2(Ω)) + ( ¯`,δ`)H 1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H 1(0,T ;L2(Ω)),(3.36d)

where we abbreviate z̄ := −β(q̄ − φ̄) − (f ◦ H)(q̄). Moreover, (3.36) is of strong stationary type, i.e., if
¯` ∈ H 1(0,T ;L2(Ω)) together with its states (q̄, φ̄) ∈ H 1

0
(0,T ;L2(Ω)) ×L2(0,T ;H 1(Ω)), some adjoint states

(ξ ,w) ∈ H 1

T (0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)), and a multiplier λ ∈ L∞(0,T ;L2(Ω)) satisfy the optimality
system (3.36a)–(3.36d), then it also satis�es the variational inequality (3.15).

Proof. The �rst statement is a consequence of Theorem 3.15. Note that Assumption 3.3 is not required

here, as this was employed only in the context of convergence of terms featuring the smoothened

function f . As this mapping is already smooth, by assumption, such convergences are no longer

needed. Assumption 3.13 is also not necessary here; this was used in the proof of Theorem 3.15 to show

(3.31) and (3.34). Since {(t ,x) ∈ (0,T ) × Ω : H(q̄)(t ,x) = nf } has measure zero, (3.31) and (3.34) follow

immediately from the second relation in (3.17c).

To prove the second assertion, we let ρ ∈ L2(0,T ;L2(Ω)) be arbitrary, but �xed and abbreviate ρ+ :=

max{ρ, 0} and ρ− := min{ρ, 0}. By distinguishing between the sets {(t ,x) ∈ (0,T ) × Ω : z̄(t ,x) > 0},

{(t ,x) ∈ (0,T )×Ω : z̄(t ,x) = 0} and {(t ,x) ∈ (0,T )×Ω : z̄(t ,x) < 0}, we obtain from (3.36c) and (3.30)

(3.37)

0 ≤

∫ T

0

∫
Ω

1

ϵ
[max

′(z̄(t ,x); ρ+(t ,x)) +max
′(z̄(t ,x); ρ−(t ,x))]ξ (t ,x)dx dt

−

∫ T

0

∫
Ω
λ(t ,x)[ρ+(t ,x) + ρ−(t ,x)]dx dt

=

∫ T

0

∫
Ω

1

ϵ
max

′(z̄(t ,x); ρ(t ,x))ξ (t ,x)dx dt −

∫ T

0

∫
Ω
λ(t ,x)ρ(t ,x)dx dt
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for all ρ ∈ L2(0,T ;L2(Ω)). Now, let δ` ∈ H 1(0,T ;L2(Ω)) be arbitrary but �xed and test (3.36a), (3.36b),

and (3.36d) with (δq,δφ) := S ′( ¯`;δ`) and δ`, respectively. This leads to

∂q j(q̄, φ̄)δq + ∂φ j(q̄, φ̄)δφ + ( ¯`,δ`)H 1(0,T ;L2(Ω))

= −

∫ T

0

( Ûξ (t),δq(t))L2(Ω) dt − β(w − λ,δq)L2(0,T ;L2(Ω))

+ ([(f ◦ H)′(q̄)]?(λ),δq)L2(0,T ;L2(Ω)) + β(w − λ,δφ)L2(0,T ;L2(Ω))

+ α(∇w,∇δφ)L2(0,T ;L2(Ω)) − (w,δ`)L2(0,T ;L2(Ω))

=

∫ T

0

(ξ (t), Ûδq(t))L2(Ω) dt − (λ,−β(δq − δφ))L2(0,T ;L2(Ω))

+ (λ, (f ◦ H)′(q̄)(δq))L2(0,T ;L2(Ω)) − 〈β(δq − δφ) + α∆δφ + δ`︸                          ︷︷                          ︸
=0, cf. (2.16b)

,w〉L2(0,T ;H 1(Ω))

=︸︷︷︸
(2.16a)

∫ T

0

(ξ (t),
1

ϵ
max

′(z̄(t); (−β(δq − δφ) − (f ◦ H)′(q̄;δq))(t))L2(Ω) dt

−

∫ T

0

(λ(t), (−β(δq − δφ) − (f ◦ H)′(q̄;δq))(t))L2(Ω) dt

≥
(3.37)

0,

where the second identity follows from integration by parts, δq(0) = 0, and ξ (T ) = 0. Since δ` ∈
H 1(0,T ;L2(Ω)) was arbitrary, the proof is now complete. �

Remark 3.17. We remark that if fatigue is not taken into consideration, i.e., if f is replaced by a

nonnegative constant, then (3.36) reduces to the strong stationary optimality conditions obtained

in [5, Thm. 4.5]; note that therein the control space is L2(0,T ;L2(Ω)) instead of H 1(0,T ;L2(Ω)).

Remark 3.18. As opposed to (3.36), the optimality system in Theorem 3.15 is not strong stationary, as

we will see in the next section. However, we emphasize that (3.17) is a comparatively strong optimality

system. While countless non-smooth problems have been addressed by resorting to a smoothening

procedure as the one in the proof of Proposition 3.10 (see e.g. [3, 17, 19] and the references therein),

we went a step further and improved the optimality conditions from Proposition 3.10 by proving the

additional information contained in (3.17d). Let us point out that sign conditions on the sets where the

non-smoothness is active, in our case

0 ≤ λ(t ,x) a.e. where z̄(t ,x) = 0

are not expected to be obtained by classical regularization techniques, see e.g. [6, Remark 3.9].

3.3 discussion of the optimality system (3.17). comparison to strong stationarity

We begin this section by writing down how the strong stationary optimality conditions for the control

of (P) should look like.

Proposition 3.19 (An optimality system that implies B-stationarity). Suppose that Assumption 3.1 is ful-
�lled. Assume that ¯` ∈ H 1(0,T ;L2(Ω)) together with its states (q̄, φ̄) ∈ H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)),

some adjoint states (ξ ,w) ∈ H 1

T (0,T ;L2(Ω))×L2(0,T ;H 1(Ω)), and somemultipliers λ, µ ∈ L∞(0,T ;L2(Ω))
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satisfy the optimality system

− Ûξ − β
(
w − λ

)
+H ′(q̄)?(µ) = ∂q j(q̄, φ̄) in L2(0,T ;L2(Ω)), ξ (T ) = 0,(3.38a)

−α∆w + β
(
w − λ

)
= ∂φ j(q̄, φ̄) in L2(0,T ;H 1(Ω)∗),(3.38b)

λ(t ,x) =
1

ϵ
χ
{z̄>0}(t ,x)ξ (t ,x) a.e. where z̄(t ,x) , 0,

µ(t ,x) = f ′(H(q̄)(t ,x))λ(t ,x) a.e. whereH(q̄)(t ,x) , nf ,

(3.38c)

0 ≤ λ(t ,x) ≤
1

ϵ
ξ (t ,x) a.e. where z̄(t ,x) = 0,

f ′+(nf )λ(t ,x) ≤ µ(t ,x) ≤ f ′−(nf )λ(t ,x) a.e. whereH(q̄)(t ,x) = nf ,

(3.38d)

(w,δ`)L2(0,T ;L2(Ω)) + ( ¯`,δ`)H 1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H 1(0,T ;L2(Ω)),(3.38e)

where we abbreviate z̄ := −β(q̄ − φ̄) − (f ◦ H)(q̄) and where, for any v ∈ R, the right- and left-sided
derivative of f : R → R are given by f ′+(v) := f ′(v ; 1) and f ′−(v) := −f ′(v ;−1), respectively. Then, ¯`

also satis�es the variational inequality (3.15).

Proof. Let ρ ∈ L2(0,T ;L2(Ω)) be arbitrary, but �xed. In the proof of Corollary 3.16 we saw that the �rst

identity in (3.38c) and the �rst relation in (3.38d) combined with (3.30) imply

(3.39) 0 ≤

∫ T

0

∫
Ω

1

ϵ
max

′(z̄(t ,x); ρ(t ,x))ξ (t ,x)dx dt −

∫ T

0

∫
Ω
λ(t ,x)ρ(t ,x)dx dt

for all ρ ∈ L2(0,T ;L2(Ω)). Next we abbreviate H ′(q̄)(q̂ρ )
−

:= min{H ′(q̄)(q̂ρ ), 0} and H ′(q̄)(q̂ρ )
+

:=

max{H ′(q̄)(q̂ρ ), 0}, where

q̂ρ (t) :=
1

ϵ

∫ t

0

max
′(z̄(s); ρ(s)) ds ∀ t ∈ [0,T ].

From the second identity in (3.38c) and the second relation in (3.38d) we deduce that

(3.40)

0 ≤

∫ T

0

∫
Ω
[−λ(t ,x)f ′+(H(q̄)(t ,x)) + µ(t ,x)]︸                                     ︷︷                                     ︸

≥0

H ′(q̄)(q̂ρ )
+(t ,x)dx dt

+

∫ T

0

∫
Ω
[−λ(t ,x)f ′−(H(q̄)(t ,x)) + µ(t ,x)]︸                                     ︷︷                                     ︸

≤0

H ′(q̄)(q̂ρ )
−(t ,x)dx dt

=

∫ T

0

∫
Ω
−λ(t ,x)f ′(H(q̄)(t ,x);H ′(q̄)(q̂ρ )

+(t ,x)) + µ(t ,x)H ′(q̄)(q̂ρ )
+(t ,x)dx dt

+

∫ T

0

∫
Ω
−λ(t ,x)f ′(H(q̄)(t ,x);H ′(q̄)(q̂ρ )

−(t ,x)) + µ(t ,x)H ′(q̄)(q̂ρ )
−(t ,x)dx dt

= −

∫ T

0

(λ(t), (f ◦ H)′(q̄; q̂ρ )(t))L2(Ω) dt +

∫ T

0

(µ(t),H ′(q̄)(q̂ρ )(t))L2(Ω) dt ,

where in the second identity we relied on (3.29). Adding (3.39) and (3.40) yields (3.27). Now, let δ` ∈
H 1(0,T ;L2(Ω)) be arbitrary but �xed and abbreviate (δq,δφ) := S ′( ¯`;δ`). By testing (3.27) with−β(δq−
δφ) − (f ◦H)′(q̄;δq) and by arguing step by step backwards as in the proof of (3.26), we �nally arrive

at the desired result. �

Remark 3.20. Some words concerning Proposition 3.19 are in order:
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• The optimality system (3.38) di�ers from (3.17) only regarding the relations in (3.38d) and (3.17d).

As expected, the optimality conditions in (3.38d) contain more information than (3.17d). This is

also con�rmed by Proposition 3.21 below.

• We point out that (3.38) is not of strong stationary type, as we were not able to show (3.15)⇒

(3.38); the optimality conditions in (3.38) just point out the information that is missing in (3.17),

namely

(3.41)

λ(t ,x) ≤
1

ϵ
ξ (t ,x) a.e. where z̄(t ,x) = 0,

f ′+(nf )λ(t ,x) ≤ µ(t ,x) ≤ f ′−(nf )λ(t ,x) a.e. whereH(q̄)(t ,x) = nf .

Note that the sign condition

0 ≤ λ(t ,x) a.e. where z̄(t ,x) = 0

is already contained in (3.17d). The proof of Proposition 3.19 shows that (3.41) is indeed needed

for the implication (3.17)⇒ (3.15).

• In order to prove that a certain optimality system implies B-stationarity, it is essential that it

includes sign conditions for the involved multipliers and/or adjoint states on the sets where the

non-smoothness is active. This fact has been observed in many contributions dealing with strong

stationarity [22, Rem. 6.9], [6, Rem. 3.9], [5, Rem. 4.8], [9, Rem. 4.15]. In our case, see (3.17d), the

information on {z̄ = 0} is incomplete, while the sign conditions on the set {H(q̄) = nf } are

non-existent and seem to be hidden in the integral formulations (3.18).

Proposition 3.21 (The optimality system (3.38) is stronger than (3.17)). Suppose that all the hypotheses
in Proposition 3.19 are ful�lled. If, in addition, Assumption 3.13 holds true, then (3.17) is satis�ed.

Proof. We only need to show that (3.38d) implies (3.17d). To this end, we �rst prove that

(3.42) H ′(q̄)?(η1) ≥ H
′(q̄)?(η2) ∀η1,η2 ∈ L

2(0,T ;L2(Ω)) with η1 ≥ η2.

We recall that, as a consequence of Assumption 3.13,H ′(q̄)(ρ) ≥ 0 for all ρ ∈ L2(0,T ;L2(Ω)), ρ ≥ 0,

cf. (3.16). This leads to

(H ′(q̄)?(η1), ρ)L2(0,T ;L2(Ω)) = (η1,H
′(q̄)(ρ))L2(0,T ;L2(Ω))

≥ (η2,H
′(q̄)(ρ))L2(0,T ;L2(Ω)) = (H

′(q̄)?(η2), ρ)L2(0,T ;L2(Ω)),

from which (3.42) follows. Now, the second relation in (3.38d) and the de�nitions ofG+ andG− in (3.18)

give in turn

G+ ≥ 0 and G− ≤ 0 a.e. in (0,T ) × Ω.

Thus, (3.38d) implies (3.17d) and the proof is complete. �

Remark 3.22. The gap between (3.17) and the strong stationary optimality conditions (3.38) is due to

the additional non-smooth mapping f appearing in the argument of the initial non-smoothness max,

cf. (2.2a). To see this, let us take a closer look at the proof of Theorem 3.15. Therein, (3.17d) is proven

by relying on direct methods from previous works [5, 22] which deal with strong stationarity in the

context of one non-di�erentiable map. In these �ndings it has been observed that the set of directions

into which the non-smoothness is di�erentiated - in the "linearized" state equation - must be dense

in a suitable (Bochner) space [5, Remark 2.12], [22, Lem. 5.2]. The density of the set of directions into

which max is di�erentiated, see (2.16a), is indeed available, as the �rst step of the proof of Theorem
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3.15 shows. This allowed us to improve the optimality system (3.5) from the previous section. However,

the non-di�erentiable function f requires a similar density property too, which reads as follows

(3.43) {H ′(q̄; S ′
1
( ¯`;δ`)) : δ` ∈ H 1(0,T ;L2(Ω))}

d
↪→ L2(0,T ;L2(Ω)),

where S1 denotes the �rst component of the control-to-state map S : L2(0,T ;H 1(Ω)∗) 3 ` 7→ (q,φ) ∈
H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)). By taking a look at the "linearized" state equation (2.16a), we see that

(3.43) is not to be expected, due to the lack of surjectivity of the mapping max
′(z̄; ·). Thus, the methods

from [5,22] are restricted to one non-smoothness and permit us to improve the limit optimality system

(3.5) only up to a certain point. Thus, the strong stationarity for the control of (P) remains an open

question.

appendix a

Proof of Lemma 3.7.
The arguments are well-known [4] and can be found in [5, App. B] for the case that (f ◦ H)(q) is

constant and the control space is L2(0,T ;L2(Ω)) instead of H 1(0,T ;L2(Ω)).
(I) Let ε > 0 be arbitrary, but �xed. We begin by recalling the smooth state equation appearing in

(Pε ):

Ûq(t) =
1

ϵ
max ε (−β(q(t) − φ(t)) − (fε ◦ H)(q)(t)) in L2(Ω), q(0) = 0,(a.1a)

−α∆φ(t) + β φ(t) = βq(t) + `(t) in H 1(Ω)∗, a.e. in (0,T ).(a.1b)

By employing the exact same arguments as in the proof of Proposition 2.3, one infers that (a.1) admits

a unique solution (qε ,φε ) ∈ H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)) for every ` ∈ L2(0,T ;H 1(Ω)∗), which

allows us to de�ne the regularized solution mapping

Sε : L2(0,T ;H 1(Ω)∗) 3 ` 7→ (qε ,φε ) ∈ H
1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)).

The operator Sε is Gâteaux-di�erentiable and its derivative at ` ∈ L2(0,T ;H 1(Ω)∗) in direction δ` ∈
L2(0,T ;H 1(Ω)∗), i.e., (δq,δφ) := S ′ε (`)(δ`), is the unique solution of

(a.2)

Ûδq(t) =
1

ϵ
max ε

′(zε (t))
(
− β(δq(t) − δφ(t)) − (fε ◦ H)

′(qε )(δq)(t)
)

in L2(Ω), δq(0) = 0,

− α∆δφ(t) + β δφ(t) = βδq(t) + δ`(t) in H 1(Ω)∗, a.e. in (0,T ),

where we abbreviate zε := −β(qε − φε ) − (fε ◦ H)(qε ). By arguing as in the proof of Lemma 2.4 we

deduce that Sε : L2(0,T ;H 1(Ω)∗) → H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)) is Lipschitz continuous (with

constant independent of ε). Moreover, we have the convergence

(a.3) Sε (`ε ) → S(`) in H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)),

for `ε → ` in L2(0,T ;H 1(Ω)∗). To see this, one �rst shows that Sε (`) → S(`), which follows by

estimating as in the proof of Lemma 2.4 and by using (2.1) applied for fε along with Lemma 3.6.1. Then,

(a.3) is a consequence of the Lipschitz continuity of Sε (with constant independent of ε).
(II) Next, we focus on proving that

¯` can be approximated via local minimizers of optimal control

problems governed by (a.1). To this end, let BH 1(0,T ;L2(Ω))(
¯`, ρ) be the ball of local optimality of

¯` and

consider the smooth (reduced) optimal control problem

(P
ρ
ε )

min

`∈H 1(0,T ;L2(Ω))
J (Sε (`), `) +

1

2

‖` − ¯`‖2H 1(0,T ;L2(Ω))

s.t. ` ∈ BH 1(0,T ;L2(Ω))(
¯`, ρ).
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By arguing as in the proof of Proposition 3.2, we see that (P
ρ
ε ) admits a global solution `ε ∈ H

1(0,T ;L2(Ω)).
Since `ε ∈ BH 1(0,T ;L2(Ω))(

¯`, ρ), we can select a subsequence with

(a.4) `ε ⇀ ˜̀ in H 1(0,T ;L2(Ω)),

where ˜̀∈ BH 1(0,T ;L2(Ω))(
¯`, ρ). For simplicity, we abbreviate in the following

J(`) := J (S(`), `),(a.5a)

Jε (`) := J (Sε (`), `) +
1

2

‖` − ¯`‖2H 1(0,T ;L2(Ω))(a.5b)

for all ` ∈ H 1(0,T ;L2(Ω)). Due to (a.3) and Assumption 3.1, it holds

(a.6) J( ¯`)
(a.5a)

= J (S( ¯`), ¯`) = lim

ε→0

J (Sε ( ¯`), ¯`)
(a.5b)

= lim

ε→0

Jε ( ¯`) ≥ lim sup

ε→0

Jε (`ε ),

where for the last inequality we relied on the fact that `ε is a global minimizer of (P
ρ
ε ) and that

¯` is

admissible for (P
ρ
ε ). In view of (a.5b), (a.6) can be continued as

(a.7)

J( ¯`) ≥ lim sup

ε→0

J (Sε (`ε ), `ε ) +
1

2

‖`ε − ¯`‖2H 1(0,T ;L2(Ω))

≥ lim inf

ε→0

J (Sε (`ε ), `ε ) +
1

2

‖`ε − ¯`‖2H 1(0,T ;L2(Ω))

≥ J (S(˜̀), ˜̀) + 1

2

‖˜̀− ¯`‖2H 1(0,T ;L2(Ω))
≥ J( ¯`),

where we used again (a.3), as well as the compact embedding H 1(0,T ;L2(Ω)) ↪→↪→ L2(0,T ;H 1(Ω)∗),
and the continuity of j, see Assumption 3.1; note that for the last inequality in (a.7) we employed the

fact that ˜̀∈ BH 1(0,T ;L2(Ω))(
¯`, ρ). From (a.7) we obtain that ˜̀= ¯` and

J( ¯`) = lim

ε→0

J (Sε (`ε ), `ε ) +
1

2

‖`ε − ¯`‖2H 1(0,T ;L2(Ω))
= J (S(˜̀), ˜̀) + 1

2

‖˜̀− ¯`‖2H 1(0,T ;L2(Ω))
.

Since J (Sε (`ε ), `ε ) → J (S(˜̀), ˜̀), one has the convergence

(a.8) `ε → ¯` in H 1(0,T ;L2(Ω)),

where we also relied on (a.4). As a consequence, (a.3) yields

(a.9) Sε (`ε ) → S( ¯`) in H 1

0
(0,T ;L2(Ω)) × L2(0,T ;H 1(Ω)).

A classical argument �nally shows that `ε is a local minimizer of min`∈H 1(0,T ;L2(Ω)) Jε (`) for ε > 0

su�ciently small.
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