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on convergence of binary trust-region steepest
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Abstract Binary trust-region steepest descent (BTR) and combinatorial integral approximation

(CIA) are two recently investigated approaches for the solution of optimization problems with

distributed binary-/discrete-valued variables (control functions). We show improved convergence

results for BTR by imposing a compactness assumption that is similar to the convergence theory

of CIA. As a corollary we conclude that BTR also constitutes a descent algorithm on the contin-

uous relaxation and its iterates converge weakly-
∗
to stationary points of the latter. We provide

computational results that validate our findings. In addition, we observe a regularizing effect of

BTR, which we explore by means of a hybridization of CIA and BTR.
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1 introduction

For bounded domains Ω ⊆ ℝ𝑑 we are interested in optimization problems of the form

inf

𝑥
𝐽 (𝑥) s.t. 𝑥 (𝑠) ∈ {0, 1} for almost all (a.a.) 𝑠 ∈ Ω and 𝑥 ∈ 𝐿2(Ω),(P)

𝐽 is a map from 𝐿2(Ω) to ℝ. For this problem class we study solutions of corresponding continuous

relaxations of the form

min

𝑥
𝐽 (𝑥) s.t. 𝑥 (𝑠) ∈ [0, 1] for a.a. 𝑠 ∈ Ω and 𝑥 ∈ 𝐿2(Ω)(R)

and their relation to problem (P). The inf in the formulation of (P) and the min in the formulation

of (R) are deliberately chosen to highlight that problem (R) (in contrast to (P)) admits a minimizer

under mild assumptions [20, 28]. We restrict ourselves to this setting in the interest of a concise

presentation. One can, however, extend our analysis in different directions, for example, to the case
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where an 𝐿1
-regularization term is added to the objective function, 𝐽 (𝑥), by following the arguments

in [26].

A rich class of instances of (P) are mixed-integer PDE-constrained optimization problems, where

𝐽 = 𝑗 ◦ 𝑆 , where 𝑗 is the objective of the optimization and 𝑆 the control-to-state operator of an

underlying partial differential equation (PDE). Such problems arise in many different areas such as

topology optimization [23, 15], optimum experimental design [37], and gas network optimization

[12, 13].

We build on recent work on two algorithmic solution approaches of (P). Specifically we use insights

of the available analysis of combinatorial integral approximation (CIA) to improve the known conver-

gence results for binary trust-region steepest descent (BTR). We note that there are more methods for

(approximately) solving problems of the form (P). For example, an established method for topology

optimization is the SIMP method [2], which employs a non-convex penalization and thus regularization

of the controls (designs), and postprocessing of the solution of (R) by means of lumping or filtering

techniques.

Combinatorial integral approximation [14, 20, 31, 32] The idea that underlies CIA is to split the

solution process of (P) into solving the continuous relaxation (R) and then computing a {0, 1}-valued
approximation of the relaxed solution. The approximation process can be analyzed in the weak-

∗

topology of 𝐿∞(Ω) [27]. Relying on compactness properties of an underlying control-to-state operator

(e.g., 𝐽 = 𝑗 ◦ 𝑆 , where 𝑗 ∈ 𝐶 (𝐿2(Ω),ℝ) and 𝑆 : 𝐿2(Ω) → 𝐿2(Ω) is a compact operator), a tight

approximation of the optimal objective value by the resulting approximants can be proved [20]. If

stationary points are computed in the first step, the approximation properties generalize accordingly.

We note that CIA can handle problem formulations, where the constraint 𝑥 (𝑠) ∈ {0, 1} is generalized
to 𝑥 (𝑠) ∈ 𝑉 , where 𝑉 ⊂ ℝ is a finite set, by means of so-called special ordered set of type 1 (SOS1)

reformulation of 𝑉 so that its elements become the vertices of a unit simplex in ℝ |𝑉 | .

Binary trust-region steepest descent [10, 33, 36] The BTR method solves trust-region subproblems

in which the level sets of the control 𝑥 , corresponding to the values 0 and 1, are manipulated to

greedily improve the linearized objective. A trust-region constraint limits the volume of the level

sets, which is the 𝐿1
-norm of the control function, and can change from one accepted iterate to the

next. The analysis in [10] shows that BTR iterates eventually satisfy a condition called 𝜀-stationarity
under a regularity assumption used to obtain sufficient decrease of the aggregated volume of level

set manipulations. Regarding the problem formulation (P), we note that generalizations of the BTR

method to the constraint 𝑥 (𝑠) ∈ {0, 1}𝑘 for 𝑘 ∈ ℕ are conceivable but have not been considered in the

literature so far.

The concept 𝜀-stationarity as introduced in [10] measures the projected gradient of the objective

and also provides, as we will show, a criticality measure for first-order necessary optimality conditions

for (R). Moreover, similar to CIA, the structural assumptions on the quantities that appear in (P) are in

general not able to prevent a fine microstructure from developing over the iterations. In fact, the weak-
∗

closure of the feasible set of (P) in 𝐿∞(Ω) is the feasible set of its relaxation (R) [24, 25]. However, it is

not known whether the iterates generated by BTR converge to a limit point that satisfies a first-order

optimality condition of (R), in other words, if the termination tolerance of BTR is driven to zero.

This lack of a convergence result is in contrast to CIA, which has stationary limits under a suitable

compactness assumption.

Standing assumptions We provide our comparison of CIA and BTR and prove the new convergence

result under the following set of assumptions, which will be discussed in detail in the remainder.

Assumption 1.1.
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(a) Let 𝐽 : 𝐿2(Ω) → ℝ be bounded from below.

(b) Let 𝐽 : 𝐿1(Ω) → ℝ be Fréchet differentiable.

(c) Let ∇𝐽 : 𝐿1(Ω) → 𝐿2(Ω) be Lipschitz continuous.

(d) Let ∇𝐽 : 𝐿2(Ω) → 𝐿2(Ω) be weak-norm continuous (completely continuous).

Remark 1.1.We note that the domain of 𝐽 can be restricted to 𝐿∞(Ω) or the feasible set of (R) for all
considerations in this work. However, we require the continuity (differentiability) properties with

respect to the 𝐿1(Ω)-norm on the domain space in (b) and (d) in the remainder. We note that assuming

continuity with respect to the codomain in 𝐿2(Ω) is well defined for our purpose because all feasible

points and iterates are also 𝐿∞-functions.

Contributions We close the aforementioned theoretical gap between BTR and CIA. In particular, we

use the compactness Assumption 1.1, (d) on the derivative of 𝐽 , and we show that the BTR iterates

produced by Algorithm 2 in [10] converge weakly-
∗
in 𝐿∞(Ω) to a point that is feasible and satisfies a

first-order optimality condition for the continuous relaxation (R). We perform several computational

experiments on an example problem that is governed by an elliptic PDE to validate our theoretical

findings: specifically, BTR validates the near-optimality of the solution produced by CIA.

We have observed that BTR tends to produce controls whose level sets have shorter interface lengths

between them in practice when started from zero or a thresholded control. At the same time it is

able to produce objective values of similar quality as CIA. While we cannot prove guarantees on this

behavior, it motivates us to explore a hybrid method, where we apply CIA but use a coarser control

mesh in order to compute the binary-valued approximation of the continuous relaxation. Then we

start BTR from there, which allows us to combine the bounds and efficient running time behavior

obtained with the CIA method while capitalizing on the regularization effect of BTR.

Structure of the paper In §2 we formally introduce the CIA method and show that its underlying

approximation results hold under Assumption 1.1. In §3 we formally introduce and describe the BTR

algorithm. In §4 we relate it to [10] and state our main convergence result. The proof is presented in §5.

We provide a computational validation of our findings, demonstrate the aforementioned regularization

effect, and investigate the observed regularization effects with a hybrid method in §6. We provide

auxiliary results in §a and provide a brief discussion of Assumption 1.1 with respect to the assumptions

imposed in the earlier work [10] in §b.

Notation Let 𝑑 ∈ ℕ denote a dimension. For a measurable set 𝐴 ⊂ Ω, 𝜆(𝐴) denotes the Borel–

Lebesgue measure of 𝐴 in ℝ𝑑 . The function 𝜒𝐴 denotes the {0, 1}-valued characteristic function of the

set 𝐴. Let B denote the Borel 𝜎-algebra on Ω. For a set 𝐴 ⊂ Ω, the set 𝐴𝑐 denotes its complement in Ω.
For sets 𝐴, 𝐵 ⊂ Ω, the expression 𝐴 △ 𝐵 denotes the symmetric difference between 𝐴 and 𝐵, that is,

𝐴 △ 𝐵 := (𝐴 ∪ 𝐵)\(𝐴 ∩ 𝐵). The inner product of the Hilbert space 𝐿2(Ω) is denoted by (·, ·)𝐿2 . For a

space 𝑋 and its topological dual 𝑋 ∗ we denote the pairing that puts 𝑋 and 𝑋 ∗ in duality by ⟨·, ·⟩𝑋 ∗,𝑋 .
We denote weak convergence with the arrow⇀ and weak-

∗
convergence with the arrow⇀∗.

2 combinatorial integral approximation

CIA decomposes the solution process of (P) into two steps. First, the continuous relaxation (R) is solved

(appproximately) and then the result is used to compute a sequence of {0, 1}-valued functions that

are feasible for (P) and converge to the computed solution (or stationary point) of (R) in the weak-
∗
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topology of 𝐿∞(Ω). The CIA algorithm is given in Algorithm 1. Its key ingredients and asymptotics

are described below.

Algorithm 1 CIA algorithm to optimize (P) and (R).

Input: 𝐽 : 𝐿2(Ω) → ℝ, ∇𝐽 : 𝐿2(Ω) → 𝐿2(Ω).
Input: Order-conserving domain dissection (S𝑛)𝑛 ⊂ 2

B(Ω)
(see Definition a.1).

1: 𝑦 ← (Approximately) compute a stationary point of (R).

2: for 𝑛 = 0, 1, 2, . . . do
3: 𝑥𝑛 ← Round(𝑦,S𝑛).
4: end for

Inputs of Algorithm 1 Algorithm 1 generally requires the objective function 𝐽 as well as its gradient

∇𝐽 as inputs in order to solve (R) in Line 1. We note that depending on the properties of (R) and the

chosen algorithm, this may be relaxed or strengthened and subgradients of 𝐽 may suffice (e.g., for

projected subgradient methods) or Hessian evaluations (e.g., for a semi-smooth Newton’s method)

may be desirable.

The second step of CIA, that is the for-loop in Algorithm 1, requires a sequence of grids (S𝑛)𝑛 that
decompose the domain Ω. These grids need to abide a certain regularity that is defined in Definition a.1

in order to obtain the aforementioned weak-
∗
convergence, which is explained in more detail below.

The subroutine Round and order-conserving domain dissections The subroutine Round in Line 3

takes an 𝐿∞(Ω)-function 𝑦 that is [0, 1]-valued and a partition S𝑛 of Ω as inputs and computes a

{0, 1}-valued function 𝑥𝑛 from them.

In the literature on CIA, (P) is usually formulated with finite sets 𝑉 ⊂ ℝ𝑚 ,𝑚 ∈ ℕ, instead of {0, 1}
as the co-domain of the optimization variables in (P) and the output of Line 1 is a convex coefficient

function 𝛼 : Ω → [0, 1]𝑀 that satisfies

∑𝑚
𝑖=1
𝛼𝑖 (𝑠) = 1 a.e. The rounding algorithm then transforms 𝛼

to a function 𝜔𝑛 : Ω → {0, 1}𝑀 such that exactly one entry of 𝜔𝑛 (𝑠) is one and all others are zero a.e.

To relate this to our setting, we can simply choose𝑚 = 2, 𝛼 = (𝑦, 1 − 𝑦)𝑇 and recover 𝑥𝑛 as 𝑥𝑛 = 𝜔𝑛
1
.

Under the assumption that the sequence of partitions is an order-conserving domain dissection and

with a suitable implementation of Round that satisfies the prerequisites of [20, Proposition 3.5], one

obtains

𝛼 ⇀∗ 𝜔 in 𝐿∞(Ω),

which directly implies

𝑥𝑛 ⇀∗ 𝑦 in 𝐿∞(Ω).(2.1)

Admissible choices for the subroutine Round are, for example, sum-up rounding (SUR) [30, 28], next-

forced rounding [17], and the combinatorial optimization-based algorithms in [4, 18, 38]. The key

property of order-conserving domain dissections is that during the refinement of the grid from one

iteration to the next, a spatial coherence property and a regular shrinkage property that allow to

leverage Lebesgue’s differentiation theorem, see the analysis in [28]. A formal definition is given

in Definition a.1 in §a.1. The choices for the subroutine Round that are used in our computational

experiments are described in §a.1.

Asymptotics of Algorithm 2 under Assumption 1.1 Which set of assumptions is necessary so that

solution algorithms for (R) produce sequences with (weak) cluster points that are stationary for (R) in

Line 1 depends on the properties of (R) and the desired algorithm. If (R) is convex, few assumptions
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may suffice and Assumptions 1.1, (b), (c), (d) may be relaxed to a boundedness assumption of the 𝜀-

subdifferential on bounded sets and the projected (sub)gradient method will work [1]. If 𝐽 is not convex,

a projected gradient method with standard line search techniques, for example, Armijo linesearch,

yields convergence to stationary points under Assumption 1.1 [9]. In this case, a metricization of the

domain space in (b) and (c) with the 𝐿2
-norm instead of 𝐿1

-norm and the gradient needs not to be

Lipschitz but only uniformly continuous. More regularity allows to employ second-order methods like

semi-smooth Newton to solve for the first-order optimality conditions of (R).

While the assumption on the grids and the choice of the Round subroutine imply (2.1), the desired

convergence of the objectives

𝐽 (𝑥𝑛) → 𝐽 (𝑦)

in CIA requires that 𝐽 : 𝐿2(Ω) → ℝ is weakly continuous, which can often be asserted by regularity

(compactness) properties of an underlying differential equation in the context of optimal control

[20, 28]. This is implied by Assumptions 1.1, (b), and (d) which is shown below.

Proposition 2.1. Let Assumptions 1.1, (b), and (d) hold. Then 𝐽 : 𝐿2(Ω) → ℝ is weakly continuous.

Proof. Let 𝑥𝑛 , 𝑥 ∈ 𝐿2(Ω) be such that 𝑥𝑛 ⇀ 𝑥 , meaning 𝑥𝑛 converging weakly to 𝑥 , in 𝐿2(Ω). We need

to show 𝐽 (𝑥𝑛) → 𝐽 (𝑥). Assumption 1.1, (b) and the mean value theorem imply that 𝐽 (𝑥𝑛) − 𝐽 (𝑥) =
(∇𝐽 (𝜉𝑛), 𝑥𝑛−𝑥)𝐿2 for some 𝜉𝑛 ∈ 𝐿2(Ω) in the line segment between 𝑥𝑛 and𝑥 for all𝑛 ∈ ℕ. Because (𝜉𝑛)𝑛
is bounded, there exists a weakly convergent subsequence 𝜉𝑛𝑘 ⇀ 𝜉 for some 𝜉 ∈ 𝐿2(Ω). Assumption 1.1,

(d) implies ∇𝐽 (𝜉𝑛𝑘 ) → ∇𝐽 (𝜉) in 𝐿2(Ω), and consequently 𝐽 (𝑥𝑛𝑘 ) − 𝐽 (𝑥) = (∇𝐽 (𝜉𝑛𝑘 ), 𝑥𝑛𝑘 − 𝑥)𝐿2 → 0.

Passing to subsubsequences proves the claim. □

Remark 2.2. Wenote that assumption of an order-conserving domain dissection and the weak continuity

of 𝐽 are sufficient to obtain the desired weak-
∗
convergence of the 𝑥𝑛 to stationary points and the

corresponding convergence objective values as well if one does not compute 𝑦 first and then executes

Round but instead executes Round on the iterates of produced by an optimization algorithm for (R), see

Theorem 4.7 in [28].

3 binary trust-region steepest descent

The BTR algorithm operates on characteristic functions induced by measurable sets. We introduce the

inputs and the trust-region subproblem. Then we describe the iterations of Algorithm 2 step by step.

We relate the quantities in our variant of the algorithm to the one introduced as Algorithm 2 in [10],

which purely takes the point of view of measurable sets.

The BTR algorithm is given as Algorithm 2 and is a special case of [10, Algorithm 2]. In particular, it

corresponds to [10, Algorithm 2] with the choices J (𝐴) B 𝐽 (𝜒𝐴) for 𝐴 ∈ B. We also choose 𝜀 = 0

because we aim to study the asymptotics of the algorithm when it is not stopped early.

Manns, Hahn, Kirches, Leyffer, Sager On convergence of binary trust-region steepest descent
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Algorithm 2 BTR algorithm to optimize (P) and (R).

Input: 𝐽 : 𝐿2(Ω) → ℝ, ∇𝐽 : 𝐿2(Ω) → 𝐿2(Ω), Δmax ∈ (0, 𝜆(Ω)), 0 < 𝜎1 < 𝜎2 ≤ 1, 𝜔 ∈ (0, 1).
Input:𝑈 0 ∈ B, Δ0 ∈ (0,Δmax)

1: for 𝑛 = 0, 1, 2, . . . do
2: 𝑔𝑛 ← ∇𝐽 (𝜒𝑈𝑛 ) (𝜒 (𝑈𝑛 )𝑐 − 𝜒𝑈𝑛 )
3: 𝐷𝑛 ← FindStep

(
𝑔𝑛,Δ𝑛,min{𝜔, 0.5∥min{𝑔𝑛, 0}∥𝐿1/𝜆(Ω),Δ𝑛}

)
// e.g. [10, Proc. 1]

4: if 𝐽 (𝜒𝑈𝑛△𝐷𝑛 ) − 𝐽 (𝜒𝑈𝑛 ) ≤ 𝜎1(∇𝐽 (𝜒𝑈𝑛 ), 𝜒𝐷𝑛\𝑈𝑛 − 𝜒𝑈𝑛∩𝐷𝑛 )𝐿2 then
5: 𝑈 𝑛+1 ← 𝑈 𝑛 △ 𝐷𝑛

6: if 𝐽 (𝜒𝑈𝑛△𝐷𝑛 ) − 𝐽 (𝜒𝑈𝑛 ) ≤ 𝜎2(∇𝐽 (𝜒𝑈𝑛 ), 𝜒𝐷𝑛\𝑈𝑛 − 𝜒𝑈𝑛∩𝐷𝑛 )𝐿2 then
7: Δ𝑛+1 ← min{2Δ𝑛,Δmax}
8: else
9: Δ𝑛+1 ← Δ𝑛

10: end if
11: else
12: (𝑈 𝑛+1,Δ𝑛+1) ← (𝑈 𝑛, 0.5Δ𝑛)
13: end if
14: end for

Inputs of Algorithm 2 The algorithm requires the objective function 𝐽 as well as its gradient ∇𝐽
as inputs. Using the latter requires assuming differentiability of 𝐽 with respect to the 𝐿2

-norm. For

the acceptance criterion of the computed descent step and the update of the trust-region radius, the

algorithm requires a maximal trust-region radius Δmax and control parameters 𝜎1 and 𝜎2 as inputs. To

compute a descent step, the algorithm uses the subroutine FindStep (see below). The subroutine also

requires the parameter 𝜔 , which ensures that the volume of the returned set is always bounded from

below by a fraction of Δ𝑛 that is smaller than 1.

Trust-region subproblem and subroutine FindStep The subroutine FindStep in Line 3 of Algorithm 2

approximately solves the subproblem

min

𝐷

∫
𝐷

𝑔(𝑠) d𝑠 s.t.

{
𝐷 ⊂ 𝑔−1((−∞, 0]),

𝜆(𝐷) ≤ Δ.
(3.1)

In Algorithm 2 FindStep is called with 𝑔 = ∇𝐽 (𝜒𝑈𝑛 ) (𝜒 (𝑈𝑛 )𝑐 − 𝜒𝑈𝑛 ) and Δ = Δ𝑛 . Changing from set

optimization to function optimization, the minimization problem (3.1) is equivalent to the minimization

problem

min

𝑑
(∇𝐽 (𝜒𝑈 ), 𝑑)𝐿2 s.t.

{
𝜒𝑈 (𝑠) + 𝑑 (𝑠) ∈ {0, 1} for a.a. 𝑠 ∈ Ω,

∥𝑑 ∥𝐿1 ≤ Δ
(TR(Δ))

if 𝑔 = ∇𝐽 (𝜒𝑈 ) (𝜒𝑈 𝑐 − 𝜒𝑈 ). We provide a proof of the equivalence in Proposition a.2. We note that using

min in the definitions of (3.1) and (TR(Δ)) is justified because (TR(Δ)), and thus also (3.1), indeed admits

a minimizer, which is shown in Proposition a.3.

The analysis in [10] employs that, in every iteration, FindStep produces a set 𝐷 , or, equivalently, a

corresponding function 𝑑 = 𝜒𝑈△𝐷 − 𝜒𝑈 (see also Proposition a.2), such that

(∇𝐽 (𝜒𝑈 ), 𝑑)𝐿2 ≤ min {(∇𝐽 (𝜒𝑈 ), 𝑠)𝐿2 | 𝑠 feasible for (TR(Δ))} + 𝛿Δ and

∥𝑑 ∥𝐿1 ≤ Δ
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hold, where 𝛿 = min {𝜔, 0.5∥min{𝑔, 0}∥𝐿1/𝜆(Ω),Δ} is the third input of FindStep in Algorithm 2.

A bisection algorithm in function space that realizes this property is also provided in [10]. Other

algorithmic approaches to (approximately) solving (TR(Δ)) and thus implementing FindStep are

possible as well. In §6 we describe and take advantage of a variant that exploits uniform meshes for

the control discretization in our computational experiments.

Description of the steps of Algorithm 2 The for-loop starting in Line 1 of Algorithm 2 computes

candidates for improvements of the objective function that are either accepted or rejected and then

updates the trust-region radius accordingly.

Line 2 computes the function𝑔𝑛 such that it is equal to−∇𝐽 (𝜒𝑈𝑛 ) on𝑈 𝑛 ,where 𝜒𝑈𝑛 may be decreased,

and such that it is equal to ∇𝐽 (𝜒𝑈𝑛 ) on (𝑈 𝑛)𝑐 , where 𝜒𝑈𝑛 may be increased. Thus {𝑠 ∈ Ω | 𝑔𝑛 (𝑠) ≤ 0}
is the set on which𝑈 𝑛 can be changed to obtain a first-order decrease of 𝐽 . Because of the use of the

𝐿1
-norm, the trust-region radius Δ𝑛 limits the volume of the set that can be changed in the current

iteration, see Proposition a.2.

The subroutine FindStep in Line 3 computes a set 𝐷𝑛 ⊂ (𝑔𝑛)−1((−∞, 0]) that approximates the

solution of (3.1).

The candidate for improving 𝐽 is then the modification of the characteristic function of the set𝑈 𝑛 ,

where the values on 𝐷𝑛 are flipped, or formally 𝜒𝑈𝑛△𝐷𝑛 . From Line 4 onward, the for-loop resembles

common trust-region methods. Line 4 determines whether the reduction achieved by 𝜒𝑈𝑛△𝐷𝑛 is at least

a fraction of the reduction predicted by the linear model, in which case the step is accepted. A second

(larger) ratio is used to determine whether the trust-region radius should be increased (doubled) or left

unchanged after acceptance. The trust-region radius is reduced (halved) after rejection of a candidate

step.

4 convergence of btr to first-order optimal points

We introduce our main result. Algorithm 2 operates on iterates that are feasible for the integer problem

(P). We prove that our algorithm generates a sequence of integer feasible points whose limits are

first-order optimal points of the relaxation (R). Thus, we obtain a minimizing sequence for (P), which

itself may not have a solution, if (R) is a convex problem. We introduce and a criticality measure for

(R) and relate it to Algorithm 2 before introducing the main theorem.

4.1 criticality measure for (R)

We define the criticality measure 𝐶 : 𝐿2(Ω) → [0,∞) for 𝑥 ∈ 𝐿2(Ω) as

𝐶 (𝑥) B max

{∫
Ω
∇𝐽 (𝑥) (𝑥 − 𝑓 ) d𝑠

���� 𝑓 feasible for (R)} =

∫
Ω
∇𝐽 (𝑥)𝑥 +

∫
Ω

max{−∇𝐽 (𝑥), 0} d𝑠,(4.1)

where the identity follows from the structure of the feasible set of (R).𝐶 coincides with the function Φ
in [9] and is also known as primal gap function [21]. Local minimizers are zeros of 𝐶 , which is well

known and repeated here for convenience. In particular, this leads to the usual definition of stationary

points below.

Proposition 4.1. If 𝑥 is a local minimizer of (R), then ∇𝐽 (𝑥) (𝑥 − 𝑓 ) ≤ 0 a.e. holds for all 𝑓 that are feasible
for (R). Moreover, 𝐶 (𝑥) = 0.

Proof. The first claim follows from a Taylor expansion at 𝑥 . 𝐶 (𝑥) = 0 because 𝑥 is feasible in the

max. □

Definition 4.2. A function 𝑥 that is feasible for (R) is called stationary if 𝐶 (𝑥) = 0.
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The FindStep subroutine in Algorithm 2 operates with the quantity ∥min{𝑔, 0}∥𝐿1 with the choice

𝑔 = ∇𝐽 (𝜒𝑈 ) (𝜒𝑈 𝑐 − 𝜒𝑈 ) for a set𝑈 ∈ B. We show below that 𝐶 (𝜒𝑈 ) = ∥min{𝑔, 0}∥𝐿1 . In this case, the

first-order optimality condition 𝐶 (𝜒𝑈 ) = 0 from Proposition 4.1 corresponds the first-order optimality

condition of the set-based view point in [10], see Lemma 5 and Corollary 1 therein.

Proposition 4.3. Let𝑈 ∈ B. Then for 𝑔 = ∇𝐽 (𝜒𝑈 ) (𝜒𝑈 𝑐 − 𝜒𝑈 ) it holds that 𝐶 (𝜒𝑈 ) = ∥min{𝑔, 0}∥𝐿1 .

Proof. For a.a. 𝑠 ∈ Ω, we obtain

min{𝑔(𝑠), 0} =


−∇𝐽 (𝜒𝑈 ) (𝑠) if 𝑠 ∈ 𝑈 and ∇𝐽 (𝜒𝑈 ) (𝑠) ≥ 0,

∇𝐽 (𝜒𝑈 ) (𝑠) if 𝑠 ∈ 𝑈 𝑐 and ∇𝐽 (𝜒𝑈 ) (𝑠) ≤ 0,

0 else.

(4.2)

For the choice 𝑥 = 𝜒𝑈 in (4.1), the right hand side implies

𝐶 (𝑥) =
∫
Ω

{
|∇𝐽 (𝑥) (𝑠) | if (𝑠 ∈ 𝑈 and ∇𝐽 (𝑥) (𝑠) ≥ 0) or (𝑠 ∈ 𝑈 𝑐 and ∇𝐽 (𝑥) (𝑠) ≤ 0),

0 else

}
d𝑠 .

The claim follows by a pointwise a.e. comparison of the integrands. □

An alternative criticality measure for (R) that uses the 𝐿1
-norm is the function

˜𝐶 that is defined for

𝑥 ∈ 𝐿1(Ω) as
˜𝐶 (𝑥) B ∥𝑥 − 𝑃 [0,1] (𝑥 − ∇𝐽 (𝑥))∥𝐿1 .

It is known that
˜𝐶 (𝑥) = 0 implies that 𝑥 satisfies a first-order necessary optimality condition for (R); see,

for example, [16, Lemma 1.12]. Moreover, it can easily be verified that 𝐶 (𝑥) = 0 if and only if
˜𝐶 (𝑥) = 0.

We do not use 𝐶 because it would complicate our analysis and lead to a less concise presentation.

4.2 main result

Having introduced the necessary notation, concepts, and assumptions, we now state our main conver-

gence results.

Theorem 4.4. Let Assumptions 1.1, (a) and (b) hold. Let (𝑈 𝑛)𝑛 ⊂ B, (𝐷𝑛)𝑛 ⊂ B, and (Δ𝑛)𝑛 ⊂ (0,Δmax] be
the sequences of sets and trust-region radii produced by Algorithm 2. Then the sequence of objective values
(𝐽 (𝜒𝑈𝑛 ))𝑛 is monotonically nonincreasing. Moreover, one of the following mutually exclusive outcomes
holds:

1. There exists 𝑛0 ∈ ℕ such that𝑈 𝑛0 = 𝑈 𝑛 a.e. holds for all 𝑛 ≥ 𝑛0. Then 𝜒𝑈𝑛
0 is stationary for (R).

2. For all 𝑛0 ∈ ℕ there exists 𝑛1 > 𝑛0 such that 𝜆(𝑈 𝑛1 △ 𝑈 𝑛0) > 0. The sequence (𝜒𝑈𝑛 )𝑛 ⊂ 𝐿∞(Ω)
admits a weak-∗ accumulation point. Every weak-∗ accumulation point 𝑓 of (𝜒𝑈𝑛 )𝑛 is feasible for
(R).

If additionally Assumption 1.1, (c) holds, then

lim

𝑛→∞
𝐶 (𝜒𝑈𝑛 ) = 0.

If additionally Assumption 1.1, (d) holds and if a subsequence (𝜒𝑈𝑛𝑘 )𝑘 ⊂ (𝜒𝑈𝑛 )𝑛 satisfies𝐶 (𝜒𝑈𝑛𝑘 ) →
0, then every weak-∗ accumulation point 𝑓 of (𝜒𝑈𝑛𝑘 )𝑘 satisfies 𝐶 (𝑓 ) = 0, i.e., 𝑓 is stationary for
(R).

Theorem 4.4 is proven in §5. We obtain the following corollary that shows that Algorithm 2 produces

a sequence of binary iterates that converge weakly-
∗
to stationary points of the continuous relaxation

(R) of (P). Thus BTR yields results comparable to those produced by CIA because solution algorithms

for (R) cannot be expected to perform better than producing a stationary point of (R) in practice.
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Corollary 4.5. Let Assumption 1.1 hold. Let (𝑈 𝑛)𝑛 ⊂ B be the sequences of sets produced by Algorithm 2.
Then all weak-∗ accumulation points of (𝜒𝑈𝑛 )𝑛 are feasible and stationary for (R).

Proof. The claim follows by combining the two assertions in Outcome 2 of Theorem 4.4. □

5 proof of the main theorems

In this section we prove Theorem 4.4. We first prove preparatory results on the sufficient reduction

condition (Algorithm 2, Line 4) for binary-valued control functions and trust-region steps in §5.1. Then

we employ these results to analyze the asymptotics of Algorithm 2 in §5.2, finishing with the proof of

Theorem 4.4.

5.1 sufficient decrease with a characteristic function

The first step of the proof is to show that if 𝜒𝑈𝑛 for a given iterate 𝑈 𝑛 ∈ B of Algorithm 2 is not

stationary, then there exists a set 𝐷𝑛 such that 𝜒𝑈𝑛△𝐷𝑛 satisfies a sufficient decrease condition with

respect to ∇𝐽 (𝜒𝑈𝑛 ) for sufficiently small trust-region radii. We briefly recap and the well-known result

on existence of a descent direction in Lemma 5.1, which we adapt for our case of characteristic functions

as Algorithm 2 operates on. This in turn implies acceptance of a new iterate after finitely many steps

as is shown in Lemma 5.2.

Lemma 5.1. Let Assumption 1.1 (b) hold. Let 𝜒𝑈 for𝑈 ∈ B not be stationary for (R). Then there exist 𝜀 > 0

and Δ0 > 0 such that for all 0 < Δ ≤ Δ0, there exists 𝑑 ∈ 𝐿1(Ω) that is feasible for (TR(Δ)) and satisfies
(∇𝐽 (𝜒𝑈 ), 𝑑) ≤ −𝜀Δ.

Proof. Because 𝜒𝑈 is not stationary, we have 𝐶 (𝜒𝑈 ) > 0, which implies that there is 𝜀 > 0 and a

set 𝐷 ⊂ 𝑔−1((−∞, 0]) with 𝜆(𝐷) > 0 such that ∇𝐽 (𝜒𝑈 ) (𝑠) (𝜒𝑈 𝑐 (𝑠) − 𝜒𝑈 (𝑠)) < −𝜀 for a.a. 𝑠 ∈ 𝐷 . Let
Δ0 B 𝜆(𝐷) and using the regularity properties of the Lebesgue measure, there is a subset 𝐷Δ ⊂ 𝐷
with 𝜆(𝐷Δ) = Δ for all 0 < Δ ≤ Δ0 (note that it is possible to use the greedy construction from

Proposition a.3 here too), which implies∫
𝐷Δ

∇𝐽 (𝜒𝑈 ) (𝜒𝑈 𝑐 − 𝜒𝑈 ) d𝑠 < −Δ𝜀.

Using the equivalence asserted in Proposition a.2 and in particular setting 𝑑 B 𝜒𝑈△𝐷Δ − 𝜒𝑈 yields the

claim. □

We employ this result to prove that Algorithm 2 accepts a step after finitely many iterations if the

current iterate is not stationary for (R).

Lemma 5.2. Let Assumptions 1.1, (b) and (c) be satisfied. Let (𝑈 𝑛)𝑛 ⊂ B, (𝐷𝑛)𝑛 ⊂ B, and (Δ𝑛)𝑛 ⊂ (0,Δmax]
be the sequences of sets and trust-region radii produced by Algorithm 2. Let 𝜒𝑈𝑛 not be stationary for
(R). Then the output of Algorithm 2, Line 3, is accepted after 𝑘 ∈ ℕ steps: specifically,𝑈 𝑛 = 𝑈 𝑛+𝑗 for all
0 ≤ 𝑗 < 𝑘 and 𝐽 (𝜒𝑈𝑛△𝐷𝑛+𝑘 ) − 𝐽 (𝜒𝑈𝑛 ) ≤ 𝜎1(∇𝐽 (𝜒𝑈𝑛 ), 𝜒𝐷𝑛+𝑘\𝑈𝑛 − 𝜒𝑈𝑛∩𝐷𝑛 )𝐿2 .

Proof. For𝑚 ∈ ℕ, we define the optimal linear predicted reduction as

𝐿𝑚 B − inf

𝐷 ′∈B

{
(∇𝐽 (𝜒𝑈𝑚 ), 𝑑 ′)𝐿2

���𝑑 ′ = 𝜒𝐷 ′\𝑈𝑚 − 𝜒𝐷 ′∩𝑈𝑚 and ∥𝑑 ′∥𝐿1 ≤ Δ𝑚
}
.

By design of Algorithm 2, we have Δ𝑛+𝑗+1 = 0.5Δ𝑛+𝑗 for all 𝑗 ≥ 0 until the step 𝐷𝑛+𝑗 is accepted.
We prove the claim by contradiction and assume that the step 𝐷𝑛+𝑘 is not accepted for all 𝑘 ∈ ℕ.

Because𝑈 𝑛 is not stationary for (R) and Δ𝑛+𝑘 → 0 for 𝑘 →∞, Lemma 5.1 implies that there exist 𝜀 > 0

and 𝑘0 ∈ ℕ such that for all 𝑘 ≥ 𝑘0 the estimate 𝐿𝑛+𝑘 ≥ Δ𝑘+𝑗𝜀 holds.
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We apply Taylor’s theorem and obtain that

𝐽 (𝜒𝑈𝑛 ) − 𝐽 (𝜒𝑈𝑛△𝐷𝑛+𝑘 )

= −(∇𝐽 (𝜒𝑈𝑛 ), 𝜒𝐷𝑛+𝑘\𝑈𝑛 − 𝜒𝑈𝑛∩𝐷𝑛+𝑘 )𝐿2 + 𝑜
(
𝜆(𝐷𝑛+𝑘 )

)
≥ 𝐿𝑛+𝑘 − (Δ𝑛+𝑘 )2 + 𝑜 (Δ𝑛+𝑘 ),(5.1)

where the inequality follows from the construction of 𝐷𝑛+𝑘 by means of the FindStep subroutine,

specifically Lemma 9 in [10] with a choice 𝛿 ≤ Δ𝑛+𝑘 . The inequality 𝛿 ≤ Δ𝑛+𝑘 is satisfied in Algorithm 2,

Line 3, because the parameter 𝛿 of FindStep, the third argument of the subroutine, is given a value

that is less than or equal to the trust-region radius in all iterations.

Because 𝐿𝑛+𝑘 ≥ 𝜀Δ𝑛+𝑘 holds for all 𝑘 ≥ 𝑘0 and the two latter terms in (5.1) are 𝑜 (Δ𝑛+𝑘 ) there exists
𝑘1 ∈ ℕ such that for all 𝑘 ≥ 𝑘1 it holds that

𝐽 (𝜒𝑈𝑛 ) − 𝐽 (𝜒𝑈𝑛△𝐷𝑛+𝑘 ) ≥ 𝜎1𝐿
𝑛+𝑘 .

By definition of 𝐿𝑛+𝑘 it follows that

𝐽 (𝜒𝑈𝑛 ) − 𝐽 (𝜒𝑈𝑛△𝐷𝑛+𝑘 ) ≥ 𝜎1𝐿
𝑛+𝑘 ≥ −𝜎1(∇𝐽 (𝜒𝑈𝑛 ), 𝜒𝐷𝑛+𝑘\𝑈𝑛 − 𝜒𝑈𝑛∩𝐷𝑛+𝑘 )𝐿2,

and thus the step 𝐷𝑛+𝑘1
is accepted in Algorithm 2. This contradicts the assumption that the step 𝐷𝑛+𝑘

is not accepted for all 𝑘 ∈ ℕ. □

5.2 asymptotics of Algorithm 2

Before finalizing the proof of Theorem 4.4, we show three further preparatory lemmas. Lemma 5.3 states

that the sequence of iterates produced byAlgorithm 2 has a corresponding sequence ofmonotononically

nonincreasing objective values. Lemma 5.4 shows that if the criticality measure 𝐶 stays bounded away

from zero over the iterations of Algorithm 2, then the trust-region radius contracts to zero.

Lemma 5.3. Let Assumption 1.1, (b) hold. Let (𝑈 𝑛)𝑛 , (𝐷𝑛)𝑛 ⊂ B, and (Δ𝑛)𝑛 ⊂ (0,Δmax] be the sequences
of sets and trust-region radii produced by Algorithm 2. Then the sequence of objective values (𝐽 (𝜒𝑈𝑛 ))𝑛 is
monotonically nonincreasing.

Proof. By construction of𝐷𝑛 with FindStep, Procedure 1 of [10], it holds that𝐷𝑛 ⊂ {𝑠 ∈ Ω | 𝑔𝑈𝑛 (𝑠) < 0}.
A step that is accepted in Algorithm 2 Line 4 satisfies 𝐽 (𝜒𝑈𝑛△𝐷𝑛 ) < 𝐽 (𝜒𝑈𝑛 ) because

(∇𝐽 (𝜒𝑈𝑛 ), 𝜒𝐷𝑛\𝑈𝑛 − 𝜒𝑈𝑛∩𝐷𝑛 )𝐿2 =

∫
𝐷𝑛

𝑔𝑛 d𝑠 < 0,

while 𝐽 (𝜒𝑈𝑛 ) remains unchanged for rejected steps. Thus, the sequence of objective values (𝐽 (𝜒𝑈𝑛 ))𝑛
is monotonically nonincreasing. □

Lemma 5.4. Let Assumptions 1.1, (a) and (b) hold. Let (𝑈 𝑛)𝑛 ⊂ B, (𝐷𝑛)𝑛 ⊂ B, and (Δ𝑛)𝑛 ⊂ (0,Δmax] be
the sequences of sets and trust-region radii produced by Algorithm 2. If there exists 𝜀 > 0 and 𝑛0 ∈ ℕ such
that 𝐶 (𝜒𝑈𝑛 ) > 𝜀 for all 𝑛 ≥ 𝑛0, then Δ𝑛 → 0.

Proof. We use the notation 𝐿𝑚 for the optimal predicted reduction in iteration𝑚 ∈ ℕ as in the proof

of Lemma 5.2. From Proposition a.3 and the definition of 𝐶 it follows that 𝐿𝑚 ≥ 𝐶 (𝜒𝑈𝑚 ) Δ𝑚

𝜆 (Ω) for all
iterations𝑚 ∈ ℕ. This can be seen by using the greedily constructed set. From Algorithm 2 Line 3,
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Proposition 4.3, and Δmax ≤ 𝜆(Ω) it follows that the third parameter 𝛿 of the subroutine FindStep

satisfies 𝛿 ≤ 𝐶 (𝜒𝑈𝑛 )/(2Δ𝑛). The analysis of FindStep, specifically [10, Lemma 9], implies that

−(𝐽 (𝜒𝑈𝑛 ), 𝜒𝐷𝑛\𝑈𝑛 − 𝜒𝑈𝑛∩𝐷𝑛 )𝐿2 ≥ 𝐿𝑛 −min{𝜔,𝐶 (𝜒𝑈𝑛 )/(2𝜆(Ω)),Δ𝑛}Δ𝑛

≥ 𝐶 (𝜒𝑈𝑛 ) Δ𝑛

𝜆(Ω) −
1

2

𝐶 (𝜒𝑈𝑛 ) Δ𝑛

𝜆(Ω) ≥
𝜀Δ𝑛

2𝜆(Ω)

for all 𝑛 ∈ ℕ and thus all 𝑛 ≥ 𝑛0.

We close the proof with a contradictory argument and assume that Δ𝑛 ̸→ 0. We deduce that

there exists an infinite subsequence (Δ𝑛𝑘 )𝑘 of (Δ𝑛)𝑛 such that lim inf𝑘→∞ Δ𝑛𝑘 > Δ for some Δ > 0.

Consequently, there exists an infinite subsequence (𝑛ℓ )ℓ of accepted iterates with trust-region radii

Δ𝑛ℓ ≥ Δ.
Combining these insights on the accepted iterates with the lower bound on the linearly predicted

reductions, we obtain that

𝐽 (𝜒𝑈𝑛ℓ ) − 𝐽 (𝜒𝑈𝑛ℓ △𝐷𝑛ℓ ) ≥ 𝜎
𝜀Δ

4𝜆(Ω) .

Because the sequence of objective values is monotonically nonincreasing by virtue of Lemma 5.3,

this implies 𝐽 (𝜒𝑈𝑛ℓ ) → −∞, which contradicts Assumption 1.1, (a) and thus the assumption that

Δ𝑛 ̸→ 0. □

We are now ready to finish the proof of the two main results.

Proof of Theorem 4.4. Lemma 5.3 proves the claim that the sequence of objective values is monotonically

nonincreasing.

We first analyze Outcome 1. Because there exists 𝑛0 ∈ ℕ such that𝑈 𝑛0 = 𝑈 𝑛 holds a.e. for all 𝑛 ≥ 𝑛0,

the acceptance criterion in Algorithm 2, Line 4, is violated for all 𝑛 ≥ 𝑛0. Then the claim of Outcome 1

follows from Lemma 5.2.

If there is no 𝑛0 ∈ ℕ such that 𝑈 𝑛0 = 𝑈 𝑛 holds a.e. for all 𝑛 ≥ 𝑛0, then Outcome 1 does not hold

true, and for all 𝑛0 ∈ ℕ there exists 𝑛1 > 𝑛0 such that 𝜆(𝑈 𝑛1 △ 𝑈 𝑛0) > 0. It follows that Outcomes 1

and 2 are mutually exclusive. Moreover, the sequence (𝜒𝑈𝑛 )𝑛 ⊂ 𝐿∞(Ω) is bounded and thus admits a

weak-
∗
cluster point. By virtue of, for example, [34, Theorem 3], every weak-

∗
cluster point of (𝜒𝑈𝑛 )𝑛

is feasible for (R).

Nextwe assume thatAssumptions 1.1, (a), (b), and (c) are satisfied andprove the claim lim𝑛→∞𝐶 (𝜒𝑈𝑛 ) =
0 for Outcome 2. We do so in two steps. We first prove lim inf𝑛→∞𝐶 (𝜒𝑈𝑛 ) = 0 and then improve upon

this finding to lim𝑛→∞𝐶 (𝜒𝑈𝑛 ) = 0.

Step 1: We prove

lim inf

𝑛→∞
𝐶 (𝜒𝑈𝑛 ) = 0.(5.2)

To this end, we consider the subsequence of accepted iterates (successful steps) (𝑛𝑘 )𝑘 of Algorithm 2.

Using the fundamental theorem of calculus and the notation 𝑑𝑛 B 𝜒𝑈𝑛△𝐷𝑛 − 𝜒𝑈𝑛 for 𝑛 ∈ ℕ, we may

rewrite the decrease in the objective as

𝐽 (𝜒𝑈𝑛 ) − 𝐽 (𝜒𝑈𝑛△𝐷𝑛 ) = −(∇𝐽 (𝜒𝑈𝑛 ), 𝑑𝑛)𝐿2 −
∫

1

0

(∇𝐽 (𝜒𝑈𝑛 + 𝑡𝑑𝑛) − ∇𝐽 (𝜒𝑈𝑛 ), 𝑑𝑛)𝐿2 d𝑡 .

We observe that 𝑑𝑛 (𝑠) ∈ {−1, 0, 1} for a.a. 𝑠 ∈ Ω implies

√︁
∥𝑑𝑛 ∥𝐿1 = ∥𝑑𝑛 ∥𝐿2 . The Lipschitz continuity of

∇𝐽 : 𝐿1(Ω) → 𝐿2(Ω) (Assumption 1.1, (c)) with Lipschitz constant 𝐿 > 0 implies

𝐽 (𝜒𝑈𝑛 ) − 𝐽 (𝜒𝑈𝑛△𝐷𝑛 ) ≥ −(∇𝐽 (𝜒𝑈𝑛 ), 𝑑𝑛)𝐿2 − 𝐿
2

∥𝑑𝑛 ∥𝐿1

√︁
∥𝑑𝑛 ∥𝐿1 .
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As in the proof of Lemma 5.4, we observe that the estimate

−(∇𝐽 (𝜒𝑈𝑛 ), 𝑑𝑛) ≥ 𝐶 (𝜒𝑈𝑛 ) Δ𝑛

2𝜆(Ω)

holds for the steps 𝑑𝑛 . Inserting this estimate yields

𝐽 (𝜒𝑈𝑛 ) − 𝐽 (𝜒𝑈𝑛△𝐷𝑛 ) ≥ −𝜎1(∇𝐽 (𝜒𝑈𝑛 ), 𝑑𝑛)𝐿2 −(1 − 𝜎1)
𝐶 (𝜒𝑈𝑛 )Δ𝑛

2𝜆(Ω) −
𝐿

2

(Δ𝑛) 3

2︸                                  ︷︷                                  ︸
B𝑟𝑛

.

We show (5.2) by contradiction. If lim inf𝑛→∞𝐶 (𝜒𝑈𝑛 ) > 0, then Lemma 5.4 implies that Δ𝑛 → 0 and

𝑟𝑛 ≥ 0 holds for all 𝑛 ≥ 𝑛2 for some 𝑛2 ∈ ℕ. But 𝑟𝑛 ≥ 0 implies that the acceptance criterion in

Algorithm 2, 4 is satisfied for all 𝑛 ≥ 𝑛2 and the trust-region radius is not decreased further from

iteration 𝑛2 on. This contradicts Δ
𝑛 → 0 and we thus obtain (5.2).

Step 2: We prove

lim

𝑛→∞
𝐶 (𝜒𝑈𝑛 ) = 0.(5.3)

To this end, we follow the proof strategy of [35, Theorem 6]. We say that 𝑛 ∈ ℕ is a successful iteration

of Algorithm 2 if the acceptance test in Line 4 is successful. Let S ⊂ ℕ denote the set of successful

iterations of Algorithm 2. We observe that any successful iteration satisfies

𝐽 (𝜒𝑈𝑛 ) − 𝐽 (𝜒𝑈𝑛+1) ≥ 1

2𝜆(Ω)𝐶 (𝜒𝑈
𝑛 )Δ𝑛

because of the properties of the subroutine FindStep (see the proof of Lemma 5.4).

This implies

𝐽 (𝜒𝑈 0) − 𝐽 (𝜒𝑈𝑛+1) ≥ 1

2𝜆(Ω)

𝑛∑︁
ℓ=0,ℓ∈𝑆

𝐶 (𝜒𝑈 ℓ )Δℓ

for all 𝑛 ∈ ℕ. We seek for a contradiction to the claim and assume that there exists a subsequence

(𝑛𝑘 )𝑘 ⊂ 𝑆 such that

𝐶 (𝜒𝑈𝑛𝑘 ) ≥ 2𝜀 > 0(5.4)

for some 𝜀 > 0. Let 𝐾 B {𝑛 ∈ 𝑆 |𝐶 (𝜒𝑈𝑛 ) ≥ 𝜀}. It follows that

𝐽 (𝜒𝑈 0) − 𝐽 (𝜒𝑈𝑛+1) ≥ 1

2𝜆(Ω)

𝑛∑︁
ℓ=0,ℓ∈𝐾

𝐶 (𝜒𝑈 ℓ )Δℓ ≥ 1

2𝜆(Ω) 𝜀
𝑛∑︁

ℓ=0,ℓ∈𝐾
Δℓ

for all 𝑛 ∈ ℕ. Let 𝑛0 ∈ ℕ. Then we obtain for all 𝑛 ≥ 𝑛0 that

𝑛∑︁
ℓ=𝑛0,ℓ∈𝐾

Δℓ ≤ 2𝜆(Ω)
𝜀

(
𝐽 (𝜒𝑈 0) − 𝐽 (𝜒𝑈𝑛+1)

)
≤ 2𝜆(Ω)

𝜀

(
𝐽 (𝜒𝑈 0) −min (R)

)
< ∞,

which implies that

∑∞
ℓ=𝑛0,ℓ∈𝐾 Δℓ < 𝜅 < ∞ for some 𝜅 > 0 for all 𝑛0 ∈ ℕ. From (5.2) it follows for all

𝑘 ∈ ℕ that there exists a smallest ℓ (𝑘) > 𝑛𝑘 with ℓ (𝑘) ∈ S \ 𝐾 . We obtain

∥𝜒𝑈 ℓ (𝑘 ) − 𝜒𝑈𝑛𝑘 ∥𝐿1 ≤
ℓ (𝑘 )−1∑︁
𝑗=𝑛𝑘 , 𝑗∈S

∥𝜒𝑈 𝑗+1 − 𝜒𝑈 𝑗 ∥𝐿1 ≤
ℓ (𝑘 )−1∑︁
𝑗=𝑛𝑘 , 𝑗∈S

Δ 𝑗 =
ℓ (𝑘 )−1∑︁
𝑗=𝑛𝑘 , 𝑗∈𝐾

Δ 𝑗 ≤
∞∑︁

𝑗=𝑛𝑘 , 𝑗∈𝐾
Δ 𝑗 < 𝜅.
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This implies that for 𝑘 →∞ we obtain that

∥𝜒𝑈 ℓ (𝑘 ) − 𝜒𝑈𝑛𝑘 ∥𝐿1 → 0.

By virtue of Fatou’s lemma and the fact that every sequence that converges in 𝐿1
has a pointwise a.e.

convergent subsequence, we obtain

∥𝜒𝑈 ℓ (𝑘 ) − 𝜒𝑈𝑛𝑘 ∥𝐿2 → 0

for a subsequence of (𝑛𝑘 )𝑘 , which we denote with the same symbol for ease of notation. We conclude

that

|𝐶 (𝜒𝑈 ℓ (𝑘 ) ) −𝐶 (𝜒𝑈𝑛𝑘 ) | → 0 (for 𝑘 →∞),

which violates our assumption (5.4). Hence, (5.3) follows.

For the remainder of the proof, we restrict ourselves to a weakly convergent subsequence of (𝜒𝑈𝑛 )𝑛 ,
for ease of notation denoted by the same symbol, which satisfies 𝐶 (𝜒𝑈𝑛 ) → 0 and 𝜒𝑈𝑛 ⇀ 𝑓 in 𝐿2(Ω).
It remains to show that 𝐶 (𝑓 ) = 0. if Assumptions 1.1, (b) and (d) hold. The criticality measure 𝐶 is

weakly lower semi-continuous under Assumption 1.1, (d), see [9, Lemma 4.1], so that

0 ≤ 𝐶 (𝑓 ) ≤ lim inf

𝑛→∞
𝐶 (𝜒𝑈𝑛 ) = 0.

□

6 computational experiments

We carry out our experiments on an instance of (P) that satisfies Assumption 1.1. The instance is

described in §6.1, and our computational setup is described in §6.2. Then validation experiments and

their results for the presented theory are presented in §6.3. Motivated by observations in §6.3, we

explore the effects of a hybridization of BTR and CIA in §6.4.

6.1 example problem

We consider the case 𝑑 = 2 and the domain Ω = (0, 2)2 ⊂ ℝ2
. For (P) we choose 𝐽 (𝑥) B 𝑗 (𝑆 (𝑥)),

where 𝑗 is a so-called tracking-type objective, specifically 𝑗 (𝑦) = .5∥𝑦 − 𝑦𝑑 ∥2𝐿2
for a given

𝑦𝑑 (𝑠) =
1

4

sin(3(𝑠1 − 1) (𝑠2 − 1))2( |𝑠1 − 1| + |𝑠2 − 1|)

for 𝑠 ∈ Ω. 𝑆 is the solution operator of the linear elliptic boundary value problem

(6.1) −𝜀Δ𝑦 + 𝑦 = 𝑥, 𝑦 |𝜕Ω = 0

for a given control input 𝑥 ∈ 𝐿1(Ω) and the choice 𝜀 = 10
−2
. This yields the following instance of (P):

(6.2) inf

𝑥

1

2

∥𝑦 − 𝑦𝑑 ∥2𝐿2
s.t. 𝑦 = 𝑆 (𝑥) and 𝑥 (𝑠) ∈ {0, 1} for a.a. 𝑠 ∈ Ω.

For a Poisson problem with right-hand side in 𝐿1(Ω), the weak solution 𝑦 is an element of the Sobolev

space of 𝑞-integrable functions with a 𝑞-integrable distributional derivative that vanish at the boundary,

𝑊
1,𝑞

0
(Ω), for bounded Lipschitz domains Ω, where we have the estimate ∥𝑢∥

𝑊
1,𝑞

0
(Ω) ≤ 𝑐 ∥𝑥 ∥𝐿1 (Ω) for

some 𝑐 > 0 if 𝑞 < 2. A proof of this result (for more general elliptic operators) and more general

right-hand sides can, for example, be found in [7, Theorem 1]; and for the case of mixed boundary
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condition a proof can be found in [11] (note that the required Gröger regularity of the boundary therein

reduces to requiring a strong Lipschitz condition if only a Dirichlet boundary condition is present).

Combining these considerations with the chain rule for Banach spaces and the Riesz representation

theorem implies that Assumptions 1.1, (a) and (c) are satisfied for this example. To see that Assumption 1.1

(d) is also satisfied, we consider the compact embedding𝑊
1,𝑞

0
(Ω) ↩→𝑊 1,1(Ω) ↩→𝑐 𝐿2(Ω) (for 𝑑 = 2),

where the compactness is due to the second embedding. Because 𝑆 ′(𝑥) is linear and bounded for

𝑥 ∈ 𝐿1(Ω), it maps weakly convergent sequences to weakly convergent sequences in𝑊
1,𝑞

0
(Ω) and,

by compactness, to norm convergent sequences in 𝐿2(Ω), which implies that 𝑆 ′ and in turn ∇𝐽 are
weak-norm continuous.

6.2 setup

We solve the boundary value problem (6.1) numerically using a finite element method on a conforming

uniform triangle mesh subdividing the domain Ω. Specifically, the domain is partitioned into 256× 256

square cells that are split into 4 triangles each. In all experiments, the solution 𝑦 = 𝑆 (𝑥) of (6.1) is
computed in the space of cellwise affine and globally continuous functions on this mesh. All experiments

are carried out on a laptop computer with Intel(R) Core(TM) i9-10885H CPU (2.40GHz) and 32 GB

RAM.

Implementation of CIA (Algorithm 1) We compute a solution of the continuous relaxation of (6.2)

(the first step of CIA) by replacing the constraint 𝑥 (𝑠) ∈ {0, 1} by 𝑥 (𝑠) ∈ [0, 1] and optimizing the

control function on the aforementioned triangle mesh in the space of cellwise constant discontinuous

functions with a quasi-Newton method.

For the Round procedure, the second step ofCIA,we consider three different choices: multidimensional

sum-up rounding (SUR) [28], the combinatorial optimization-based rounding (COR) proposed in [18],

see also [3, § 2.4.1], and a primal heuristic for switching cost aware rounding (SHG) [4, 5]. The choices

for the Round procedure compute approximating controls. In our experiments, the computed controls

are cellwise constant functions on cells of the grid of 256×256 squares. The three choices for the Round

procedure are explained in §a.1. In order to ensure the approximation property (2.1), we order the grid

cells of the discretization along a Hilbert curve as in [28, 20], which yields an order-conserving domain

dissection as mentioned in §2, see also Definition a.1.

While SUR and COR either minimize a certain approximation error or abide by an upper bound on

that error, SHG minimizes the length of the interface between the level sets for the values zero and one

in our setting while abiding by the approximation error bound. The integer programming formulation

of SHG is computationally intractible in our setting (for our grid size), which is why we resort to a

suboptimal heuristic, see also §a.1.

Implementation of BTR (Algorithm 2) We compute all iterates on the fixed uniform mesh of 256×256

squares. The uniformity, namely, the fact that all cells have the same volume, has the advantage that a

discretized variant of the FindStepmethod can be implemented efficiently. Specifically it is a Knapsack

problem with all weights being equal to one, which is therefore not NP-hard. In particular, if 𝑥 = 𝜒𝐴
for some 𝐴 ∈ B is the current iterate, the discretized trust-region subproblem (TR(Δ)) can be solved as

follows. We compute the average value of the function 𝑔 = ∇𝐽 (𝜒𝐴) (𝜒𝐴𝑐 − 𝜒𝐴) on each grid cell. Then

we sort the cell averages of 𝑔 in ascending order and pick the cells with negative average values in a

greedy fashion until the current trust region is filled. The picked cells constitute a difference set 𝐷 so

that the computed step 𝑑 is 𝑑 = 𝜒𝐴△𝐷 − 𝜒𝐴. Our discretized implementation of BTR terminates when

the trust-region radius contracts below the volume of one grid cell.

We note that while we have carried out our experiments on a fixed fine mesh, an alternative approach

is to adaptively refine the mesh where required within the FindStep subroutine of BTR.
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6.3 validation

We apply CIA to (6.2), where we initialize the solver for the continuous relaxation with the constant

zero function, 𝑥 = 0. As mentioned above, we use SUR, COR, and SHG for the Round subroutine in

Algorithm 1 in order to compute the binary-valued approximation of the solution of the continuous

relaxation on the uniform mesh of 256× 256 squares. COR and SUR produce the same resulting control.

SHG also returns the same control if the approximation constraint in the problem formulation is used

with 𝜃 = 1, see Algorithm 5, indicating that the feasible set with this bound leaves (almost) no room

for a reduction of the interface length. We therefore increase the feasible set by setting 𝜃 = 10, which

provides a trade-off that relaxes the approximation quality and allows to reduce the interface length

within the prescribed approximation quality. The optimality gap is then higher but the interface length

decreases and we obtain a qualitatively different solution.

Then we initialize BTR, which also operates on the uniform grid of 256 × 256 squares, with the

output control of SUR. Because of the near-optimality achieved by CIA and the fact that BTR does

not produce a globally optimal solution of (6.2) for a fixed discretization, we expect that BTR can

close a small part but not much of the remaining optimality gap between the upper bound given by

the objective value for the output SUR and the lower bound given by the solution of the continuous

relaxation.

This expectation is met by our computational results. Specifically, BTR is able to close a portion

of the remaining optimality gap of CIA. We also start BTR from two further different initializations,

specifically, from 𝑥 = 0 and from a cellwise rounding of the solution of the continuous relaxation

to {0, 1}. All of the objective values are very close; the optimality gap is always around 10
−6

(at a

magnitude of 10
−3
) so that BTR also produces a near-optimal solution on this grid when it is initialized

differently.

Moreover, we observe that the running times of BTR are longer than those of CIA, which we attribute

to the facts that BTR is a pure first-order method, has restricted options for its feasible steps available

(compared with usual gradient-based solvers for the continuous relaxation), and requires a sorting

operation additionally to each adjoint solve of each accepted step. The higher running times are

reflected by correspondingly high numbers of iterations of our implementation of Algorithm 2, as is

typical for first-order methods. The running time of the continuous relaxation followed by an execution

of BTR on cellwise rounding is moderately lower (about 20%) than that of BTR for initial control zero.

To give a qualitative and visual impression of the results, we provide the six computed controls in

this experiment in Figure 1. A visual inspection of the results shows that starting BTR from a cellwise

rounded solution or zero seems to have a regularizing effect on the resulting microstructure. We

compute the length of the interface between the level sets for the values zero and the objective value

one for all of the computed controls. We obtain that the none of the controls computed with CIA

with SUR or COR as the Round procedure, CIA with SHG as the Round procedure, and BTR started

from cellwise rounding dominates another in terms of low objective or low interface length value.

Specifically, CIA with SUR or COR produces the lowest objective value but the highest interface length.

The interface lengths for the controls with BTR started from zero or cellwise rounding are significantly

lower (about 50%) while the objective value increases slightly. The interface length decreases further

(about 30%) for CIA with SHG for 𝜃 = 10 but the increase in the objective is also higher.

While the behavior of the objective values follows our analysis, we cannot explain our consistent

observation that some spatial coherence is maintained during the optimization with BTR. In order

to do so, we need to better understand the possible trade-off between objective and interface length,

which also motivated us to introduce SHG and report its results, which is impaired by its current

computational intractability and us resorting to a heuristic solution. We leave further considerations

in this direction to future research.

These findings also lead to the question whether one can obtain the regularization effect in a
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(a) Rel. (b) CIA (SUR) / (COR) (c) CIA (SHG)

(d) CIA (SUR) + BTR (e) Rel. + BTR (f) BTR

Figure 1: Visualization of the resulting control functions for Rel. (= continuous relaxation of (6.1)), CIA
(SUR) / (COR) (= continuous relaxation and SUR / COR), CIA (SHG) (= continuous relaxation

and SHG), CIA (SUR) / (COR) + BTR, Rel. + BTR (= continuous relaxation and BTR started from

a cellwise rounding), and BTR (= BTR started from zero), where the value one is colored black

and the value zero is colored white. For Rel., the intermediate values in [0, 1] are depicted in

grayscale.
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Table 1: Objective values, remaining optimality gaps, BTR iteration numbers, running times, and in-

terface lengths obtained for the cases Rel. (= continuous relaxation of (6.1)), CIA (COR) (=
continuous relaxation and COR), CIA (SUR) (= continuous relaxation and SUR), CIA (SHG) (=
continuous relaxation and SHG), CIA + BTR (= continuous relaxation and BTR started from

SUR), Rel. + BTR (= continuous relaxation and BTR started from a cellwise rounding), and BTR
(= BTR started from zero).

Rel. CIA (COR) CIA (SHG) CIA (SUR) CIA + BTR Rel. + BTR BTR

Obj. [10
−3
] 4.0798 4.0808 4.1200 4.0808 4.0807 4.0837 4.0862

Opt. gap [10
−6
] 0 1.06 40.20 1.06 0.89 3.96 6.41

Time [s] 821 828 829 825 921 3928 4906

BTR iterations n/a n/a n/a n/a 51 1575 2481

Interface length n/a 117.0 48.1 117.0 116.9 66.4 74.2

Table 2: Remaining optimality gaps, BTR iteration numbers, and interface lengths for BTR started from

zero for different mesh sizes.

Mesh Optimality gap [10−6] BTR iterations Interface length

32 × 32 1200.79 116 21.8

64 × 64 261.14 356 34.2

128 × 128 38.02 938 50.6

256 × 256 6.41 2481 74.2

hybridized method, where BTR is initialized with an approximation of SUR that is computed on a

coarser control mesh. This is investigated in §6.4. We report the objective values, optimality gaps,

running times, number of iterations required by our implementation of BTR, and interface lengths

between the level sets in Table 1.

We also evaluate how our implementation of BTR behaves with respect to mesh refinement when

initialized with zero und running it until the trust-region radius contracts. The optimality gap decreases

for finer meshes as finer microstructures can be computed in order to more closely approximate a

minimizer of the continuous relaxation. However, the number of iterations grows with a factor of

approximately three when the mesh size is halved (the number of cells increases by a factor of four).

In particular, our implementation of the algorithm is clearly not mesh-independent. The interface

length also increases when finer meshes are chosen, which is consistent with the fact that this quantity

tends to infinity if a function with values in (0, 1) on a set of strictly positive measure (in this case

the solution of the relaxation) is approximated weakly-
∗
in 𝐿∞ by binary functions. We provide the

corresponding data in Table 2.

6.4 hybridization of sur and btr

We explore the regularization effect that we have observed above by executing a hybridized method by

initializing BTR with controls that are computed by CIA, where the second step is computed with SUR.

SUR operates on a mesh, and its approximation quality depends on the mesh size of this grid [20, 28].

We use a sequence of uniformly refined grids from 8× 8 grid cells to 256× 256 grid cells and start BTR,

which itself operates on the 256 × 256 grid of squares, with the resulting controls.

We assess the running times and iterations of BTR, the remaining optimality gaps, and the interface

lengths between the level sets of the two control realizations one and zero.

The remaining optimality gaps are of an order of magnitude of 10
−6
, where the ones achieved for the
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initializations with the SUR solutions for the 128 × 128 and 256 × 256 grids are slightly but noticeably

smaller. This can be attributed to the fact that SUR provides already small optimality gaps, which are

then further reduced by BTR.

Moreover, the running times and iterations of BTR do not differ much from the 8 × 8 to 64 × 64

initializations (all above 3000 s) and then drop in two large steps to 1074 s and 96 s for the two finest

grids, again capitalizing on the fact that SUR already provides a near-optimal solution.

The interface lengths of the resulting level sets of the controls obtained for the 8 × 8 to 128 × 128

initializations are between 62.5 and 70.2, approximately 50 % smaller than the interface length obtained

for the finest grid. This indicates that one may find a sensible trade-off, where the regularization effect

of BTR is still pronounced and BTR can be meaningfully accelerated by means of CIA, in our case by

executing SUR in CIA on the 128 × 128 initialization.

We have recorded the obtained results in Table 3. To provide a visual impression again, we contrast

the computed controls for SUR with the resulting ones after initializing BTR with them for the 8 × 8

and 128 × 128 grids in Figure 2.

Table 3: Remaining optimality gaps, running times, BTR iterations, and interface lengths for executing

BTR on solutions of CIA, where the second step is computed by means of SUR, for refined

grids used for SUR.

SUR Mesh 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256

Optimality gap [10
−6
] 4.99 6.66 4.68 5.30 2.91 0.89

Time (only BTR) [s] 4376 3929 4049 3167 1074 96

BTR iterations 2242 2023 2069 1619 552 51

Interface length 70.2 67.9 67.4 62.5 67.0 116.9
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appendix a auxiliary results

This appendix provides additional information on the Round subroutine in the CIA method, Algo-

rithm 1, and establishes relationships between set-based and characteristic function. We also prove the

equivalence between (3.1) and (TR(Δ)) and the existence of minimizers for them.
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(a) SUR (8 × 8) (b) SUR (128 × 128)

(c) BTR from SUR (8 × 8) (d) BTR from SUR (128 ×
128)

Figure 2: Visualization of the resulting control functions for SUR on uniform 8× 8 and 128× 128 square

grids (top row) and BTR initialized with them (bottom row).

appendix a.1 round in Algorithm 1

Algorithm 1 employs a Round subroutine, which takes grids as inputs. In order to establish the ap-

proximation property (2.1), see also [28, 20], it is assumed that the sequence of grids is a so-called

order-conserving domain dissection, which is formally defined below.

Definition a.1 (Order-conserving domain dissection, Definition 4.3 in [28]). Let Ω ⊂ ℝ𝑑 . Then we call

a sequence

(
{𝑆𝑛

1
, . . . , 𝑆𝑛

𝑁𝑛 }
)
𝑛
⊂ 2
B(Ω)

an order-conserving domain dissection if

1. {𝑆𝑛
1
, . . . , 𝑆𝑛

𝑁𝑛 } is a finite partition of Ω for all 𝑛 ∈ ℕ,

2. max{𝜆(𝑆𝑛𝑖 ) | 𝑖 ∈ {1, . . . , 𝑁𝑛}} → 0,

3. for all 𝑛 ∈ ℕ for all 𝑖 ∈ {1, . . . , 𝑁𝑛−1} there exists 1 ≤ 𝑗 < 𝑘 ≤ 𝑁𝑛 such that

⋃𝑘
ℓ=𝑗 𝑆

𝑛
ℓ = 𝑆𝑛−1

𝑖 , and

4. the cells 𝑆𝑛𝑗 shrink regularly (there exists 𝐶 > 0 such that for each 𝑆𝑛𝑗 there exists a ball 𝐵
𝑛
𝑗 with

𝑆𝑛𝑗 ⊂ 𝐵𝑛𝑗 and 𝜆(𝑆𝑛𝑗 ) ≥ 𝐶𝜆(𝐵𝑛𝑗 )).

We briefly introduce the three choices for Round in Algorithm 1, Line 3 that are used in our compu-

tational experiments in §6 below.

Sum-up rounding (SUR) The algorithm is stated as Algorithm 3 and works as follows. It starts from

a [0, 1]𝑚-valued function 𝛼 such that

∑𝑚
𝑖=1
𝛼𝑖 = 1 a.e. and that is defined on an ordered sequence of

grid cells that partition the domain Ω. The algorithm iterates over the grid cells in the given order;

identifies an entry 𝑖 ∈ {1, . . . ,𝑚} such that the cumulative difference up to the current grid cell to a

rounded function 𝜔 , which is {0, 1}𝑚-valued, satisfies ∑𝑚
𝑖=1
𝜔𝑖 = 1 a.e., and is defined on the same grid
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Algorithm 3 Sum-Up Rounding (multidimensional variant) [28]

Input: Ordered grid cells 𝑆1, . . . , 𝑆𝑁 ⊂ Ω that partition Ω .

Input: Function𝛼 ∈ 𝐿1(Ω,ℝ𝑚)with averages𝑎𝑘,𝑖 such that𝑎𝑘,𝑖 = 1

𝜆 (𝑆𝑘 )
∫
𝑆𝑘
𝛼𝑖 (𝑠) d𝑠 for all 𝑖 ∈ {1, . . . ,𝑚},

and

∑𝑚
𝑖=1
𝑎𝑘,𝑖 = 1 for all 𝑘 ∈ {1, . . . , 𝑁 }.

1: 𝜙0 B 0ℝ𝑚

2: for k = 1,. . . ,N do
3: 𝛾𝑘 ← 𝜙𝑘−1 + 𝑎𝑘𝜆(𝑆𝑘 ) (𝑎𝑘 is short for the vector (𝑎𝑘,1, . . . , 𝑎𝑘,𝑚)𝑇 )

4: 𝑤𝑘,𝑖 ←
{

1 : 𝑖 ∈ arg max{𝛾𝑘,𝑗 | 𝑗 ∈ {1, . . . ,𝑚}},
0 : else

for all 𝑖 ∈ {1, . . . ,𝑚}

5: 𝜙𝑘 ←
∑𝑘
𝑖=1
(𝑎𝑘 −𝑤𝑘 )𝜆(𝑆𝑘 ) (𝑤𝑘 is short for the vector (𝑤𝑘,1, . . . ,𝑤𝑘,𝑚)𝑇 )

6: end for
7: return 𝜔 B

∑𝑁
𝑘=1

𝑤𝑘 𝜒𝑆𝑘

as 𝛼 , is maximal. Then the algorithm sets 𝜔𝑖 to one on the current grid cell and the other entries to

zero on the respective grid cell.

Combinatorial optimization-based rounding (COR) The algorithm is stated as Algorithm 4 and works

as follows. It starts from a [0, 1]𝑚-valued function 𝛼 such that

∑𝑚
𝑖=1
𝛼𝑖 = 1 a.e. and that is defined on an

Algorithm 4 Combinatorial optimization-based rounding (multidimensional variant)

Input: Ordered grid cells 𝑆1, . . . , 𝑆𝑁 ⊂ Ω that partition Ω .

Input: Function𝛼 ∈ 𝐿1(Ω,ℝ𝑚)with averages𝑎𝑘,𝑖 such that𝑎𝑘,𝑖 = 1

𝜆 (𝑆𝑘 )
∫
𝑆𝑘
𝛼𝑖 (𝑠) d𝑠 for all 𝑖 ∈ {1, . . . ,𝑚},

and

∑𝑚
𝑖=1
𝑎𝑘,𝑖 = 1 for all 𝑘 ∈ {1, . . . , 𝑁 }.

1: compute𝑤 as minimizer of

arg min

𝑤,𝜂

𝜂 s.t.



𝑤 ∈ {0, 1}𝑁×𝑚
𝑚∑︁
𝑖=1

𝑤𝑘,𝑖 = 1 for all 𝑘 ∈ {1, . . . , 𝑁 }����� 𝑘∑︁
𝑗=1

(𝑎 𝑗,𝑖 −𝑤 𝑗,𝑖)𝜆(𝑆 𝑗 )
����� ≤ 𝜂 for all 𝑘 ∈ {1, . . . , 𝑁 } and all 𝑖 ∈ {1, . . . ,𝑚}

2: return 𝜔 B
∑𝑁
𝑘=1

𝑤𝑘 𝜒𝑆𝑘

ordered sequence of grid cells that partition the domain Ω. The algorithm computes a {0, 1}𝑚-valued
function that satisfies

∑𝑚
𝑖=1
𝜔𝑖 = 1 a.e. that is piecewise constant on this grid. The function is computed

such that it minimizes the maximum of the modulus of the cumulative difference (integration) to 𝛼

from the first to the 𝑘-th cell over 𝑘 ∈ {1, . . . , 𝑁 }. Algorithm 4 can be implemented very efficiently

using the shortest path approach described in [3, 5] on multidimensional domains because the costs

are sequence independent in the sense of [3, § 2.6.1]. We use the open-source software scarp_solver1

with the option --sur_costs in order to solve SHG in this work.

Primal heuristic for switching cost aware rounding (SHG) Switching cost aware rounding [5, 6]

is stated as Algorithm 5 and works as follows. It starts from a [0, 1]𝑚-valued function 𝛼 such that∑𝑚
𝑖=1
𝛼𝑖 = 1 a.e. and that is defined on an ordered sequence of grid cells that partition the domain

1
Accessed on https://github.com/chrhansk/SCARP on 02/15/2022.
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Algorithm 5 Switching cost aware rounding (multidimensional variant)

Input: Ordered grid cells 𝑆1, . . . , 𝑆𝑁 ⊂ Ω that partition Ω.
Input: Function𝛼 ∈ 𝐿1(Ω,ℝ𝑚)with averages𝑎𝑘,𝑖 such that𝑎𝑘,𝑖 = 1

𝜆 (𝑆𝑘 )
∫
𝑆𝑘
𝛼𝑖 (𝑠) d𝑠 for all 𝑖 ∈ {1, . . . ,𝑚},

and

∑𝑚
𝑖=1
𝑎𝑘,𝑖 = 1 for all 𝑘 ∈ {1, . . . , 𝑁 }.

Input: Trade-off parameter 𝜃 ≥ 1.

1: compute𝑤 as minimizer of

arg min

𝑤

1

𝑚
TV

(∑𝑁
𝑘=1

𝑤𝑘 𝜒𝑆𝑘

)
s.t.



𝑤 ∈ {0, 1}𝑁×𝑚
𝑚∑︁
𝑖=1

𝑤𝑘,𝑖 = 1 for all 𝑘 ∈ {1, . . . , 𝑁 }����� 𝑘∑︁
𝑗=1

(𝑎 𝑗,𝑖 −𝑤 𝑗,𝑖)𝜆(𝑆 𝑗 )
����� ≤ 𝜃 𝑚∑︁

𝑖=2

1

𝑖
max

ℓ
𝜆(𝑆ℓ )

for all 𝑘 ∈ {1, . . . , 𝑁 } and all 𝑖 ∈ {1, . . . ,𝑚}
2: return 𝜔 B

∑𝑁
𝑘=1

𝑤𝑘 𝜒𝑆𝑘

Ω. The algorithm computes a {0, 1}𝑚-valued function that satisfies

∑𝑚
𝑖=1
𝜔𝑖 = 1 a.e. that is piecewise

constant on this grid. The function is computed such that it minimizes the total variation of𝑤 while

constraining the modulus of the cumulative difference (integration) to 𝛼 from the first to the 𝑘-th

cell over 𝑘 ∈ {1, . . . , 𝑁 } by 𝜃 ∑𝑚
𝑖=2

1

𝑖
maxℓ 𝜆(𝑆ℓ ). TV(𝑤) denotes the total variation of𝑤 in Algorithm 5.

The constant

∑𝑚
𝑖=2

1

𝑖
maxℓ 𝜆(𝑆ℓ ) is guaranteed by Algorithm 3, see the analysis in [19, 29], so that a

feasible point always exists for 𝜃 = 1. The feasible set may be increased by choosing 𝜃 > 1 in order to

leave room for a better objective while allowing for a larger approximation error. After discretization,

the optimization problem in Algorithm 5 becomes an integer linear program. While a shortest path

reformulation and efficient solution algorithms exist for the case that Ω ⊂ ℝ, it is not known if it can

be solved efficiently for Ω ⊂ ℝ𝑑 , 𝑑 ≥ 2. By considering only the jumps between subsequent cells along

the ordering of the grid cells in the minimization, we can obtain a suboptimal feasible point using

the shortest path approach described in [3, 5]. This is introduced as the heuristic SCARP_HG in [6]. We

use the open-source software scarp_solver1 with the option --scale 𝜃 in order to solve SCARP_HG /

(SHG).

appendix a.2 equivalence of (TR(Δ)) to (3.1) and existence of minimizer

Proposition a.2. Let 𝑔 = ∇𝐽 (𝜒𝑈 ) (𝜒𝑈 𝑐 − 𝜒𝑈 ). A set𝐷 ∈ B satisfies 𝜆(𝐷) ≤ Δ if and only if 𝑑 = 𝜒𝑈△𝐷 − 𝜒𝑈
is feasible for (TR(Δ)) and the corresponding objective values for (3.1) and (TR(Δ)) coincide.
If 𝐷 ∈ B does not satisfy 𝐷 ⊂ 𝑔−1((−∞, 0]), then its objective value is greater or equal than 𝐷 ∩

𝑔−1((−∞, 0]) so that the optimal objective for (TR(Δ)) is not altered by the additional feasible points.

Proof. For every 𝐷 ∈ B, 𝑑 can be computed with the formula above. On the other hand, the constraint

𝜒𝑈 (𝑠) + 𝑑 (𝑠) ∈ {0, 1} in (TR(Δ)) implies that 𝜒𝑈 + 𝑑 is a characteristic function of a measurable set

𝐴, which in turn can be represented as 𝐴 = 𝑈 △ 𝐷 for the set 𝐷 = 𝑈 △ 𝐴. Moreover, we have

∥𝑑 ∥𝐿1 = ∥𝜒𝑈△𝐷 − 𝜒𝑈 ∥𝐿1 = 𝜆(𝐷), which shows the equivalence of the trust-region constraint.

Moreover, for any feasible 𝐷 and 𝑑 = 𝜒𝑈𝑛△𝐷 − 𝜒𝑈 , we distinguish the four cases whether 𝑠 ∈ 𝐷
and/or in 𝑠 ∈ 𝑈 holds and obtain∫

𝐷

𝑔 d𝑠 =

∫
𝐷

∇𝐽 (𝜒𝑈 ) (𝜒𝑈 𝑐 − 𝜒𝑈 ) d𝑠 =
∫
Ω
∇𝐽 (𝜒𝑈 )𝑑 d𝑠 = (∇𝐽 (𝜒𝑈 ), 𝑑)𝐿2,

which gives the coincidence of the objective values.
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Finally, let 𝐷 ∈ B be given. Then∫
𝐷

𝑔 d𝑠 =

∫
𝐷∩𝑔−1 ( (−∞,0] )

𝑔 d𝑠 +
∫
𝐷∩𝑔−1 ( (0,∞))

𝑔 d𝑠 ≤
∫
𝐷∩𝑔−1 ( (−∞,0] )

𝑔 d𝑠 .

□

Proposition a.3. Let Ω be a bounded domain. Let𝑈 ∈ B. Let Δ ∈ [0,∞]. Let ∇𝐽 ∈ 𝐿1(Ω). Then (TR(Δ))
admits a minimizer ˜𝑑 with (∇𝐽 (𝜒𝑈 ), ˜𝑑)𝐿2 ≤ − Δ

𝜆 (Ω)𝐶 (𝜒𝑈 ).

Proof. Let 𝑔 B ∇𝐽 (𝜒𝑈 ) (𝜒𝑈 𝑐 − 𝜒𝑈 ), and let 𝐷 : ℝ → B be defined as 𝐷 (𝑥) B 𝑔−1

𝑈
((−∞, 𝑥)) for

𝑥 ∈ ℝ. Then 𝐷 (𝑥) ⊂ 𝐷 (𝑦) for all 𝑥 ≤ 𝑦 , implying that ∥𝜒𝑈Δ𝐷 (𝑥 ) − 𝜒𝑈 ∥𝐿1 = 𝜆(𝐷 (𝑥)) is monotone

in 𝑥 . Let 𝑑 (𝑥) B 𝜒𝑈Δ𝐷 (𝑥 ) − 𝜒𝑈 . Then the 𝑑 (𝑥) are greedy solution candidates for (TR(Δ)) with
lim𝑥→−∞ ∥𝑑 (𝑥)∥𝐿1 = 0. Specifically, 𝑑 (0) minimizes (TR(Δ)) if Δ = ∞.
Let Δ < ∞. If ∥𝑑 (0)∥𝐿1 ≤ Δ, then 𝑑 (0) minimizes (TR(Δ)). We restrict to ∥𝑑 (0)∥𝐿1 > Δ. Because

of the greedy construction, 𝑑 (𝑥) is optimal if ∥𝑑 (𝑥)∥𝐿1 = Δ for some 𝑥 < 0. We consider the case

where there is no such 𝑥 ≤ 0. We consider 𝑥 B sup{𝑥 | ∥𝑑 (𝑥)∥𝐿1 ≤ Δ}. If 𝑑 is continuous at 𝑥 , then

∥𝑑 (𝑥)∥𝐿1 = Δ, and 𝑑 (𝑥) minimizes (TR(Δ)). We distinguish two situations.

Situation 1. If 𝑑 is only left continuous at 𝑥 , then we have ∥𝑑 (𝑥)∥𝐿1 ≤ Δ < lim𝑦↓𝑥 ∥𝑑 (𝑦)∥𝐿1 .

Thus there exists a set 𝐴 ∈ B satisfying 𝐴 ∩ 𝐷 (𝑥) = ∅, 𝐴 ⊂ 𝐷 (𝑦) for all 𝑦 > 𝑥 , and 𝜆(𝐴) =

lim𝑦↓𝑥 ∥𝑑 (𝑦)∥𝐿1 − ∥𝑑 (𝑥)∥𝐿1 . Such a set also exists if ∥𝑑 (𝑥)∥𝐿1 ≤ Δ and 𝑑 is neither left nor right

continuous at 𝑥 .

Situation 2. If 𝑑 is only right continuous at 𝑥 , then we have lim𝑦↑𝑥 ∥𝑑 (𝑦)∥𝐿1 ≤ Δ < ∥𝑑 (𝑥)∥𝐿1 .

Thus there exists a set 𝐴 ∈ B satisfying 𝐴 ⊂ 𝐷 (𝑥), 𝐴 ∩ 𝐷 (𝑦) = ∅ for all 𝑦 < 𝑥 , and 𝜆(𝐴) =

∥𝑑 (𝑥)∥𝐿1 − lim𝑦↓𝑥 ∥𝑑 (𝑦)∥𝐿1 . Such a set also exists if Δ < ∥𝑑 (𝑥)∥𝐿1 and 𝑑 is neither left nor right

continuous at 𝑥 .

Because of the monotony of ∥𝑑 (·)∥𝐿1 and the fact that the limits lim𝑦↑𝑥 ∥𝑑 (𝑦)∥𝐿1 and lim𝑦↓𝑥 ∥𝑑 (𝑦)∥𝐿1

always exist by virtue of continuity from below and above of the Lebesgue measure, this distinction is

exhaustive. Because of the mean value property of the Lebesgue measure [8, Cor. 1.12.10], there exists

B ∋ 𝐵 ⊂ 𝐴 with 𝜆(𝐵) = Δ − ∥𝑑 (𝑥)∥𝐿1 (Situation 1) or 𝜆(𝐵) = ∥𝑑 (𝑥)∥𝐿1 − Δ (Situation 2). In Situation 1

we set �̃� B 𝐷 (𝑥) ∪ 𝐵, and in Situation 2 we set �̃� B 𝐷 (𝑥) \ 𝐵. In both situations,
˜𝑑 B 𝜒𝑈Δ ˜𝐷 − 𝜒𝑈

minimizes (TR(Δ)).

The greedy construction of 𝐷 (𝑥) and thus
˜𝐷 with respect to 𝑔 imply

1

Δ

∫
�̃�

𝑔 d𝑠 ≤ 1

|𝜆(𝑔−1((−∞, 0))) |

∫
𝑔−1 ( (−∞,0) )

𝑔 d𝑠

= − 1

|𝜆(𝑔−1((−∞, 0))) |𝐶 (𝜒𝑈 ) ≤ −
1

|𝜆(Ω) |𝐶 (𝜒𝑈 ),

where we have used the definition of 𝐶 for the equality and that the integrand is negative for the

second inequality. Then the identity (∇𝐽 (𝜒𝑈 ), ˜𝑑)𝐿2 =
∫
�̃�
𝑔 d𝑠 yields the claimed inequality. □

appendix b relationship between set-based and characteristic function
points of view

In this appendix, we discuss the relationship of Assumption 1.1 to [10] and the corresponding Taylor

expansions.
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appendix b.1 relation of the setting of Assumption 1.1 to [10]

Our setting and the assumptions cannot be compared or embedded directly into the setting of [10]

because [10] analyzes operations on sets in atomless measure spaces; see, for example, [8, Defini-

tion 1.12.7], while we restrict Algorithm 2 to functionals that operate on functions. We note, however,

that our arguments do not hinge on the particular choice of the Lebesgue–Borel measure for 𝐿1
and

𝐿2
and it is still possible to find correspondences of the parts of Assumption 1.1 in [10], which we do

below.

First, we note that the 𝐿1
-regularization that is used in the experiments in [10] does satisfy our

assumptions because it is linear when restricted to the feasible set of (R).

Assumption 1.1, (a) is assumed in [10, Theorem 3], which essentially shows lim inf𝑛→∞𝐶 (𝜒𝑈𝑛 ) = 0.

We note that the assumption is not explicitly required if Assumption 1.1, (d) holds as well because

the latter implies weak continuity of 𝐽 by means of Proposition 2.1, the feasible set of (R) is weakly

compact, and continuous functions assume their minimum on compact sets.

Assumption 1.1, (b) implies Assumption 1.3 in [10]. The local first-order Taylor expansion in [10,

Theorem 1] for objective functions defined on measurable sets follows for the natural construction

𝐽𝑠 (𝐴) B 𝐽 (𝜒𝐴), and 𝐽 ′𝑠 (𝐴)𝐷 B ⟨𝐽 ′(𝜒𝐴), 𝜒𝐷\𝐴 − 𝜒𝐷∩𝐴⟩𝐿∞ (Ω),𝐿1 (Ω)

for 𝐴, 𝐷 ∈ B. We give a short proof in Proposition b.1 below.

Assumption 1.1, (c) implies the assumption (5) in Lemma 3 and the (10) in Theorem 3 in [10]. They

serve to obtain sufficient decrease in the algorithm, which is exactly the case, where it is needed

the proof of Theorem 4.4 in this work. It is also similar to Assumption 4.1 in [22], where it serves

the same purpose. It is no coincidence that assumptions of this type are required for the analysis of

descent algorithms that manipulate binary control functions in 𝐿𝑝-norms for the following reason.

All binary control functions 𝑣 satisfy ∥𝑣 ∥𝐿1 = ∥𝑣 ∥2
𝐿2
. Therefore, bounding the error term of the Taylor

expansion by the squared 𝐿2
-norm is not sufficient to obtain a sufficient decrease condition because

the linear predicted reduction is bounded from below only by a fraction of the maximal 𝐿1
-norm

of the trust-region step. Thus we cannot prove that the linear predicted reduction dominates the

remainder terms for small trust-region radii without this further assumption. Because the trust-region

subproblem does not allow fractional-valued control functions, a greedy strategy can always be used

to approximate the infimal value of the trust-region subproblem regardless of the 𝐿𝑝-norm (𝑝 ∈ [0,∞))
that is used for the trust-region radius. Consequently, this assumption cannot be avoided by choosing

a different 𝐿𝑝-norm for the trust-region radius.

Assumption 1.1, (d) is a compactness assumption on the derivative of the objective function, which

allows us to infer the stationarity of weak-
∗
cluster points for (R). It is not assumed in [10], which

does neither analyze the relationship to the continuous relaxation nor show such a result. It implies

Assumption 1.4 for CIA in [20] by means of Proposition 2.1. The reason for this difference is that we

need to pass to the limit in the derivative of the objective functional in the norm when certifying

stationarity.

appendix b.2 taylor expansion for sets and characteristic functions

Let 𝐽𝑠 , 𝐽
′
𝑠 be given as above. We say that 𝐽𝑠 is Fréchet differentiable if

𝐽𝑠 (𝐴 △ 𝐷) = 𝐽𝑠 (𝐴) + 𝐽 ′𝑠 (𝐴)𝐷 + 𝑜 (𝜆(𝐷)),

which is the assertion of [10, Theorem 1]. Due to the assumed differentiability 𝐽 : 𝐿1(Ω) → ℝ in

Assumption 1.1, (b), that is with respect to the 𝐿1
-norm on the domain, we obtain that 𝐽𝑠 is Fréchet

differentiable below.

Proposition b.1. 𝐽𝑠 is Fréchet differentiable.
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Proof. Let𝐴, 𝐷 ∈ 𝐵. We use the defined identity 𝐽𝑠 (𝐴 △ 𝐷) = 𝐽 (𝜒𝐴△𝐷 ), Taylor’s theorem for 𝐽 , and the

identities 𝐴 △ 𝐷 = (𝐴 \ 𝐷) ∪ (𝐷 \𝐴), and 𝐴 = (𝐴 \ 𝐷) ∪ (𝐴 ∩ 𝐷)—where both unions are disjoint—to

deduce

𝐽𝑠 (𝐴 △ 𝐷) = 𝐽 (𝜒𝐴) + ⟨𝐽 ′(𝜒𝐴), 𝜒𝐴△𝐷 − 𝜒𝐴⟩𝐿∞,𝐿1 + 𝑜 (∥𝜒𝐴△𝐵 − 𝜒𝐴∥𝐿1)
= 𝐽 (𝜒𝐴) + ⟨𝐽 ′(𝜒𝐴), 𝜒𝐷\𝐴 − 𝜒𝐴∩𝐷⟩𝐿∞,𝐿1 + 𝑜 (∥𝜒𝐷\𝐴 − 𝜒𝐴∩𝐷 ∥𝐿1).

We observe that ∥𝜒𝐷\𝐴 − 𝜒𝐴∩𝐷 ∥𝐿1 = ∥𝜒𝐷 ∥𝐿1 , and ∥𝜒𝐷 ∥𝐿1 = 𝜆(𝐷). This implies

𝐽𝑠 (𝐴 △ 𝐷) = 𝐽 (𝜒𝐴) + ⟨𝐽 ′(𝜒𝐴), 𝜒𝐷\𝐴 − 𝜒𝐴∩𝐷⟩𝐿∞,𝐿1 + 𝑜 (𝜆(𝐷)) .

Inserting the definitions of 𝐽𝑠 (𝐴) and 𝐽 ′𝑠 (𝐴)𝐷 yields the claim. □
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